Skip to main content
Log in

Adsorption and photocatalytic degradation of methylene blue using high surface area titanate nanotubes (TNT) synthesized via hydrothermal method

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Removal of methylene blue (MB) via adsorption and photocatalysis using titanate nanotubes (TNTs) with different surface areas were investigated and compared to commercial titanium dioxide (TiO2) P25 Degussa nanoparticles. The TNTs with surface area ranging from 20 m2/g to 200 m2/g were synthesized via hydrothermal method with different reaction times. TEM imaging confirmed the tubular structure of TNT while XRD spectra indicated all TNTs exhibited anatase crystallinity. Batch adsorption rate showed linearity with surface properties of TNTs, where materials with higher surface area showed higher adsorption rate. The highest MB adsorption (70%) was achieved by TNT24 in 60 min whereas commercial TiO2 exhibited the lowest adsorption of only 10% after 240 min. Adsorption isotherm studies indicated that adsorption using TNT is better fitted into Langmuir adsorption isotherm than Freundlich isotherm model. Furthermore, TNT24 was able to perform up to 90% removal of MB within 120 min, demonstrating performance that is 2-fold better compared to commercial TiO2. The high surface area and surface Bronsted acidity are the main reasons for the improvement in MB removal performance exhibited by TNT24. The improvement in surface acidity enhanced the adsorption properties of all the nanotubes prepared in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmed M, El-Katori EE, Gharni ZH (2013) Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol–gel method. J Alloys Compd 553:19–29. doi:10.1016/j.jallcom.2012.10.038

    Article  Google Scholar 

  • Ai L, Zhang C, Liao F et al (2011) Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis. J Hazard Mater 198:282–290. doi:10.1016/j.jhazmat.2011.10.041

    Article  Google Scholar 

  • Akilavasan J, Wijeratne K, Moutinho H et al (2013) Hydrothermally synthesized titania nanotubes as a promising electron transport medium in dye sensitized solar cells exhibiting a record efficiency of 7.6% for 1-D based devices. J Mater Chem A 1:5377. doi:10.1039/c3ta01576a

    Article  Google Scholar 

  • Ameta A, Ameta R, Ahuja M (2013) Photocatalytic degradation of methylene blue over ferric. Tungstate 3:172–180

    Google Scholar 

  • Augugliaro V, Bellardita M, Loddo V et al (2012) Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. J Photochem Photobiol C: Photochem Rev 13:224–245. doi:10.1016/j.jphotochemrev.2012.04.003

    Article  Google Scholar 

  • Bavykin DV, Walsh FC (2009) Elongated titanate nanostructures and their applications. Eur J Inorg Chem 2009:977–997. doi:10.1002/ejic.200801122

    Article  Google Scholar 

  • Berberidou C, Avlonitis S, Poulios I (2009) Dyestuff effluent treatment by integrated sequential photocatalytic oxidation and membrane filtration. Desalination 249:1099–1106. doi:10.1016/j.desal.2009.06.045

    Article  Google Scholar 

  • Carmen Z, Daniela S (2010) Textile organic dyes—characteristics, polluting effects and separation/elimination procedures from industrial effluents—a critical overview. Org Pollut ten years after stock conv. Environ Anal Updat 55–86. doi: 10.5772/32373

  • Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  Google Scholar 

  • Erdemoǧlu S, Aksu SK, Sayilkan F et al (2008) Photocatalytic degradation of Congo Red by hydrothermally synthesized nanocrystalline TiO2 and identification of degradation products by LC-MS. J Hazard Mater 155:469–476. doi:10.1016/j.jhazmat.2007.11.087

    Article  Google Scholar 

  • Haring A, Morris A, Hu M (2012) Controlling morphological parameters of anodized titania nanotubes for optimized solar energy applications. Materials (Basel) 5:1890–1909. doi:10.3390/ma5101890

    Article  Google Scholar 

  • Juang LC, Wang CC, Lee CK (2006) Adsorption of basic dyes onto MCM-41. Chemosphere 64:1920–1928. doi:10.1016/j.chemosphere.2006.01.024

    Article  Google Scholar 

  • Khayyat S, Selva Roselin L (2016) Photocatalytic degradation of benzothiophene and dibenzothiophene using supported gold nanoparticle. J Saudi Chem Soc. doi:10.1016/j.jscs.2016.11.001

  • Kitano M, Wada E, Nakajima K et al (2013) Protonated titanate nanotubes with Lewis and Brønsted acidity: relationship between nanotube structure and catalytic activity. Chem Mater 25:385–393. doi:10.1021/cm303324b

    Article  Google Scholar 

  • Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I solids. J Am Chem Soc 38:2221–2295. doi:10.1021/ja02268a002

    Article  Google Scholar 

  • Lee H, Park SH, Kim SJ et al (2011) Photocatalytic properties of titanate nanotube powders prepared by alkaline hydrothermal method. J Nanosci Nanotechnol 11:7357–7360. doi:10.1166/jnn.2011.4772

    Article  Google Scholar 

  • Lee K, Mazare A, Schmuki P (2014) One-dimensional titanium dioxide nanomaterials: nanotubes. Chem Rev. doi:10.1021/cr500061m

  • Li D, Lin S, Li S et al (2017) Effects of geometric and crystal structures on the photoelectrical properties of highly ordered TiO 2 nanotube arrays. J Mater Res. doi:10.1557/jmr.2012.38

  • Li G, Liu Z, Zhang Z, Yan X (2009) Preparation of titania nanotube arrays by the hydrothermal method. Chin J Catal 30:37–42. doi:10.1016/S1872-2067(08)60088-1

    Article  Google Scholar 

  • Liao J, Lin S, Pan N et al (2012) Fabrication and photocatalytic properties of free-standing TiO2 nanotube membranes with through-hole morphology. Mater Charact 66:24–29. doi:10.1016/j.matchar.2012.02.005

    Article  Google Scholar 

  • Lin WC, Yang WD, Chung ZJ, Chueng HJ (2011) Preparation and application of titanate nanotubes on methylene blue degradation from aqueous media. Appl Mech Mater. doi:10.4028/www.scientific.net/AMM.117-119.786

  • Liu K, Lin S, Liao J, et al (2015) Synthesis and characterization of hierarchical structured TiO2 nanotubes and their photocatalytic performance on methyl orange

  • Lu Q, Wu C, Liu D et al (2017) A facile and simple method for synthesis of graphene oxide quantum dots from black carbon. Green Chem 19:900–904. doi:10.1039/C6GC03092K

    Article  Google Scholar 

  • Mozia S, Borowiak-Paleń E, Przepiórski J et al (2010) Physico-chemical properties and possible photocatalytic applications of titanate nanotubes synthesized via hydrothermal method. J Phys Chem Solids 71:263–272. doi:10.1016/j.jpcs.2009.12.074

    Article  Google Scholar 

  • Natarajan S, Bajaj HC, Tayade RJ (2017) Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. J Environ Sci 1–22. doi: 10.1016/j.jes.2017.03.011

  • Natarajan TS, Bajaj HC, Tayade RJ (2014) Preferential adsorption behavior of methylene blue dye onto surface hydroxyl group enriched TiO2 nanotube and its photocatalytic regeneration. J Colloid Interface Sci 433:104–114. doi:10.1016/j.jcis.2014.07.019

    Article  Google Scholar 

  • Ou HH, Lo SL (2007) Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification, and application. Sep Purif Technol 58:179–191. doi:10.1016/j.seppur.2007.07.017

    Article  Google Scholar 

  • Pramauro E, Bianco Prevot A, Vincenti M, Brizzolesi G (1997) Photocatalytic degradation of carbaryl in aqueous solutions containing TiO2 suspensions. Environ Sci Technol 31:3126–3131. doi:10.1021/es970072z

    Article  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255. doi:10.1016/S0960-8524(00)00080-8

    Article  Google Scholar 

  • Seo D-S, Lee J-K, Kim H (2001) Preparation of nanotube-shaped TiO2 powder. J Cryst Growth 229:428–432. doi:10.1016/S0022-0248(01)01196-4

    Article  Google Scholar 

  • Shenava SM, Amin AB, Karant RM et al (2016) Synthesis of new rhodamine dyed copolymer nanodispersions for textiles-agglomeration and control with copolymer resins. Dyes Pigments 133:424–434. doi:10.1016/j.dyepig.2016.06.035

    Article  Google Scholar 

  • Sreekantan S, Wei LC (2010) Study on the formation and photocatalytic activity of titanate nanotubes synthesized via hydrothermal method. J Alloys Compd 490:436–442. doi:10.1016/j.jallcom.2009.10.030

    Article  Google Scholar 

  • Struzhko МRKVL, Bryksa VP, Murashko A V, Il VG (2011) Hydrothermal synthesis and properties of titania nanotubes doped with Fe, Ni, Zn, Cd, Mn. 2:21–30

  • Varghese OK, Gong D, Paulose M et al (2003) Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J Mater Res 18:156–165. doi:10.1557/JMR.2003.0022

    Article  Google Scholar 

  • Vu THT, Au HT, Tran LT et al (2014) Synthesis of titanium dioxide nanotubes via one-step dynamic hydrothermal process. J Mater Sci 49:5617–5625. doi:10.1007/s10853-014-8274-4

    Article  Google Scholar 

  • Yang Y, Zhang T, Le L et al (2014) Quick and facile preparation of visible light-driven TiO2 photocatalyst with high absorption and photocatalytic activity. Sci Rep 4:7045. doi:10.1038/srep07045

    Article  Google Scholar 

  • Zhou M, Yu J, Cheng B, Yu H (2005) Preparation and photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts. Mater Chem Phys 93:159–163. doi:10.1016/j.matchemphys.2005.03.007

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude towards the Ministry of Higher Education for the research funding provided under Fundamental Research Grant Scheme (Vot no.: 4F306), Research University Grant (Vot no: 13H65), and Higher Institutions Centre of Excellence Grant (Vot no: 4J204 and 4J182).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Goh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramaniam, M.N., Goh, P.S., Abdullah, N. et al. Adsorption and photocatalytic degradation of methylene blue using high surface area titanate nanotubes (TNT) synthesized via hydrothermal method. J Nanopart Res 19, 220 (2017). https://doi.org/10.1007/s11051-017-3920-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3920-9

Keywords

Navigation