Skip to main content

Advertisement

Log in

Strength retention and moisture resistant properties of citric acid modified thermoplastic starch resins

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The strength retention and moisture resistant properties of thermoplastic starch (TPS) resins were significantly enhanced by modifying with proper amounts of citric acid (CA) (i.e. TPS100CAx specimens) or by melt-blending with poly(lactic acid) (PLA) (i.e. (TPS100CA0.1)xPLAy specimens). In contrast to the distinguished retrogradation effect found for all conditioned TPS specimens, one can barely find any recrystallized starch crystals in TPS100CAx and/or (TPS100CA0.1)xPLAy specimens maintained at 20 °C/50% RH for less than 42 days. The tensile/impact strength retention values of properly prepared conditioned TPS100CA0.1 and (TPS100CA0.1)30PLA70 specimens were equivalent to 1.5 MPa/0.28 KJ/m2 and 41.8 MPa/1.63 KJ/m2, respectively, which were more than 4/4 times and 105/23 times higher than those of corresponding TPS specimens maintained at 20 °C/50% RH for 70 days. In comparison with conditioned TPS specimens, significantly less and shorter drawn debris were found on the fracture surfaces of the corresponding conditioned TPS100CA0.1 and (TPS100CA0.1)30PLA70 specimens with the same amounts of conditioned time. As revealed by Fourier transform infrared spectroscopy, Solid-state 13C Nuclear Magnetic Resonance analyses, disruption of intra and interhydrogen-bondings within starch molecules did occur after addition of small amounts of CA during the modification processes of TPS100CAx specimens. The relatively unchanged in retrogradation effect, significantly less drawn debris and considerable improvement in moisture resistant and/or strength retention properties of the conditioned TPS100CAx and/or (TPS100CA0.1)xPLAy specimens is most likely due to the efficient hydrogen-bonding CA molecules with the moisture-absorbing hydroxyl (free or hydrogen-bonded) of starch molecules that prohibits moisture absorption during their conditioning processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nafchi AM, Moradpour M, Saeidi M, Alias AK (2013) Thermoplastic starches: properties, challenges, and prospects. Starch 65(1–2):61–72

    Article  Google Scholar 

  2. Lourdin D, Coignard L, Bizot H, Colonna P (1997) Influence of equilibrium relative humidity and plasticizer concentration on the water content and glass transition of starch materials. Polym 38(21):5401–5406

    Article  CAS  Google Scholar 

  3. Lourdin D, Bizot H, Colonna P (1997) Antiplastization in starch-glycerol films. J Appl Polym Sci 63(8):1047–1053

    Article  CAS  Google Scholar 

  4. Biliaderis CG, Lazaridou A, Arvanitoyannis I (1999) Glass transition and physical properties of polyol-plasticised pullulan-starch blends at low moisture. Carbohydr Polym 40(1):29–47

    Article  CAS  Google Scholar 

  5. Bastioli C (1998) Properties and applications of mater-bi starch-based materials. Polym Degrad Stab 59(1–3):263–272

    Article  CAS  Google Scholar 

  6. Tatarka PD, Cunningham RL (1998) Properties of protective loose-fill foam. J Appl Polym Sci 67(67):1157–1176

    Article  CAS  Google Scholar 

  7. Willett JL, Shogren RL (2002) Processing and properties of extruded starch/polymer foams. Polym 43(22):5935–5947

    Article  CAS  Google Scholar 

  8. Smith R (2005) Biodeegradable polymers for industrial applications. Woodhead Publishing Ltd., Cambridge, pp 140–157

    Book  Google Scholar 

  9. Tomasik P, Wang YL, Jane JL (1995) Facile route to anionic starches. Succinylation, maleination and phthalation of corn starch on extrusion. Starch 47(3):96–99

    Article  CAS  Google Scholar 

  10. Hablot E, Dewasthale S, Zhao YJ, Shi XS, Graiver D, Narayan R (2013) Reactive extrusion of glycerylated starch and starch-polyester graft copolymers. Eur Polym J 49(49):873–881

    Article  CAS  Google Scholar 

  11. Zhou J, Ren L, Tong J, Xie L, Liu Z (2009) Surface esterification of corn starch films: reaction with dodecenyl succinic anhydride. Carbohydr Polym 78(4):888–893

    Article  CAS  Google Scholar 

  12. Cova A, Sandoval AJ, Balsamo V, Mȕller AJ (2010) The effect of hydrophobic modifications on the adsorption isotherms of cassava starch. Carbohydr Polym 81(3):660–667

    Article  CAS  Google Scholar 

  13. Soest JJGV, Bezemer RC, Wit DD, Vilegenthart JFG (1996) Influence of glycerol on the melting of potato starch. Ind Crop Prod 5(1):1–9

    Article  Google Scholar 

  14. Cheetham NWH, Tao LP (1998) Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr Polym 36(4):277–284

    Article  CAS  Google Scholar 

  15. Perera C, Lu Z, Sell J, Jane J (2001) Comparison of physicochemical properties and structures of sugary-2 cornstarch with normal and waxy cultivars 1. Cereal Chem 78(3):249–256

    Article  CAS  Google Scholar 

  16. Soest JJGV, Vliegenthart JFG (1997) Crystallinity in starch plastics: consequences for material properties. Trends Biotechnol 15(6):208–213

    Article  Google Scholar 

  17. Kalichevsky MT, Jaroszkiewcz EM, Blanshard JMV (1993) A study of the glass transition of amylopectin-sugar mixtures. Polym 34(2):346–358

    Article  CAS  Google Scholar 

  18. Noel TR, Ring SG, Whittam MA (1991) Kinetic aspects of the glass-transition behaviour of maltose-water mixtures. Carbohydr Res 212(10):109–117

    Article  CAS  Google Scholar 

  19. Huang M, Yu J, Ma X (2005) Ethanolamine as a novel plasticiser for thermoplastic starch. Polym Degrad Stab 90(3):501–507

    Article  CAS  Google Scholar 

  20. Choi HM, Kim JH, Shin S (1999) Characterization of cotton fabrics treated with glyoxal and glutaraldehyde. J Appl Polym Sci 73(13):2691–2699

    Article  CAS  Google Scholar 

  21. Yamashita Y, Hirai N (1966) Single crystals of amylose V complexes. II. Crystals with 71 helical configuration. J Polym Sci 4(2):161–171

    CAS  Google Scholar 

  22. Yamashita Y, Monobe K (1971) Single crystals of amylose V complexes. III. Crystals with 81 helical configuration. J Polym Sci 9(8):1471–1481

    CAS  Google Scholar 

  23. Zobel HF, French AD, Hinkle ME (1967) X-Ray diffraction of oriented amylose fibers. II. Structure of V amyloses. Biopolym 5(9):837–845

    Article  CAS  Google Scholar 

  24. Soest JJGV, Knooren NJ (1997) Influence of glycerol and water content on the structure and properties of extruded starch plastic sheets during aging. J Appl Polym Sci 64(7):1411–1422

    Article  Google Scholar 

  25. Kainuma K, Conn PM, Preiss J (1988) The biochemistry of plants. Academic Press Inc., Sydney, pp 141–180

    Book  Google Scholar 

  26. Soest JJGV, Hulleman SHD, Wit DD, Vliegenthart JFG (1996) Changes in the mechanical properties of thermoplastic potato starch in relation with changes in B-type crystallinity. Carbohydr Polym 29(3):225–232

    Article  Google Scholar 

  27. Yu J, Wang N, Ma X (2005) The effects of citric acid on the properties of thermoplastic starch plasticized by glycerol. Starch 57(10):494–504

    Article  CAS  Google Scholar 

  28. Soest JJGV, Hulleman SHD, Wit DD, Vliegenthart JFG (1996) Crystallinity in starch bioplastics. Ind Crop Prod 5(1):11–22

    Article  Google Scholar 

  29. Carvalho AJF, Curvelo AAS, Gandini A (2005) Surface chemical modification of thermoplastic starch: reactions with isocyanates, epoxy functions and stearoyl chloride. Ind Crop Prod 21(3):331–336

    Article  CAS  Google Scholar 

  30. Sagar AD, Merrill EW (1995) Starch fragmentation during extrusion processing. Polym 36(9):1883–1886

    Article  CAS  Google Scholar 

  31. Kulicke WM, Aggour YA, Elsabee MZ (1990) Preparation, characterisation, and rheological behaviour of starch-sodium trimetaphosphate hydrogels. Starch 42(4):134–141

    Article  CAS  Google Scholar 

  32. Bengtsson M, Koch K, Gatenholm P (2003) Surface octanoylation of high-amylose potato starch films. Carbohydr Polym 54(1):1–11

    Article  CAS  Google Scholar 

  33. Yeh J, Hou Y, Cheng L, Wang Y, Yang L, Wang C (2015) Water proof and strength retention properties of thermoplastic starch based biocomposites modified with glutaraldehyde. Carbohydr Polym 127(2015):135–144

    Article  CAS  Google Scholar 

  34. Wang D, Xu Y, Li X, Huang C, Huang K, Wang C, Yeh J (2015) Mechanical retention and water proof properties of bacterial cellulose reinforced thermoplastic starch biocomposites modified with sodium hexametaphosphate. Mater 8(6):3168–3194

    Article  Google Scholar 

  35. Kahar AWM, Ismail H, Othman N (2012) Morphology and tensile properties of high-density polyethylene/natural rubber/thermoplastic tapioca starch blends: the effect of citric acid-modified tapioca starch. J Appl Polym Sci 125(1):768–775

    Article  CAS  Google Scholar 

  36. Dang KM, Yoksan R (2015) Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydr Polym 115(115):575–581

    Article  CAS  Google Scholar 

  37. Rashid I, Omari MHA, Leharne SA, Chowdhry BZ, Badwan A (2012) Starch gelatinization using sodium silicate: FTIR, DSC, XRPD, and NMR studies. Starch 64(9):713–728

    Article  CAS  Google Scholar 

  38. Kister G, Cassanas G, Vert M (1998) Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polym 39(2):267–273

    Article  CAS  Google Scholar 

  39. Agarwal M, Koelling KW, Chalmers JJ (1998) Characterization of the degradation of polylactic acid polymer in a solid substrate environment. Biotechnol Prog 14(3):517–526

    Article  CAS  Google Scholar 

  40. Liu X, Zou Y, Li W, Cao G, Chen W (2006) Kinetics of thermo-oxidative and thermal degradation of poly(d, l-lactide) (PDLLA) at processing temperature. Polym Degrad Stab 91(12):3259–3265

    Article  CAS  Google Scholar 

  41. Heinze T, Talaba P, Heinze U (2000) Starch derivatives of high degree of functionalization. 1. Effective, homogeneous synthesis of p-toluenesulfonyl (tosyl) starch with a new functionalization pattern. Carbohydr Polym 42(4):411–420

    Article  CAS  Google Scholar 

  42. Kochar H, Morawietz M, Hilderich WF (2001) Oxidation of potato starch with NO2, characterization of the carboxylic acid salts, applied catalysis a, general. Appl Catal A Gen 210(1):325–328

    Article  Google Scholar 

  43. Hsien-Chih HW, Sarko A (1978) The double-helical molecular structure of crystalline a-amylose. Carbohydr Res 61(1):27–40

    Article  Google Scholar 

  44. Hizukuri S (1985) Relationship between the distribution of the chain length of amylopectin and the crystalline structure of starch granules. Carbohydr Res 141(2):295–306

    Article  CAS  Google Scholar 

  45. Ikada Y, Jamshidi K, Tsuji H, Hyon SH (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20(4):904–906

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their appreciation to Ministry of Science and Technology, Taiwan (MOST 105-2622-E-168 -003 -CC3) for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-taut Yeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Dw., Kuo, Mc., Yang, L. et al. Strength retention and moisture resistant properties of citric acid modified thermoplastic starch resins. J Polym Res 24, 234 (2017). https://doi.org/10.1007/s10965-017-1397-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1397-y

Keywords

Navigation