Skip to main content

Advertisement

Log in

Coupled Simulation of Thermomagnetic Energy Generation Based on NiMnGa Heusler Alloy Films

  • SPECIAL ISSUE: ICFSMA 2016, INVITED PAPER
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

This paper presents a simulation model for the coupled dynamic properties of thermomagnetic generators based on magnetic shape memory alloy (MSMA) films. MSMA thermomagnetic generators exploit the large abrupt temperature-induced change of magnetization at the first- or second-order magnetic transition as well as the short heat transfer times due to the large surface-to-volume ratio of films. These properties allow for resonant self-actuation of freely movable MSMA cantilever devices showing thermomagnetic duty cycles in the order of 10 ms duration, which matches with the period of oscillatory motion. We present a numerical analysis of the energy conversion processes to understand the effect of design parameters on efficiency and power output. A lumped element model is chosen to describe the time dependence of MSMA cantilever deflection and of temperature profiles as well as the magnitude and phase dependency of magnetization change. The simulation model quantitatively describes experimentally observed oscillatory motion and resulting power output in the order of 100 mW cm−3. Furthermore, it predicts a power output of 490 mW cm−3 for advanced film materials with temperature-dependent change of magnetization ∆M/∆T of 4 A m2 (kg K)−1, which challenges state-of-the-art thermoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Vullers RJM, van Schaijk R, Visser HJ, Penders J, Van Hoof C (2010) Energy harvesting for autonomous wireless sensor networks. IEEE Solid-State Circuits Mag 2:29

    Article  Google Scholar 

  2. Matiko JW, Grabham NJ, Beeby SP, Tudor MJ (2014) Review of the application of energy harvesting in buildings. Measurement Science Technology 25:022001

    Article  Google Scholar 

  3. Vining CB (2009) An inconvenient truth about thermoelectrics. Nat Mater 8:83

    Article  Google Scholar 

  4. Bierschenk JL (2009) Optimized thermoelectrics for energy harvesting applications. In: Priya S, Inman DJ (eds) Energy harvesting technologies. Springer, Boston

    Google Scholar 

  5. Srivastava V, Song Y, Bhatti K, James RD (2011) The direct conversion of heat to electricity using multiferroic alloys. Adv Energy Mater 1:97

    Article  Google Scholar 

  6. Gueltig M, Ossmer H, Ohtsuka M, Miki H, Tsuchiya K, Takagi T, Kohl M (2014) High frequency thermal energy harvesting using magnetic shape memory films. Adv Energy Mater 4:1400751

    Article  Google Scholar 

  7. Gueltig M, Wendler F, Ossmer H, Ohtsuka M, Miki H, Takagi T, Kohl M (2017) High-performance thermomagnetic generators based on Heusler Alloy films. Adv Energy Mater 7:1601879

    Article  Google Scholar 

  8. Ullakko K, Huang JK, Kantner C (1966) Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl Phys Lett 1996:69

    Google Scholar 

  9. Chernenko VA, Ohtsuka M, Kohl M, Khovailo VV, Takagi T (2005) Transformation behavior of Ni–Mn–Ga thin films. Smart Mater Struct 14:S245

    Article  Google Scholar 

  10. Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A (2005) Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat Mater 4:450

    Article  Google Scholar 

  11. Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Fujita A, Kanomata T, Ishida K (2006) Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439:957

    Article  Google Scholar 

  12. Piersol AG (2009) Concepts in vibration data analysis. In: Piersol A, Paez T (eds) Harris shock and vibration handbook. NewYork, McGraw Hill Professional

    Google Scholar 

  13. Bulgrin KE, Ju YS, Carman GP, Lavine AS (2009) A coupled thermal and mechanical model of a thermal energy harvesting device. Proc ASME. https://doi.org/10.1115/imece2009-13040

    Google Scholar 

  14. Lee K-L, Seelecke S (2005) A model for ferromagnetic shape memory thin film actuators. Proc SPIE Smart Struct Mater 5757:302–313

    Google Scholar 

  15. Post A, Knight C, Kisi E (2013) Thermomagnetic energy harvesting with first order phase change materials. J Appl Phys 114:033915

    Article  Google Scholar 

  16. Engel A, Friedrichs R (2002) On the electromagnetic force on a polarizable body. Am J Phys 70:428

    Article  Google Scholar 

  17. O’Handley RC (1999) Modern magnetic materials: principles and applications. Wiley-Interscience, New York

    Google Scholar 

  18. Camacho JM, Sosa V (2013) Alternative method to calculate the magnetic field of permanent magnets with azimuthal symmetry. Revista Mexicana de Fisica E 59:8

    Google Scholar 

  19. Pohlhausen E (1921) Der Wärmeaustausch zwischen festen Körpern und Flüssigkeiten mit kleiner Reibung und kleiner Wärmeleitung. J Appl Math Mech 1:115

    Google Scholar 

  20. Beiss P (2003) Non ferrous materials. In: Beiss P, Ruthardt R, Warlimont H (eds) Powder metallurgy data. Springer, Berlin

    Chapter  Google Scholar 

  21. Tickle R, James RD (1999) Magnetic and magneto-mechanical properties of Ni2MnGa. J Magn Magn Mater 195:625

    Article  Google Scholar 

  22. Martienssen W, Warlimont H (2005) springer handbook of condensed matter and materials data. Springer, Berlin

    Book  Google Scholar 

  23. Gere JM, Timoshenko SP (1997) Mechanics of materials. PWS, Boston

    Google Scholar 

  24. Young HD, Sears FW (1992) University physics. Addison-Wesley Longman, Reading

    Google Scholar 

  25. Soderberg O, Aaltio I, Ge Y, Heczko O, Hannula S-P (2008) Ni–Mn–Ga multifunctional compounds. Mater Sci Eng A 481:80

    Article  Google Scholar 

  26. Hsu CJ, Sandoval SM, Wetzlar KP, Carman GP (2011) Thermomagnetic conversion efficiencies for ferromagnetic materials. J Appl Phys 110:123923

    Article  Google Scholar 

  27. Chen CC, Chung TK, Cheng CC, Tseng CY (2014) SPIE Smart Structures and Material + Nondestructive Evaluation and Health Monitoring. p. 9057

  28. Ujihara M, Carman GP, Lee DG (2007) Thermal energy harvesting device using ferromagnetic materials. Appl Phys Lett 91:093508

    Article  Google Scholar 

  29. Joshi KB, Priya S (2013) Multi-physics model of a thermo-magnetic energy harvester. Smart Mater Struct 22:055005

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of S. Rastjoo in analysing and presenting the data. This work is funded by the German Science Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Wendler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohl, M., Gueltig, M. & Wendler, F. Coupled Simulation of Thermomagnetic Energy Generation Based on NiMnGa Heusler Alloy Films. Shap. Mem. Superelasticity 4, 242–255 (2018). https://doi.org/10.1007/s40830-018-0148-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-018-0148-1

Keywords

Navigation