Skip to main content

Advertisement

Log in

Specific upregulation of RHOA and RAC1 in cancer-associated fibroblasts found at primary tumor and lymph node metastatic sites in breast cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

The importance of tumor–stromal cell interactions in breast tumor progression and invasion is well established. Here, an evaluation of differential genomic profiles of carcinoma-associated fibroblasts (CAFs) compared to fibroblasts derived from tissues adjacent to fibroadenomas (NAFs) revealed altered focal adhesion pathways. These data were validated through confocal assays. To verify the possible role of fibroblasts in lymph node invasion, we constructed a tissue microarray consisting of primary breast cancer samples and corresponding lymph node metastasis and compared the expression of adhesion markers RhoA and Rac1 in fibroblasts located at these different locations. Two distinct tissue microarrays were constructed from the stromal component of 43 primary tumors and matched lymph node samples, respectively. Fibroblasts were characterized for their expression of α-smooth muscle actin (α-SMA) and vimentin. Moreover, we verified the level of these proteins in the stromal compartment from normal adjacent tissue and in non-compromised lymph nodes. Our immunohistochemistry revealed that 59 % of fibroblasts associated with primary tumors and 41 % of the respective metastatic lymph nodes (p = 0.271) displayed positive staining for RhoA. In line with this, 57.1 % of fibroblasts associated with primary tumors presented Rac1-positive staining, and the frequency of co-positivity within the lymph nodes was 42.9 % (p = 0.16). Expression of RhoA and Rac1 was absent in fibroblasts of adjacent normal tissue and in compromised lymph nodes. Based on our findings that no significant changes were observed between primary and metastatic lymph nodes, we suggest that fibroblasts are active participants in the invasion of cancer cells to lymph nodes and support the hypothesis that metastatic tumor cells continue to depend on their microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sugimoto H, Mundel TM, Kieran MW, Kalluri R. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther. 2006;5(12):1640–6.

    Article  CAS  PubMed  Google Scholar 

  2. Xouri G, Christian S. Origin and function of tumor stroma fibroblasts. Semin Cell Dev Biol. 2010;21(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  3. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392–401.

    Article  CAS  PubMed  Google Scholar 

  4. Polyak K, Kalluri R. The role of the microenvironment in mammary gland development and cancer. Cold Spring Harb Perspect Biol. 2010;2(11):a003244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dang TT, Prechtl AM, Pearson GW. Breast cancer subtype-specific interactions with the microenvironment dictate mechanisms of invasion. Cancer Res. 2011;71(21):6857–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Angelucci C, Maulucci G, Lama G, Proietti G, Colabianchi A, Papi M, et al. Epithelial-stromal interactions in human breast cancer: effects on adhesion, plasma membrane fluidity and migration speed and directness. PLoS One. 2012;7(12):e50804. doi:10.1371/journal.pone.0050804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Conklin MW, Eickhoff JC, Riching KM, Pehlke CA, Eliceiri KW, Provenzano PP, et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol. 2011;178(3):1221–32.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rhee S, Grinnell F. Fibroblast mechanics in 3D collagen matrices. Adv Drug Deliv Rev. 2007;59(13):1299–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wheeler AP, Ridley AJ. Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility. Exp Cell Res. 2004;301(1):43–9.

    Article  CAS  PubMed  Google Scholar 

  10. Halon A, Donizy P, Surowiak P, Matkowski R. ERM/Rho protein expression in ductal breast cancer: a 15 year follow-up. Cell Oncol. 2013;36(3):181–90.

    Article  CAS  Google Scholar 

  11. Wu YJ, Tang Y, Li ZF, Li Z, Zhao Y, Wu ZJ, Su Q. Expression and significance of Rac1, Pak1 and Rock1 in gastric carcinoma. Asia Pac J Clin Oncol. 2013; doi: 10.1111/ajco.12052

  12. Ridley AJ. Rho proteins and cancer. Breast Cancer Res Treat. 2004;84(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  13. Sahai E, Marshall CJ. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol. 2003;5(8):711–9.

    Article  CAS  PubMed  Google Scholar 

  14. Yenidunya S, Bayrak R, Haltas H. Predictive value of pathological and immunohistochemical parameters for axillary lymph node metastasis in breast carcinoma. Diagn Pathol. 2011;6:18. doi:10.1186/1746-1596-6-18.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cao Y, Paner GP, Rajan PB. Sentinel node status and tumor characteristics: a study of 234 invasive breast carcinomas. Arch Pathol Lab Med. 2005;129(1):82–4.

    PubMed  Google Scholar 

  16. LeBedis C, Chen K, Fallavollita L, Boutros T, Brodt P. Peripheral lymph node stromal cells can promote growth and tumorigenicity of breast carcinoma cells through the release of IGF-I and EGF. Int J Cancer. 2002;100(1):2–8.

    Article  CAS  PubMed  Google Scholar 

  17. García MF, González-Reyes S, González LO, Junquera S, Berdize N, Del Casar JM, et al. Comparative study of the expression of metalloproteases and their inhibitors in different localizations within primary tumours and in metastatic lymph nodes of breast cancer. Int J Exp Pathol. 2010;91(4):324–34.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Montel V, Mose ES, Tarin D. Tumor-stromal interactions reciprocally modulate gene expression patterns during carcinogenesis and metastasis. Int J Cancer. 2006;119(2):251–63.

    Article  CAS  PubMed  Google Scholar 

  19. Del Valle PR, Milani C, Brentani MM, Katayama ML, de Lyra EC, Carraro DM, et al. Transcriptional profile of fibroblasts obtained from the primary site, lymph node and bone marrow of breast cancer patients. Genet Mol Biol. 2014;37(3):480–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rozenchan PB, Carraro DM, Brentani H, et al. Reciprocal changes in gene expression profiles of cocultured breast epithelial cells and primary fibroblasts. Int J Cancer. 2009;125(12):2767–77.

    Article  CAS  PubMed  Google Scholar 

  21. Onto-Tools data base [http://vortex.cs.wayne.edu/projects.htm].

  22. Wolff AC, Hammond ME, Hicks DG, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch Pathol Lab Med. 2014;138:241–56.

    Article  PubMed  Google Scholar 

  23. Pathology Reporting of Breast Disease. A Joint Document Incorporating the Third Edition of the NHS Breast Screening Programme’s Guidelines for Pathology Reporting in Breast Cancer Screening and the Second Edition of The Royal College of Pathologists’ Minimum Dataset for Breast Cancer Histopathology. NHSBSP Publication No 58. 2005.

  24. Allred DC, Harvey JM, Berardo M, et al. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol. 1998;11:155–68.

    CAS  PubMed  Google Scholar 

  25. Casbas-Hernandez P, Fleming JM, Troester MA. Gene expression analysis of in vitro cocultures to study interactions between breast epithelium and stroma. J Biomed Biotechnol. 2011; 520987. doi: 10.1155/2011/520987

  26. Hawsawi NM, Ghebeh H, Hendrayani SF, et al. Breast carcinoma-associated fibroblasts and their counterparts display neoplastic-specific changes. Cancer Res. 2008;68(8):2717–25.

    Article  CAS  PubMed  Google Scholar 

  27. Casey T, Bond J, Tighe S, et al. Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res Treat. 2009;114:47–62.

    Article  CAS  PubMed  Google Scholar 

  28. Singer CF, Gschwantler-Kaulich D, Fink-Retter A, et al. Differential gene expression profile in breast cancer-derived stromal fibroblasts. Breast Cancer Res Treat. 2008;110(2):273–81.

    Article  CAS  PubMed  Google Scholar 

  29. Buess M, Nuyten DS, Hastie T, Nielsen T, Pesich R, Brown PO. Characterization of heterotypic interaction effects in vitro to deconvolute global gene expression profiles in cancer. Genome Biol. 2007;8(9):R191.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dummler B, Ohshiro K, Kumar R, Field J. Pak protein kinases and their role in cancer. Cancer Metastasis Rev. 2009;28(1–2):51–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Arias-Romero LE, Villamar-Cruz O, Pacheco A, Kosoff R, Huang M, Muthuswamy SK, et al. A Rac-Pak signaling pathway is essential for ErbB2-mediated transformation of human breast epithelial cancer cells. Oncogene. 2010;29(43):5839–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rider L, Oladimeji P, Diakonova M. PAK1 regulates breast cancer cell invasion through secretion of matrix metalloproteinases in response to prolactin and three-dimensional collagen IV. Mol Endocrinol. 2013;27(7):1048–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shin YJ, Kim EH, Roy A, Kim JH. Evidence for a novel mechanism of the PAK1 interaction with the Rho-GTPases Cdc42 and Rac. PLoS One. 2013;8(8):e71495. doi:10.1371/journal.pone.0071495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chan CH, Lee SW, Li CF, Wang J, Yang WL, Wu CY, et al. Deciphering the transcriptional complex critical for RhoA gene expression and cancer metastasis. Nat Cell Biol. 2010;12(5):457–67.

    Article  CAS  PubMed  Google Scholar 

  35. Fritz G, Brachetti C, Bahlmann F, Schmidt M, Kaina B. Rho GTPases in human breast tumours: expression and mutation analyses and correlation with clinical parameters. Br J Cancer. 2002;87(6):635–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chang YW, Marlin JW, Chance TW, et al. RhoA mediates cyclooxygenase-2 signaling to disrupt the formation of adherens junctions and increase cell motility. Cancer Res. 2006;66(24):11700–8.

    Article  CAS  PubMed  Google Scholar 

  37. Spiering D, Hodgson L. Dynamics of the Rho-family small GTPases in actin regulation and motility. Cell Adhes Migr. 2011;5(2):170–80.

    Article  Google Scholar 

  38. Khosravi-Far R, Solski PA, Clark GJ, Kinch MS, Der CJ. Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol Cell Biol. 1995;15(11):6443–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Heasman SJ, Ridley AJ. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol. 2008;9(9):690–701.

    Article  CAS  PubMed  Google Scholar 

  40. Rösel D, Brábek J, Tolde O, Mierke CT, Zitterbart DP, Raupach C, et al. Up-regulation of Rho/ROCK signaling in sarcoma cells drives invasion and increased generation of protrusive forces. Mol Cancer Res. 2008;6(9):1410–20.

    Article  PubMed  Google Scholar 

  41. Verghese ET, Drury R, Green CA, Holliday DL, Lu X, Nash C, et al. MiR-26b is down-regulated in carcinoma-associated fibroblasts from ER-positive breast cancers leading to enhanced cell migration and invasion. J Pathol. 2013;231(3):388–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Berenjeno IM, Bustelo XR. Identification of the Rock-dependent transcriptome in rodent fibroblasts. Clin Transl Oncol. 2008;10(11):726–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sells MA, Pfaff A, Chernoff J. Temporal and spatial distribution of activated Pak1 in fibroblasts. J Cell Biol. 2000;151(7):1449–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tse JC, Kalluri R. Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem. 2007;101(4):816–29.

    Article  CAS  PubMed  Google Scholar 

  45. Aboussekhra A. Role of cancer-associated fibroblasts in breast cancer development and prognosis. Int J Dev Biol. 2011;55(7–9):841–9.

    Article  PubMed  Google Scholar 

  46. Gaggioli C, Hooper S, Hidalgo-Carcedo C, et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol. 2007;9(12):1392–400.

    Article  CAS  PubMed  Google Scholar 

  47. Tchou J, Kossenkov AV, Chang L, Satija C, Herlyn M, Showe LC, et al. Human breast cancer associated fibroblasts exhibit subtype specific gene expression profiles. BMC Med Genomics. 2012;5:39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ana Lúcia Garippo for her technical assistance in confocal microscopy. This research was supported by Fundação de Amparo à Pesquisa no Estado de São Paulo (FAPESP) 01/13513-1, 05/51593-5, 04/04607-8, 05/60333-7, 2014/03090-3 and 09/10088-7 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Conflicts of interest

None

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Bortman Rozenchan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozenchan, P.B., Pasini, F.S., Roela, R.A. et al. Specific upregulation of RHOA and RAC1 in cancer-associated fibroblasts found at primary tumor and lymph node metastatic sites in breast cancer. Tumor Biol. 36, 9589–9597 (2015). https://doi.org/10.1007/s13277-015-3727-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3727-1

Keywords

Navigation