Skip to main content
Log in

Measurement of theF 2 structure function in deep inelastice + p scattering using 1994 data from the ZEUS detector at HERA

  • Published:
Zeitschrift für Physik C: Particles and Fields

Abstract

We present measurements of the structure functionF 2 ine + p scattering at HERA in the range 3.5 GeV2<Q 2<5000 GeV2. A new reconstruction method has allowed a significant improvement in the resolution of the kinematic variables and an extension of the kinematic region covered by the experiment. AtQ 2<35 GeV2 the range inx now spans 6.3·10−5<x<0.08 providing overlap with measurements from fixed target experiments. At values ofQ 2 above 1000 GeV2 thex range extends to 0.5. Systematic errors below 5% have been achieved for most of the kinematic region. The structure function rises asx decreases; the rise becomes more pronounced asQ 2 increases. The behaviour of the structure function data is well described by next-to-leading order perturbative QCD as implemented in the DGLAP evolution equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZEUS Collab., M. Derrick et al., Phys. Lett. B316 (1993) 412;

    ADS  Google Scholar 

  2. ZEUS Collab., M. Derrick et al., Z. Phys. C65 (1995) 379.

    ADS  Google Scholar 

  3. H1 Collab., I. Abt et al., Nucl. Phys. B407 (1993) 515;

    Article  ADS  Google Scholar 

  4. H1 Collab., T. Ahmed et al., Nucl. Phys. B439 (1995) 471.

    Article  ADS  Google Scholar 

  5. ZEUS Collab., M. Derrick et al., Z. Phys. C69 (1996) 607.

    Google Scholar 

  6. H1 Collab., S. Aid et al., DESY 96-039 (1996).

  7. ZEUS Collab., M. Derrick et al., Phys. Lett. B293 (1992) 465;

    ADS  Google Scholar 

  8. ZEUS Collab., M. Derrick et al., Z. Phys. C63 (1994) 391.

    ADS  Google Scholar 

  9. ZEUS Collab., The ZEUS Detector, Status Report 1993, DESY 1993.

  10. M. Derrick et al., Nucl. Inst. Meth. A309 (1991) 77;

    ADS  Google Scholar 

  11. A. Andresen et al., Nucl. Inst. Meth. A309 (1991) 101;

    ADS  Google Scholar 

  12. A. Bernstein et al., Nucl. Inst. Meth. A336 (1993) 23.

    ADS  Google Scholar 

  13. C. Alvisi et al., Nucl. Inst. Meth. A305 (1991) 30.

    ADS  Google Scholar 

  14. N. Harnew et al., Nucl. Inst. Meth. A279 (1989) 290;

    ADS  Google Scholar 

  15. B. Foster et al., Nucl. Phys. B (Proc. Suppl.) 32 (1993) 181;

    Article  ADS  Google Scholar 

  16. B. Foster et al., Nucl. Inst. Meth. A338 (1994) 254.

    ADS  Google Scholar 

  17. J. Andruszków et al., DESY 92-066 (1992).

  18. W.H. Smith et al., Nucl. Inst. Meth. A 355 (1995) 278.

    ADS  Google Scholar 

  19. GEANT 3.13: R. Brun et al., CERN DD/EE/84-1 (1987).

  20. HERACLES 4.4 (and private communication): K. Kwiatkowski, H. Spiesberger and H.-J. Möhring, Proceedings of the Workshop on Physics at HERA, DESY (1992) 1294.

  21. Y. Azimov, Y. Dokshitzer, V. Khoze, S. Troyan, Phys. Lett. B165 (1985) 147;

    ADS  Google Scholar 

  22. G. Gustafson, Phys. Lett. B175 (1986) 453;

    ADS  Google Scholar 

  23. G. Gustafson, U. Pettersson Nucl. Phys. B306 (1988) 746;

    Article  ADS  Google Scholar 

  24. B. Andersson, G. Gustafson, L. Lönnblad, U. Pettersson Z. Phys. C43 (1989) 625.

    ADS  Google Scholar 

  25. ARIADNE 4.0: L. Lönnblad, Comp. Phys. Comm. 71 (1992) 15;

    Article  ADS  Google Scholar 

  26. L. Lönnblad, Z. Phys. C65 (1995) 285.

    ADS  Google Scholar 

  27. JETSET 7.4: T. Sjöstrand and M. Bergtsson, Comp. Phys. Comm. 43 (1987) 367.

    Article  ADS  Google Scholar 

  28. ZEUS Collab., M. Derrick et al., Z. Phys. C59 (1993) 231;

    ADS  Google Scholar 

  29. ZEUS Collab., M. Derrick et al., Phys. Lett. B338 (1994) 483.

    ADS  Google Scholar 

  30. ZEUS Collab., M. Derrick et al., Phys. Lett. B315 (1993) 481.

    ADS  Google Scholar 

  31. H1 Collab., T. Ahmed et al., Nucl. Phys. B429 (1994) 477.

    Article  ADS  Google Scholar 

  32. ZEUS Collab., M. Derrick et al., Z. Phys. C68 (1995) 569.

    ADS  Google Scholar 

  33. A.D. Martin, W.J. Stirling and R.G. Roberts, Phys. Rev. D50 (1994) 6734.

    ADS  Google Scholar 

  34. A.D. Martin, W.J. Stirling and R.G. Roberts, Phys. Rev. D51 (1995) 4756.

    ADS  Google Scholar 

  35. LEPTO 6.1: G. Ingelman, Proceedings of the Workshop on Physics at HERA, DESY (1991) 1366.

  36. PYTHIA 5.7: H.-U. Bengtsson and T. Sjötrand, Comp. Phys. Comm. 46 (1987) 43;

    Article  ADS  Google Scholar 

  37. T. Sjöstrand, CERN TH-7112-93, (1994).

  38. H. Abramowicz, E.M. Levin, A. Levy and U. Maor, Phys. Lett. B269 (1991) 465.

    ADS  Google Scholar 

  39. H. Abramowicz, A. Caldwell and R. Sinkus, Nucl. Inst. Meth. A365 (1995) 508.

    ADS  Google Scholar 

  40. F. Jacquet and A. Blondel, Proceedings of the study of anep facility for Europe, DESY 79/48 (1979) 391.

    Google Scholar 

  41. S. Bentvelsen, J. Engelen and P. Kooijman, Proceedings of the Workshop on Physics at HERA, DESY (1992), 23.

  42. U. Bassler and G. Bernardi, Nucl. Instr. and Meth. A361 (1995) 197.

    ADS  Google Scholar 

  43. V.N. Gribov and L.N. Lipatov, Sov. J. Nucl. Phys. 15 (1972) 438, 675;

    Google Scholar 

  44. L.N. Lipatov, Sov. J. Nucl. Phys. 20 (1975) 95;

    Google Scholar 

  45. Yu. L. Dokshitzer, Sov. Phys. JETP 46 (1977) 641;

    ADS  Google Scholar 

  46. G. Altarelli and G. Parisi, Nucl. Phys. B126 (1977) 298.

    Article  ADS  Google Scholar 

  47. ZEUS Collab., M. Derrick et al., Phys. Lett. B345 (1995) 576.

    ADS  Google Scholar 

  48. E. Laenen, S. Riemersma, J. Smith, and W.L. van Neerven, Nucl. Phys. B392 (1993) 229.

    Article  ADS  Google Scholar 

  49. M. Glück, E. Reya, and M. Stratmann, Nucl. Phys. B422 (1994) 37.

    Article  ADS  Google Scholar 

  50. NMC Collab., M. Arneodo et al., Phys. Lett. B364 (1995) 107.

    ADS  Google Scholar 

  51. G. Altarelli and G. Martinelli, Phys. Lett. B76 (1978) 89.

    ADS  Google Scholar 

  52. HECTOR 1.00 (and private communication): A. Arbuzov et al., Comp. Phys. Comm. 94 (1996) 128.

    Article  ADS  Google Scholar 

  53. ZEUS Collab., M. Derrick et al., Z. Phys. C 70 (1996) 391.

    Google Scholar 

  54. M. Glück, E. Reya and A. Vogt, Z. Phys. C53 (1992) 127;

    ADS  Google Scholar 

  55. M. Glück and E. Reya, Dortmund DO-TH 93/27 (1993);

  56. M. Glück, E. Reya and A. Vogt, Phys. Lett. B306 (1993) 391;

    ADS  Google Scholar 

  57. M. Glück, E. Reya and A. Vogt, Z. Phys. C67 (1995) 433.

    ADS  Google Scholar 

  58. R. Brock et al., Rev. Mod. Phys. 67 (1995) 157.

    Article  ADS  Google Scholar 

  59. E665 Collab., M.R. Adams et al., FERMILAB-PUB-95-396-E.

  60. BCDMS Collab., A.C. Benvenuti et al., Phys. Lett. B223 (1989) 485.

    ADS  Google Scholar 

  61. L.W. Whitlow et al., Phys.Lett. B282 (1992) 475.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Additional information

supported by Worldlab, Lausanne, Switzerland

supported by an EC fellowship number ERBFMBICT 950172

visitor from Florida State University

supported by European Community Program PRAXIS XXI

also supported by NSERC, Canada

supported by an EC fellowship

PPARC Post-doctoral Fellow

partially supported by DESY

supported by a MINERVA Fellowship

supported by the Japan Society for the Promotion of Science (JSPS)

supported by the Polish State Committee for Scientific Research, grant No. 2P03B09308

supported by the Polish State Committee for Scientific Research, grant No. 2P03B09208

supported by the Natural Sciences and Engineering Research Council of Canada (NSERC)

supported by the FCAR of Québec, Canada

supported by the German Federal Ministry for Education and Science, Research and Technology (BMBF), under contract numbers 057BN19P, 057FR19P, 057HH19P, 057HH29P, 057SI75I

supported by the MINERVA Gesellschaft für Forschung GmbH, the Israel Academy of Science and the U.S.-Israel Binational Science Foundation

supported by the German Israeli Foundation, and by the Israel Academy of Science

supported by the Italian National Institute for Nuclear Physics (INFN)

supported by the Japanese Ministry of Education, Science and Culture (the Monbusho) and its grants for Scientific Research

supported by the Korean Ministry of Education and Korea Science and Engineering Foundation

supported by the Netherlands Foundation for Research on Matter (FOM)

supported by the Polish State Committee for Scientific Research, grants No. 115/E-343/SPUB/P03/109/95, 2P03B 244 08p02, p03, p04 and p05, and the Foundation for Polish-German Collaboration (proj. No. 506/92)

supported by the Polish State Committee for Scientific Research (grant No. 2 P03B 083 08) and Foundation for Polish-German Collaboration

partially supported by the German Federal Ministry for Education and Science, Research and Technology (BMBF)

supported by the German Federal Ministry for Education and Science, Research and Technology (BMBF), and the Fund of Fundamental Research of Russian Ministry of Science and Education and by INTAS-Grant No. 93-63

supported by the Spanish Ministry of Education and Science through funds provided by CICYT

supported by the Particle Physics and Astronomy Research Council

supported by the US Department of Energy

supported by the US National Science Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

ZEUS Collaboration., Derrick, M., Krakauer, D. et al. Measurement of theF 2 structure function in deep inelastice + p scattering using 1994 data from the ZEUS detector at HERA. Z. Phys. C - Particles and Fields 72, 399 (1996). https://doi.org/10.1007/s002880050260

Download citation

  • Received:

  • DOI: https://doi.org/10.1007/s002880050260

Keywords

Navigation