Skip to main content
Log in

Semi-targeted metabolomic approaches to validate potential markers of health for micronutrients: analytical perspectives

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Recommended dietary allowances for micronutrients fluctuate noticeably within European Union countries. The Network of Excellence EURRECA (EURopean micronutrient RECommendations Aligned) aims at harmonising micronutrient intake recommendations through population groups. The lack of proper markers of status for some micronutrients limits progress in this area: metabolomics could help identifying such new markers. We developed an original metabolomic strategy in order to monitor the largest fraction of a list of >270 metabolites known to be influenced by the micronutrients of interest. To improve the coverage of these metabolites in plasma, a multi platform approach was performed using both liquid and gas chromatography coupled to mass spectrometry. A sample preparation protocol based on a three-step plasma fractionation has been set up, using both liquid and solid phase extractions. Four fractions were obtained containing respectively polar metabolites, neutral lipids, free fatty acids and polar lipids. Recoveries were determined using spiked plasma samples, and the advantages and drawbacks of the fractionation method compared to a commonly used single preparation step method were investigated in terms of metabolites detection and robustness. Fractionation improved coverage of the endogenous metabolome more than twice in terms of extracted features, allowing to identify 90 metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashwell, M., Lambert, J. P., Alles, M. S., Branca, F., Bucchini, L., Brzozowska, A., et al. (2008). How we will produce the evidence-based EURRECA toolkit to support nutrition and food policy. European Journal of Nutrition, 47(Suppl 1), 2–16.

    Article  PubMed  Google Scholar 

  • Bateman, H. G., & Jenkins, T. C. (1997). Method for extraction and separation by solid phase extraction of neutral lipid, free fatty acids, and polar lipid from mixed microbial cultures. Journal of Agricultural and Food Chemistry, 45(1), 132–134.

    Article  CAS  Google Scholar 

  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917.

    Article  PubMed  CAS  Google Scholar 

  • Boccard, J., Grata, E., Thiocone, A., Gauvrit, J.-Y., Lantéri, P., Carrupt, P.-A., et al. (2007). Multivariate data analysis of rapid LC-TOF/MS experiments from Arabidopsis thaliana stressed by wounding. Chemometrics and Intelligent Laboratory Systems, 86(2), 189–197.

    Article  CAS  Google Scholar 

  • Bruce, S. J., Jonsson, P., Antti, H., Cloarec, O., Trygg, J., Marklund, S. L., et al. (2008). Evaluation of a protocol for metabolic profiling studies on human blood plasma by combined ultra-performance liquid chromatography/mass spectrometry: From extraction to data analysis. Analytical Biochemistry, 372(2), 237–249.

    Article  PubMed  CAS  Google Scholar 

  • Bruce, S. J., Tavazzi, I., Parisod, V., Rezzi, S., Kochhar, S., & Guy, P. A. (2009). Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Analytical Chemistry, 81(9), 3285–3296.

    Article  PubMed  CAS  Google Scholar 

  • Buscher, J. M., Czernik, D., Ewald, J. C., Sauer, U., & Zamboni, N. (2009). Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Analytical Chemistry, 81(6), 2135–2143.

    Article  PubMed  CAS  Google Scholar 

  • Cai, X., Zou, L., Dong, J., Zhao, L., Wang, Y., Xu, Q., et al. (2009). Analysis of highly polar metabolites in human plasma by ultra-performance hydrophilic interaction liquid chromatography coupled with quadrupole-time of flight mass spectrometry. Analytica Chimica Acta, 650(1), 10–15.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J., Zhao, X., Fritsche, J., Yin, P., Schmitt-Kopplin, P., Wang, W., et al. (2008). Practical approach for the identification and isomer elucidation of biomarkers detected in a metabolomic study for the discovery of individuals at risk for diabetes by integrating the chromatographic and mass spectrometric information. Analytical Chemistry, 80(4), 1280–1289.

    Article  PubMed  CAS  Google Scholar 

  • Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 26(1), 51–78.

    Article  PubMed  CAS  Google Scholar 

  • Dhonukshe-Rutten, R. A. M., Timotijevic, L., Cavelaars, A. E. J. M., Raats, M. M., de Wit, L. S., et al. (2010). European micronutrient recommendations aligned: Ageneral framework developed by EURRECA. European Journal of Clinical Nutrition, 64(S2): S2–S10.

    Google Scholar 

  • Dobson, C. M. (2004). Chemical space and biology. Nature, 432(7019), 824–828.

    Article  PubMed  CAS  Google Scholar 

  • Doets, E. L., de Wit, L. S., Dhonukshe-Rutten, R. A. M., Cavelaars, A. E. J. M., Raats, M. M., Timotijevic, L., et al. (2008). Current micronutrient recommendations in Europe: Towards understanding their differences and similarities. European Journal of Nutrition, 47(1), 17–40.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, W. B., Bailey, N. J. C., & Johnson, H. E. (2005). Measuring the metabolome: Current analytical technologies. Analyst, 130(5), 606–625.

    Article  PubMed  CAS  Google Scholar 

  • Fahy, E., Subramaniam, S., Brown, H. A., Glass, C. K., Merrill, A. H. J., Murphy, R. C., et al. (2005). A comprehensive classification system for lipids. Journal of Lipid Research, 46(5), 839–862.

    Article  PubMed  CAS  Google Scholar 

  • Fahy, E., Subramaniam, S., Murphy, R. C., Nishijima, M., Raetz, C. R. H., Shimizu, T., et al. (2009). Update of the LIPID MAPS comprehensive classification system for lipids. Journal of Lipid Research, 50, S9–S14.

    Article  PubMed  Google Scholar 

  • Fiehn, O. (2002). Metabolomics: The link between genotypes and phenotypes. Plant Molecular Biology, 48(1–2), 155–171.

    Article  PubMed  CAS  Google Scholar 

  • Folch, J., Lees, M., & Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226(1), 497–509.

    PubMed  CAS  Google Scholar 

  • Gibney, M. J., Walsh, M., Brennan, L., Roche, H. M., German, B., & van Ommen, B. (2005). Metabolomics in human nutrition: Opportunities and challenges. American Journal of Clinical Nutrition, 82(3), 497–503.

    PubMed  CAS  Google Scholar 

  • Guy, P. A., Tavazzi, I., Bruce, S. J., Ramadan, Z., & Kochhar, S. (2008). Global metabolic profiling analysis on human urine by UPLC-TOFMS: Issues and method validation in nutritional metabolomics. Journal of Chromatography B. Analytical Technologies in the Biomedical and Life Sciences, 871(2), 253–260.

    Article  CAS  Google Scholar 

  • Halket, J. M., Waterman, D., Przyborowska, A. M., Patel, R. K. P., Fraser, P. D., & Bramley, P. M. (2005). Chemical derivatization and mass spectral libraries in metabolic profiling by GC–MS and LC/MS/MS. Journal of Experimental Botany, 56(410), 219–243.

    Article  PubMed  CAS  Google Scholar 

  • Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., et al. (2010). MassBank: A public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry, 45(7), 703–714.

    Article  PubMed  CAS  Google Scholar 

  • Hu, Q., Noll, R. J., Li, H., Makarov, A., Hardman, M., & Cooks, R. G. (2005). The Orbitrap: A new mass spectrometer. Journal of Mass Spectrometry, 40(4), 430–443.

    Article  PubMed  CAS  Google Scholar 

  • Issaq, H. J., Abbott, E., & Veenstra, T. D. (2008). Utility of separation science in metabolomic studies. Journal of Separation Science, 31(11), 1936–1947.

    Article  PubMed  CAS  Google Scholar 

  • Katajamaa, M., Miettinen, J., & Oresic, M. (2006). MZmine: Toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics, 22(5), 634–636.

    Article  PubMed  CAS  Google Scholar 

  • Kell, D. B. (2004). Metabolomics and systems biology: Making sense of the soup. Current Opinion in Microbiology, 7(3), 296–307.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H., & Salem, N. J. (1990). Separation of lipid classes by solid phase extraction [published erratum appears in Journal of Lipid Research 1993; 34(1):166]. Journal of Lipid Research, 31(12), 2285–2289.

    Google Scholar 

  • Kind, T., & Fiehn, O. (2007). Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics, 8, 105–124.

    Article  PubMed  Google Scholar 

  • King, R., Bonfiglio, R., Fernandez-Metzler, C., Miller-Stein, C., & Olah, T. (2000). Mechanistic investigation of ionization suppression in electrospray ionization. Journal of The American Society for Mass Spectrometry, 11(11), 942–950.

    Article  PubMed  CAS  Google Scholar 

  • Koulman, A., Lane, G. A., Harrison, S. J., & Volmer, D. A. (2009). From differentiating metabolites to biomarkers. Analytical and Bioanalytical Chemistry, 394(3), 663–670.

    Article  PubMed  CAS  Google Scholar 

  • Lipinski, C., & Hopkins, A. (2004). Navigating chemical space for biology and medicine. Nature, 432(7019), 855–861.

    Article  PubMed  CAS  Google Scholar 

  • Matuszewski, B. K., Constanzer, M. L., & Chavez-Eng, C. M. (2003). Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC–MS/MS. Analytical Chemistry, 75(13), 3019–3030.

    Article  PubMed  CAS  Google Scholar 

  • Michopoulos, F., Lai, L., Gika, H., Theodoridis, G., & Wilson, I. (2009). UPLC–MS-based analysis of human plasma for metabolomics using solvent precipitation or solid phase extraction. Journal of Proteome Research, 8(4), 2114–2121.

    Article  PubMed  CAS  Google Scholar 

  • Newman, J. W., Watanabe, T., & Hammock, B. D. (2002). The simultaneous quantification of cytochrome P450 dependent linoleate and arachidonate metabolites in urine by HPLC–MS/MS. Journal of Lipid Research, 43(9), 1563–1578.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, J. K., & Wilson, I. D. (2003). Understanding ‘global’ systems biology: Metabolomics and the continuum of metabolism. Nature Reviews Drug Discovery, 2(8), 668–676.

    Article  PubMed  CAS  Google Scholar 

  • Nithipatikom, K., Grall, A. J., Holmes, B. B., Harder, D. R., Falck, J. R., & Campbell, W. B. (2001). Liquid chromatographic–electrospray ionization–mass spectrometric analysis of cytochrome P450 metabolites of arachidonic acid. Analytical Biochemistry, 298(2), 327–336.

    Article  PubMed  CAS  Google Scholar 

  • Nordstrom, A., Want, E., Northen, T., Lehtio, J., & Siuzdak, G. (2008). Multiple ionization mass spectrometry strategy used to reveal the complexity of metabolomics. Analytical Chemistry, 80(2), 421–429.

    Article  PubMed  Google Scholar 

  • Pereira, H., Martin, J.-F., Joly, C., Sébédio, J.-L., & Pujos-Guillot, E. (2010). Development and validation of a UPLC/MS method for a nutritional metabolomic study of human plasma. Metabolomics, 6(2), 216–218.

    Article  Google Scholar 

  • Petritis, K. N., Chaimbault, P., Elfakir, C., & Dreux, M. (1999). Ion-pair reversed-phase liquid chromatography for determination of polar underivatized amino acids using perfluorinated carboxylic acids as ion pairing agent. Journal of Chromatography A, 833(2), 147–155.

    Article  CAS  Google Scholar 

  • Pijls, L., Ashwell, M., & Lambert, J. (2009). EURRECA: A network of excellence to align European micronutrient recommendations. Food Chemistry, 113(3), 748–753.

    Article  CAS  Google Scholar 

  • Piraud, M., Vianey-Saban, C., Petritis, K., Elfakir, C., Steghens, J.-P., & Bouchu, D. (2005). Ion-pairing reversed-phase liquid chromatography/electrospray ionization mass spectrometric analysis of 76 underivatized amino acids of biological interest: A new tool for the diagnosis of inherited disorders of amino acid metabolism. Rapid Communications in Mass Spectrometry, 19(12), 1587–1602.

    Article  PubMed  CAS  Google Scholar 

  • Poole, C. F. (2007). Matrix-induced response enhancement in pesticide residue analysis by gaschromatography. Journal of Chromatography A, 1158, 241–250.

    Article  PubMed  CAS  Google Scholar 

  • Psychogios, N., Hau, D. D., Peng, J., Guo, A. C., Mandal, R., Bouatra, S., et al. (2011). The human serum metabolome. PLoS ONE, 6, e16957.

    Article  PubMed  CAS  Google Scholar 

  • Retra, K., Bleijerveld, O. B., van Gestel, R. A., Tielens, A. G., van Hellemond, J. J., & Brouwers, J. F. (2008). A simple and universal method for the separation and identification of phospholipid molecular species. Rapid Communications in Mass Spectrometry, 22(12), 1853–1862.

    Article  PubMed  CAS  Google Scholar 

  • Sana, T. R., Waddell, K., & Fischer, S. M. (2008). A sample extraction and chromatographic strategy for increasing LC/MS detection coverage of the erythrocyte metabolome. Journal of Chromatography B. Analytical Technologies in the Biomedical and Life Sciences, 871(2), 314–321.

    Article  CAS  Google Scholar 

  • Scalbert, A., Brennan, L., Fiehn, O., Hankemeier, T., Kristal, B. S., van Ommen, B., et al. (2009). Mass-spectrometry-based metabolomics in nutrition? Current limitations and recommendations. Metabolomics, 5(4), 435–458.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78(3), 779–787.

    Article  PubMed  CAS  Google Scholar 

  • Sumner, L., Amberg, A., Barrett, D., Beale, M., Beger, R., Daykin, C., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221.

    Article  CAS  Google Scholar 

  • Tardy, A.-L., Lambert-Porcheron, S., Malpuech-Brugère, C., Giraudet, C., Rigaudière, J.-P., Laillet, B., et al. (2009). Dairy and industrial sources of trans fat do not impair peripheral insulin sensitivity in overweight women. American Journal of Clinical Nutrition, 90(1), 88–94.

    Article  PubMed  CAS  Google Scholar 

  • Van der Greef, J., Hankemeier, T., & McBurney, R. N. (2006). Metabolomics-based systems biology and personalized medicine: Moving towards n = 1 clinical trials? Pharmacogenomics, 7(7), 1087–1094.

    Article  PubMed  Google Scholar 

  • Van der Kloet, F. M., Bobeldijk, I., Verheij, E. R., & Jellema, R. H. (2009). Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping. Journal of Proteome Research, 8(11), 5132–5141.

    Article  PubMed  Google Scholar 

  • Van Ommen, B., Fairweather-Tait, S., Freidig, A., Kardinaal, A., Scalbert, A., & Wopereis, S. (2008). A network biology model of micronutrient related health. British Journal of Nutrition, 99, S72–S80.

    PubMed  Google Scholar 

  • Van Ommen, B., & Stierum, R. (2002). Nutrigenomics: Exploiting systems biology in the nutrition and health arena. Current Opinion in Biotechnology, 13(5), 517–521.

    Article  PubMed  Google Scholar 

  • Wishart, D. S. (2008). Metabolomics: Applications to food science and nutrition research. Trends in Food Science & Technology, 19(9), 482–493.

    Article  CAS  Google Scholar 

  • Wishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. C., Young, N., et al. (2007). HMDB: The human metabolome database. Nucleic Acids Research, 35, D521–D526.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, C., & Quinn, P. J. (2008). Lipidomics: Practical aspects and applications. Progress in Lipid Research, 47(1), 15–36.

    Article  PubMed  CAS  Google Scholar 

  • Wopereis, S., Rubingh, C. M., van Erk, M. J., Verheij, E. R., van Vliet, T., Cnubben, N. H. P., et al. (2009). Metabolic profiling of the response to an oral glucose tolerance test detects subtle metabolic changes. PLoS ONE, 4(2), e4525.

    Article  PubMed  Google Scholar 

  • Zarzycki, P. K., Kulhanek, K. M., Smith, R., & Clifton, V. L. (2006). Determination of steroids in human plasma using temperature-dependent inclusion chromatography for metabolomic investigations. Journal of Chromatography A, 1104(1–2), 203–208.

    Article  PubMed  CAS  Google Scholar 

  • Zeisel, S. H., Freake, H. C., Bauman, D. E., Bier, D. M., Burrin, D. G., German, J. B., et al. (2005). The nutritional phenotype in the age of metabolomics. Journal of Nutrition, 135(7), 1613–1616.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was undertaken as an activity of the EURRECA Network of Excellence (www.eurreca.org), funded by the European Commission Contract Number FP6 036196-2 (FOOD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estelle Pujos-Guillot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayle, ML., Wopereis, S., Bouwman, J. et al. Semi-targeted metabolomic approaches to validate potential markers of health for micronutrients: analytical perspectives. Metabolomics 8, 1114–1129 (2012). https://doi.org/10.1007/s11306-012-0419-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-012-0419-3

Keywords

Navigation