Skip to main content
Log in

Numerical study of femtosecond laser-assisted atom probe tomography

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigate the mechanisms of a laser-assisted atom probe tomography technique. In this method, a sub-wavelength tip is subjected both to a very strong static electric field and to a femtosecond laser pulse. As a result, ions are ejected from the tip one by one. By using femtosecond lasers, one can analyze not only metals but also semiconductors and dielectric materials. To better understand the ejection process, a numerical model is developed based on the drift-diffusion approach. The model accounts for such effects as field penetration, hole and electron movement, and laser absorption. For the given value of the dc field, a substantial band bending and an increase in hole density at the surface of the silicon tip are observed. This bending effect changes silicon absorption coefficient at the surface and significantly increases recombination time of laser-induced carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Blavette, A. Bostel, J.M. Sarrau, B. Deconihout, A. Menand, Nature 363, 432 (1993)

    Article  ADS  Google Scholar 

  2. M.K. Miller, Atom Probe Tomography: Analysis at the Atomic Level (Springer, New York, 2000)

    Book  Google Scholar 

  3. E.M. Müller, Phys. Rev. 102, 618 (1956)

    Article  ADS  Google Scholar 

  4. B. Deconihout, A. Vella, F. Vurpillot, G. Da Costa, A. Bostel, Appl. Phys. A 93, 995 (2008)

    Article  ADS  Google Scholar 

  5. C. Oberdorfer, P. Stender, C. Reinke, G. Schmitz, Microsc. Microanal. 13, 342 (2007)

    Article  Google Scholar 

  6. K. Hono, T. Ohkubo, Y.M. Chen, M. Kodzuka, K. Oh-ishi, H. Sepehri-Amin, F. Li, T. Kinno, S. Tomiya, Y. Kanitani, Ultramicroscopy 111, 576 (2011)

    Article  Google Scholar 

  7. J. Houard, A. Vella, F. Vurpillot, B. Deconihout, Phys. Rev. B 84, 033405 (2011)

    Article  ADS  Google Scholar 

  8. T.T. Tsong, Surf. Sci. 81, 28 (1979)

    Article  ADS  Google Scholar 

  9. B. Mazumder, A. Vella, F. Vurpillot, G. Martel, B. Deconihout, Appl. Phys. Lett. 97, 073104 (2010)

    Article  ADS  Google Scholar 

  10. L.V. Keldysh, Sov. Phys. JETP 7, 788 (1958)

    Google Scholar 

  11. C.M. Penchina, Phys. Rev. 138, 924 (1965)

    Article  ADS  Google Scholar 

  12. A. Frova, Phys. Rev. 145, 575 (1966)

    Article  ADS  Google Scholar 

  13. W.C. Dash, R. Newman, Phys. Rev. 99, 1151 (1955)

    Article  ADS  Google Scholar 

  14. H.M. van Driel, Phys. Rev. B 35, 8166 (1987)

    Article  ADS  Google Scholar 

  15. N.M. Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, E.E.B. Campbell, Phys. Rev. B 69, 054102 (2004)

    Article  ADS  Google Scholar 

  16. R. Stoian, A. Rosenfeld, D. Ashkenasi, I.V. Hertel, N.M. Bulgakova, E.E.B. Campbell, Phys. Rev. Lett. 88, 097603 (2002)

    Article  ADS  Google Scholar 

  17. W. Marine, N.M. Bulgakova, L. Patrone, I. Ozerov, J. Appl. Phys. 103, 094902 (2008)

    Article  ADS  Google Scholar 

  18. J. Dziewior, W. Schmid, Appl. Phys. Lett. 31, 346 (1977)

    Article  ADS  Google Scholar 

  19. J.P. Long, H.R. Sadeghi, C. Rife, M.N. Kabler, Phys. Rev. Lett. 64, 1158 (1990)

    Article  ADS  Google Scholar 

  20. A. Jüngel, S. Krause, P. Pietra, Z. Angew. Math. Phys. 62, 623 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley-Interscience, New York, 2007)

    Google Scholar 

  22. M.A. Omar, L. Reggiani, Solid-State Electron. 30, 693 (1987)

    Article  ADS  Google Scholar 

  23. J.K. Chen, D.Y. Tzou, J.E. Beraun, Int. J. Heat Mass Transf. 48, 501 (2005)

    Article  Google Scholar 

  24. Y.M. Chen, T. Ohkubo, K. Hono, Ultramicroscopy 111, 562 (2011)

    Article  Google Scholar 

  25. M. Tsukada, H. Tamura, K.P. McKenna, A.L. Shluger, Y.M. Chen, T. Ohkubo, K. Hono, Ultramicroscopy 111, 567 (2011)

    Article  Google Scholar 

  26. F. Vurpillot, A. Bostel, D. Blavette, J. Microsc. 196, 332 (1999)

    Article  Google Scholar 

  27. K. Sokolowski-Tinten, D. von der Linde, Phys. Rev. B 61, 2643 (2000)

    Article  ADS  Google Scholar 

  28. M.N. Bachhav, R. Danoix, F. Vurpillot, B. Hannoyer, S.B. Ogale, F. Danoix, Appl. Phys. Lett. 99, 084101 (2011)

    Article  ADS  Google Scholar 

  29. P. Flubacher, A.J. Leadbetter, D. Li, A. Majumdar, Philos. Mag. 4, 273 (1959)

    Article  ADS  Google Scholar 

  30. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1985)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from ANR Ultra-Sonde 2010 BLAN 0943 01 (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Silaeva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silaeva, E.P., Shcheblanov, N.S., Itina, T.E. et al. Numerical study of femtosecond laser-assisted atom probe tomography. Appl. Phys. A 110, 703–707 (2013). https://doi.org/10.1007/s00339-012-7189-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7189-7

Keywords

Navigation