Skip to main content

Advertisement

Log in

The perfect neuroimaging-genetics-computation storm: collision of petabytes of data, millions of hardware devices and thousands of software tools

  • SI: Genetic Neuroimaging in Aging and Age-Related Diseases
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The volume, diversity and velocity of biomedical data are exponentially increasing providing petabytes of new neuroimaging and genetics data every year. At the same time, tens-of-thousands of computational algorithms are developed and reported in the literature along with thousands of software tools and services. Users demand intuitive, quick and platform-agnostic access to data, software tools, and infrastructure from millions of hardware devices. This explosion of information, scientific techniques, computational models, and technological advances leads to enormous challenges in data analysis, evidence-based biomedical inference and reproducibility of findings. The Pipeline workflow environment provides a crowd-based distributed solution for consistent management of these heterogeneous resources. The Pipeline allows multiple (local) clients and (remote) servers to connect, exchange protocols, control the execution, monitor the states of different tools or hardware, and share complete protocols as portable XML workflows. In this paper, we demonstrate several advanced computational neuroimaging and genetics case-studies, and end-to-end pipeline solutions. These are implemented as graphical workflow protocols in the context of analyzing imaging (sMRI, fMRI, DTI), phenotypic (demographic, clinical), and genetic (SNP) data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alarifi, S., & Wolthusen S. (2013). Anomaly detection for ephemeral cloud IaaS virtual machines, In Network and system security, Springer. p. 321–335.

  • Avants, B. B., Tustison, N., & Song, G. (2009). Advanced Normalization Tools (ANTS). Insight J.

  • Bellec, P., et al. (2012). The pipeline system for Octave and Matlab (PSOM): a lightweight scripting framework and execution engine for scientific workflows. Frontiers in Neuroinformatics. 6.

  • Berger, B., Peng, J., & Singh, M. (2013). Computational solutions for omics data. Nature Reviews Genetics, 14(5), 333–346.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berthold, M. R., et al. (2008). KNIME: The konstanz information miner, in Data analysis, machine learning and applications. C. Preisach, et al., (Eds.), Springer Berlin Heidelberg. p. 319–326.

  • Binder, E. B. (2009). The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology, 34, S186–S195.

    Article  CAS  PubMed  Google Scholar 

  • Breeze, J. L., Poline, J.-B., & Kennedy, D. N. (2012). Data sharing and publishing in the field of neuroimaging. Giga Science, 1(1), 1–3.

    Article  Google Scholar 

  • Bremner, J. D., Vermetten, E., & Mazure, C. M. (2000). Development and preliminary psychometric properties of an instrument for the measurement of childhood trauma: the Early Trauma Inventory. Depression and Anxiety, 12(1), 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Buxbaum, J. D., et al. (2012). The autism sequencing consortium: large-scale, high-throughput sequencing in autism spectrum disorders. Neuron, 76(6), 1052–1056.

    Article  CAS  PubMed  Google Scholar 

  • Che, A., Cui, J., & Dinov, I. (2009). SOCR analyses: implementation and demonstration of a New graphical statistics educational toolkit. JSS, 30(3), 1–19.

    Google Scholar 

  • Chen, R., & Herskovits, E. H. (2005). Graphical-model-based morphometric analysis. Medical Imaging, IEEE Transactions on, 24(10), 1237–1248.

    Article  Google Scholar 

  • Chen, Y., Souaiaia, T., & Chen, T. (2009). PerM: efficient mapping of short sequencing reads with periodic full sensitive spaced seeds. Bioinformatics, 25(19), 2514–2521.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chowdhury, A., et al. (2010). Next-generation E-health communication infrastructure using converged super-broadband optical and wireless access system. In World of Wireless Mobile and Multimedia Networks (WoWMoM), 2010 I.E. International Symposium on a. IEEE.

  • Cisco Systems Inc. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2012–2017. Cisco 2012; Available from: http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf.

  • Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29(3), 162–173.

    Article  CAS  PubMed  Google Scholar 

  • Dinov, I. (2006). Statistics online computational resource. Journal of Statistical Software, 16(1), 1–16.

    Google Scholar 

  • Dinov, I. D., et al. (2002). Quantitative comparison and analysis of brain image registration using frequency-adaptive wavelet shrinkage. IEEE Transactions on Information Technology in Biomedicine, 6(1), 73–85.

    Article  PubMed  Google Scholar 

  • Dinov, I., et al. (2008). iTools: a framework for classification, categorization and integration of computational biology resources. PLoS One, 3(5), e2265.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dinov, I., et al. (2010). Neuroimaging study designs, computational analyses and data provenance using the LONI pipeline. PLoS One, 5(9), e13070. doi:10.1371/journal.pone.0013070.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dinov, I., et al. (2011). Applications of the pipeline environment for visual informatics and genomics computations. BMC Bioinformatics, 12(1), 304.

    Article  PubMed Central  PubMed  Google Scholar 

  • Drossman, D., & Dumitrascu, D. (2006). Rome III: new standard for functional gastrointestinal disorders. Journal of Gastrointestinal and Liver Diseases: JGLD, 15(3), 237.

    PubMed  Google Scholar 

  • Eliceiri, K. W., et al. (2012). Biological imaging software tools. Nature Methods, 9(7), 697–710.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Evans, A. (2002). Automated 3D analysis of large brain MRI databases. Neuropsychopharmacology: The Fifth Generation of Progress: American College of Neuropsychopharmacology. Nature Publishing, London: p. 301–313.

  • Fani, N., G.D.T.E.B., et al. (2013). Fkbp5 and attention bias for threat: associations with hippocampal function and shape. JAMA Psychiatry: p. 1–9.

  • Fennema-Notestine, C., et al. (2006). Quantitative evaluation of automated skull-stripping methods applied to contemporary and legacy images: effects of diagnosis, bias correction, and slice location. Human Brain Mapping, 27(2), 99–113.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 11050–11055.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Foster, K., Spicer, M., & Nathan, S. (2011). IBM infosphere streams: Assembling continuous insight in the information revolution. San Jose: International Technical Support Organization.

    Google Scholar 

  • Freire, J., et al. (2006). Managing rapidly-evolving scientific workflows, in IPAW 2006, L.M.a.I.F. (Eds.), Springer-Verlag: Berlin Heidelberg. p. 10–18.

  • Friston, K. J., et al. (2011). Statistical parametric mapping: The analysis of functional brain images: The analysis of functional brain images: Academic Press.

  • Fuller, S. H., & Millett, L. I. (2011). Computing performance: game over or next level? Computer, 44(1), 31–38.

    Article  Google Scholar 

  • Fuller, S. H., & Millett, L. I. (2011). The future of computing performance: game over or next level?: The National Academies Press.

  • Geisser, M. E., Robinson, M. E., & Henson, C. D. (1994). The Coping Strategies Questionnaire and chronic pain adjustment: a conceptual and empirical reanalysis. The Clinical Journal of Pain.

  • German, D. M., Adams, B., & Hassan, A. E. (2013). The Evolution of the R Software Ecosystem. In Software Maintenance and Reengineering (CSMR), 2013 17th European Conference on. IEEE.

  • Glenn, T. C. (2011). Field guide to next–generation DNA sequencers. Molecular Ecology Resources, 11(5), 759–769.

    Article  CAS  PubMed  Google Scholar 

  • Goecks, J., et al. (2010). Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biology, 11(8), R86.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gorgolewski, K., et al. (2011). Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Frontiers in Neuroinformatics. 5.

  • Grabherr, M. G., et al. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7), 644–652.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grossman, R., & White, K. (2012). A vision for a biomedical cloud. Journal of Internal Medicine, 271(2), 122–130.

    Article  CAS  PubMed  Google Scholar 

  • Gudmundsson, J., et al. (2012). A study based on whole-genome sequencing yields a rare variant at 8q24 associated with prostate cancer. Nature Genetics.

  • Hach, F., et al. (2010). mrsFAST: a cache-oblivious algorithm for short-read mapping. Nature Methods, 7(8), 576–577.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanselman, D., & Littlefield, B. C. (1997). Mastering MATLAB 5: A comprehensive tutorial and reference: Prentice Hall PTR.

  • Hashizume, K., Fernandez, E. B., & Larrondo-Petrie M. M. (2012). A pattern for Software-as-a-Service in Clouds. In BioMedical Computing (BioMedCom), 2012 ASE/IEEE International Conference on. IEEE.

  • Heinis, T. (2010). Workflow-based services: infrastructure for scientific applications: Suedwestdeutscher Verlag fuer Hochschulschriften.

  • Hibar, D. P., et al. (2011). Voxelwise gene-wide association study (vGeneWAS): multivariate gene-based association testing in 731 elderly subjects. NeuroImage, 56(4), 1875–1891.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hibar, D. P., et al. (2012). Genome-wide association identifies genetic variants associated with lentiform nucleus volume in N = 1345 young and elderly subjects. Brain Imaging and Behavior p. 1–14.

  • Howe, D., et al. (2008). Big data: the future of biocuration. Nature, 455(7209), 47–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu, D., et al. (2005). Unified SPM–ICA for fMRI analysis. NeuroImage, 25(3), 746–755.

    Article  PubMed  Google Scholar 

  • Iglesias, J. E., et al. (2011). Robust brain extraction across datasets and comparison with publicly available methods. Medical Imaging, IEEE Transactions on, 30(9), 1617–1634.

    Article  Google Scholar 

  • Ihaka, R., & Gentleman, R. (1996). R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3), 299–314.

    Google Scholar 

  • Jack, C. R., et al. (2008). The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging, 27(4), 685–691.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jiang, Y., & Johnson, G. A. (2010). Microscopic diffusion tensor imaging of the mouse brain. NeuroImage, 50(2), 465–471.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jiang, Z., et al. (2013). Sex-related differences of cortical thickness in patients with chronic abdominal pain. in press.

  • Joshi, S. H., et al. (2012). Diffeomorphic sulcal shape analysis on the cortex. Medical Imaging, IEEE Transactions on. PP(99): p. 1–1.

  • Kennedy, D. N. (2006). The internet analysis tools registry: a public resource for image analysis. Neuroinformatics, 4, 263–270.

    Article  PubMed  Google Scholar 

  • Kent, W. J. (2002). BLAT—the BLAST-like alignment tool. Genome Research, 12(4), 656–664.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knobloch, J. (2013). Four decades of computing in subnuclear physics-from bubble chamber to LHC. arXiv preprint arXiv:1302.2974.

  • Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leung, K. T. K. (2011). Principal ranking meta-algorithms. Los Angeles: University of California.

    Google Scholar 

  • Leung, K., et al. (2008). IRMA: an image registration meta-algorithm - evaluating alternative algorithms with multiple metrics. SSDBM 2008. Springer-Verlag.

  • Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25(14), 1754–1760.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics, 26(5), 589–595.

    Article  PubMed Central  PubMed  Google Scholar 

  • Li, H., & Homer, N. (2010). A survey of sequence alignment algorithms for next-generation sequencing. Briefings in Bioinformatics, 11(5), 473–483.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li, H., Ruan, J., & Durbin, R. (2008). Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Research, 18(11), 1851–1858.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li, R., et al. (2009a). SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25(15), 1966–1967.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., et al. (2009b). The Sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078–2079.

    Article  PubMed Central  PubMed  Google Scholar 

  • Li, R., et al. (2010). De novo assembly of human genomes with massively parallel short read sequencing. Genome Research, 20(2), 265.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lord, H. D. (1995). Improving the application development process with modular visualization environments. SIGGRAPH Computing Graph, 29(2), 10–12.

    Article  Google Scholar 

  • Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E. A., Tao, J., & Zhao, Y. (2006). Scientific workflow management and the Kepler system. Concurrency and Computation: Practice and Experience, 18(10), 1039–1065.

    Article  Google Scholar 

  • Luo, X.-Z. J., Kennedy, D. N., & Cohen, Z. (2009). Neuroimaging informatics tools and resources clearinghouse (NITRC) resource announcement. Neuroinformatics, 7(1), 55–56.

    Article  PubMed  Google Scholar 

  • Lynch, C. (2008). Big data: how do your data grow? Nature, 455(7209), 28–29.

    Article  CAS  PubMed  Google Scholar 

  • Maraia, V. (2005). The build master: Microsoft’s software configuration management best practices: Addison-Wesley Professional.

  • Marchini, J., et al. (2007). A new multipoint method for genome-wide association studies by imputation of genotypes. Nature Genetics, 39(7), 906–913.

    Article  CAS  PubMed  Google Scholar 

  • Marusina, K. (2012). Big data requires big solutions. Genetic Engineering & Biotechnology News 32(15): p. 1, 34–40.

    Google Scholar 

  • Matellán Olivera, V. (2012). Studying the evolution of libre software projects using publicly available data; Available from: https://buleria.unileon.es/handle/10612/1796.

  • McKenna, A., et al. (2010). The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9), 1297–1303.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meir, A., & Rubinsky, B. (2009). Distributed network, wireless and cloud computing enabled 3-D ultrasound; a new medical technology paradigm. PLoS One, 4(11), e7974.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mennes, M., et al. (2013). Making data sharing work: the FCP/INDI experience. Neuroimage, (0).

  • Minelli, R., & Lanza, M. (2013). Software analytics for mobile applications–insights & lessons learned. In Software maintenance and reengineering (CSMR), 2013 17th European Conference on. IEEE.

  • Mueller, S. G., et al. (2005). Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s disease neuroimaging initiative (ADNI). Alzheimer’s and Dementia: The Journal of the Alzheimer’s Association, 1(1), 55–66.

    Article  Google Scholar 

  • Novak, N. M., et al. (2012). EnigmaVis: online interactive visualization of genome-wide association studies of the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) consortium. Twin Research and Human Genetics: The Official Journal of the International Society for Twin Studies, 15(3), 414.

    Article  Google Scholar 

  • Ntziachristos, V. (2010). Going deeper than microscopy: the optical imaging frontier in biology. Nature Methods, 7(8), 603–614.

    Article  CAS  PubMed  Google Scholar 

  • Oinn, T., et al. (2004). Taverna: a tool for the composition and enactment of bioinformatics workflows. Bioinformatics, 20(17), 3045–3054.

    Article  CAS  PubMed  Google Scholar 

  • Olabarriaga, S. D., Glatard, T., & de Boer, P. T. (2010). A virtual laboratory for medical image analysis. Information Technology in Biomedicine, IEEE Transactions on, 14(4), 979–985.

    Article  Google Scholar 

  • Olson, S. A. (2002). EMBOSS opens up sequence analysis. European molecular biology open software suite. Briefings in Bioinformatics, 3(1), 87.

    Article  PubMed  Google Scholar 

  • Ostermann, S., et al. (2010). A performance analysis of EC2 cloud computing services for scientific computing. Cloud Computing, p. 115–131.

  • Patel, V., et al. (2010a). Mesh-based spherical deconvolution: a flexible approach to reconstruction of non-negative fiber orientation distributions. NeuroImage, 51(3), 1071–1081.

    Article  PubMed Central  PubMed  Google Scholar 

  • Patel, V., et al. (2010b). LONI MiND: metadata in NIfTI for DWI. NeuroImage, 51(2), 665–676.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pieper, S., Lorensen, B., Schroeder, W., Kikinis, R. (2006). The NA-MIC Kit: ITK, VTK, pipelines, grids and 3D slicer as an open platform for the medical image computing community. In Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on

  • Purcell, S., et al. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81(3), 559–575.

    Article  CAS  Google Scholar 

  • Raymond, M., & Rousset, F. (1995). GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity, 86(3), 248–249.

    Google Scholar 

  • Rimol, L. M., et al. (2010). Sex-dependent association of common variants of microcephaly genes with brain structure. Proceedings of the National Academy of Sciences, 107(1), 384–388.

    Article  CAS  Google Scholar 

  • Roy, D., et al. (2009). 3D cryo–imaging: a very high–resolution view of the whole mouse. The Anatomical Record, 292(3), 342–351.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rupp, K., & Selberherr, S. (2011). The economic limit to Moore’s Law. Semiconductor Manufacturing, IEEE Transactions on, 24(1), 1–4.

    Article  Google Scholar 

  • Rutherford, K., et al. (2000). Artemis: sequence visualization and annotation. Bioinformatics, 16(10), 944–945.

    Article  CAS  PubMed  Google Scholar 

  • Scholl, I., et al. (2011). Challenges of medical image processing. Computer Science–Research and Development, 26(1–2), 5–13.

    Article  Google Scholar 

  • Shattuck, D., & Leahy R. (2000). BrainSuite: An automated cortical surface identification tool, in Medical image computing and computer-assisted intervention–MICCAI 2000, Lecture Notes in Computer Science. p. 50–61.

  • Shen, L., et al. (2010). Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: a study of the ADNI cohort. NeuroImage, 53(3), 1051.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi, Y., Thompson, P. M., Dinov, I. D., Osher, S., & Toga, A. W. (2007). Direct cortical mapping via solving partial differential equations on implicit surfaces. Medical Image Analysis, 11(3), 207–223.

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith, S. M., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(Supplement 1), S208–S219.

    Article  PubMed  Google Scholar 

  • Smith, S. M., et al. (2005). Variability in fMRI: a re–examination of inter–session differences. Human Brain Mapping, 24(3), 248–257.

    Article  PubMed  Google Scholar 

  • Smith, D. R., et al. (2008). Rapid whole-genome mutational profiling using next-generation sequencing technologies. Genome Research, 18(10), 1638–1642.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sood, A., et al. (2012). Predicting the path of technological innovation: SAW vs. Moore, bass, gompertz, and kryder. Marketing Science, 31(6), 964–979.

    Article  Google Scholar 

  • Sperber, A. D., et al. (2007). A comparative reappraisal of the Rome II and Rome III diagnostic criteria: are we getting closer to the‘true’prevalence of irritable bowel syndrome? European Journal of Gastroenterology & Hepatology, 19(6), 441.

    Article  Google Scholar 

  • Spielberger, C. D. (2005). State-trait anxiety inventory: Wiley Online Library.

  • Spjuth, O., et al. (2007). Bioclipse: an open source workbench for chemo- and bioinformatics. BMC Bioinformatics, 8(1), 59.

    Article  PubMed Central  PubMed  Google Scholar 

  • Stranger, B. E., et al. (2007). Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science, 315(5813), 848–853.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sultan, F., & Braitenberg, V. (1993). Shapes and sizes of different mammalian cerebella. A study in quantitative comparative neuroanatomy. Journal für Hirnforschung, 34(1), 79.

    CAS  PubMed  Google Scholar 

  • Talley, N., et al. (1995). Initial validation of a bowel symptom questionnaire* and measurement of chronic gastrointestinal symptoms in Australians. Internal Medicine Journal, 25(4), 302–308.

    CAS  Google Scholar 

  • Tang, Y., et al. (2010). The construction of a Chinese MRI brain atlas: a morphometric comparison study between Chinese and caucasian cohorts. NeuroImage, 51(1), 33–41.

    Article  PubMed Central  PubMed  Google Scholar 

  • Taylor, I., Shields, M., Wang, I., & Harrison, A. (2006). Visual grid workflow in triana. Journal of Grid Computing, 3, 153–169.

    Article  Google Scholar 

  • Tenenbaum, J. D., et al. (2011). The biomedical resource ontology (BRO) to enable resource discovery in clinical and translational research. Journal of Biomedical Informatics, 44(1), 137–145.

    Article  PubMed Central  PubMed  Google Scholar 

  • Thompson, P. M., et al. (2013). Genetics of the connectome. Neuroimage.

  • Toga, A. W., et al. (2012). The center for computational biology: resources, achievements, and challenges. Journal of the American Medical Informatics Association, 19(2), 202–206.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tohka, J., et al. (2007). Genetic algorithms for finite mixture model based voxel classification in neuroimaging. Medical Imaging, IEEE Transactions on, 26(5), 696–711.

    Article  Google Scholar 

  • Tohka, J., et al. (2010). Brain MRI tissue classification based on local Markov random fields. Magnetic Resonance Imaging, 28(4), 557–573.

    Article  PubMed Central  PubMed  Google Scholar 

  • Torri, F., et al. (2012). Next generation sequence analysis and computational genomics using graphical pipeline workflows. Genes, 3(3), 545–575.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Truong, H.-L., & Dustdar, S. (2012). A survey on cloud-based sustainability governance systems. International Journal of Web Information Systems, 8(3), 278–295.

    Google Scholar 

  • Tu, Z., et al. (2008). Brain anatomical structure segmentation by hybrid discriminative/generative models. IEEE Transactions on Medical Imaging, 27(4), 495–508.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Essen, D. C., et al. (2012). The human connectome project: a data acquisition perspective. NeuroImage, 62(4), 2222–2231.

    Article  PubMed Central  PubMed  Google Scholar 

  • Walter, C. (2005). Kryder’s law. Scientific American, 293(2), 32–33.

    Article  PubMed  Google Scholar 

  • Wang, W., & Guo, L. (2012). The Development and Applications of Wireless Streaming Media Technology. In Computer Science and Electronics Engineering (ICCSEE), 2012 International Conference on. IEEE.

  • Wang, Q., et al. (2005). Construction and validation of mean shape atlas templates for atlas-based brain image segmentation. In Information Processing in Medical Imaging. Springer.

  • Wang, R., et al. (2007). Diffusion toolkit: a software package for diffusion imaging data processing and tractography. In Proc Intl Soc Mag Reson Med.

  • Wang, K., et al. (2007b). PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Research, 17(11), 1665–1674.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ware, J. E., Jr., Kosinski, M., & Keller, S. D. (1996). A 12-item short-form health survey: construction of scales and preliminary tests of reliability and validity. Medical Care, 34(3), 220.

    Article  PubMed  Google Scholar 

  • Wen, X., et al. (2012). Comparison of open-source cloud management platforms: OpenStack and OpenNebula. In Fuzzy Systems and Knowledge Discovery (FSKD), 2012 9th International Conference on. IEEE.

  • White, T. (2012). Hadoop: The definitive guide: O’Reilly Media.

  • Woods, R. P., Dapretto, M., Sicotte, N. L., Toga, A. W., & Mazziotta, J. C. (1999). Creation and use of a Talairach-compatible atlas for accurate, automated, nonlinear intersubject registration, and analysis of functional imaging data. Human Brain Mapping, 8(2–3), 73–79.

    Article  CAS  PubMed  Google Scholar 

  • Xing, W., et al. (2013). Probabilistic MRI brain anatomical atlases based on 1,000 Chinese subjects. PLoS One, 8(1), e50939.

    Article  PubMed Central  Google Scholar 

  • Zerbino, D. R., & Birney, E. (2008). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Research, 18(5), 821–829.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang, W., et al. (2011). A practical comparison of de novo genome assembly software tools for next-generation sequencing technologies. PLoS One, 6(3), e17915.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zigmond, A. S., & Snaith, R. (1983). The hospital anxiety and depression scale. Acta Psychiatrica Scandinavica, 67(6), 361–370.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partially supported by National Institutes of Health grants NIA P 50 AG16570, NIBIB EB01651, NLM LM05639, NIMH R01 MH071940, NIBIB P41EB015922, U24-RR025736, U24-RR021992, U24 GM104203, as well as National Science Foundation grants 0716055 and 1023115. The authors are also indebted to the faculty, staff and students in the Laboratory of Neuro Imaging (LONI) for their support and dedication.

Some of the data processed in this study was partly funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles.

As of September 2013, the Laboratory of Neuro Imaging (LONI) will be relocated to the University of Southern California (USC). Thus, some of the URL links, web-page references, and internet resources cited throughout this manuscript may be relocated to appropriate subdomains under http://www.loni.usc.edu. If you find broken links or defunct URLs please contact help@loni.usc.edu.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Ivo D. Dinov.

Additional information

Some of the data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinov, I.D., Petrosyan, P., Liu, Z. et al. The perfect neuroimaging-genetics-computation storm: collision of petabytes of data, millions of hardware devices and thousands of software tools. Brain Imaging and Behavior 8, 311–322 (2014). https://doi.org/10.1007/s11682-013-9248-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-013-9248-x

Keywords

Navigation