Skip to main content

Advertisement

Log in

Simulating Biological Dynamics Using Partial Differential Equations: Application to Decomposition of Organic Matter in 3D Soil Structure

  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

The majority of carbon on earth is in the form of soil organic matter. And its degradation by microorganisms leads to the remineralization of carbon as carbon dioxide. The microbial activity causes a reduction of soil carbon and increases atmospheric carbon. However, most models of organic matter do not explicitly take into account this reality. We try to answer these questions by developing and validating a model describing the action of microorganisms on degradation of organic matter. We use simulation domain as the pores in the soil modeled by a network of balls. The model is solved numerically in the balls by the finite element method with the solver of partial differential equations (PDEs) Freefem3d. We compare the numerical results with experimental data on the mineralization of soil carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allison, S.D.: Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecol. Lett. 8, 626–635 (2005)

    Article  Google Scholar 

  2. Coucheney, E.: Effets Combinés de Facteurs Climatiques et de la Diversité sur le Fonctionnement de Communautés Bactériennes: Respiration et Métabolomique. Université Pierre et Marie Curie (2009)

  3. Del Pino, S., Pironneau, O.: Asymptotic analysis and layer decomposition for the couplex exercise. Comput. Geosci. 8, 149–162 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dobrzynski, C., Frey, P.J., Mohammadi, B., Pironneau, O.: Fast and accurate simulations of air-cooled structures. Comput. Methods Appl. Mech. Eng. 195, 3168–3180 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Falconer, R.E., Bown, J.L., White, N.A., Crawford, J.W.: Biomass recycling: a key to efficient foraging by fungal colonies. OIKOS 116, 1558–1568 (2007)

    Article  Google Scholar 

  6. Fang, C., Smith, P., Smith, J.U., Monrieff, J.B.: Incorporating microorganisms as decomposers into models to simulate soil organic matter decomposition. Geoderma 129, 139–146 (2005)

    Article  Google Scholar 

  7. Ingwersena, J., Pollb, C., Strecka, T., Kandelerb, E.: Micro-scale modelling of carbon turnover driven by microbial succession at a biogeochemical interface. Soil Biol. Biochem. 40, 864–878 (2008)

    Article  Google Scholar 

  8. George, P.L., Borouchaki, H.: Premières expériences de maillage automatique par une méthode de Delaunay anisotrope en trois dimensions. RT-027, Inria (2002)

  9. Gignoux, J., House, J., Hall, D., Masse, D., Nacro, H.B., Abbadie, L.: Design and test of a generic cohort model of soil organic matter decomposition: the SOMKO model. Glob. Ecol. Biogeogr. 10, 639–660 (2001)

    Article  Google Scholar 

  10. Killham, K., Amato, M., Ladd, J.N.: Effect of substrate location in soil and soil pore-water regime on carbon turnover. Soil Biol. Biochem. 25, 57–62 (1993)

    Article  Google Scholar 

  11. Long, T., Or, D.: Aquatic habitats and diffusion constraints affecting microbial coexistence in unsaturated porous media. Water Resour. Res. 41 (2005). doi:10.1029/2004WR003796

  12. Marilleau, N., Cambier, C., Drogoul, A., Chotte, J.L., Perrier, E., Blanchart, E.: Multiscale MAS modelling to simulate the soil environment: Application to soil ecology. Simul. Model. Pract. Theory 16, 736–745 (2008)

    Article  Google Scholar 

  13. Manzoni, S., Porporato, A.: Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biochem. 41, 1355–1379 (2009)

    Article  Google Scholar 

  14. Monga, O., Bousso, M., Garnier, P., Pot, V.: 3D geometric structures and biological activity: Application to microbial soil organic matter decomposition in pore space. Ecol. Model. 216, 291–302 (2008)

    Article  Google Scholar 

  15. Monga, O., Bousso, M., Garnier, P., Pot, V.: Using pore space 3D geometrical modelling to simulate biological activity: impact of soil structure. Comput. Geosci. 35, 1789–1801 (2009)

    Article  Google Scholar 

  16. Monga, O., Ngom, N.F., Delerue, J.F.: Representing geometric structures in 3D tomography soil images: Application to pore-space modeling. Comput. Geosci. 33, 1140–1161 (2007)

    Article  Google Scholar 

  17. Murray, J.D.: Mathematical Biology. I. An Introduction. Springer, New York (2003)

    Google Scholar 

  18. Schimel, J.P., Weintraub, M.N.: The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol. Biochem. 35, 549–563 (2003)

    Article  Google Scholar 

  19. Semenov, M.A., Halford, N.G.: Identifying target traits and molecular mechanisms for wheat breeding under a changing climate. J. Exp. Bot. 60, 2791–2804 (2009)

    Article  Google Scholar 

  20. Tartakovsky, A.M, Scheibe, T.D, Meakin, P.: Pore-scale model for reactive transport and biomass growth. J. Porous Media 12, 417–434 (2009)

    Article  Google Scholar 

  21. Treves, D.S., Xia, B., Zhou, J., Tiedje, J.M.: A two-species test of the hypothesis that spatial isolation influences microbial diversity in soil. Microb. Ecol. 45, 20–28 (2003)

    Article  Google Scholar 

  22. Vetter, Y.A, Deming, J.W., Jumars, P.A, Krieger-Brockett, B.B.: A predictive model of bacterial foraging by means of freely released extracellular enzymes. Microb. Ecol. 36, 75–92 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

This work was done while the second author was at Vietnam Institute for Advanced Study in Mathematics (VIASM). The work was partially supported by the project VAST.DLT.01/12-13. The authors would like to thank anonymous referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doanh Nguyen-Ngoc.

Appendices

Appendix A: Numerical Scheme

1.1 A.1 Variational Formulation

We simplify the system writing by transforming it into a vector form by defining:

$$u\equiv\left( u_{1},u_{2},u_{3},u_{4},u_{5},u_{6}\right)^{t} \equiv\left( b,n,m_{1},m_{2},e,c\right)^{t} $$

and

$$u_{0}\equiv\left( b_{0},n_{0},m_{10},m_{20},e_{0},c_{0}\right)^{T}. $$

The diffusion coefficients matrix \(\underline {D}\) is defined as follows:

$$\underline{D}=\left( \begin{array}{cccccccc} D_{b} &0 &0 &0 &0 &0\\ 0 &D_{n} &0 &0 &0 &0\\ 0 &0 &0 &0 &0 &0\\ 0 &0 &0 &0 &0 &0\\ 0 &0 &0 &0 &D_{e} &0\\ 0 &0 &0 &0 &0 &D_{c}\\ \end{array} \right). $$

The reaction terms of equations are represented by functions F i , i = 1,2,…,6 defined as follows:

$$\begin{array}{@{}rcl@{}} F_{1}(u)&=& \frac{ku_{1}}{K_{b}+u_{1}}u_{2} - (\mu+r+\nu)u_{1},\\ F_{2}(u)&=&\frac{ku_{5}}{K_{m}+u_{5}}\left( c_{1}m_{1}+c_{2}m_{2}\right)- \frac{ku_{1}}{K_{b}+u_{1}}u_{2}+\alpha_{1}(\zeta)u_{5}+\alpha_{2}(\mu)u_{1},\\ F_{3}(u)&=& -\frac{c_{1} u_{5}}{K_{m}+u_{5}}u_{3}+(1-\alpha_{1}(\zeta))u_{5}+(1-\alpha_{2}(\mu))u_{1},\\ F_{4}(u)&=& -\frac{c_{2} u_{5}}{K_{m}+u_{5}}u_{4},\\ F_{5}(u)&=& \nu u_{1}-\zeta u_{5},\\ F_{6}(u)&=& r u_{1} \end{array} $$

and

$$F(u) = \big(F_{1}(u),F_{2}(u),F_{3}(u),F_{4}(u),F_{5}(u),F_{6}(u)\big)^{T}. $$

The vector form of the system is

$$\left\{ \begin{array}{ll} \partial_{t}u =\text{div}\left( \underline{D}\nabla u\right) + F(u)&\text{ in}\,\,{\Omega}_{T},\\ \frac{\partial u}{\partial n}=0&\text{ on}\,\,\partial{\Omega}\times]0,T[,\\ u(t=0) =u_{0}&\text{ in}\,\,{\Omega}. \end{array} \right. $$

Assuming that data are sufficiently regular, the variational formulation consists in finding a function u(t)∈(H 1(Ω))6 such that:

$${\int}_{\Omega}\frac{\partial u}{\partial t}vdx +{\int}_{\Omega}\underline{D}\nabla u\nabla vdx={\int}_{\Omega}F(u)vdx\qquad\forall v\in\left( H^{1}({\Omega})\right)^{6}. $$

After building a mesh Ωh of domain Ω, we solve variational formulation in the following discrete space:

$$V_{\textit{h}}=\left\{v\in \left( C(\overline{\Omega})\right)^{6}: \forall K\in{\Omega}_{\textit{h}}\quad\left( v_{|K}\in P_{1}\right)^{6}\right\}. $$

A.2 Numerical Scheme

We discretize the problem via finite element method in the finite dimensional space V h . The problem consists in solving the following system

$$\frac{\partial U}{\partial t}+BU = F(U), $$

where

$$B_{i,j} = {\int}_{\Omega}\underline{D}\nabla\phi_{i}\nabla\phi_{j}dx\qquad\forall i,j = 1,2,\dots,Ndof $$

and

$$F(U)_{i} = {\int}_{\Omega}F_{i}(U)\phi_{i}dx\qquad \forall i = 1,2,\dots,Ndof. $$

Ndof is the number of freedom degrees. The sequence (ϕ i )1 ≤ iNdof defines the basis functions of the space V h.

We use an explicit scheme to discretize time. We denote by N t the number of time steps. The time step is \(dt =\frac {T}{N_{\mathrm {t}}}\). The numerical scheme is:

$$\frac{U^{n}-U^{n-1}}{dt}+B\,U^{n} = F(U^{n-1}),\quad n\in\mathbb{N}^{*} $$

which can be as follows:

$$(I+dt B)U^{n} = U^{n-1}+dt F(U^{n-1}),\quad n\in\mathbb{N}^{*}, $$

where I is the identity matrix and U n is the solution at time ndt.

We give in annex B the Freefem3d code we implement for solving the system.

Appendix B: Algorithm Code Using Freefem3d

The freefem3d code corresponding to the algorithm is the following one:

mesh H = structured((64,64,64),(0,0,0),(1,1,1));

// reading the pore space mesh

function PHI = read(medit,"image.bb",H);

// extract the mesh of the pore space

domain D = domain(PHI>0);

mesh M = tetrahedrize(D,H);

// reaction functions

femfunction f1(M);

femfunction f2(M);

femfunction f3(M);

femfunction f4(M);

femfunction f5(M);

femfunction f6(M);

femfunction ue1(M);

femfunction ue2(M);

femfunction ue3(M);

femfunction ue4(M);

femfunction ue5(M);

femfunction ue6(M);

// parameters double d1 = 1;

double d2 = 1;

double d3 = 1;

double d4 = 1;

double d5 = 1;

double d6 = 1;

double k = 17;

double Kb = 0.0005;

double Km = 0.0005;

double r = 0.2;

double mmu = 1.5;

double nnu = 0;

double zet = 0;

double c1 = 0;

double c2 = 0;

double dt = 0.0416667;

double T = 0;

function Id = 1;

femfunction u1(M) = 6.5⋆10̂-6/int[M](Id);

femfunction u2(M) = 300⋆cos(x⋆y)/int[M](cos(x⋆y)⋆Id);

femfunction u3(M) = 0;

femfunction u4(M) = 0;

femfunction u5(M) = 0;

femfunction u6(M) = 0;

ofstream masse = ofstream("masse.dat");

// save the solutions

masse <<0<<" "<<int[M](u1)<<" "

              <<int[M](u2)<<" " <<int[M](u3)<<" "<<int[M](u4)<<" "

              <<int[M](u5)<<" "<<int[M](u6)<<"\n";

for(double t=1;t<=168;t++)

{

      // save the previous solution

             ue1 = u1;

              ue2 = u2;

              ue3 = u3;

              ue4 = u4;

              ue5 = u5;

              ue6 = u6;

            f1 = k⋆ue1⋆ue2/(Kb+ue1)-(mmu+r+nnu)⋆ue1;

            f2 = -k⋆ue1⋆ue2/(Kb+ue1)+0.5⋆(zet⋆ue5+mmu⋆ue1)

              +(c1⋆ue3+c2⋆ue4)⋆ue5/(Km+ue5);

            f3 = -c1⋆ue3⋆ue5/(Km+ue5)+0.5⋆(zet⋆ue5+mmu⋆ue1);

            f4 = -c2⋆ue4⋆ue5/(Km+ue5);

            f5 = nnu⋆ue1-zet⋆ue5;

            f6 = r⋆ue1;

solve(u1,u2,u3,u4,u5,u6) in M

{

              test(v1,v2,v3,v4,v5,v6)

              int(u1⋆v1) + int(dt⋆d1⋆grad(u1)⋆grad(v1))+

              int(u2⋆v2) + int(dt⋆d2⋆grad(u2)⋆grad(v2))+

              int(u3⋆v3) + int(dt⋆d3⋆grad(u3)⋆grad(v3))+

              int(u4⋆v4) + int(dt⋆d4⋆grad(u4)⋆grad(v4))+

              int(u5⋆v5) + int(dt⋆d5⋆grad(u5)⋆grad(v5))+

              int(u6⋆v6) + int(dt⋆d6⋆grad(u6)⋆grad(v6))

              =

              int((ue1+dt⋆f1)⋆v1)+

              int((ue2+dt⋆f2)⋆v2)+

              int((ue3+dt⋆f3)⋆v3)+

              int((ue4+dt⋆f4)⋆v4)+

              int((ue5+dt⋆f5)⋆v5)+

              int((ue6+dt⋆f6)⋆v6);

       }

      T = T + dt;

       // save the solutions masse <<T<<" "<<int[M](u1)<<" "

              <<int[M](u2)<<" " <<int[M](u3)<<" "<<int[M](u4)<<" "

              <<int[M](u5)<<" "<<int[M](u6)<<"\n"; }

1.1 Appendix C: Reducing the Image Size by Using Octree Method

To compute the solution requires important memory and computing time costs. So, we need to improve calculations cost by reducing the size of the image sample. The method consists in reducing the number of voxels of the image by applying the octree method on the image. In this section, we describe the algorithm written in C++ language. We define the table colourtab such that colourtab[x][y][z] represents the voxels whose coordinates are (x, y, z). dim is the number of subdivisions of each size of the image sample. The statement of colourtab is:

float colourtab[dim][dim][dim];

We define a function CreateCell to implement octree structure from the set of eight voxels. Its inputs are the lower coordinates of the voxels constituting the collection.

void CreateCell(int x,int y,int z)

{

float colour;

// updating data

colour = (tabcolour[x][y][z] + tabcolour[x+1][y][z] +

tabcolour[x+1][y+1][z] + tabcolour[x][y+1][z] +

tabcolour[x][y][z+1] + tabcolour[x+1][y][z+1]+

tabcolour[x+1][y+1][z+1] + tabcolour[x][y+1][z+1])/8;

//saving the results in a file whose identifier is output output

<<x/2<<" "<<y/2<<" "<<z/2<<" "<<(colour>=(1/8)) <<endl;

}

The function CreateOctree creates the approximate image.

void CreateOctree()

 {

    int x, y, z;

    x = 0;

    while(x < dim)

    {

     y = 0;

     while(y < dim)

     {

        z = 0;

        while(z < dim)

        {

                CreateCell(x,y,z);

                z += 2;

        }

        y += 2;

     }

     x += 2;

   }

}

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lèye, B., Nguyen-Ngoc, D., Monga, O. et al. Simulating Biological Dynamics Using Partial Differential Equations: Application to Decomposition of Organic Matter in 3D Soil Structure. Vietnam J. Math. 43, 801–817 (2015). https://doi.org/10.1007/s10013-015-0159-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-015-0159-6

Keywords

Mathematics Subject Classification (2010)

Navigation