Skip to main content
Log in

Ab initio study of electronic and transport anisotropy of two square and rectangle phosphorene nanoflakes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) phosphorene nanoflakes (PNFs) revealed different properties along two different crystal directions of zigzag (ZZ) and armchair (AM). In this study, the electronic and transport properties of two different structures of 4 × 4 square and 4 × 6 rectangle phosphorene nanoflakes with zigzag and armchair orientation were investigated. The zigzag 4 × 6 rectangle phosphorene nanoflake with six unit cells along zigzag direction was revealed to be metal whereas the corresponding armchair one with 6 unit cells along armchair direction was semiconductor. Transport study of nanoflakes showed the anisotropic behaviors at two transport directions of zigzag and armchair. Transmission coefficient of the phosphorene nanoflakes was found to be higher in the ZZ crystal direction compared to the AM and the anisotropy ratio of 6% and 95% was estimated for the square and rectangle PNF at Fermi energy, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Xu, J. Dai, X.C. Zeng, J. Phys. Chem. Lett. 5, 1289 (2015)

    Google Scholar 

  2. L. Wang, A. Kutana, X. Zou, B.I. Yakobson, Nanoscale 7, 9746 (2015)

    Article  ADS  Google Scholar 

  3. Y. Cai, G. Zhang, Y.-W. Zhang, J. Phys. Chem. C 119, 13929 (2015)

    Article  Google Scholar 

  4. Y. Jing, X. Zhang, Z. Zhou, WIREs Comput. Mol. Sci. 6, 5 (2016)

    Article  Google Scholar 

  5. J.-H. Feng, G. Li, X.-F. Meng, X.-D. Jian, Z.-H. Dai, Y.-C. Zhao, Z. Zhou, Front. Phys. 14, 43604 (2019)

    Article  Google Scholar 

  6. W. Kuang, R. Hu, Z.Q. Fan, Z.H. Zhang, Nanotechnology 30, 145201 (2019)

    Article  ADS  Google Scholar 

  7. R. Hu, D. Wang, Z.Q. Fan, Z.H. Zhang, Phys. Chem. Chem. Phys. 20, 13574 (2018)

    Article  Google Scholar 

  8. S. Das, W. Zhang, M. Demarteau, A. Hoffmann, M. Dubey, A. Roelofs, Nano Lett. 14, 5733 (2014)

    Article  ADS  Google Scholar 

  9. J. Qao, X. Kong, Z.-X. Hu, F. Yang, W. Ji, Nat. Commun. 5, 4475 (2014)

    Article  ADS  Google Scholar 

  10. M. Akhtar, G. Anderson, R. Zhao, A. Alruqi, J.E. Mroczkowska, G. Sumanasekera, J.B. Jasinski, NPJ 2D Mater. Appl. 1, 5 (2017)

    Article  Google Scholar 

  11. Y. Jing, Q. Tang, P. He, Z. Zhou, P. Shen, Nanotechnology 26, 095201 (2015)

    Article  ADS  Google Scholar 

  12. R. Zhang, B. Li, J. Yang, J. Phys. Chem. C 119, 2871 (2015)

    Article  Google Scholar 

  13. X. Peng, A. Copple, Q. Wei, J. Appl. Phys. 116, 144301 (2014)

    Article  ADS  Google Scholar 

  14. S. Banerjee, S.K. Pati, Phys. Chem. Chem. Phys. 18, 16345 (2016)

    Article  Google Scholar 

  15. R. Fei, L. Yang, Nano Lett. 14, 2884 (2014)

    Article  ADS  Google Scholar 

  16. C. Guo, T. Wang, C. Xia, Y. Liu, Sci. Rep. 7, 12799 (2017)

    Article  ADS  Google Scholar 

  17. H. Guo, N. Lu, J. Dai, X. Wu, X.C. Zeng, J. Phys. Chem. C 118, 14051 (2014)

    Article  Google Scholar 

  18. Y. He, S. Xiong, F. Xia, Z. Shao, J. Zhao, X. Zhang, Phys. Rev. B 97, 085119 (2018)

    Article  ADS  Google Scholar 

  19. H. Liu, A.T. Neal, Z. Zhu, X. Xu, D. Tomanek, ACS Nano 8, 4033 (2014)

    Article  Google Scholar 

  20. V. Tran, L. Yang, Phys. Rev. B 89, 245407 (2014)

    Article  ADS  Google Scholar 

  21. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, J. Phys.: Condens. Matter 14, 2745 (2001)

    ADS  Google Scholar 

  22. A.R. Rocha, V.M. Garcia-Suarez, S.W. Bailey, C.J. Lambert, J. Ferrer, S. Sanvito, Nat. Mater. 4, 335 (2005)

    Article  ADS  Google Scholar 

  23. A.R. Rocha, V.M. Garcia-Suarez, S.W. Bailey, C.J. Lambert, J. Ferrer, S. Sanvito, Phys. Rev. B 73, 085414 (2006)

    Article  ADS  Google Scholar 

  24. I. Rungger, S. Sanvito, Phys. Rev. B 78, 035407 (2008)

    Article  ADS  Google Scholar 

  25. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  26. R. Pilevar Shahri, I. Rungger, T. Archer, S. Sanvito, N. Shahtahmassebi, Phys. Rev. B 84, 174437 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yeganeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 899 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeganeh, M., Baghsiyahi, F.B. & Shahri, R.P. Ab initio study of electronic and transport anisotropy of two square and rectangle phosphorene nanoflakes. Appl. Phys. A 125, 545 (2019). https://doi.org/10.1007/s00339-019-2836-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2836-x

Navigation