Skip to main content

Advertisement

Log in

Measurement of urinary arsenic profiles and DNA hypomethylation in a case–control study of urothelial carcinoma

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Environmental exposure to arsenic may be involved in the disturbance of DNA hypomethylation. The aim of this study is the first to explore the effect of interactions of urinary total arsenic levels, arsenic methylation capacity, 8-hydroxy-2′-deoxyguanosine (8-OHdG), plasma folate, and global 5-methyl-2′-deoxycytidine (5-MedC) levels on the risk of urothelial carcinoma (UC). A hospital-based case–control study was constructed. The research involved the histological recruitment and pathological verification of 178 UC patients and 356 age-/sex-matched controls without prior history of cancer. Arsenic species were determined by high-performance liquid chromatography (HPLC)—hydride generation and atomic absorption. 5-MedC levels were detected by HPLC and triple-quadrupole mass spectrometry (MS). 8-OHdG was processed by an online solid-phase extraction LC–MS/MS. Plasma folate levels were measured using the chemiluminescent technology. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by multiple logistic regression analysis. Results indicate that the high levels of total urinary arsenic, inorganic arsenic percentage, and 8-OHdG and the low levels of DMA % and plasma folate were independent factors of UC. In addition, global 5-MedC levels in the first quartile versus fifth quartile significantly increased the twofold OR of UC after potential factors were adjusted (95% CI:1.10–4.03). The interaction of 5-MedC level and high total arsenic level, insufficient arsenic capacity, high 8-OHdG, and low folate levels was insignificant. Results of stepwise logistic regression analysis indicate that high total urinary arsenic levels (Q3 versus Q1), low plasma folate level, and low global 5-MedC (Q4 versus Q5) significantly increased the ORs of UC. The above results suggest that high total arsenic, low plasma folate, and 5-MedC levels affect the ORs of UC independently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bailey KA, Wu MC, Ward WO et al (2013) Arsenic and the epigenome: interindividual differences in arsenic metabolism related to distinct patterns of DNA methylation. J Biochem Mol Toxicol 27(2):106–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer 11(10):726–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CH, Liu CS, Liu HJ et al (2016) Association between levels of urinary heavy metals and increased risk of urothelial carcinoma. Int J Urol 23(3):233–239

    Article  CAS  PubMed  Google Scholar 

  • Chen CJ, Wang CJ (1990) Ecological correlation between arsenic level in well water and age-adjusted mortality from malignant neoplasms. Cancer Res 50(17):5470–5474

    CAS  PubMed  Google Scholar 

  • Chen CY, Jhou YT, Lee HL, Lin YW (2016) Simultaneous, rapid, and sensitive quantification of 8-hydroxy-2′-deoxyguanosine and cotinine in human urine by on-line solid-phase extraction LC-MS/MS: correlation with tobacco exposure biomarkers NNAL. Anal Bioanal Chem 408(23):6295–6306

    Article  CAS  PubMed  Google Scholar 

  • Chung CJ, Huang CJ, Pu YS et al (2008) Urinary 8-hydroxydeoxyguanosine and urothelial carcinoma risk in low arsenic exposure area. Toxicol Appl Pharmacol 226(1):14–21

    Article  CAS  PubMed  Google Scholar 

  • Chung CJ, Pu YS, Su CT et al (2010) Polymorphisms in one-carbon metabolism pathway genes, urinary arsenic profile, and urothelial carcinoma. Cancer Causes Control 21(10):1605–1613

    Article  PubMed  Google Scholar 

  • Chung CJ, Chang CH, Chuu CP et al (2014a) Reduced 5-methylcytosine level as a potential progression predictor in patients with T1 or non-invasive urothelial carcinoma. Int J Mol Sci 16(1):677–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung CJ, Chang CH, Liu CS et al (2014b) Association of DNA methyltransferases 3A and 3B polymorphisms, and plasma folate levels with the risk of urothelial carcinoma. PLoS One 9(8):e104968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung CJ, Chang CH, Liou SH et al (2017) Relationships among DNA hypomethylation, Cd, and Pb exposure and risk of cigarette smoking-related urothelial carcinoma. Toxicol Appl Pharmacol 316:107–113

    Article  CAS  PubMed  Google Scholar 

  • Colin P, Koenig P, Ouzzane A et al (2009) Environmental factors involved in carcinogenesis of urothelial cell carcinomas of the upper urinary tract. BJU Int 104(10):1436–1440

    Article  CAS  PubMed  Google Scholar 

  • Crider KS, Yang TP, Berry RJ, Bailey LB (2012) Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Adv Nutr 3(1):21–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du C, Kurabe N, Matsushima Y et al (2015) Robust quantitative assessments of cytosine modifications and changes in the expressions of related enzymes in gastric cancer. Gastric Cancer 18(3):516–525

    Article  CAS  PubMed  Google Scholar 

  • Duthie SJ, Grant G, Pirie LP, Watson AJ, Margison GP (2010) Folate deficiency alters hepatic and colon MGMT and OGG-1 DNA repair protein expression in rats but has no effect on genome-wide DNA methylation. Cancer Prev Res (Phila) 3(1):92–100

    Article  CAS  Google Scholar 

  • Guo C, Xie C, Chen Q et al (2018) A novel malic acid-enhanced method for the analysis of 5-methyl-2′-deoxycytidine, 5-hydroxymethyl-2′-deoxycytidine, 5-methylcytidine and 5-hydroxymethylcytidine in human urine using hydrophilic interaction liquid chromatography-tandem mass spectrometry. Anal Chim Acta 1034:110–118

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Hosmer DW, Lemeshow S (1992) Confidence interval estimation of interaction. Epidemiology 3(5):452–456

    Article  CAS  PubMed  Google Scholar 

  • Howe CG, Niedzwiecki MM, Hall MN et al (2014) Folate and cobalamin modify associations between S-adenosylmethionine and methylated arsenic metabolites in arsenic-exposed Bangladeshi adults. J Nutr 144(5):690–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsueh YM, Huang YL, Huang CC et al (1998) Urinary levels of inorganic and organic arsenic metabolites among residents in an arseniasis-hyperendemic area in Taiwan. J Toxicol Environ Health A 54(6):431–444

    Article  CAS  PubMed  Google Scholar 

  • Huang YK, Huang YL, Hsueh YM et al (2008a) Arsenic exposure, urinary arsenic speciation, and the incidence of urothelial carcinoma: a twelve-year follow-up study. Cancer Causes Control 19(8):829–839

    Article  PubMed  Google Scholar 

  • Huang YK, Pu YS, Chung CJ et al (2008b) Plasma folate level, urinary arsenic methylation profiles, and urothelial carcinoma susceptibility. Food Chem Toxicol 46(3):929–938

    Article  CAS  PubMed  Google Scholar 

  • Intarasunanont P, Navasumrit P, Waraprasit S et al (2012) Effects of arsenic exposure on DNA methylation in cord blood samples from newborn babies and in a human lymphoblast cell line. Environ Health 11:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ly A, Hoyt L, Crowell J, Kim YI (2012) Folate and DNA methylation. Antioxid Redox Signal 17(2):302–326

    Article  CAS  PubMed  Google Scholar 

  • Maltseva DV, Baykov AA, Jeltsch A, Gromova ES (2009) Impact of 7,8-dihydro-8-oxoguanine on methylation of the CpG site by Dnmt3a. Biochemistry 48(6):1361–1368

    Article  CAS  PubMed  Google Scholar 

  • Martinez VD, Vucic EA, Becker-Santos DD, Gil L, Lam WL (2011) Arsenic exposure and the induction of human cancers. J Toxicol 2011:431287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore LE, Pfeiffer RM, Poscablo C et al (2008) Genomic DNA hypomethylation as a biomarker for bladder cancer susceptibility in the Spanish Bladder cancer study: a case–control study. Lancet Oncol 9(4):359–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nohara K, Baba T, Murai H et al (2011) Global DNA methylation in the mouse liver is affected by methyl deficiency and arsenic in a sex-dependent manner. Arch Toxicol 85(6):653–661

    Article  CAS  PubMed  Google Scholar 

  • Petrick JS, Ayala-Fierro F, Cullen WR, Carter DE, Vasken Aposhian H (2000) Monomethylarsonous acid (MMA(III)) is more toxic than arsenite in Chang human hepatocytes. Toxicol Appl Pharmacol 163(2):203–207

    Article  CAS  PubMed  Google Scholar 

  • Pilsner JR, Liu X, Ahsan H et al (2009) Folate deficiency, hyperhomocysteinemia, low urinary creatinine, and hypomethylation of leukocyte DNA are risk factors for arsenic-induced skin lesions. Environ Health Perspect 117(2):254–260

    Article  CAS  PubMed  Google Scholar 

  • Pu YS, Yang SM, Huang YK et al (2007) Urinary arsenic profile affects the risk of urothelial carcinoma even at low arsenic exposure. Toxicol Appl Pharmacol 218(2):99–106

    Article  CAS  PubMed  Google Scholar 

  • Reichard JF, Puga A (2010) Effects of arsenic exposure on DNA methylation and epigenetic gene regulation. Epigenomics 2(1):87–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossman TG (2003) Mechanism of arsenic carcinogenesis: an integrated approach. Mutat Res 533(1–2):37–65

    Article  CAS  PubMed  Google Scholar 

  • Rottach A, Leonhardt H, Spada F (2009) DNA methylation-mediated epigenetic control. J Cell Biochem 108(1):43–51

    Article  CAS  PubMed  Google Scholar 

  • Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14(3):204–220

    Article  CAS  PubMed  Google Scholar 

  • Tchounwou PB, Yedjou CG, Udensi UK et al (2019) State of the science review of the health effects of inorganic arsenic: perspectives for future research. Environ Toxicol 34(2):188–202

    Article  CAS  PubMed  Google Scholar 

  • Timp W, Feinberg AP (2013) Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat Rev Cancer 13(7):497–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27(2):120–139

    Article  CAS  PubMed  Google Scholar 

  • Woo HD, Kim J (2012) Global DNA hypomethylation in peripheral blood leukocytes as a biomarker for cancer risk: a meta-analysis. PLoS One 7(4):e34615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Ni X (2015) ROS-mediated DNA methylation pattern alterations in carcinogenesis. Curr Drug Targets 16(1):13–19

    Article  CAS  PubMed  Google Scholar 

  • Zhao CQ, Young MR, Diwan BA, Coogan TP, Waalkes MP (1997) Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci USA 94(20):10907–10912

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Ministry of Science and Technology of the Republic of China (NSC101-2314-B-039-025-MY3) and the China Medical University Hospital (DMR-105-049). The funders have no role in the study design, data collection and analysis, decision to publish, or manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

Conception and designing the experiments: HLL, CHC, HC, SHL, YMH, CSL, MCC and CJC. Performed the experiments: WTJ, HJL and HLL. Data analysis: CJC and YMH. Material contribution: CHC, CSL, MCC and CJC. Drafting of the manuscript: CJC and YMH.

Corresponding author

Correspondence to Yu-Mei Hsueh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, CJ., Lee, HL., Chang, CH. et al. Measurement of urinary arsenic profiles and DNA hypomethylation in a case–control study of urothelial carcinoma. Arch Toxicol 93, 2155–2164 (2019). https://doi.org/10.1007/s00204-019-02500-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-019-02500-y

Keywords

Navigation