Skip to main content

Advertisement

Log in

Emerging imaging techniques for acute pancreatitis

  • Special Section: Pancreatitis
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Acute pancreatitis (AP) is caused by acute inflammation of the pancreas and adjacent tissue and is a common source of abdominal pain. The current CT and MRI evaluation of AP is mostly based on morphologic features. Recent advances in image acquisition and analysis offer the opportunity to go beyond morphologic features. Advanced MR techniques such as diffusion-weighted imaging, as well as T1 and T2 mapping, can potentially quantify signal changes reflective of underlying tissue abnormalities. Advanced analytic techniques such as radiomics and artificial neural networks (ANNs) offer the promise of uncovering imaging biomarkers that can provide additional classification and prognostic information. The purpose of this article is to review recent advances in imaging acquisition and analytic techniques in the evaluation of AP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Banks PA, Bollen TL, Dervenis C, Gooszen HG, Johnson CD, Sarr MG, Tsiotos GG, Vege SS, Group APCW (2013) Classification of acute pancreatitis–2012: revision of the Atlanta classification and definitions by international consensus. Gut 62 (1):102-111. https://doi.org/10.1136/gutjnl-2012-302779

    Article  Google Scholar 

  2. Qayyum A (2009) Diffusion-weighted imaging in the abdomen and pelvis: concepts and applications. Radiographics: a review publication of the Radiological Society of North America, Inc 29 (6):1797-1810. https://doi.org/10.1148/rg.296095521

  3. de Freitas Tertulino F, Schraibman V, Ardengh JC, do Espírito-Santo DC, Ajzen SA, Torrez FR, Lobo EJ, Szejnfeld J, Goldman SM (2015) Diffusion-weighted magnetic resonance imaging indicates the severity of acute pancreatitis. Abdominal imaging 40 (2):265-271. https://doi.org/10.1007/s00261-014-0205-y

  4. Yencilek E, Telli S, Tekesin K, Ozgür A, Cakır O, Türkoğlu O, Meriç K, Simşek M (2014) The efficacy of diffusion weighted imaging for detection of acute pancreatitis and comparison of subgroups according to Balthazar classification. Turk J Gastroenterol 25 (5):553-557. https://doi.org/10.5152/tjg.2014.6416

    Article  PubMed  Google Scholar 

  5. Hocaoglu E, Aksoy S, Akarsu C, Kones O, Inci E, Alis H (2015) Evaluation of diffusion-weighted MR imaging in the diagnosis of mild acute pancreatitis. Clin Imaging 39 (3):463-467. https://doi.org/10.1016/j.clinimag.2014.10.001

    Article  PubMed  Google Scholar 

  6. Shinya S, Sasaki T, Nakagawa Y, Guiquing Z, Yamamoto F, Yamashita Y (2009) The efficacy of diffusion-weighted imaging for the detection and evaluation of acute pancreatitis. Hepatogastroenterology 56 (94-95):1407-1410

    PubMed  Google Scholar 

  7. Thomas S, Kayhan A, Lakadamyali H, Oto A (2012) Diffusion MRI of acute pancreatitis and comparison with normal individuals using ADC values. Emergency radiology 19 (1):5-9. https://doi.org/10.1007/s10140-011-0983-2

    Article  PubMed  Google Scholar 

  8. Balthazar EJ, Robinson DL, Megibow AJ, Ranson JH (1990) Acute pancreatitis: value of CT in establishing prognosis. Radiology 174 (2):331-336. https://doi.org/10.1148/radiology.174.2.2296641

    Article  CAS  PubMed  Google Scholar 

  9. Media ACoDaC (2018) ACR Manual on Contrast Media. 10.3 edn., www.acr.org

  10. İlhan M, Üçüncü M, Gök AFK, Öner G, Agolli E, Canbay B, Bakır B, Güloğlu R, Ertekin C (2017) Comparison of contrast-enhanced CT with diffusion -weighted MRI in the Evaluation of patients with acute biliary pancreatitis. Turk J Surg 33 (3):153-157. https://doi.org/10.5152/ucd.2016.3573

    Article  PubMed  PubMed Central  Google Scholar 

  11. Borens B, Arvanitakis M, Absil J, El Bouchaibi S, Matos C, Eisendrath P, Toussaint E, Deviere J, Bali MA (2017) Added value of diffusion-weighted magnetic resonance imaging for the detection of pancreatic fluid collection infection. European radiology 27 (3):1064-1073. https://doi.org/10.1007/s00330-016-4462-8

    Article  PubMed  Google Scholar 

  12. Siddiqui N, Vendrami CL, Chatterjee A, Miller FH (2018) Advanced MR Imaging Techniques for Pancreas Imaging. Magnetic resonance imaging clinics of North America 26 (3):323-344. https://doi.org/10.1016/j.mric.2018.03.002

    Article  PubMed  Google Scholar 

  13. Tirkes T, Lin C, Fogel EL, Sherman SS, Wang Q, Sandrasegaran K (2017) T1 Mapping for Diagnosis of Mild Chronic Pancreatitis. Journal of magnetic resonance imaging : JMRI 45 (4):1171-1176. https://doi.org/10.1002/jmri.25428

    Article  PubMed  Google Scholar 

  14. Gallix BP, Bret PM, Atri M, Lecesne R, Reinhold C (2005) Comparison of qualitative and quantitative measurements on unenhanced T1-weighted fat saturation MR images in predicting pancreatic pathology. Journal of magnetic resonance imaging : JMRI 21 (5):583-589. https://doi.org/10.1002/jmri.20310

    Article  PubMed  Google Scholar 

  15. de Bazelaire CM, Duhamel GD, Rofsky NM, Alsop DC (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230 (3):652-659. https://doi.org/10.1148/radiol.2303021331

  16. Wang M, Gao F, Wang X, Liu Y, Ji R, Cang L, Shi Y (2018) Magnetic resonance elastography and T1 mapping for early diagnosis and classification of chronic pancreatitis. Journal of magnetic resonance imaging: JMRI. https://doi.org/10.1002/jmri.26008

  17. Zhu L, Lai Y, Makowski M, Zhang W, Sun Z, Qian T, Nickel D, Hamm B, Asbach P, Duebgen M, Xue H, Jin Z (2019) Native T1 mapping of autoimmune pancreatitis as a quantitative outcome surrogate. European radiology. https://doi.org/10.1007/s00330-018-5987-9

  18. Vietti Violi N, Hilbert T, Bastiaansen JAM, Knebel JF, Ledoux JB, Stemmer A, Meuli R, Kober T, Schmidt S (2019) Patient respiratory-triggered quantitative T2 mapping in the pancreas. Journal of magnetic resonance imaging: JMRI. https://doi.org/10.1002/jmri.26612

  19. Hoad CL, Cox EF, Gowland PA (2010) Quantification of T(2) in the abdomen at 3.0 T using a T(2)-prepared balanced turbo field echo sequence. Magn Reson Med 63 (2):356-364. https://doi.org/10.1002/mrm.22203

  20. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: Images Are More than Pictures, They Are Data. Radiology 278 (2):563-577. https://doi.org/10.1148/radiol.2015151169

    Article  PubMed  Google Scholar 

  21. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, Forster K, Aerts HJ, Dekker A, Fenstermacher D, Goldgof DB, Hall LO, Lambin P, Balagurunathan Y, Gatenby RA, Gillies RJ (2012) Radiomics: the process and the challenges. Magnetic resonance imaging 30 (9):1234-1248. https://doi.org/10.1016/j.mri.2012.06.010

    Article  PubMed  PubMed Central  Google Scholar 

  22. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen MM, Leemans CR, Dekker A, Quackenbush J, Gillies RJ, Lambin P (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature communications 5:4006. https://doi.org/10.1038/ncomms5006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lubner MG, Smith AD, Sandrasegaran K, Sahani DV, Pickhardt PJ (2017) CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges. Radiographics: a review publication of the Radiological Society of North America, Inc 37 (5):1483-1503. https://doi.org/10.1148/rg.2017170056

  24. Chu LC, Park S, Kawamoto S, Fouladi DF, Shayesteh S, Zinreich ES, Graves JS, Horton KM, Hruban RH, Yuille AL, Kinzler KW, Vogelstein B, Fishman EK (2019) Utility of CT Radiomics Features in Differentiation of Pancreatic Ductal Adenocarcinoma From Normal Pancreatic Tissue. AJR American journal of roentgenology:1-9. https://doi.org/10.2214/ajr.18.20901

  25. Guo C, Zhuge X, Wang Q, Xiao W, Wang Z, Feng Z, Chen X (2018) The differentiation of pancreatic neuroendocrine carcinoma from pancreatic ductal adenocarcinoma: the values of CT imaging features and texture analysis. Cancer imaging : the official publication of the International Cancer Imaging Society 18 (1):37. https://doi.org/10.1186/s40644-018-0170-8

    Article  Google Scholar 

  26. Li J, Lu J, Liang P, Li A, Hu Y, Shen Y, Hu D, Li Z (2018) Differentiation of atypical pancreatic neuroendocrine tumors from pancreatic ductal adenocarcinomas: Using whole-tumor CT texture analysis as quantitative biomarkers. Cancer Med 7 (10):4924-4931. https://doi.org/10.1002/cam4.1746

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hanania AN, Bantis LE, Feng Z, Wang H, Tamm EP, Katz MH, Maitra A, Koay EJ (2016) Quantitative imaging to evaluate malignant potential of IPMNs. Oncotarget 7 (52):85776-85784. https://doi.org/10.18632/oncotarget.11769

    Article  PubMed  PubMed Central  Google Scholar 

  28. Permuth JB, Choi J, Balarunathan Y, Kim J, Chen DT, Chen L, Orcutt S, Doepker MP, Gage K, Zhang G, Latifi K, Hoffe S, Jiang K, Coppola D, Centeno BA, Magliocco A, Li Q, Trevino J, Merchant N, Gillies R, Malafa M, Florida Pancreas C (2016) Combining radiomic features with a miRNA classifier may improve prediction of malignant pathology for pancreatic intraductal papillary mucinous neoplasms. Oncotarget 7 (52):85785-85797. https://doi.org/10.18632/oncotarget.11768

    Article  PubMed  PubMed Central  Google Scholar 

  29. Attiyeh MA, Chakraborty J, Doussot A, Langdon-Embry L, Mainarich S, Gönen M, Balachandran VP, D’Angelica MI, DeMatteo RP, Jarnagin WR, Kingham TP, Allen PJ, Simpson AL, Do RK (2018) Survival Prediction in Pancreatic Ductal Adenocarcinoma by Quantitative Computed Tomography Image Analysis. Annals of surgical oncology 25 (4):1034-1042. https://doi.org/10.1245/s10434-017-6323-3

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chakraborty J, Langdon-Embry L, Cunanan KM, Escalon JG, Allen PJ, Lowery MA, O’Reilly EM, Gonen M, Do RG, Simpson AL (2017) Preliminary study of tumor heterogeneity in imaging predicts two year survival in pancreatic cancer patients. PloS one 12 (12):e0188022. https://doi.org/10.1371/journal.pone.0188022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cassinotto C, Chong J, Zogopoulos G, Reinhold C, Chiche L, Lafourcade JP, Cuggia A, Terrebonne E, Dohan A, Gallix B (2017) Resectable pancreatic adenocarcinoma: Role of CT quantitative imaging biomarkers for predicting pathology and patient outcomes. European journal of radiology 90:152-158. https://doi.org/10.1016/j.ejrad.2017.02.033

    Article  PubMed  Google Scholar 

  32. Eilaghi A, Baig S, Zhang Y, Zhang J, Karanicolas P, Gallinger S, Khalvati F, Haider MA (2017) CT texture features are associated with overall survival in pancreatic ductal adenocarcinoma - a quantitative analysis. BMC medical imaging 17 (1):38. https://doi.org/10.1186/s12880-017-0209-5

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lin Q, Ji YF, Chen Y, Sun H, Yang DD, Chen AL, Chen TW, Zhang XM (2019) Radiomics model of contrast-enhanced MRI for early prediction of acute pancreatitis severity. Journal of magnetic resonance imaging: JMRI. https://doi.org/10.1002/jmri.26798

  34. Iranmahboob AK, Kierans AS, Huang C, Ream JM, Rosenkrantz AB (2017) Preliminary investigation of whole-pancreas 3D histogram ADC metrics for predicting progression of acute pancreatitis. Clin Imaging 42:172-177. https://doi.org/10.1016/j.clinimag.2016.12.007

    Article  PubMed  Google Scholar 

  35. Chen Y, Chen TW, Wu CQ, Lin Q, Hu R, Xie CL, Zuo HD, Wu JL, Mu QW, Fu QS, Yang GQ, Zhang XM (2018) Radiomics model of contrast-enhanced computed tomography for predicting the recurrence of acute pancreatitis. European radiology. https://doi.org/10.1007/s00330-018-5824-1

  36. Erickson BJ, Korfiatis P, Akkus Z, Kline TL (2017) Machine Learning for Medical Imaging. Radiographics: a review publication of the Radiological Society of North America, Inc 37 (2):505-515. https://doi.org/10.1148/rg.2017160130

  37. Kazmierczak SC, Catrou PG, Van Lente F (1993) Diagnostic accuracy of pancreatic enzymes evaluated by use of multivariate data analysis. Clin Chem 39 (9):1960-1965

    Article  CAS  Google Scholar 

  38. Andersson B, Andersson R, Ohlsson M, Nilsson J (2011) Prediction of severe acute pancreatitis at admission to hospital using artificial neural networks. Pancreatology : official journal of the International Association of Pancreatology 11 (3):328-335. https://doi.org/10.1159/000327903

    Article  Google Scholar 

  39. Yoldaş O, Koç M, Karaköse N, Kiliç M, Tez M (2008) Prediction of clinical outcomes using artificial neural networks for patients with acute biliary pancreatitis. Pancreas 36 (1):90-92. https://doi.org/10.1097/mpa.0b013e31812e964b

    Article  PubMed  Google Scholar 

  40. Mofidi R, Duff MD, Madhavan KK, Garden OJ, Parks RW (2007) Identification of severe acute pancreatitis using an artificial neural network. Surgery 141 (1):59-66. https://doi.org/10.1016/j.surg.2006.07.022

    Article  PubMed  Google Scholar 

  41. Fei Y, Hu J, Li WQ, Wang W, Zong GQ (2017) Artificial neural networks predict the incidence of portosplenomesenteric venous thrombosis in patients with acute pancreatitis. J Thromb Haemost 15 (3):439-445. https://doi.org/10.1111/jth.13588

    Article  CAS  PubMed  Google Scholar 

  42. Fei Y, Hu J, Gao K, Tu J, Li WQ, Wang W (2017) Predicting risk for portal vein thrombosis in acute pancreatitis patients: A comparison of radical basis function artificial neural network and logistic regression models. J Crit Care 39:115-123. https://doi.org/10.1016/j.jcrc.2017.02.032

    Article  PubMed  Google Scholar 

  43. Fei Y, Gao K, Hu J, Tu J, Li WQ, Wang W, Zong GQ (2017) Predicting the incidence of portosplenomesenteric vein thrombosis in patients with acute pancreatitis using classification and regression tree algorithm. J Crit Care 39:124-130. https://doi.org/10.1016/j.jcrc.2017.02.019

    Article  PubMed  Google Scholar 

  44. Fei Y, Hu J, Gao K, Tu J, Wang W, Li WQ (2018) Risk Prediction for Portal Vein Thrombosis in Acute Pancreatitis Using Radial Basis Function. Ann Vasc Surg 47:78-84. https://doi.org/10.1016/j.avsg.2017.09.004

    Article  PubMed  Google Scholar 

  45. Hong WD, Chen XR, Jin SQ, Huang QK, Zhu QH, Pan JY (2013) Use of an artificial neural network to predict persistent organ failure in patients with acute pancreatitis. Clinics (Sao Paulo) 68 (1):27-31

    Article  Google Scholar 

  46. Fei Y, Gao K, Li WQ (2018) Artificial neural network algorithm model as powerful tool to predict acute lung injury following to severe acute pancreatitis. Pancreatology : official journal of the International Association of Pancreatology 18 (8):892-899. https://doi.org/10.1016/j.pan.2018.09.007

    Article  Google Scholar 

  47. Fei Y, Gao K, Li WQ (2018) Prediction and evaluation of the severity of acute respiratory distress syndrome following severe acute pancreatitis using an artificial neural network algorithm model. HPB: the official journal of the International Hepato Pancreato Biliary Association. https://doi.org/10.1016/j.hpb.2018.11.009

  48. Pofahl WE, Walczak SM, Rhone E, Izenberg SD (1998) Use of an artificial neural network to predict length of stay in acute pancreatitis. Am Surg 64 (9):868-872

    CAS  PubMed  Google Scholar 

  49. Keogan MT, Lo JY, Freed KS, Raptopoulos V, Blake S, Kamel IR, Weisinger K, Rosen MP, Nelson RC (2002) Outcome analysis of patients with acute pancreatitis by using an artificial neural network. Acad Radiol 9 (4):410-419

    Article  Google Scholar 

  50. Halonen KI, Leppäniemi AK, Lundin JE, Puolakkainen PA, Kemppainen EA, Haapiainen RK (2003) Predicting fatal outcome in the early phase of severe acute pancreatitis by using novel prognostic models. Pancreatology : official journal of the International Association of Pancreatology 3 (4):309-315. https://doi.org/10.1159/000071769

    Article  Google Scholar 

  51. Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, Kadoury S, Tang A (2017) Deep Learning: A Primer for Radiologists. Radiographics: a review publication of the Radiological Society of North America, Inc 37 (7):2113-2131. https://doi.org/10.1148/rg.2017170077

  52. Lugo-Fagundo C, Vogelstein B, Yuille A, Fishman EK (2018) Deep Learning in Radiology: Now the Real Work Begins. J Am Coll Radiol 15 (2):364-367. https://doi.org/10.1016/j.jacr.2017.08.007

    Article  PubMed  Google Scholar 

  53. Chu LC, Park S, Kawamoto S, Wang Y, Zhou Y, Shen W, Zhu Z, Xia Y, Xie L, Liu F, Yu Q, Fouladi DF, Shayesteh S, Zinreich E, Graves JS, Horton KM, Yuille AL, Hruban RH, K.W. K, Vogelstein B, Fishman EK (2019) Application of deep learning to pancreatic cancer detect - Lessons learned from our initial experience. J Am Coll Radiol In Press

  54. Roth HR, Oda H, Zhou X, Shimizu N, Yang Y, Hayashi Y, Oda M, Fujiwara M, Misawa K, Mori K (2018) An application of cascaded 3D fully convolutional networks for medical image segmentation. Comput Med Imaging Graph 66:90-99. https://doi.org/10.1016/j.compmedimag.2018.03.001

    Article  PubMed  Google Scholar 

  55. Wang Y, Zhou Y, Shen W, Park S, Fishman EK, Yuille AL (2019) Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. Medical image analysis 55:88-102

    Article  Google Scholar 

  56. Zhou Y, Xie L, Shen W, Wang Y, Fishman EK, Yuille AL (2017) A Fixed-Point Model for Pancreas Segmentation in Abdominal CT Scans. Paper presented at the 20th International Conference on Medical Image Computing and Computer Assisted Intervention, Quebec City, Quebec, Canada, 07/10/2017

  57. Xia Y, Xie L, Liu F, Zhu Z, Fishman EK, Yuille AL (2018) Bridging the Gap between 2D and 3D Organ Segmentation with Volumetric Fusion Net. Paper presented at the 21st International Conference on Medical Image Computing and Computer Assisted Intervention, Granada, Spain,

  58. Zhu Z, Xia Y, Xie L, Fishman EK, Yuille AL (2019) Multi-scale coarse-to-fine segmentation for screening pancreatic ductal adenocarcinoma. Paper to be presented at the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention, Shenzhen, China.

Download references

Funding

Saeed Ghandili, Shahab Shayesteh, Daniel F. Fouladi, Alejandra Blanco, and Linda C. Chu received research support from the Lustgarten Foundation. Linda C. Chu received additional research support from the Emerson Collective.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda C. Chu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghandili, S., Shayesteh, S., Fouladi, D.F. et al. Emerging imaging techniques for acute pancreatitis. Abdom Radiol 45, 1299–1307 (2020). https://doi.org/10.1007/s00261-019-02192-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-019-02192-z

Keywords

Navigation