Skip to main content

Advertisement

Log in

Reconciliation of discrepant U–Pb, Lu–Hf, Sm–Nd, Ar–Ar and U–Th/He dates in an amphibolite from the Cathaysia Block in Southern China

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We present a combined garnet Lu–Hf and Sm–Nd, zircon and monazite U–Pb, hornblende Ar–Ar, and zircon U–Th/He geochronology study on a garnet-bearing amphibolite from the Cathaysia Block in Southern China. Pseudosection modeling and garnet–clinopyroxene thermometry indicate that the amphibolite attained peak metamorphic conditions of approximately 0.9 GPa and 780 °C. The Lu–Hf garnet date of 402.7 ± 1.0 Ma and Sm–Nd date of 331.6 ± 3.6 Ma define a ~ 70 Myr difference for the same garnet fractions. Reconciling the large discrepancies between these three geochronological systems with the observed major element diffusion profiles in garnet requires that REEs and Hf were fully re-equilibrated at peak temperatures and that subsequent rapid cooling prevented any disruption of the Lu–Hf or Sm–Nd systems throughout cooling from high temperatures. The Sm–Nd garnet age was partially reset during a thermal pulse associated with intrusion of leucocratic veins, which is inferred to have occurred at ca. 226 Ma based on the coinciding hornblende Ar–Ar (222.3 ± 0.9 Ma) and monazite U–Pb (226.2 ± 2.3 Ma) dates. The Tt path of a reheating event at 226 Ma necessary to produce both the major divalent cation diffusion profiles in garnet and partial resetting of the Sm–Nd garnet age, such that it records an apparent age of ~ 332 Ma, requires an effective diffusion radius of 45–60 μm in garnet during reheating, which is in agreement with the observation of pervasive chlorite-filled fractures within single garnet grains. Diffusion kinetics of Lu and Hf in garnet are sufficiently slow that this reheating episode would not impact the Lu–Hf system, and the 402.7 ± 1.0 Ma garnet age likely reflects the onset of rapid cooling from peak PT conditions. The zircon U–Pb date of 434.8 ± 2.7 Ma predates the Lu–Hf garnet date by approximately 30 Myr and is interpreted to reflect zircon crystallization during prograde metamorphism. The ~ 226 Ma reheating event is contemporaneous with the intrusion and crystallization of the widespread Triassic A-type granites and alkaline syenites across the Cathaysia Block, indicating an extensional environment. We interpret the zircon U–Th/He date of 143.1 ± 4.2 Ma as reflecting a third thermal pulse based on the concurrence with the early Cretaceous volcanic rocks and granitoids, which overlies the amphibolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aleinikoff JN, Schenck WS, Plank MO, Srogi LA, Fanning CM, Kamo SL, Bosbyshell H (2006) Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington complex, Delaware: morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U–Pb geochronology of zircon and monazite. Bull Geol Soc Am 118:39–64

    Article  Google Scholar 

  • Bloch E, Ganguly J (2015) 176Lu–176Hf geochronology of garnet II: numerical simulations of the development of garnet–whole-rock 176Lu–176Hf isochrons and a new method for constraining the thermal history of metamorphic rocks. Contrib Mineral Petrol 169:14

    Article  Google Scholar 

  • Bloch E, Ganguly J, Hervig R, Cheng W (2015) 176Lu–176Hf geochronology of garnet I: experimental determination of the diffusion kinetics of Lu3+ and Hf4+ in garnet, closure temperatures and geochronological implications. Contrib Mineral Petrol 169:12

    Article  Google Scholar 

  • Bloch E, Watkins J, Ganguly J (2017) Diffusion kinetics of lutetium in diopside and the effect of thermal metamorphism on Lu–Hf systematics in clinopyroxene. Geochim Cosmochim Acta 204:32–51

    Article  Google Scholar 

  • Carter A, Roques D, Bristow C, Kinny P (2001) Understanding mesozoic accretion in Southeast Asia: significance of triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology 29:211–214

    Article  Google Scholar 

  • Cao D, Cheng H, Zhang L, Wang K (2018) Origin of atoll garnets in ultra-high-pressure eclogites and implications for infiltration of external fluids. J Asian Earth Sci 160:224–238

    Article  Google Scholar 

  • Carlson WD (2006) Rates of Fe, Mg, Mn, and Ca diffusion in garnet. Am Mineral 91:1–11

    Article  Google Scholar 

  • Chakraborty S, Ganguly J (1992) Cation diffusion in aluminosilicate garnets: experimental determination in spessartine-almandine diffusion couples, evaluation of effective binary diffusion coefficients, and applications. Contrib Mineral Petrol 111:74–86

    Article  Google Scholar 

  • Chen XY, Tong LX, Zhang CL, Zhu QB, Li YN (2015) Retrograde garnet amphibolite from eclogite of the Zhejiang Longyou area: new evidence of the Caledonian orogenic event in the Cathaysia block. Chin Sci Bull 60:1207–1217

    Article  Google Scholar 

  • Cheng H, King RL, Nakamura E, Vervoort JD, Zhou Z (2008) Coupled Lu–Hf and Sm–Nd geochronology constrains garnet growth in ultra-high-pressure eclogites from the Dabie orogen. J Metamorph Geol 26:741–758

    Article  Google Scholar 

  • Cheng H, Vervoort JD, Dragovic B, Wilford D, Zhang L (2018a) Coupled Lu–Hf and Sm–Nd geochronology on a single eclogitic garnet from the Huwan shear zone, China. Chem Geol 476:208–222

    Article  Google Scholar 

  • Cheng H, Zhou Y, Du KY, Zhang LM, Lu TY (2018b) Microsampling Lu–Hf geochronology on mm-sized garnet in eclogites constrains early garnet growth and timing of tectonometamorphism in the North Qilian orogenic belt. J Metamorph Geol 36:987–1008

    Article  Google Scholar 

  • Cherniak DJ, Watson EB (2001) Pb diffusion in zircon. Chem Geol 172:5–24

    Article  Google Scholar 

  • Cherniak DJ, Watson EB, Grove M, Harrison M (2004) Pb diffusion in monazite: a combined RBS/SIMS study. Geochim Cosmochim Acta 68:829–840

    Article  Google Scholar 

  • Chu X, Ague JJ (2015) Analysis of experimental data on divalent cation diffusion kinetics in aluminosilicate garnets with application to timescales of peak Barrovian metamorphism, Scotland. Contrib Minerl Petrol 170:25

    Article  Google Scholar 

  • Crank J (1979) The mathematics of diffusion, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Dale J, Holland T, Powell R (2000) Hornblende-garnet-plagioclase thermobarometry: a natural assemblage calibration of the thermodynamics of hornblende. Contrib Mineral Petrol 140:353–362

    Article  Google Scholar 

  • Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol 40:259–274

    Article  Google Scholar 

  • Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154:429–437

    Article  Google Scholar 

  • Ganguly J, Cheng W, Tirone M (1996) Thermodynamics of aluminosilicate garnet solid solution: new experimental data, an optimized model, and thermometric applications. Contrib Mineral Petrol 126:137–151

    Article  Google Scholar 

  • Ganguly J, Tirone M (1999) Diffusion closure temperature and age of a mineral with arbitrary extent of diffusion: theoretical formulation and applications. Earth Planet Sci Lett 170:131–140

    Article  Google Scholar 

  • Gao W, Wang Z, Song W, Wang D, Li C (2014) Zircon U–Pb geochronology, geochemistry and tectonic implications of Triassic A-type granites from southeastern Zhejiang, South China. J Asian Earth Sci 96:255–268

    Article  Google Scholar 

  • Green ECR, White RW, Diener JFA, Powell R, Holland TJB, Palin RM (2016) Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks. J Metamorph Geol 34:845–869

    Article  Google Scholar 

  • Harrison TM (1981) Diffusion of 40Ar in hornblende. Contrib Mineral Petrol 78:324–331

    Article  Google Scholar 

  • Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116:433–447

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

    Article  Google Scholar 

  • Holland T, Powell R (2003) Activity-compositions relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib Mineral Petrol 145:492–501

    Article  Google Scholar 

  • Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383

    Article  Google Scholar 

  • Ibanez-Mejia M, Bloch EM, Vervoort JD (2018) Timescales of collisional metamorphism from Sm–Nd, Lu–Hf and U–Pb thermochronology: a case from the Proterozoic Putumayo Orogen of Amazonia. Geochim Cosmochim Acta 235:103–126

    Article  Google Scholar 

  • Johnson TA, Vervoort JD, Ramsey MJ, Aleinikoff JN, Southworth S (2018) Constraints on the timing and duration of orogenic events by combined Lu–Hf and Sm–Nd geochronology: an example from the Grenville orogeny. Earth Planet Sci Lett 501:152–164

    Article  Google Scholar 

  • Kohn MJ, Corrie SL, Markley C (2015) The fall and rise of metamorphic zircon. Am Mineral 100:897–908

    Article  Google Scholar 

  • Koppers AAP (2002) ArArCALC-software for 40Ar/39Ar age calculations. Comput Geosci 28:605–619

    Article  Google Scholar 

  • Lasaga AC (1979) Multicomponent exchange and diffusion in silicates. Geochim Cosmochim Acta 43:455–469

    Article  Google Scholar 

  • Li XH, Li WX, Li ZX, Lo CH, Wang J, Ye MF, Yang YH (2009) Amalgamation between the Yangtze and Cathaysia Blocks in South China: constraints from SHRIMP U–Pb zircon ages, geochemistry and Nd–Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Res 174:117–128

    Article  Google Scholar 

  • Li ZX, Li XH, Wartho JA, Clark C, Li WX, Zhang CL, Bao C (2010) Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: new age constraints and pressure-temperature conditions. Bull Geol Soc Am 122:772–793

    Article  Google Scholar 

  • Liu Y, Hu Z, Gao S, Günther D, Xu J, Gao C, Chen H (2008) In situ analysis of major and trace elements of anhydrous minerals by LA–ICP–MS without applying an internal standard. Chem Geol 257:34–43

    Article  Google Scholar 

  • Ludwig KR (2003) User’s manual for Isoplot/EX version 3.00. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center (Special Publication)

  • Lugmair GW, Carlson RW (1978) The Sm–Nd history of KREEP. In: Proceedings of lunar planet science conference 9th. Houston, Texas, pp 689–704

  • Lugmair GW, Marti K (1978) Lunar initial 143Nd/144Nd: differential evolution of lunar crust and mantle. Earth Planet Sci Lett 39:349–357

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl 21:115–144

    Article  Google Scholar 

  • Powell R, Holland TJB (2008) On thermobarometry. J Metamorph Geol 26:155–179

    Article  Google Scholar 

  • Reiners PW (2005) Zircon U–Th/He thermochronometry. In: Reiners PW, Ehlers TA (eds) Thermochronology. Rev Mineral Geochem 58:151–176

  • Reiners PW, Spell TL, Nicolescu S, Zanetti A (2004) Zircon (U–Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochim Cosmochim Acta 68:1857–1887

    Article  Google Scholar 

  • Renne PR, Mundil R, Balco G, Min K, Ludwig KR (2010) Joint determination of 40 K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim Cosmochim Acta 74:5349–5367

    Article  Google Scholar 

  • Shu LS, Zhou XM, Deng P, Wang B, Jiang SY, Yu JH, Zhao XX (2009) Mesozoic tectonic evolution of the Southeast China Block: new insights from basin analysis. J Asian Earth Sci 34:376–391

    Article  Google Scholar 

  • Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35

    Article  Google Scholar 

  • Söderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324

    Article  Google Scholar 

  • Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T, Takahashi K, Yanagi T, Nakano T, Fujimaki H, Shinjo R, Asahara Y, Tanimizu M, Dragusanu C (2000) JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem Geol 168:279–281

    Article  Google Scholar 

  • Tirone M, Ganguly J, Dohmen R, Langenhorst F, Hervig R, Becker HW (2005) Rare earth diffusion kinetics in garnet: experimental studies and applications. Geochim Cosmochim Acta 69:2385–2398

    Article  Google Scholar 

  • Vervoort JD, Patchett PJ, Blichert-Toft J, Albarède F (1999) Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system. Earth Planet Sci Lett 168:79–99

    Article  Google Scholar 

  • Vervoort JD, Patehett PJ, Söderlund U, Baker M (2004) Isotopie composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC–ICPMS. Geochem Geophys Geosystems 5:Q11002. https://doi.org/10.1029/2004GC000721

    Article  Google Scholar 

  • Wang F, Wang Q, Lin W, Wu L, Shi W, Feng H, Zhu R (2014) 40Ar/39Ar geochronology of the North China and Yangtze Cratons: new constraints on Mesozoic cooling and cratonic destruction under East Asia. J Geophys Res Solid Earth 119:3700–3721

    Article  Google Scholar 

  • Wang JQ, Shu LS, Yu JH (2017) From the Neoproterozoic mafic rock to the Silurian high-grade metamorphic rock: evidence from zircon U–Pb geochronological, bulk-rock geochemical and mineral EPMA studies of Longyou garnet amphibolite in SE China. J Asian Earth Sci 141:7–23

    Article  Google Scholar 

  • White RW, Powell R, Holland TJB, Johnson TE, Green ECR (2014) New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. J Metamorph Geol 32:261–286

    Article  Google Scholar 

  • White RW, Powel R, Holland TJB, Worley BA (2000) The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: Mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2 -H2O-TiO2 -Fe2O3. J Metamorph Geol 18:497–511

    Article  Google Scholar 

  • Williams IS (1998) U-Th–Pb geochronology by ion microprobe. In: McKibben MA, Shanks WC III, Ridley WI (eds) Applications of microanalytical techniques to understanding mineralizing processes, vol 7. Reviews in economic geology. Society of Economic Geologists, El Paso, pp 1–35

    Google Scholar 

  • Yao J, Shu L, Santosh M, Xu Z (2014) Palaeozoic metamorphism of the Neoproterozoic basement in NE Cathaysia: zircon U-Pb ages, Hf isotope and whole-rock geochemistry from the Chencai Group. J Geol Soc London 171:281–297

    Article  Google Scholar 

  • York D (1968) Least squares fitting of a straight line with correlated errors. Earth Planet Sci Lett 5:320–324

    Article  Google Scholar 

  • Yu JH, Lou FS, Wang LJ, Shen LW, Zhou XY, Zhang CH, Huang ZZ (2014) The geological significance of a Paleozoic mafic granulite found in the Yiyang area of northeastern Jiangxi Province. Chin Sci Bull 59:3508–3516 (in chinese with English abstract)

    Article  Google Scholar 

  • Zhang J, Green HW (2007) Experimental investigation of eclogite rheology and its fabrics at high temperature and pressure. J Metamorph Geol 25:97–115

    Article  Google Scholar 

  • Zhao GC, Cawood PA (1999) Tectonothermal evolution of the Mayuan assemblage in the Cathaysia block: implications for Neoproterozoic collision-related assembly of the South China craton. Am J Sci 299:309–339

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Chao Zhang and Kai-yang Du at WSU for their assistance with isotope geochemistry and mass spectrometry. We thank Peter Reiners and Yuan Chang for help in determining the U–Th/He age. Qiu-li Li is thanked for his prompt help in SIMS analysis. The manuscript was substantially improved by constructive reviews from Klaus Mezger, Fernando Corfu, Jiba Ganguly and an anonymous reviewer. This work was funded by the National Natural Science Foundation of China (41573046) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Cheng.

Additional information

Communicated by Timothy L. Grove.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5941 kb)

Supplementary material 2 (XLS 285 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, H., Bloch, E.M., Moulas, E. et al. Reconciliation of discrepant U–Pb, Lu–Hf, Sm–Nd, Ar–Ar and U–Th/He dates in an amphibolite from the Cathaysia Block in Southern China. Contrib Mineral Petrol 175, 4 (2020). https://doi.org/10.1007/s00410-019-1644-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-019-1644-9

Keywords

Navigation