Skip to main content
Log in

Acetyl-L-Carnitine in Neuropathic Pain

Experimental Data

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Acetyl-L-carnitine (ALC) has gained clinical interest for its analgesic effect in different forms of neuropathies associated with chronic pain, such as diabetic and HIV-related peripheral neuropathies. The antinociceptive effect of ALC has been confirmed in several experimental models of neuropathic pain, including streptozotocin- and chemotherapy-induced neuropathy, and the sciatic nerve chronic constriction injury model. In these models, prophylactic administration of ALC has proven to be effective in preventing the development of neuropathic pain. In addition, ALC is known to produce a strong antinociceptive effect when given after neuropathic pain has been established. ALC can also improve the function of peripheral nerves by increasing nerve conduction velocity, reducing sensory neuronal loss, and promoting nerve regeneration.

Analgesia requires repeated administrations of ALC, suggesting that the drug regulates neuroplasticity across the pain neuraxis. Recent evidence indicates that ALC regulates processes that go beyond its classical role in energy metabolism. These processes involve the activation of muscarinic cholinergic receptors in the forebrain, and an increased expression of type-2 metabotropic glutamate (mGlu2) receptors in dorsal root ganglia neurons. Induction of mGlu2 receptors is mediated by acetylation mechanisms that involve transcription factors of the nuclear factor (NF)-κB family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bremer J. Carnitine: metabolism and functions. Physiol Rev 1983; 63(4): 1420–80

    CAS  PubMed  Google Scholar 

  2. Farrell S, Vogel J, Bieber LL. Entry of acetyl-L-carnitine into biosynthetic pathways. Biochim Biophys Acta 1986; 876(1): 175–7

    CAS  PubMed  Google Scholar 

  3. Jogl G, Tong L. Crystal structure of carnitine acetyltransferase and implications for the catalytic mechanism and fatty acid transport. Cell 2003; 112(1): 113–22

    CAS  PubMed  Google Scholar 

  4. Kido Y, Tamai I, Ohnari A, et al. Functional relevance of carnitine transporter OCTN2 to brain distribution of L-carnitine and acetyl-L-carnitine across the blood-brain barrier. J Neurochem 2001; 79(5): 959–69

    CAS  PubMed  Google Scholar 

  5. Inano A, Sai Y, Nikaido H, et al. Acetyl-L-carnitine permeability across the blood-brain barrier and involvement of carnitine transporter OCTN2. Biopharm Drug Dispos 2003; 24(8): 357–65

    CAS  PubMed  Google Scholar 

  6. Dolezal V, Tucek S. Utilization of citrate, acetylcarnitine, acetate, pyruvate and glucose for the synthesis of acetylcholine in rat brain slices. J Neurochem 1981; 36(4): 1323–30

    CAS  PubMed  Google Scholar 

  7. Chiechio S, Copani A, Nicoletti F, et al. L-Acetylcarnitine: a proposed therapeutic agent for painful peripheral neuropathies. Curr Neuropharmacol 2006; 4(3): 233–7

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hart AM, Wilson AD, Montovani C, et al. Acetyl-1-carnitine: a pathogenesis based treatment for HIV-associated antiretroviral toxic neuropathy. AIDS 2004; 18(11): 1549–60

    CAS  PubMed  Google Scholar 

  9. Scarpini E, Sacilotto G, Baron P, et al. Effect of acetyl-L-carnitine in the treatment of painful peripheral neuropathies in HIV+ patients. J Peripher Nerv Syst 1997; 2(3): 250–2

    CAS  PubMed  Google Scholar 

  10. De Grandis D, Minardi C. Acetyl-L-carnitine (levacecarnine) in the treatment of diabetic neuropathy: a long-term, randomised, double-blind, placebo-controlled study. Drugs R D 2002; 3(4): 223–31

    PubMed  Google Scholar 

  11. Sima AA, Calvani M, Mehra M, et al. Acetyl-L-carnitine improves pain, nerve regeneration, and vibratory perception in patients with chronic diabetic neuropathy: an analysis of two randomized placebo-controlled trials. Diabetes Care 2005 Jan; 28(1): 89–94

    CAS  PubMed  Google Scholar 

  12. Quatraro A, Roca P, Donzella C, et al. Acetyl-L-carnitine for symptomatic diabetic neuropathy. Diabetologia 1995; 38(1): 123

    CAS  PubMed  Google Scholar 

  13. Simpson DM, Tagliati M. Nucleoside analogue-associated peripheral neuropathy in human immunodeficiency virus infection. J Acquir Immune Defic Syndr Hum Retrovirol 1995; 9(2): 153–61

    CAS  PubMed  Google Scholar 

  14. Moore RD, Wong WM, Keruly JC, et al. Incidence of neuropathy in HIV-infected patients on monotherapy versus those on combination therapy with didanosine, stavudine and hydroxyurea. AIDS 2000; 14(3): 273–8

    CAS  PubMed  Google Scholar 

  15. Moyle G. Clinical manifestations and management of antiretroviral nucleoside analog-related mitochondrial toxicity. Clin Therapeut 2000; 22(8): 911–36; discussion 898

    CAS  Google Scholar 

  16. Moyle GJ, Sadler M. Peripheral neuropathy with nucleoside antiretrovirals: risk factors, incidence and management. Drug Saf 1998; 19(6): 481–94

    CAS  PubMed  Google Scholar 

  17. Famularo G, Moretti S, Marcellini S, et al. Acetyl-carnitine deficiency in AIDS patients with neurotoxicity on treatment with antiretroviral nucleoside analogues. AIDS 1997; 11(2): 185–90

    CAS  PubMed  Google Scholar 

  18. Maestri A, De Pasquale Ceratti A, Cundari S, et al. A pilot study on the effect of acetyl-L-carnitine in paclitaxel- and cisplatin-induced peripheral neuropathy. Tumori 2005; 91(2): 135–8

    CAS  PubMed  Google Scholar 

  19. Chiechio S, Caricasole A, Barletta E, et al. L-Acetylcarnitine induces analgesia by selectively up-regulating mGlu2 metabotropic glutamate receptors. Mol Pharmacol 2002; 61(5): 989–96

    CAS  PubMed  Google Scholar 

  20. Flatters SJ, Xiao WH, Bennett GJ. Acetyl-L-carnitine prevents and reduces paclitaxel-induced painful peripheral neuropathy. Neurosci Lett 2006; 397(3): 219–23

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Galeotti N, Bartolini A, Calvani M, et al. Acetyl-L-carnitine requires phospholipase C-IP3 pathway activation to induce antinociception. Neuropharmacology 2004; 47(2): 286–94

    CAS  PubMed  Google Scholar 

  22. Ghelardini C, Galeotti N, Calvani M, et al. Acetyl-l-carnitine induces muscarinic antinocieption in mice and rats. Neuropharmacology 2002; 43(7): 1180–7

    CAS  PubMed  Google Scholar 

  23. Ghirardi O, Vertechy M, Vesci L, et al. Chemotherapy-induced allodinia: neuroprotective effect of acetyl-L-carnitine. In Vivo 2005; 19(3): 631–7

    CAS  PubMed  Google Scholar 

  24. Chiechio S, Copani A, De Petris L, et al. Transcriptional regulation of metabotropic glutamate receptor 2/3 expression by the NF-kappaB pathway in primary dorsal root ganglia neurons: a possible mechanism for the analgesic effect of L-acetylcarnitine. Molecular Pain 2006; 2: 20

    PubMed  PubMed Central  Google Scholar 

  25. Chiechio S, Copani A, Melchiorri D, et al. Metabotropic receptors as targets for drugs of potential use in the treatment of neuropathic pain. J Endocrinol Invest 2004; 27(6 Suppl.): 171–6

    CAS  PubMed  Google Scholar 

  26. Angelucci L, Ramacci MT, Taglialatela G, et al. Nerve growth factor binding in aged rat central nervous system: effect of acetyl-L-carnitine. J Neurosci Res 1988; 20(4): 491–6

    CAS  PubMed  Google Scholar 

  27. Nakamura J, Koh N, Sakakibara F, et al. Polyol pathway hyperactivity is closely related to carnitine deficiency in the pathogenesis of diabetic neuropathy of streptozotocin-diabetic rats. J Pharmacol Exp Ther 1998; 287(3): 897–902

    CAS  PubMed  Google Scholar 

  28. Lowitt S, Malone JI, Salem AF, et al. Acetyl-L-carnitine corrects the altered peripheral nerve function of experimental diabetes. Metabolism 1995; 44(5): 677–80

    CAS  PubMed  Google Scholar 

  29. Sima AA, Ristic H, Merry A, et al. Primary preventive and secondary interventionary effects of acetyl-L-carnitine on diabetic neuropathy in the bio-breeding Worcester rat. J Clin Invest 1996; 97(8): 1900–7

    CAS  PubMed  PubMed Central  Google Scholar 

  30. McKay Hart A, Wiberg M, Terenghi G. Pharmacological enhancement of peripheral nerve regeneration in the rat by systemic acetyl-L-carnitine treatment. Neurosci Lett 2002; 334(3): 181–5

    CAS  PubMed  Google Scholar 

  31. Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science 2000; 288(5472): 1765–9

    CAS  PubMed  Google Scholar 

  32. Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988; 33(1): 87–107

    CAS  PubMed  Google Scholar 

  33. Pisano C, Pratesi G, Laccabue D, et al. Paclitaxel and Cisplatin-induced neurotoxicity: a protective role of acetyl-L-carnitine. Clin Cancer Res 2003; 9(15): 5756–67

    CAS  PubMed  Google Scholar 

  34. Flatters SJ, Bennett GJ. Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction. Pain 2006; 122(3): 245–57

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ghirardi O, Lo Giudice P, Pisano C, et al. Acetyl-L-carnitine prevents and reverts experimental chronic neurotoxicity induced by oxaliplatin, without altering its antitumor properties. Anticancer Res 2005; 25(4): 2681–7

    CAS  PubMed  Google Scholar 

  36. Ocean AJ, Vahdat LT. Chemotherapy-induced peripheral neuropathy: pathogenesis and emerging therapies. Support Care Cancer 2004; 12(9): 619–25

    PubMed  Google Scholar 

  37. Finsterer J. Mitochondrial neuropathy. Clin Neurol Neurosurg 2005; 107(3): 181–6

    PubMed  Google Scholar 

  38. Ghelardini C, Galeotti N, Bartolini A. Loss of muscarinic antinociception by antisense inhibition of M(1) receptors. Br J Pharmacol 2000; 129(8): 1633–40

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ghelardini C, Bartolini A, Galeotti N, et al. S-(−)-ET 126: a potent and selective M1 antagonist in vitro and in vivo. Life Sci 1996; 58(12): 991–1000

    CAS  PubMed  Google Scholar 

  40. Iwamoto ET, Marion L. Characterization of the antinociception produced by intrathecally administered muscarinic agonists in rats. J Pharmacol Exp Ther 1993; 266(1): 329–38

    CAS  PubMed  Google Scholar 

  41. Li DP, Chen SR, Pan YZ, et al. Role of presynaptic muscarinic and GABA(B) receptors in spinal glutamate release and cholinergic analgesia in rats. J Physiol 2002; 543(Pt 3): 807–18

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang HM, Chen SR, Pan HL. Regulation of glutamate release from primary afferents and interneurons in the spinal cord by muscarinic receptor subtypes. J Neurophysiol 2007; 97(1): 102–9

    CAS  PubMed  Google Scholar 

  43. Dussor GO, Helesic G, Hargreaves KM, et al. Cholinergic modulation of nociceptive responses in vivo and neuropeptide release in vitro at the level of the primary sensory neuron. Pain 2004; 107(1–2): 22–32

    CAS  PubMed  Google Scholar 

  44. Bartolini A, Ghelardini C, Fantetti L, et al. Role of muscarinic receptor subtypes in central antinociception. Br J Pharmacol 1992; 105(1): 77–82

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Naguib M, Yaksh TL. Characterization of muscarinic receptor subtypes that mediate antinociception in the rat spinal cord. Anesth Analg 1997; 85(4): 847–53

    CAS  PubMed  Google Scholar 

  46. Ghelardini C, Galeotti N, Lelli C, et al. M1 receptor activation is a requirement for arecoline analgesia. Farmaco 2001; 56(5–7): 383–5

    CAS  PubMed  Google Scholar 

  47. Galeotti N, Bartolini A, Ghelardini C. The phospholipase C-IP3 pathway is involved in muscarinic antinociception. Neuropsychopharmacol 2003; 28(5): 888–97

    CAS  Google Scholar 

  48. De Blasi A, Conn PJ, Pin J, et al. Molecular determinants of metabotropic glutamate receptor signaling. Trends Pharmacol Sci 2001; 22(3): 114–20

    CAS  PubMed  Google Scholar 

  49. Varney MA, Gereau RW. Metabotropic glutamate receptor involvement in models of acute and persistent pain: prospects for the development of novel analgesics. Curr Drug Targets 2002; 1(3): 283–96

    CAS  Google Scholar 

  50. Kim SJ, Calejesan AA, Zhuo M. Activation of brainstem metabotropic glutamate receptors inhibits spinal nociception in adult rats. Pharmacol Biochem Behav 2002; 73(2): 429–37

    CAS  PubMed  Google Scholar 

  51. Simmons RM, Webster AA, Kalra AB, et al. Group II mGluR receptor agonists are effective in persistent and neuropathic pain models in rats. Pharmacol Biochem Behav 2002; 73(2): 419–27

    CAS  PubMed  Google Scholar 

  52. Sharpe EF, Kingston AE, Lodge D, et al. Systemic pre-treatment with a group II mGlu agonist, LY379268, reduces hyperalgesia in vivo. Br J Pharmacol 2002; 135(5): 1255–62

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bleakman D, Alt A, Nisenbaum ES. Glutamate receptors and pain. Semin Cell Dev Biol 2006; 17(5): 592–604

    CAS  PubMed  Google Scholar 

  54. Li W, Neugebauer V. Differential changes of group II and group III mGluR function in central amygdala neurons in a model of arthritic pain. J Neurophysiol 2006; 96(4): 1803–15

    CAS  PubMed  Google Scholar 

  55. Jones CK, Eberle EL, Peters SC, et al. Analgesic effects of the selective group II (mGlu2/3) metabotropic glutamate receptoragonists LY379268 and LY389795 in persistent and inflammatory pain models after acute and repeated dosing.Neuropharmacol 2005; 49Suppl. 1: 206–18

    CAS  Google Scholar 

  56. Yang D, Gereau RW. Peripheral group II metabotropic glutamate receptors mediate endogenous anti-allodynia in inflammation. Pain 2003; 106(3): 411–7

    CAS  PubMed  Google Scholar 

  57. Yang D, Gereau RW. Peripheral group II metabotropic glutamate receptors (mGluR2/3) regulate prostaglandin E2-mediated sensitization of capsaicin responses and thermal nociception. J Neurosci 2002; 22(15): 6388–93

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Valerio A, Paterlini M, Boifava M, et al. Metabotropic glutamate receptor mRNA expression in rat spinal cord. Neuroreport 1997; 8(12): 2695–9

    CAS  PubMed  Google Scholar 

  59. Berthele A, Boxall SJ, Urban A, et al. Distribution and developmental changes in metabotropic glutamate receptor messenger RNA expression in the rat lumbar spinal cord. Brain Res 1999; 112(1): 39–53

    CAS  Google Scholar 

  60. Jia H, Rustioni A, Valtschanoff JG. Metabotropic glutamate receptors in superficial laminae of the rat dorsal horn. J Comp Neurol 1999; 410(4): 627–42

    CAS  PubMed  Google Scholar 

  61. Azkue JJ, Mateos JM, Elezgarai I, et al. The metabotropic glutamate receptor subtype mGluR 2/3 is located at extrasynaptic loci in rat spinal dorsal horn synapses. Neurosci Lett 2000; 287(3): 236–8

    CAS  PubMed  Google Scholar 

  62. Gerber G, Zhong J, Youn D, et al. Group II and group III metabotropic glutamate receptor agonists depress synaptic transmission in the rat spinal cord dorsal horn. Neuroscience 2000; 100(2): 393–406

    CAS  PubMed  Google Scholar 

  63. Das C, Kundu TK. Transcriptional regulation by the acetylation of nonhistone proteins in humans: a new target for therapeutics. IUBMB Life 2005; 57(3): 137–49

    CAS  PubMed  Google Scholar 

  64. Legube G, Trouche D. Regulating histone acetyltransferases and deacetylases. EMBO Reports 2003; 4(10): 944–7

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen L, Fischle W, Verdin E, et al. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 2001; 293(5535): 1653–7

    CAS  Google Scholar 

  66. Furia B, Deng L, Wu K, et al. Enhancement of nuclear factor-kappa B acetylation by coactivator p300 and HIV-1 Tat proteins. J Biol Chem 2002; 277(7): 4973–80

    CAS  PubMed  Google Scholar 

  67. Nickols JC, Valentine W, Kanwal S, et al. Activation of the transcription factor NF-kappaB in Schwann cells is required for peripheral myelin formation. Nat Neurosci 2003; 6(2): 161–7

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Experiments on the regulation of mGlu2 receptor expression by ALC were supported by the McDonnell Center for Molecular and Cellular Neurobiology and by the National Institutes of Health.

Conflict of interest: S. Chiechio currently has a fellowship from Sigma-Tau, which produces and sells carnitine. Nevertheless, the author did not receive any financial support or benefit for writing this paper. The authors have no other potential conflicts of interest that are directly relevant to this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinando Nicoletti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiechio, S., Copani, A., Gereau, R.W. et al. Acetyl-L-Carnitine in Neuropathic Pain. CNS Drugs 21 (Suppl 1), 31–38 (2007). https://doi.org/10.2165/00023210-200721001-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200721001-00005

Keywords

Navigation