Skip to main content
Log in

The INSPIRE-2 CubeSat for the QB50 Project

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The 2-unit CubeSat INSPIRE-2/AU03 was designed, built, tested, delivered, and accepted by the European Union’s QB50 project in less than 10 months and for less than US$120,000 in non-salary outlays including launch, despite being a first satellite. It carried 5 instruments (a multi-Needle Langmuir Probe, a diffraction-limited spectrograph, an advanced GPS receiver, and 2 radiation detectors) and the satellite hardware included both Commercial Off-The-Shelf (COTS) and Australian components. INSPIRE-2 was deployed into space from the International Space Station by Nanoracks on 26 May 2017 following an Atlas V launch. The satellite was brought online a month after launch as a result of a major campaign with the international radio amateur community. The uplink function of the Communications board was badly damaged in July 2017 in the first of that year’s two major, extended, space weather periods, plausibly due to radiation damage. While INSPIRE-2’s radio beacons were resurrected and continued for over a year the Communications board’s handshaking protocols meant that downlinking of data was not possible. INSPIRE-2 lived for over a year in space with mostly functioning systems. This paper summarises the major firsts and importance of INSPIRE-2 and its fellow Australian QB50 CubeSats UNSW-EC0 and SuSat (e.g., the first Australian CubeSats and the first Australian-built satellites in 16 years), as well as the science and technical goals, instruments, spacecraft systems, recovery, initial data, and evidence that the major space weather events of 12 July - 4 August 2017 significantly damaged INSPIRE-2 and caused an outage from 26 July to 5 September 2017. It also discusses the lessons learned and the reasons why CubeSats in constellations like QB50, whether international or Australian, provide excellent opportunities for scientific, technical, and commercial development, public outreach and engagement, and international engagement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • B.J. Anderson, K. Takahashi, T. Kamei, C.L. Waters, B.A. Toth, Birkeland current system key parameters derived from Iridium observations: method and initial validation results. J. Geophys. Res. Space Phys. 107(A6), 1079 (2002). https://doi.org/10.1029/2001JA000080

    Article  ADS  Google Scholar 

  • T.A. Bekkeng, K.S. Jacobsen, J.K. Bekkeng, A. Pedersen, T. Lindem, J.-P. Lebreton, J.I. Moen, Design of a multi-needle Langmuir probe system. Meas. Sci. Technol. 21(8), 085903 (2010). https://doi.org/10.1088/0957-0233/21/8/085903

    Article  ADS  Google Scholar 

  • C.H. Betters, A new approach to classical spectroscopy. PhD thesis, The University of Sydney (2015). http://hdl.handle.net/2123/13866

  • C.H. Betters, S.G. Leon-Saval, J. Bland-Hawthorn, NanoSpec: a diffraction limited micro-spectrograph for pico- and nano-satellites, in Proc. SPIE. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8442 (2012a), p. 84424. https://doi.org/10.1117/12.925819

    Chapter  Google Scholar 

  • C.H. Betters, I.H. Cairns, J. Bland-Hawthorn, X. Wu, L. Fogarty, J. Funamoto, S.G. Leon-Saval, A.G. Monger, S.Z. Xiao, Instrumentation of the i-INSPIRE satellite, in Proc. of the 11th Aust. Space Sci. Conf. (2012b), pp. 257–266

    Google Scholar 

  • T.A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S.G. Leon-Saval, R.R. Thomson, The photonic lantern. Adv. Opt. Photonics 7(2), 1943–8206 (2015). https://doi.org/10.1364/AOP.7.000107

    Article  Google Scholar 

  • J. Bland-Hawthorn, P. Kern, Astrophotonics: a new era for astronomical instruments. Opt. Express 17(3), 1880–1884 (2009). https://doi.org/10.1364/OE.17.001880

    Article  ADS  Google Scholar 

  • J.W. Cheong, B.J. Southwell, W. Andrew, E. Aboutanios, C. Lam, T. Croston, L. Li, S. Green, A. Kroh, E.P. Glennon, J. Bultitude, T. Broadbent, T.B.Q. Guo, A.G. Dempster, B. Osborne, A robust framework for low-cost Cubesat scientific missions: In-orbit recovery, results and lessons learned from UNSW-EC0. Space Sci. Rev. 216(1), 1–26 (2020). https://doi.org/10.1007/s11214-019-0632-8

    Article  ADS  Google Scholar 

  • J.W. Cheong, B. Southwell, C. Lam, J. Bultitude, W. Andrew, S. Green, B. Osborne, A.G. Dempster, E. Aboutanios, W. Crowe. Design and development of the unsw QB50 cubesat - EC0 (2016)

  • M. Choudhury, E. Glennon, A.G. Dempster, P. Mumford, Characterization of the Namuru V3. 2 spaceborne GPS receiver. in 12th Australian Space Science Conference, vol. 55 (Citeseer, 2012).

    Google Scholar 

  • M. Choudhury, J.W. Cheong, N.C. Shivaramaiah, C. Rizos, A.G. Dempster, Test results of the namuru dual-GNSS space-borne receiver, in Proceedings of the 13th Australian Space Science Conference, ed. by W. Short, I.H. Cairns (2013a)

    Google Scholar 

  • M. Choudhury, J. Cheong, J. Wu, Initial test results of namuru dual-GNSS space-borne receiver, in IGNSS Symposium 2013 (2013b), pp. 1–8. https://pdfs.semanticscholar.org/5b93/0496137fa1ce7c27c5112b8521332e13fbf1.pdf

    Google Scholar 

  • T. Flatley, W. Morgenstern, A. Reth, F. Bauer, A B-dot acquisition controller for the RADARSAT spacecraft, in NASA Conference Publication (NASA, Washington, 1997), pp. 79–90

    Google Scholar 

  • L.M.R. Fogarty, S.Z. Xiao, J. Funamoto, I.H. Cairns, J. Bland-Hawthorn, X. Wu, C.H. Betters, S.G. Leon-Saval, A.G. Monger, The i-INSPIRE satellite: a university pico-satellite project. in Proc. SPIE. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8442 (2012a), p. 84421. https://doi.org/10.1117/12.925709

    Chapter  Google Scholar 

  • L.M.R. Fogarty, I.H. Cairns, J. Bland-Hawthorn, X. Wu, C.H. Betters, J. Funamoto, S.G. Leon-Saval, A.G. Monger, S.Z. Xiao, The initial - INtegrated SPectrograph, Imager and Radiation Explorer (i-INSPIRE) - a university satellite project, in Proc. 11th Aust. Space Sci. Conf. (2012b), pp. 249–256

    Google Scholar 

  • J. Funamoto, X. Wu, I.H. Cairns, J. Bland-Hawthorn, C.H. Betters, S.G. Leon-Saval, L. Fogarty, A.G. Monger, S.Z. Xiao, Engineering i-INSPIRE - a Pico-Satellite from Australia, in Proc. of the 11th Aust. Space Sci. Conf. (2012), pp. 275–286

    Google Scholar 

  • E.P. Glennon, A.G. Dempster, Improving Sensitivity on Kea Cubesat GPS Receivers (2016)

    Google Scholar 

  • E.P. Glennon, J.P. Gauthier, M. Choudhury, K. Parkinson, A.G. Dempster, Project Biarri and the Namuru V3. 2 spaceborne GPS receiver, in International Global Navigation Satellite Systems Society, IGNSS Symposium (2013a)

    Google Scholar 

  • E. Glennon, J. Gauthier, M. Choudhury, A. Dempster, K. Parkinson, Synchronization and syntonization of formation flying cubesats using the namuru V3. 2 spaceborne GPS receiver, in Proceedings of the ION 2013 Pacific PNT Meeting, Honolulu, HI, USA (2013b), pp. 23–25

    Google Scholar 

  • H. Heidt, J. Puig-Sardi, A. Moore, S. Nakasuka, R.J. Twiggs, CubeSat: a new generation of picosatellite for education and industry low cost space experimentation, in Proc. 14th Annual/USU Conference on Small Satellites (2000), pp. 00–5

    Google Scholar 

  • R.A. Helliwell, Whistlers and Related Ionospheric Phenomena (1965)

    Google Scholar 

  • H. Hoang, K. Røed, T.A. Bekkeng, J.I. Moen, L.B.N. Clausen, E. Trondsen, B. Lybekk, H. Strøm, D.M. Bang-Hauge, A. Pedersen, C.D.A. Nokes, C. Cupido, I.R. Mann, M. Ariel, D. Portnoy, E. Sagi, The multi-needle Langmuir probe instrument for QB50 mission: case studies of Ex-Alta 1 and Hoopoe satellites. Space Sci. Rev. 215, 21 (2019). https://doi.org/10.1007/s11214-019-0586-x

    Article  ADS  Google Scholar 

  • J. Le Marshall, Y. Xiao, R. Norman, K. Zhang, A. Rea, L. Cucurull, R. Seecamp, P. Steinle, K. Puri, E. Fu, T. Le, The application of radio occultation observations for climate monitoring and numerical weather prediction in the Australian region. Aust. Meteorol. Oceanogr. J. 62, 323–334 (2012). https://doi.org/10.22499/2.6204.010

    Article  Google Scholar 

  • S.G. Leon-Saval, A. Argyros, J. Bland-Hawthorn, Photonic lanterns: a study of light propagation in multimode to single-mode converters. Opt. Express 18, 8430 (2010). https://doi.org/10.1364/OE.18.008430

    Article  ADS  Google Scholar 

  • S.G. Leon-Saval, A. Argyros, J. Bland-Hawthorn, Photonic lanterns. Nanophotonics 2(5–6), 429–440 (2013). https://doi.org/10.1515/nanoph-2013-0035

    Article  ADS  Google Scholar 

  • X. Li, J. Xiao, B. He, M. Altaf Arain, J. Beringer, A.R. Desai, C. Emmel, D.Y. Hollinger, A. Krasnova, I. Mammarella, S.M. Noe, P.S. Ortiz, A.C. Rey-Sanchez, A.V. Rocha, A. Varlagin, Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: first global analysis based on OCO-2 and flux tower observations. Glob. Change Biol. 24(9), 3990–4008 (2018). https://doi.org/10.1111/gcb.14297

    Article  ADS  Google Scholar 

  • S.T. Loi, T. Murphy, I.H. Cairns, F.W. Menk, C.L. Waters, P.J. Erickson, C.M. Trott, N. Hurley-Walker, J. Morgan, E. Lenc, A.R. Offringa, M.E. Bell, R.D. Ekers, B.M. Gaensler, C.J. Lonsdale, L. Feng, P.J. Hancock, D.L. Kaplan, G. Bernardi, J.D. Bowman, F. Briggs, R.J. Cappallo, A.A. Deshpande, L.J. Greenhill, B.J. Hazelton, M. Johnston-Hollitt, S.R. McWhirter, D.A. Mitchell, M.F. Morales, E. Morgan, D. Oberoi, S.M. Ord, T. Prabu, N.U. Shankar, K.S. Srivani, R. Subrahmanyan, S.J. Tingay, R.B. Wayth, R.L. Webster, A. Williams, C.L. Williams, Real-time imaging of density ducts between the plasmasphere and ionosphere. Geophys. Res. Lett. 42, 3707–3714 (2015). https://doi.org/10.1002/2015GL063699

    Article  ADS  Google Scholar 

  • S.T. Loi, I.H. Cairns, T. Murphy, P.J. Erickson, M.E. Bell, A. Rowlinson, B.S. Arora, J. Morgan, R.D. Ekers, N. Hurley-Walker, D.L. Kaplan, Density duct formation in the wake of a travelling ionospheric disturbance: Murchison Widefield Array observations. J. Geophys. Res. Space Phys. 121, 1569–1586 (2016). https://doi.org/10.1002/2015JA022052

    Article  ADS  Google Scholar 

  • B.J. Osborne, E. Aboutanios, A.G. Dempster, E. Cetin, G. Heisrer, E.P. Glennon, UNSW EC0 CubeSat design: experiments in radiation tolerance critical systems, GNSS remote observation and 3-D printed satellite structures, in 5th Eurpoean Cubesat Symposium (2013), p. 41

    Google Scholar 

  • K. Parkinson, P. Mumford, E. Glennon, N. Shivaramaiah, A. Dempster, C. Rizos, A low cost Namuru V3 receiver for spacecraft operations, in International Global Navigation Satellite Systems Society, IGNSS Symposium (2011), pp. 15–17

    Google Scholar 

  • K. Scherer, H. Fichtner, B. Heber, U. Mall, Space Weather: The Physics Behind a Slogan (2005)

    Book  Google Scholar 

  • C.J. Schrijver, K. Kauristie, A.D. Aylward, C.M. Denardini, S.E. Gibson, A. Glover, N. Gopalswamy, M. Grande, M. Hapgood, D. Heynderickx, N. Jakowski, V.V. Kalegaev, G. Lapenta, J.A. Linker, S. Liu, C.H. Mandrini, I.R. Mann, T. Nagatsuma, D. Nandy, T. Obara, T. Paul O’Brien, T. Onsager, H.J. Opgenoorth, M. Terkildsen, C.E. Valladares, N. Vilmer, Understanding space weather to shield society: a global road map for 2015-2025 commissioned by COSPAR and ILWS. Adv. Space Res. 55, 2745–2807 (2015). https://doi.org/10.1016/j.asr.2015.03.023

    Article  ADS  Google Scholar 

  • H. Schulte in den Bäumen, D. Moran, M. Lenzen, I. Cairns, A. Steenge, How severe Space Weather can disrupt global supply chains. Nat. Hazards Earth Syst. Sci. Discuss. 2, 4463–4486 (2014). https://doi.org/10.5194/nhessd-2-4463-2014

    Article  ADS  Google Scholar 

  • B.J. Southwell, Investigating the sensitivity of delay Doppler maps to wind direction using ambiguous stare processing, in ION GNSS+ (2018)

    Google Scholar 

  • S.Z. Xiao, X. Wu, I.H. Cairns, J. Bland-Hawthorn, C.H. Betters, S.G. Funamoto, J. Leon-Saval, L. Fogarty, A.G. Monger, X.L. Bai, i-INSPIRE - Australia’s first university pico-satellite mission, in Proc. of the 63rd Int Astronautical Cong. (2012a), pp. 1–9

    Google Scholar 

  • S.Z. Xiao, X. Wu, I.H. Cairns, J. Bland-Hawthorn, C.H. Betters, S.G. Funamoto, J. Leon-Saval, L. Fogarty, A.G. Monger, X.L. Bai, I-INSPIRE tube-satellite bus design, in Proc. of the 11th Aust. Space Sci. Conf. (2012b), pp. 267–274

    Google Scholar 

Download references

Acknowledgements

We acknowledge the huge efforts by Amandine Denis, Davide Masutti, and the staffs of the QB50 Project, van Karman Institute, and Nanoracks Inc to bring the QB50 Project to completion and INSPIRE-2 into orbit. We thank Jan van Gils, the Pe0Sat team, the SATNOGS team, and the international radio amateur community for their vital contributions to bringing INSPIRE-2 alive and giving us the beacon data. We thank Australian Commonwealth Ministers Pyne and Hunt and the staff of the Space Policy Unit (SPU) of the Department of Industry, Innovation, and Science for INSPIRE-2’s Overseas Launch Certificate and associated financial and insurance waivers. We thank the IARU for approving the radio licenses required. We acknowledge the great contributions of Ms Helen Brown (Solicitor, Office of General Counsel) and Dr David Dall (Research Manager, Faculty of Science) at The University of Sydney for performing most of the legal and Commonwealth Government work required to launch INSPIRE-2 into space. We particularly acknowledge Dr Michael Petkovic, Dr Naomi Matters, and their staff at AITC for their integration advice and testing of all three Australian QB50 CubeSats. At USydney the Research Portfolio, Faculties of Science and Engineering, Schools of Physics and of Aerospace, Mechanical, and Mechatronic Engineering (AMME), and INSPIRE-2’s staff funded the legal applications, participation in the QB50 project, and testing at AITC. The SP3 Laboratory funded INSPIRE-2’s COTS hardware while SP3 and ANU’s Research School for Physics and Engineering funded the Blue Wren Ground Station. The Australian Centre for Space Engineering Research (ACSER)at the University of New South Wales provided the Kea instrument and provided postdoctoral fellowship and PhD student funding and testing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iver H. Cairns.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Multi-Point Measurements of the Thermosphere with the QB50 Mission

Edited by David Miles, Robert Wicks and James Burch

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cairns, I.H., Charles, C., Dempster, A.G. et al. The INSPIRE-2 CubeSat for the QB50 Project. Space Sci Rev 216, 40 (2020). https://doi.org/10.1007/s11214-020-00659-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00659-w

Keywords

Navigation