Skip to main content

Advertisement

Log in

Torrefaction: a sustainable method for transforming of agri-wastes to high energy density solids (biocoal)

  • Review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

The depletion of fossil fuel reserves and greenhouse gas emissions led to limit the use of fossil fuels, including natural gas, coal, or petroleum, and demand a clean and sustainable source of energy. Many efforts are being made by the researchers to address these issues through the use of natural renewable resources (or lignocellulosic biomass), such as agricultural wastes and forest residues as a cleaner source of energy. But its poor properties like low energy density, high moisture content, irregular shape and size, and heterogeneity make it difficult to use in its natural form. Torrefaction, a simple heat treatment procedure, is widely employed to the natural bioresources to improve its thermal properties to be used as an energy source in the domestic power plants. The quality of the resultant torrefied solids (the so-called biocoal) is depending on the settings of heating conditions under the absence of oxygen, which can be improved by selecting and adjusting the processing conditions precisely. Typically, the process brings down the moisture content up to < 3 wt%, and increases the grinding energy up to 90%. Mainly, the calorific value and fixed carbon content of torrefied biomass increase by roughly 15–25 wt%, which makes it more appealing than non-torrefied biomass. The review emphasizes the available biomass torrefaction technologies, and it’s potential in the field of bioenergy generations. It also covers few case studies of biomass torrefaction and its application in the power generation sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Acharya B, Sule I, Dutta A (2012) A review on advances of torrefaction technologies for biomass processing. Biomass Convers Biorefinery 2:349–369

    CAS  Google Scholar 

  • Adekunle JO, Ibrahim JS, Kucha EI (2015) Proximate and ultimate analyses of biocoal briquettes of Nigerian’s Ogboyaga and Okaba sub-bituminous coal. Br J Appl Sci Technol 7(1):114–123

    CAS  Google Scholar 

  • Agar D, Wihersaari M (2012) Torrefaction technology for solid fuel production. GCB Bioenergy 4:475–478

    CAS  Google Scholar 

  • Alvarez A, Nogueiro D, Pizarro C, Matos M, Bueno JL (2018) Non-oxidative torrefaction of biomass to enhance its fuel properties. Energy 158:1–8

    CAS  Google Scholar 

  • Arias B, Pevida C, Fermoso J, Plaza MG, Rubiera F, Pis JJ (2008) Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process Technol 89:169–175

    CAS  Google Scholar 

  • Arteaga-Perez LEA, Grandon H, Flores M, Segura C, Kelley SS (2017) Steam torrefaction of Eucalyptus globulus for producing black pellets: a pilot-scale experience. Bioresour Technol 238:194–204

    CAS  Google Scholar 

  • Asadullah M, Adi AM, Suhada N, Malek NH, Saringat MI, Azdarpour A (2014) Optimization of palm kernel shell torrefaction to produce energy densified bio-coal. Energy Convers Manag 88:1086–1093

    CAS  Google Scholar 

  • Barrozo MAS, Murata VV, Assis AJ, Freire JT (2006) Modeling of drying in moving bed. Dry. Technol 24:269–279

    Google Scholar 

  • Barskov S, Zappi M, Buchireddy P, Dufreche S, Guillory J, Gang D, Hernandez R, Bajpai R, Baudier J, Cooper R, Sharp R (2019) Torrefaction of biomass: a review of production methods for biocoal from cultured and waste linocellulosic feedstocks. Renew Energy 142:624–642

    CAS  Google Scholar 

  • Basu P (2018) Biomass gasification, pyrolysis and torrefaction: practical design and theory, 1st edn. Elsevier Inc, Amsterdam

    Google Scholar 

  • Batidzirai B, Hilst VDF, Meerman H, Junginger MH, Faaij APC (2014) Optimization potential of biomass supply chains with torrefaction technology. Biofuels Bioprod Bioref 8:253–282

    CAS  Google Scholar 

  • Bergman PCA, Kiel JHA (2005) Torrefaction for biomass upgrading. In: Proceedings of 14th European biomass conference, Paris, France. Bergman, P.C.A., 2005. Combined torrefaction and pelletisation—the TOP process., ECN Technical Report. https://publications.tno.nl/publication/34628560/S7JA61/c05073.pdf

  • Bridgeman TG, Jones JM, Shield I, Williams PT (2008) Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87:844–856

    CAS  Google Scholar 

  • Brown RF (2015) A topological introduction to nonlinear analysis, 3rd edn. Springer, Berlin, pp 1–229

    Google Scholar 

  • Brue J, Darr M, Medic D (2012) Effects of torrefaction on particle size distribution of corn stover. Energy Fuels 26:2386–2393

    Google Scholar 

  • Budde PK, Megha R, Patel R, Pandey J (2018) Investigating effects of temperature on fuel properties of torrefied biomass for bio-energy systems. Energy Sources Part A Recover Util Environ Eff 41:1140–1148

    Google Scholar 

  • Cardona S, Gallego LJ, Valencia V, Martínez E, Rios LA (2019) Torrefaction of eucalyptus-tree residues: a new method for energy and mass balances of the process with the best torrefaction conditions. Sustain Energy Technol Assess 31:17–24

    Google Scholar 

  • Carter E, Shan M, Zhong Y, Ding W, Zhang Y, Baumgartner J, Yang X (2018) Development of renewable, densified biomass for household energy in China. Energy Sustain Dev 46:42–52

    Google Scholar 

  • Chen WH, Wu JS (2009) An evaluation on rice husks and pulverized coal blends using a drop tube furnace and a thermogravimetric analyzer for application to a blast furnace. Energy 34:1458–1466

    CAS  Google Scholar 

  • Chen DY, Zeng Z, Fu K, Zeng Z, Wang J, Lu M (2015a) Torrefaction of biomass stalk and its effect on the yield and quality of pyrolysis products. Fuel 159:27–32

    CAS  Google Scholar 

  • Chen WH, Peng J, Bi XT (2015b) A state-of-the-art review of biomass torrefaction, densification and applications. Renew Sustain Energy Rev 44:847–866

    CAS  Google Scholar 

  • Chen WH, Liu SH, Juang TT, Tsai CM, Zhuang YQ (2015c) Characterization of solid and liquid products from bamboo torrefaction. Appl Energy 160:829–835

    Google Scholar 

  • Chen DY, Mei JM, Li HP, Li YM, Lu MT, Ma TT, Ma ZQ (2017a) Combined pretreatment with torrefaction and washing using torrefaction liquid products to yield upgraded biomass and pyrolysis products. Bioresour Technol 228:62–68

    CAS  Google Scholar 

  • Chen DY, Cen KH, Jing XC, Gao JH, Li C, Ma ZQ (2017b) An approach for upgrading biomass and pyrolysis product quality using a combination of aqueous phase bio-oil washing and torrefaction pretreatment. Bioresour Technol 233:150–158

    CAS  Google Scholar 

  • Chen DY, Gao AJ, Cen KH, Zhang J, Cao XB, Ma ZQ (2018a) Investigation of biomass torrefaction based on three major components: hemicellulose, cellulose, and lignin. Energy Convers Manag 169:228–237

    CAS  Google Scholar 

  • Chen DY, Gao AJ, Ma ZQ, Fei DY, Chang Y, Shen C (2018b) In-depth study of rice husk torrefaction: characterization of solid, liquid and gaseous products, oxygen migration and energy yield. Bioresour Technol 253:148–153

    Google Scholar 

  • Chen WH, Lin BJ, Colin B, Petrissans A, Petrissans M (2019) A study of hygroscopic property of biomass pretreated by torrefaction. Energy Procedia 158:32–36

    CAS  Google Scholar 

  • Chen DY, Cen K, Cao X, Zhang J, Chen F, Zhou J (2020) Upgrading of bio-oil via solar pyrolysis of the biomass pretreated with aqueous phase bio-oil washing, solar drying, and solar torrefaction. Bioresour Technol 305:123–130

    Google Scholar 

  • Cheng X, Huang Z, Wang Z, Ma C, Chen S (2019) A novel on-site wheat straw pretreatment method: enclosed torrefaction. Bioresour Technol 281:48–55

    CAS  Google Scholar 

  • Chew JJ, Doshi V (2011) Recent advances in biomass pretreatment—torrefaction fundamentals and technology. Renew Sustain Energy Rev 15:4212–4222

    Google Scholar 

  • Chiou B Sen, Valenzuela-Medina D, Bilbao-Sainz C, Klamczynski AK, Avena-Bustillos RJ, Milczarek RR, Du WX, Glenn GM, Orts WJ (2015) Torrefaction of pomaces and nut shells. Bioresour Technol 177:58–65

    CAS  Google Scholar 

  • Christoforou EA, Fokaides PA (2016) Life cycle assessment (LCA) of olive husk torrefaction. Renew Energy 90:257–266

    Google Scholar 

  • Christoforou EA, Fokaides PA (2018) Recent advancements in torrefaction of solid biomass. Curr Sustain Energy Rep 5:163–171

    Google Scholar 

  • Commandre JM, Leboeuf A (2014) Volatile yields and solid grindability after torrefaction of various biomass types. Environ Prog Sustain Energy 1–7

  • Cremers M, Koppejan J, Middelkamp J, Witkamp J, Sokhansanj S, Melin S, Madrali S (2015) Status overview of torrefaction technologies: a review of the commercialisation status of biomass torrefaction. IEA Bioenergy Technical Report

  • Crnogaca B (2017) Torrefaction as a process for biomass conversion into biocoal. Tehnika 26:323–327

    Google Scholar 

  • Dai L, Wang Y, Liu Y, Ruan R, He C, Yu Z, Jiang L, Zeng Z, Tian X (2019) Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: a state-of-the-art review. Renew Sustain Energy Rev 107:20–36

    CAS  Google Scholar 

  • Dangtran K, Mullen JF, Mayrose DT (2000) A comparison of fluid bed and multiple hearth biosolids incineration. In: 14th annual residuals and sludge management conference, Boston

  • De Jong W, Van Ommen JR (2014) Biomass as a sustainable energy source for the future: fundamentals of conversion processes, 1st edn. Wiley, London

    Google Scholar 

  • Dhakate SR, Pathak AK, Jain P, Singh M, Singh B, Subhedar K, Sharda S, Seth R (2019) Rice straw biomass to high energy yield biocoal by torrefaction: Indian perspective. Curr Sci 116:831–838

    CAS  Google Scholar 

  • Dhungana A, Basu P, Dutta A (2012) Effects of reactor design on the torrefaction of biomass. J Energy Resour Technol 134:041801–041811

    Google Scholar 

  • Eseyin AE, Steele PH, Pittman CU (2015) Current trends in the production and applications of torrefied wood/biomass: a review. Bio Resour 10:8812–8858

    CAS  Google Scholar 

  • Esteves BM, Pereira HM (2009) Wood modification by heat treatment: a review. BioResources 4:370–404

    CAS  Google Scholar 

  • Garba MU, Gambo SU, Musa U, Tauheed K, Alhassan M, Adeniyi OD (2018) Impact of torrefaction on fuel property of tropical biomass feedstocks. Biofuels 9:369–377

    CAS  Google Scholar 

  • Gong SH, Im HS, Um M, Lee HW, Lee JW (2019) Enhancement of waste biomass fuel properties by sequential leaching and wet torrefaction. Fuel 239:693–700

    CAS  Google Scholar 

  • Guda VK, Steele PH, Penmetsa VK, Li Q (2015) Chapter 7—Fast pyrolysis of biomass: recent advances in fast pyrolysis technology, Recent Advances in Thermo-Chemical Conversion of Biomass. Elsevier, Boston, pp 177–211

    Google Scholar 

  • Hayes MHB, Mylotte R, Swift RS (2017) Humin: its composition and importance in soil organic matter, 1st ed, Advances in Agronomy. Elsevier Inc, Amsterdam

    Google Scholar 

  • He Q, Ding L, Gong Y, Li W, Wei J, Yu G (2019) Effect of torrefaction on pinewood pyrolysis kinetics and thermal behavior using thermogravimetric analysis. Bioresour Technol 280:104–111

    CAS  Google Scholar 

  • Ho SH, Zhang C, Chen WH, Shen Y, Chang JS (2018) Characterization of biomass waste torrefaction under conventional and microwave heating. Bioresour Technol 264:7–16

    CAS  Google Scholar 

  • Ibrahim RHH, Darvell LI, Jones JM, Williams A (2013) Physicochemical characterisation of torrefied biomass. J Anal Appl Pyrolysis 103:21–30

    CAS  Google Scholar 

  • International Energy Agency (IEA) (2018) World energy balances: an overview. IEA Technical Report

  • Joshi Y, De Vries H, Woudstra T, De Jong W (2015) Torrefaction: unit operation modelling and process simulation. Appl Therm Eng 74:83–88

    CAS  Google Scholar 

  • Kai X, Meng Y, Yang T, Li B, Xing W (2019) Effect of torrefaction on rice straw physicochemical characteristics and particulate matter emission behavior during combustion. Bioresour Technol 278:1–8

    CAS  Google Scholar 

  • Kaliyan N, Vance Morey R (2009) Factors affecting strength and durability of densified biomass products. Biomass Bioenerg 33:337–359

    CAS  Google Scholar 

  • Kanwal S, Chaudhry N, Munir S, Sana H (2019) Effect of torrefaction conditions on the physicochemical characterization of agricultural waste (sugarcane bagasse). Waste Manag 88:280–290

    CAS  Google Scholar 

  • Karlsson J (2013) Evaluation of torrefaction pilot plant in Klintehamn, Gotland. MS Thesis. Lund, Sweden

  • Kiel J (2013) Torrefaction—process and product quality optimisation. In: International VDI conference presentation

  • Klinger JL, Westover TL, Emerson RM, Williams CL, Hernandez S, Monson GD, Ryan JC (2018) Effect of biomass type, heating rate, and sample size on microwave-enhanced fast pyrolysis product yields and qualities. Appl Energy 228:535–545

    CAS  Google Scholar 

  • Knoope MMJ, Meerman JC, Ramírez A, Faaij APC (2013) Future technological and economic performance of IGCC and FT production facilities with and without CO2 capture: combining component-based learning curve and bottom-up analysis. Int J Greenh Gas Control 16:287–310

    CAS  Google Scholar 

  • Koppejan J, Sokhansanj S, Melin S, Madrali S, Cremers M, Middlekamp J, Witkamp J (2015) Status overview of torrefaction technologies—a review of the commercialisation status of biomass torrefaction. IEA Bioenergy Task 32 Technical Report. International Energy Agency, France

  • Kumar L, Koukoulas AA, Mani S, Satyavolu J (2017) Integrating torrefaction in the wood pellet industry: a critical review. Energy Fuels 31:37–54

    CAS  Google Scholar 

  • Kuzmina JS, Director LB, Shevchenko AL, Zaichenko VM (2016a) Energy efficiency analysis of reactor for torrefaction of biomass with direct heating. J Phys Conf Ser 774:1–7

    Google Scholar 

  • Kuzmina JS, Sytchev GA, Zaychenko VM (2016b) Torrefaction: prospects and application. Chem Eng Trans 50:265–270

    CAS  Google Scholar 

  • Larsson SH, Rudolfsson M, Nordwaeger M, Olofsson I, Samuelsson R (2013) Effects of moisture content, torrefaction temperature, and die temperature in pilot scale pelletizing of torrefied Norway spruce. Appl Energy 102:827–832

    Google Scholar 

  • Lau HS, Ng HK, Gan S, Jourabchi SA (2018) Torrefaction of oil palm fronds for co-firing in coal power plants. Energy Procedia 144:75–81

    CAS  Google Scholar 

  • Lee HV, Hamid SBA, Zain SK (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci World J 2014:1–20

    Google Scholar 

  • Lee CT, Hashim H, Ho CS, Fan Y Van, Klemes JJ (2017) Sustaining the low-carbon emission development in Asia and beyond: sustainable energy, water, transportation and low-carbon emission technology. J Clean Prod 146:1–13

    Google Scholar 

  • Leonelli C, Mason TJ (2010) Microwave and ultrasonic processing: now a realistic option for industry. Chem Eng Process Process Intensif 49:885–900

    CAS  Google Scholar 

  • Leontiev A, Kichatov B, Korshunov A, Kiverin A, Zaichenko V, Sytchev G, Melnikova K (2018) Oxidative torrefaction of pine pellets in the quiescent layer of mineral filler. Fuel Process Technol 182:113–122

    CAS  Google Scholar 

  • Li J, Brzdekiewicz A, Yang W, Blasiak W (2012) Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching. Appl Energy 99:344–354

    CAS  Google Scholar 

  • Loha C, Karmakar MK, Chattopadhyay H, Majumdar G (2019) Renewable biomass: a candidate for mitigating global warming, Reference Module in Materials Science and Materials Engineering. Elsevier Inc, Amsterdam

    Google Scholar 

  • Lourenço A, Pereira H (2017) Compositional variability of lignin in biomass, lignin—trends and applications. Intech Open, Rijeka. https://doi.org/10.5772/intechopen.71208

    Book  Google Scholar 

  • Mamvura TA, Pahla G, Muzenda E (2018) Torrefaction of waste biomass for application in energy production in South Africa. S Afr J Chem Eng 25:1–12

    Google Scholar 

  • Marb CM, Vortmeyer D (1988) Multiple steady states of a crossflow moving bed reactor: theory and experiment. Chem Eng Sci 43:811–819

    CAS  Google Scholar 

  • Matali S, Rahman NA, Idris SS, Yaacob N, Alias AB (2016) lignocellulosic biomass solid fuel properties enhancement via torrefaction. Procedia Eng 148:671–678

    CAS  Google Scholar 

  • McNamee P, Adams PWR, McManus MC, Dooley B, Darvell LI, Williams A, Jones JM (2016) An assessment of the torrefaction of North American pine and life cycle greenhouse gas emissions. Energy Convers Manag 113:177–188

    Google Scholar 

  • Medic D, Darr M, Shah A, Potter B, Zimmerman J (2012) Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel 91:147–154

    CAS  Google Scholar 

  • Mei Y, Liu R, Yang Q, Yang H, Shao J, Draper C, Zhang S, Chen H (2015) Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas. Bioresour Technol 177:355–360

    CAS  Google Scholar 

  • Mohammed NI, Kabbashi N, Alade A (2018) Significance of agricultural residues in sustainable biofuel development. Intech Open, Rijeka. https://doi.org/10.5772/intechopen.78374

    Book  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    CAS  Google Scholar 

  • Mundike J, Collard FX, Gorgens JF (2016) Torrefaction of invasive alien plants: influence of heating rate and other conversion parameters on mass yield and higher heating value. Bioresour Technol 209:90–99

    CAS  Google Scholar 

  • Nhuchhen D, Basu P, Acharya B (2014) A comprehensive review on biomass torrefaction. Int J Renew Energy Biofuels 2014:1–56

    Google Scholar 

  • Nobre C, Gonçalves M, Mendes B, Vilarinho C, Teixeira J (2015) Torrefaction effects on composition and quality of biomass wastes pellets. Wastes-solutions, treatments and opportunities. CRC Press, Taylor & Francis Group, Boca Raton

  • Pandey A, Negi S, Binod P, Larroche C (2014) Pretreatment of biomass: process and technologies, 1st edn. Elsevier Inc, Amsterdam

    Google Scholar 

  • Pelaez-Samaniego MR, Yadama V, Lowell E, Espinoza-Herrera R (2013) A review of wood thermal pretreatments to improve wood composite properties. Wood Sci Technol 47:1285–1319

    CAS  Google Scholar 

  • Peng JH, Bi HT, Sokhansanj S, Lim JC (2012) A study of particle size effect on biomass torrefaction and densification. Energy Fuels 26:3826–3839

    CAS  Google Scholar 

  • Persson H, Yang W (2019) Catalytic pyrolysis of demineralized lignocellulosic biomass. Fuel 252:200–209

    CAS  Google Scholar 

  • Phanphanich M, Mani S (2011) Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour Technol 102:1246–1253

    CAS  Google Scholar 

  • Pimchuai A, Dutta A, Basu P (2010) Torrefaction of agriculture residue to enhance combustible properties. Energy Fuels 24:4638–4645

    CAS  Google Scholar 

  • Popp J, Harangi-Rakos M, Gabnai Z, Balogh P, Antal G, Bai A (2016) Biofuels and their co-products as livestock feed: global economic and environmental implications. Molecules 21:1–26

    Google Scholar 

  • Prins MJ, Ptasinski KJ, Janssen FJJG (2006) Torrefaction of wood. Part 1. Weight loss kinetics. J Anal Appl Pyrolysis 77:28–34

    CAS  Google Scholar 

  • Proskurina S, Heinimo J, Schipfer F, Vakkilainen E (2017) Biomass for industrial applications: the role of torrefaction. Renew Energy 111:265–274

    Google Scholar 

  • Ribeiro JMC, Godina R, Matias JCO, Nunes LJR (2018) Future perspectives of biomass torrefaction: review of the current state-of-the-art and research development. Sustain 10:2323

    CAS  Google Scholar 

  • Rizzo AM, Prussi M, Bettucci L, Libelli IM, Chiaramonti D (2013) Characterization of microalga Chlorella as a fuel and its thermogravimetric behavior. Appl Energy 102:24–31

    CAS  Google Scholar 

  • Rousset P, Aguiar C, Labbé N, Commandré JM (2011) Enhancing the combustible properties of bamboo by torrefaction. Bioresour Technol 102:8225–8231

    CAS  Google Scholar 

  • Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S (2011) A review on biomass as a fuel for boilers. Renew Sustain Energy Rev 15:2262–2289

    CAS  Google Scholar 

  • Saleh SB, Dam-Johansen K, Jensen PA, Hansen BB (2013) Torrefaction of biomass for power production. PhD Thesis Technical University of Denmark

  • Salema AA, Ani FN (2011) Microwave induced pyrolysis of oil palm biomass. Bioresour Technol 102:3388–3395

    CAS  Google Scholar 

  • Satpathy SK, Tabil LG, Meda V, Naik SN, Prasad R (2014) Torrefaction of wheat and barley straw after microwave heating. Fuel 124:269–278

    CAS  Google Scholar 

  • Shang L, Ahrenfeldt J, Holm JK, Bach LS, Stelte W, Henriksen UB (2014) Kinetic model for torrefaction of wood chips in a pilot-scale continuous reactor. J Anal Appl Pyrolysis 108:109–116

    CAS  Google Scholar 

  • Shu J, Lakshmanan VI, Dodson CE (2000) Hydrodynamic study of a toroidal fluidized bed reactor. Chem Eng Process Process Intensif 39:499–506

    CAS  Google Scholar 

  • Shu-de Q, Fang-Zhen G, Dong-li Z (1996) The study on performance of twin-screw conveyor. Dry Technol 14:1859–1870

    Google Scholar 

  • Song Y Cai, Li Q Tong, Li F Zhou, Wang L Song, Hu C Chun, Feng J, Li W Ying (2019) Pathway of biomass-potassium migration in co-gasification of coal and biomass. Fuel 239:365–372

    CAS  Google Scholar 

  • Speight JG (2015) Handbook of coal analysis, 2nd edn. Wiley, New York, pp 170–197

    Google Scholar 

  • Strandberg M, Olofsson I, Pommer L, Wiklund-Lindstrom S, Aberg K, Nordin A (2015) Effects of temperature and residence time on continuous torrefaction of spruce wood. Fuel Process Technol 134:387–398

    CAS  Google Scholar 

  • Strezov V, Evans TJ, Hayman C (2008) Thermal conversion of elephant grass (Pennisetum purpureum schum) to bio-gas, bio-oil and charcoal. Bioresour Technol 99:8394–8399

    CAS  Google Scholar 

  • Sun YJ, Jiang JC, Zhao SH, Hu YM, Zheng ZF (2011) Review of torrefaction reactor technology. Adv Mater Res 347–353:1149–1155

    Google Scholar 

  • Supramono D, Devina YM, Tristantini D (2015) Effect of heating rate of torrefaction of sugarcane bagasse on its physical characteristics. Int J Technol 6:1084–1093

    Google Scholar 

  • Talero G, Rincón S, Gómez A (2019) Torrefaction of oil palm residual biomass: thermogravimetric characterization. Fuel 242:496–506

    CAS  Google Scholar 

  • Tan IAW, Shafee NM, Abdullah MO, Lim LLP (2017) Synthesis and characterization of biocoal from Cymbopogon citrates residue using microwave-induced torrefaction. Environ Technol Innov 8:431–440

    Google Scholar 

  • Tsalidis GA, Joshi Y, Korevaar G, De Jong W (2011) Life cycle assessment of direct co-firing of torrefied and/or pelletised woody biomass with coal in the Netherlands. J Clean Prod 81:168–177

    Google Scholar 

  • Tumuluru JS (2018) Biomass preprocessing and pretreatments for production of biofuels: mechanical, chemical and thermal methods, 1st edn. CRC Press, Taylor and Francis Group, Boca Raton

    Google Scholar 

  • Tumuluru JS, Sokhansanj S, Wright CT, Boradman RD (2010) Biomass torrefaction process review and moving bed torrefaction system model development. Idaho National Laboratory and Oak Ridge National Laboratory. Technical Report

  • Tumuluru JS, Sokhansanji S, Hess R, Wright CT, Boradman RD (2011) A review on biomass torrefaction process and product properties for energy applications. Ind Biotechnol 7:384–401

    Google Scholar 

  • Uslu A, Faaij APC, Bergman PCA (2008) Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy 33:1206–1223

    Google Scholar 

  • Van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenerg 35:3748–3762

    Google Scholar 

  • Vassilev SV, Vassileva CG, Vassilev VS (2015) Advantages and disadvantages of composition and properties of biomass in comparison with coal: an overview. Fuel 158:330–350

    CAS  Google Scholar 

  • Waje SS, Thorat BN, Mujumdar AS (2006) An experimental study of the thermal performance of a screw conveyor dryer. Dry Technol 24:293–301

    CAS  Google Scholar 

  • Waje SS, Patel AK, Thorat BN, Mujumdar AS (2007) Study of residence time distribution in a pilot-Scale screw conveyor dryer. Dry Technol 25:249–259

    Google Scholar 

  • Wang MJ, Huang YF, Chiueh PT, Kuan WH, Lo SL (2012) Microwave-induced torrefaction of rice husk and sugarcane residues. Energy 37:177–184

    CAS  Google Scholar 

  • Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci 62:33–86

    Google Scholar 

  • Wang L, Barta-R E, Skreiberg O, Khalil R, Czegeny Z, Jakab E, Barta Z, Gronli M (2018) Effect of torrefaction on physiochemical characteristics and grindability of stem wood, stump and bark. Appl Energy 227:137–148

    CAS  Google Scholar 

  • Wild M, Deutmeyer M, Douglas Bradley D, Hector B, Hess JR, Nikolaisen L, Stelte W, Tumuluru JS, Lamers P, Prosukurina S, Vakkilainen E, Heinimo J (2016) Possible effects of torrefaction on biomass trade. IEA Bioenergy Task 40 Technical Report

  • Wilen C, Sipila K, Tuomi S, Hiltunen I, Lindfors C, Sipila E, Saarenpaa TL, Raiko M (2014) Wood torrefaction—market prospects and integration with the forest and energy industry. VTT Technology 163. Technical Report

  • Williams CL, Westover TL, Emerson RM, Tumuluru JS, Li C (2016) Sources of biomass feedstock variability and the potential impact on biofuels production. Bioenergy Res 9:1–14

    CAS  Google Scholar 

  • Nunes LJR, Matias JCDO, Catalao JPDS (2017) Torrefaction of biomass for energy applications: from fundamentals to industrial scale. Elsevier Inc, Amsterdam

    Google Scholar 

  • Yoshida T, Kamikawa D, Inoue M (2018) Small-scale utilization of torrefied woody biomass fuel in rural area. IOP Conf Ser Earth Environ Sci 209:012004

    Google Scholar 

  • Yue Y, Singh H, Singh B, Mani S (2017) Torrefaction of sorghum biomass to improve fuel properties. Bioresour Technol 232:372–379

    CAS  Google Scholar 

  • Zhang S, Hu B, Zhang L, Xiong Y (2016) Effects of torrefaction on yield and quality of pyrolysis char and its application on preparation of activated carbon. J Anal Appl Pyrolysis 119:217–223

    CAS  Google Scholar 

  • Zhang C, Ho SH, Chen WH, Fu Y, Chang JS, Bi X (2019) Oxidative torrefaction of biomass nutshells: evaluations of energy efficiency as well as biochar transportation and storage. Appl Energy 235:428–441

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Principal Scientific Advisor (PSA) Office, Govt. of India, through the Indo-Swedish collaborative project on biomass to biocoal (Grant No. Prn. SA/CRM/Bioendev/2018). The authors thank the Department of Biotechnology (DBT), Govt. of India, for their consistent financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sasikumar Elumalai or Joy K. Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negi, S., Jaswal, G., Dass, K. et al. Torrefaction: a sustainable method for transforming of agri-wastes to high energy density solids (biocoal). Rev Environ Sci Biotechnol 19, 463–488 (2020). https://doi.org/10.1007/s11157-020-09532-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-020-09532-2

Keywords

Navigation