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Abstract

Treatment with small-molecule inhibitors, guided by precision medicine has improved patient outcomes in multiple
cancer types. However, these compounds are often not effective against central nervous system (CNS) tumors. The
failure of precision medicine approaches for CNS tumors is frequently attributed to the inability of these
compounds to cross the blood-brain barrier (BBB), which impedes intratumoral target engagement. This is
complicated by the fact that information on CNS penetration in CNS-tumor patients is still very limited. Herein, we
evaluated cerebrospinal fluid (CSF) drug penetration, a well-established surrogate for CNS-penetration, in pediatric
brain tumor patients. We analyzed 7 different oral anti-cancer drugs and their metabolites by high performance
liquid chromatography mass spectrometry (HPLC-MS) in 42 CSF samples obtained via Ommaya reservoirs of 9
different patients. Moreover, we related the resulting data to commonly applied predictors of BBB-penetration
including ABCB1 substrate-character, physicochemical properties and in silico algorithms. First, the measured CSF
drug concentrations depicted good intra- and interpatient precision. Interestingly, ribociclib, vorinostat and imatinib
showed high (> 10 nM), regorafenib and dasatinib moderate (1-10 nM) penetrance. In contrast, panobinostat und
nintedanib were not detected. In addition, we identified active metabolites of imatinib and ribociclib. Comparison
to well-established BBB-penetrance predictors confirmed low molecular weight, high proportion of free-drug and
low ABCB1-mediated efflux as central factors. However, evaluation of diverse in silico algorithms showed poor
correlation within our dataset. In summary, our study proves the feasibility of measuring CSF concentration via
Ommaya reservoirs thus setting the ground for utilization of this method in future clinical trials. Moreover, we
demonstrate CNS presence of certain small-molecule inhibitors and even active metabolites in CSF of CNS-tumor
patients and provide a potential guidance for physicochemical and biological factors favoring CNS-penetration.
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Introduction

Brain tumors are the most frequent solid tumors in
childhood and the leading cause of cancer-related death
in this age group [1]. This fact can be attributed to sev-
eral factors including the particular aggressiveness of
certain tumor types, but also to the lack of effective
therapeutic strategies for relapsed patients [2, 3]. Con-
tinuous effort of both academia and pharmaceutical
companies has resulted in the identification of multiple
promising therapeutic targets as well as targeted inhibi-
tors for the treatment of brain tumors, which can be de-
tected by precision medicine approaches [4, 5]. As a
consequence effective targeted treatment approaches
such as BRAF- [6] and NTRK-inhibitors [7] are already
applied in the treatment of brain tumors. However, for
the majority of newly identified targets the implementa-
tion of preclinical findings into routine clinical applica-
tion based on successful clinical trials is limited [4].

This gap is widely attributed to the fact that pene-
trance of anti-cancer drugs to the central nervous system
(CNS) is limited by the blood-brain barrier (BBB) and
blood-CSF-barrier, which prevent potentially effective
drugs from engaging their targets within the tumor tis-
sue [8]. The BBB represents a unique and complex
structure at the capillaries within the CNS. It is com-
posed of various different cell types including endothelial
cells, pericytes and neural cells, each playing a distinct
role in the maintenance of the BBB. The central element
of this barrier are the endothelial cells, which are joined
together by tight junctions preventing most drugs from
passively diffusing into brain parenchyma [8, 9]. More-
over, endothelial cells express efflux pumps including
ABCBI1 and ABCG2 which actively export molecules to
the luminal surface and thus into the blood stream [8,
10, 11]. The integrity of the BBB is altered by pathogenic
events such as tumorigenesis [8, 12]. This is demon-
strated by penetration of compounds with low molecular
weight (MW) such as gadolinium, which is used as con-
trast agent in magnetic resonance imaging (MRI) exami-
nations, into the tissue of certain tumors,. However,
multiple studies suggest that the BBB is more or less in-
tact in the majority of brain tumors [9]. In addition, it
has long been known that treatment of childhood brain
tumors with cerebrospinal fluid (CSF) dissemination is
limited by the relative inaccessibility of CSF to systemic-
ally administered drugs not crossing the BBB. This cor-
roborates the notion that brain tumors are also
protected from anti-cancer drug exposure via compo-
nents of the BBB [13-16].

Based on the above-mentioned facts, it is indispensable
for an effective anti-brain-tumor treatment that the re-
spective remedies cross the BBB. Consequently, it is gen-
erally considered that preclinical as well as
pharmacokinetic assessment of novel small molecule

Page 2 of 13

inhibitors against brain tumors should include evalu-
ation of BBB penetration [4, 17]. As an example, cell ac-
cumulation and efflux competition assays enable
prediction whether a molecule is a substrate/inhibitor of
either ABCB1 or ABCG2, which will most likely limit
penetration into the brain tissue [18]. Apart from these
biological assessments, additional in silico tools have
been developed to predict CNS penetration based on
chemical structure, taking into account the physico-
chemical properties of the respective compounds. These
properties generally include lipophilicity, polar surface
area (PSA), the number of hydrogen-bond donors
(HBD) and acceptors (HBA), the number of rotatable
bonds, the charge at the given pH, and the MW [17, 19,
20]. Recently, we described collision cross sections
(CCS), which characterizes molecular volume and mo-
lecular branching as an additional reliable predictor for
CNS penetration [21].

Besides, plasma protein binding is a key parameter for
sufficient CNS penetration [22-24]. Protein binding of
drugs is generally related to albumin binding, but is in
fact more complex, as various other proteins such as gly-
coproteins, globulins, and lipoproteins may also play a
role [25, 26]. Since the free level of a drug (the fraction
which is not bound to matrix proteins) within a bio-
logical fluid may represent the amount of a substance
actually exhibiting pharmacologic effects, it is crucial to
distinguish the measured total drug levels from free drug
levels [4, 17, 27]. This is generally referred to as free
drug hypothesis. Recent studies have shown the import-
ance of the determination of free levels for CNS drugs
[4, 17, 25, 27, 28]. However, the analytical access to free
levels is generally associated with considerable expend-
iture on equipment [29, 30], especially in CSF, where the
total concentrations of drugs are significantly lower
compared to serum [25, 31]. As protein levels in CSF are
multiple orders of magnitude lower than in serum, pro-
tein binding is therefore usually neglected in CSF. CSF
and brain parenchyma are only separated by a thin per-
meable ependymal tissue layer and ventricular CSF very
well reflects the unbound drug amount. Consequently,
drug concentrations in CSF are generally considered as
valid surrogate for concentrations in the extracellular
CNS fluid [32-35].

In contrast to the identification of multiple tumor tar-
gets across pediatric brain tumors for precision
medicine-guided treatment [3], information on CNS
penetration of small molecule inhibitors in pediatric
CNS tumor patients is generally limited. To overcome
this lack of translational validation of BBB penetration,
in the present study we analyzed concentrations of seven
different orally administered small molecule inhibitors in
the CSF of pediatric brain tumor patients. In parallel, we
comprehensively compared established in vitro and in
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silico methods to predict CNS-penetration to our real-
world dataset in order to provide information on the val-
idity of the different prediction approaches.

Materials and methods

Patients, sample material and instrumental analysis
Samples were obtained from patients treated at the De-
partment of Pediatrics and Adolescent Medicine at the
General Hospital of Vienna and the study was approved
by the ethics committee of the Medical University of
Vienna. Patient characteristics (age, weight, sex) and
clinical data (tumor type, medication, radiotherapy,
localization, leptomeningeal disease, serum protein
levels, and CSF protein levels) were retrieved from pa-
tient charts. Clinical and serum parameters were mea-
sured within the same treatment cycle, CSF protein
levels at the same date and sample collection time point.
Samples were collected and snap frozen within routine
clinical sampling during intraventricular chemotherapy
administration.

We included samples of patients who received oral
small molecule inhibitors and concomitant intraventric-
ular therapy. The investigated substances included dasa-
tinib (1 patient, 3 samples), imatinib (3 patients, 12
samples), nintedanib (3 patients, 11 samples), panobino-
stat (1 patient, 2 samples), regorafenib (1 patient, 3 sam-
ples), ribociclib (1 patient, 3 samples), and vorinostat (2
patients, 9 samples). As backbone therapy the majority
of patients were treated according to the MEMMAT
protocol (NCT01356290) [36] with slight modifications
in some cases as indicated in Additional file 1: Table S1.
Dosing for pediatric patients was adjusted according to
the treatment protocols or previous reports as outlined
in Table 1. Interpatient differences in dosing per body
weight may result from individual drug tolerability and
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adapted dosing in each case, as well as the limitation
that for none of the investigated drugs oral solutions for
body weight adjusted dosing were available, making it
necessary to use drug formulations standardized for use
in adult patients. In two cases, samples of patients being
sequentially treated with different drugs were collected
as indicated in Additional file 1: Table S2. In general, we
aimed at including multiple samples over the whole
treatment period after reaching steady state (Additional
file 1: Table S1, range 1-31 weeks). The earliest time
point for sample analysis was defined as >5 times the
half-life if not otherwise indicated. Consequently, the
range of the earliest analyzed sample was from 3 days for
vorinostat (half-life 2h [37]) to 9 days for panobinostat
(half-life 31h [38]). In addition, one matched serum
sample for nintedanib (taken simultaneously to one CSF
sample to prove oral uptake) was available for analysis.
An overview of patient characteristics and samples is
provided in Table 1. Leptomeningeal disease was present
in all but one patient receiving nintedanib. CSF samples
(<0.5mL) of pediatric patients were collected using an
Ommaya reservoir, immediately snap frozen and after-
wards stored at — 80 °C prior to HPLC-MS analysis. Fig-
ure 1 gives general information on the workflow of CSF
sample collection, sample preparation and HPLC-MS ana-
lysis. Detailed information on the analysis method and the
working parameters of the HPLC-MS system(s) can be
found in the supplementary material available online
(Additional file 1: Figures S1 and S2 and Tables S3—4).

In silico assisted workflow for the identification of
metabolites in biological samples and prediction of BBB
penetration

Within the scope of this work, in silico based metabolite pre-
diction was performed using ADMET Predictor 9.0

Table 1 Overview of the pediatric tumor patients with detailed information on age, sex, radiotherapy, histology, localization,

metastasis and dosage

Drug Patient # Age Sex RTX  Tumor histology Localization Lepto-meningeal metastasis Dose mg/kg
Imatinib 1 183 m  focal Germ cell tumor pineal yes 851 BID

2 145 f focal Glioblastoma hemispheric yes 1.82 QD

3 75 m CSI Plexuscarcinoma hemispheric yes 16.67 QD
Dasatinib 1 191 m  focal Germ cell tumor pineal yes 1.72 BID
Nintedanib 4 194 m focal Ependymoma hemispheric yes 372 BID

5 135 m focal Ependymoma hemispheric no 323 BID

6 76 m focal Ependymoma posterior fossa yes 1035 QD
Panobinostat 4 203 m focal Ependymoma hemispheric yes 0.35 3 doses / week
Regorafenib 4 201 m  focal Ependymoma hemispheric yes 0.78 QD
Ribociclib 7 84 f focal Epithelioid sarcoma (metastasis)  non CNS primary yes 333 QD
Vorinostat 8 108 m CSI' Medulloblastoma posterior fossa yes 3.74 QD

9 127 f CSI Atypical teratoid rhabdoid tumor hemispheric yes 263 QD

RTX, radiotherapy; CSI, craniospinal irradiation; CNS, central nervous system
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Fig. 1 Schematic depiction of the study workflow. Cerebrospinal fluid (CSF) was collected at steady state from pediatric brain tumor patients
receiving oral small molecule inhibitors. CSF samples were analyzed using protein precipitation prior to HPLC-QqQ MS analysis

(Simulations Plus, Lancaster, Canada), Pallas 3.8 (Compu-
Drug International Inc., Bal Harbor, Florida), and Smartcyp
24.2 [39-43], revealing mostly phase I metabolites such as
oxidation, hydroxylation and hydrolysis products of the
tested substances. In a next step, theoretical molecular for-
mulas and related ion masses of the predicted metabolites
were transferred into a database and compared to measured
high-resolution Q-TOF mass spectra of biological samples.
For that purpose, MassHunter Qualitative Workflows
B.08.00 software (Agilent Technologies, Santa Clara, Califor-
nia) was used, as it enables (semi)-automated data process-
ing. Within this procedure, theoretical and measured exact

ion masses and abundances of isotopologues and molecule-
cation adducts were compared. The results of this compari-
son were then used to evaluate the validity of the identifica-
tion, which is expressed as a score. This quality measure is
important as it reduces the risk of false positives that are
likely in complex biological samples, especially when only
the accurate mass of a molecule is used.

In addition, ADMET Predictor 9.0 was utilized to pre-
dict brain exposition via its integrated algorithm that
binary (high or low) estimates BBB penetration and
quantitatively predicts the logarithm of the brain to
blood partition coefficient. As complementary approach
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we used the SwissADME predictor [44], which generates
a datasheet indicating whether the substance is likely to
cross the BBB barrier or not (yes or no).

Experiments targeting the ABCB1 substrate character of
the examined drugs

We first compared interaction of the investigated drugs
with ABCB1 by measuring fluorescent substrate drug ac-
cumulation in the parental KB-3-1 (a HeLa cell deriva-
tive) cell model and its isogenic ABCB1-overexpressing
KB-C1 cell model, as previously published [45]. As a
known fluorescent ABCB1 substrate calcein (derived
from non-fluorescent calcein AM) was used in the pres-
ence of investigated drugs (1 pM and 10 uM) using
fluorescence-activated cell sorting (FACS). The ABCBI1
inhibitor elacridar was used as positive control. As this
approach cannot distinguish competitive (by a substrate)
and non-competitive (by a pure inhibitor) ABCB1 inhib-
ition, KB-C1 cells were additionally exposed to the ex-
amined drugs with or without elacridar to test the actual
impact of ABCB1 activity on the concentration of drug
within the cells. In detail, cultivated cells were grown,
washed, lysed using 100 uL. methanol, centrifuged and
stored at — 80 C prior to analysis. After thawing, the
samples were homogenized, sonicated (15 min, 50 Hz,
0°C), homogenized again and centrifuged. Finally,
100 uL supernatant were collected and analyzed using
the developed HPLC-QqQ MS method (see Supplemen-
tary Material).

Calculation of free drug levels

Directly measuring free drug levels in CSF may be im-
possible due to low drug concentrations. Besides the ex-
perimental quantitation, if feasible, also the law of mass
action can be used to predict protein-unbound drug
levels [46]. Accordingly, CSF proteins and associated
drugs may be considered as center and ligand, forming a
complex. Consequently, we applied the corresponding
mathematical model to estimate free drug concentration.
The derivation is given in further detail in the supple-
mentary material.

Results

Feasibility of drug and metabolite detection in CSF
derived via Ommaya reservoirs

In a first step, we determined whether CSF samples from
Ommaya reservoirs analyzed with HPLC-QqQ MS or
HPLC-IMS-Q-TOF MS allow reliable detection of orally
administered drugs and the respective metabolites. For
that purpose, special focus was on the improvement of
an HPLC-QqQ MS multi-method to quantitate the re-
spective substances in CSF samples. The applied chro-
matographic gradient as well as the sensitivity of the MS
detection were optimized to allow a quantitation of all
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mentioned analytes within one run and over a broad
range of analyte concentration levels (800ngL ' to
250 ug L™ 1).

For each analyte, the recovery of the method was
tested, including sample preparation and HPLC-QqQ
MS analysis, and matrix-matched calibration was used
to compensate possible matrix-induced electrospray
ionization suppression/enhancement effects, thereby as-
suring the accuracy of the quantitation. Intra-day and
inter-day precision were determined to be <8.6% relative
standard deviation for all analytes on the basis of five
consecutive measurements of artificial samples contain-
ing 5pgL”" of analyte. Additionally, the developed
HPLC-QqQ MS method showed good linearity and an
R?>0.99 in a range between the lower limit of detection
and 250 ug L™ ", The lower limit of detection (LOD) of
the method was determined to be well below 1pugL™*
for all analytes, (see Supplementary Material). The deter-
mination of CCS was performed by the means of HPLC-
IMS-Q-TOF MS showing highly reproducible results
with intra-day precisions <0.1% relative standard devi-
ation (RSD) of 5 consecutive measurements and inter-
day precisions <0.2% RSD for all analytes, (see Supple-
mentary Material).

Quantitation of pharmaceuticals including free drug

levels and metabolites

In total, 42 CSF samples of 9 pediatric patients (3 fe-
male, 6 male) receiving 7 different drugs were analyzed
(Fig. 1). Detailed clinical data are outlined in Table 1.
Quantitation was successful in 26 CSF specimens, in-
cluding samples for dasatinib (mean 1.2 nM, range 0.5—
1.9 nM), imatinib (mean 77.7 nM, range 5.7-288.5 nM),
regorafenib (mean 6.7 nM, range 6.5-7.1 nM), ribociclib
(mean 44.1nM, range 42.6-452nM) and vorinostat
(mean 75.4 nM, range 6.4—197.2 nM). Imatinib and dasa-
tinib were detected in 75% (9/12) and 66% (2/3) respect-
ively. In contrast, nintedanib was not identified in any
patient sample. To prove oral drug uptake of nintedanib
we tested an available matched serum sample for ninte-
danib at one time point (patient #4), which clearly
proved gastrointestinal uptake (30 nM in serum). Nor-
malized concentrations (according to the dosage) were
similar to previously published data [47]. Similarly,
panobinostat was untraceable in CSF samples in agree-
ment with a previous study [48]. Intrapatient CSF con-
centrations of each substance were within the same
order of magnitude (Fig. 2a). Moreover, samples from
different individuals (imatinib, nintedanib, vorinostat)
showed no significant interpatient variability (Fig. 2a,
Additional file 1: Figures S4 and S5). Interestingly, ima-
tinib was only detected in one out of four samples in
one case (#3) (Additional file 1: Figure S4). This sample
was obtained at a much later time point than the
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negative ones. Moreover, we detected much higher CSF
protein levels at this time point, suggesting a change of
BBB integrity during the course of disease. Consequently,
we tested whether CSF protein levels routinely measured
at the same time point as drug penetration analyzes corre-
lated to imatinib concentrations and could indeed detect a
positive correlation (Additional file 1: Figure S6). In order
to exclude protein concentration as potential general con-
founding factor in our study, we checked for a potential
bias in our patient cohort. We could not find any

association between detection of substances in CSF and
protein levels (Additional file 1: Figure S7).

As a next step, free drug levels were calculated using
the law of mass action approach stated in the supple-
mentary, showing that protein binding may be neglected
for most of the investigated compounds (see Fig. 2b). In
case of dasatinib (mean 1 nM, range 0.4—1.6 nM), riboci-
clib (mean 43.5 nM, range 41.8—44.8 nM) and vorinostat
(mean 75.3 nM, range 6.4—197.1 nM), the unbound frac-
tion accounted for about 99% of the total drug amount
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measured. Furthermore, the level of unbound imatinib
(mean 65.8 nM, range 5.2-233.4nM) was calculated to
be nearly 88% of the total amount. Since regorafenib is
highly bound to proteins in serum (99.5% [49]), the
amount of protein-bound drug in CSF was not negli-
gible, as less than 60% of regorafenib are freely available
in CSF (mean 3.9 nM, range 3.8—4 nM).

Detection of drug metabolites in patient CSF

Using high performance liquid chromatography ion mo-
bility quadrupole time-of-flight mass spectrometry
(HPLC-IMS-Q-TOF MS) measurements in combination
with prediction software and in-house generated data-
bases, it was also possible to evaluate the metabolic fate
of the examined substances in a semi-automated way.
ADMET Predictor 9.0 and Pallas 3.8 were used to pre-
dict metabolites of parent drugs qualitatively, as both
software packages provide molecular structure output of
P450 metabolized substances. In contrast, Smartcyp
2.4.2 calculates the likelihood of a certain molecular
moiety to be metabolized by P450 cytochromes based on
characteristics within the molecule’s 2D structure. De-
tected metabolites and potential biological activity are
summarized in Table 2. Metabolites of imatinib
(demethylated imatinib (=CGP74588; active), hydroxyl-
ated imatinib (=AFN911; inactive), N-glucuronidated
imatinib and O-glucuronidated imatinib), ribociclib
(demethylated ribociclib (=LEQS803; active) and hy-
droxylated LEQ803), and vorinostat (succinanilic acid
and glucuronidated vorinostat) were identified. In case
of vorinostat, it was even possible to quantitate its
pharmacologically inactive main metabolite, succinani-
lic acid [50]. In this context, Fig. 3 shows the concen-
trations of the parent drug and the metabolite in CSF
samples.

Comparison to established predictors of blood-brain
barrier penetration

As preclinical prediction of BBB penetration remains es-
sential for development of improved anti-cancer therap-
ies for brain tumor patients, we sought to validate

Table 2 Overview of the detected metabolites in cerebrospinal fluid
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commonly applied methods for BBB penetrance predic-
tion with our dataset. Figure 4 provides a graphical over-
view of this comparison. Nintedanib as the largest
molecule (MW 539.6 gmol™ ') was not detected in CSF,
in line with the finding that larger molecules are less fre-
quently found to cross the BBB [17]. Conversely, panobi-
nostat — one of the smallest molecules in our panel —
was also not detected. As already mentioned, free drug
levels are the essential parameter in order to assess tar-
get engagement [4]. Within our drug panel, we could
show that high protein binding was the essential prop-
erty lowering free drug levels in case of regorafenib,
which we show to cross the BBB, but showed lower free
drug levels. With respect to chemical properties, all mol-
ecules showed a favorable profile according to lipophilic-
ity (S+logP), another common predictor for BBB-
penetration [17, 19]. Consequently, differences in lipo-
philicity could not explain the observed differences. In
contrast, the amount of hydrogen bond donors showed
unfavorable profiles for all drugs also making it unsuit-
able for BBB penetrance prediction in our panel. The
utility of total polar surface area (TPSA) appeared to be
mixed as smaller molecules indeed did cross the BBB,
however, with the exception of panobinostat. The num-
ber of rotatable bonds showed an unfavorable profile for
regorafenib and vorinostat which where both found to
cross the BBB. We additionally evaluated ABCBI1-
inhibition as well as intracellular drug accumulation
upon ABCBI-inhibition (Additional file 1: Figure S8).
Interestingly, ABCB1-inhibition did not necessarily cor-
relate with ABCB1-substrate testing. Consequently, we
only used the fold-change of drug accumulation upon
ABCBIl-inhibition as parameter for ABCBI-affinity.
ABCBI substrate evaluation was most favorable for re-
gorafenib and vorinostat and intermediate for ribociclib,
imatinib, and nintedanib. Dasatinib and panobinostat, in
contrast, were highly transported by ABCB1 potentially
explaining the observed poor penetration of panobino-
stat. Furthermore, the CCS as novel descriptor of mo-
lecular branching and volume was included based on
HPLC-IMS-Q-TOF MS analyses. The finding that

Parent Drug Metabolite Structure Active / Inactive
imatinib demethylated imatinib = CGP74588 known active

imatinib hydroxylated imatinib = AFN911 known unknown
imatinib N-glucuronidated imatinib unknown unknown
imatinib O-glucuronidated imatinib known unknown
ribociclib demethylated ribociclib = LEQ803 known active

ribociclib hydroxylated LEQ803 unknown unknown
vorinostat succinanilic acid known inactive
vorinostat glucuronidated vorinostat known inactive
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imatinib and regorafenib show a significantly lower
CCS value than would be expected from the MW,
and thus are much more compact molecules (see Add-
itional file 1: Figure S3), supported their permeation
of the blood-CSF barrier and their pronounced pres-
ence in the CSF.

Last, we aimed at the evaluation of commonly ap-
plied in silico methods for the prediction of BBB
penetration. These algorithms integrate multiple of

the aforementioned parameters and are therefore gen-
erally considered as more advanced and reliable tools
for evaluation of BBB penetrance [44, 51]. A compari-
son to our patient-derived dataset, however, showed
mixed results. ADMET Predictor correctly predicted
BBB penetration properties for imatinib, nintedanib
and regorafenib and LogBB of vorinostat, but failed
for the other drugs. The second evaluated algorithm,
SwissADME, only predicted panobinostat to penetrate
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intermediate; blue, favorable for BBB penetration) results, summarizing all examined parameters including literature data (L), in silico results (IS)
and the quantification results of active ingredients in CSF samples and ABCB1 experiments (E). Detailed color coding: oral dose (red, < 1 mg/kg;
yellow, 1-5 mg/kg; blue > 5 mg/kg); CSF concentration (red, not detected; yellow, < 10 nM; blue, > 10 nM); Molecular weight (red, > 500 g/mol;
yellow, 450-500 g/mol; blue, < 450 g/mol; Protein binding (red, > 99%; yellow, 90-99%; blue, < 90%); S + logP (red, < 1,5; blue, > 1,5); Hydrogen
bond donors (red, > 5; blue < 5); total polar surface area (red, >90A/A2; blue<90A/A2). Rotatable bonds (red, > 8; blue, < 8); collision cross section
(red, > 250 A; yellow, 200-250 A blue, < 200 A); ABCB1-substrate (red, > 2 fold-control; yellow, 1-2 fold-control; blue < 1 fold-control); LogBB (=
predicted logarithm of the brain/blood concentrations using ADMET predictor) (red < 0; blue > 0); BBB permeation (predicted likelihood of BBB
permeation using ADMET predictor, red, low; blue, high) and SwissADME (red, no penetration, blue, penetration). A detailed description of color-

coding is provided also provided in supplementary Additional file 1: Table S5.

the BBB. However, we did not detect panobinostat,
but other compounds in the CSF.

Discussion

The integration of molecular tumor profiling to detect
oncogenic dependencies and the availability of multiple
targeted compounds for the respective alterations has
widely improved anti-cancer treatment. However, low
CNS penetration of small molecule inhibitors caused by
the BBB poses a major obstacle for the clinical use of
improved and innovative therapies against brain tumors.
Although various in vitro, in silico and in vivo models
have been developed to predict BBB drug penetration in
the past decades, the true nature of the BBB in CNS tu-
mors and the actual penetrance of drugs into the malig-
nant tissue is still difficult to assess. Consequently, it
frequently remains difficult to clarify whether the failure
of promising in vitro approaches in clinical trials is owed
to a poor anti-tumor effect or limited CNS penetration.
As the blood-CSF barrier is composed of similar struc-
tures as the BBB and CSF is directly connected to the
CNS tissue, measuring CSF levels is widely considered

as feasible way to indicate BBB penetration [52]. How-
ever, CSF sampling in the majority of studies is mostly
restricted to inter-operative collection or lumbar punc-
ture, both procedures with certain risks and inaccur-
acies. We have already shown that treatment and CSF
collection via Ommaya-reservoirs is a safe procedure in
pediatric patients with brain tumors [53]. In this study,
we developed a reliable method to detect and quantify
traceable amounts of oral anti-cancer compounds in
pediatric patients receiving intrathecal therapy. Being
aware of the limitation that almost no corresponding
serum samples and no specific time points were avail-
able for our retrospective study, we first evaluated CSF
levels across different time points at steady state and did
not detect any significant differences. By these means,
we show for the first time that CSF sampling from
Ommaya reservoirs represents a feasible, reproducible
and reliable method for CNS penetrance ascertainment.
It has to be noted, that most of the studied cases exhib-
ited leptomeningeal disease, which also might influence
BBB penetration resulting in a less effective blood-CSF
barrier. This is also suggested by our finding that CSF
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penetrance might change during the course of disease.
In the single case without leptomeningeal disease within
our cohort, nintedanib could not be detected in the CSF
(case #5). Nintedanib was, however, also not measurable
in the two other cases (#4 and #6), suggesting that pres-
ence of leptomeningeal disease might be of lower signifi-
cance as compared to other parameters, at least within
our small study cohort. Nevertheless, drug concentra-
tions in CSF may be of importance in particular for the
treatment of leptomeningeal disease. Moreover, the
study collective comprises different tumor entities which
also might bias the comparison of the investigated com-
pounds. Still, we did not observe differences with respect
to tumor entities within our limited dataset. It is also
worth noting that all patients received concomitant sys-
temic and intrathecal therapy potentially influencing the
permeability of the blood-CSF barrier. As indicated in
Additional file 1: Table S1 all but one case were treated
according to a modified MEMMAT protocol [36].
Therefore, our cohort did not exhibit profound differ-
ences with respect to concomitant systemic treatment.
With respect to intrathecal therapy, the observed inter-
patient differences could also not be explained by differ-
ent concomitant medication. For imatinib, all patients
received only VP-16 and in case of vorinostat one pa-
tient received VP-16, cytarabine, and topotecan, whereas
the other case was treated with VP-16, liposomal cytara-
bine, and methotrexate (Additional file 1: Table S1).
However, vorinostat levels were slightly lower in the lat-
ter case (Fig. 2, case #9 cyan) although one would rather
expect liposomal cytarabine or methotrexate to alter
permeability of the blood-CSF barrier. We further in-
cluded testing of cases who sequentially received more
than one of the investigated compounds (Additional file
1: Table S2, patients #1 and #4). Interestingly, of the
three drugs investigated in case #4, only regorafenib
could be detected, whereas nintedanib and panobinostat
were not measurable. Notably, regorafenib was the sec-
ond drug within this sequential treatment, again corrob-
orating our notion that prior treatment and
interindividual differences were only a minor confounder
in our study.

In detail, we could detect significant levels of dasati-
nib, imatinib, regorafenib, ribociclib, and vorinostat in
CSF of brain tumor patients. In contrast, nintedanib
and panobinostat were not detected albeit only one
case was available for panobinostat sampling. With
respect to panobinostat, it is also worth noting that
due to the age of the patient (19 years, patient #4)
the treatment dosing was chosen according to the
regimen approved for hematological malignancies in
adults (20mg, 3 doses / week). Consequently, the
chosen dose was lower than in recent studies within
the pediatric population [54]. Corroborating our
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results panobinostat levels were also below the detec-
tion limit in a recently published study in children
using higher panobinostat doses [54]. Comparing our
quantitation results to serum-levels from former stud-
ies, CSF-levels of dasatinib [55], imatinib [56], rego-
rafenib [57], ribociclib [58] and vorinostat [59]
showed significant differences (multiple orders of
magnitude). The approach of evaluating CNS penetra-
tion via CSF sampling has been questioned [60] and
studies directly measuring drug penetrance into tumor
tissue are generally favored. In this context it is worth
noting that overall comparison of our data to preclin-
ical animal studies for dasatinib [61] and regorafenib
[62] as well as a clinical trials with ribociclib [63—-65]
in glioblastoma patients demonstrated comparable
results.

The CSF-levels of dasatinib were in the low nM
range which is well in agreement with CSF levels de-
scribed for this tyrosine kinase inhibitor in acute
lymphoblastic leukemia (ALL) patients [66]. These re-
sults are also in agreement with preclinical studies on
brain and tumor penetration of dasatinib in mice [61,
62], which also described the influence of ABCB1 and
ABCG2. With respect to biological activity, the de-
tected dasatinib levels were approximately 10-fold
below the ICs, determined for high-grade glioma [67].
The sample in our study, in contrast, was derived
from a patient being treated for a recurrent CNS
germ cell tumor, which has been suggested as prom-
ising therapeutic approach [68] but preclinical in-vitro
data determining the ICsy for germ cell tumors are
still lacking.

Similarly, levels of imatinib were in the same magni-
tude as described for an ALL patient [69]. In contrast to
dasatinib, the detected imatinib levels were in the range
of the ICs, for certain high-grade glioma models [67].
Interestingly, one case in our cohort was treated with
imatinib for a high-grade glioma (#2), but in vitro data is
lacking for the other two entities plexus carcinoma and
CNS germ cell tumor.

Regorafenib, another kinase inhibitor with promising
clinical activity against brain tumors [70], also reached
detectable levels in CSF of one patient. Moreover, rego-
rafenib CSF levels were in the same magnitude as de-
tected in brain tissue within preclinical animal studies
[60]. However, free drug levels were markedly reduced
due to its high protein binding properties and were not
in the range of the ICs, previously determined for other
pediatric tumor models [71].

Ribociclib, a CDK4/6 inhibitor was also detected at clin-
ically relevant levels in CSF. The magnitude was compar-
able, albeit lower compared to recently published studies
[64, 65] investigating ribociclib levels in CSF and tumor
tissue of adult glioblastoma patients. The respective
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studies reported levels from 374 to 630 nM compared to
43 nM detected in our patient. It is worth noting, that the
investigated dose in these studies was 900 mg per day in
adults (approximately 11 mg/kg), which is distinctly higher
than in our pediatric patient treated with 3.33 mg/kg daily.
Furthermore, our observation was in line with results from
preclinical mouse studies [63]. In general, ribociclib CNS
levels were in the therapeutic range determined in vitro
for neuroblastoma cell lines [64] but data on brain tumors
or epithelioid sarcomas as in our cohort are still lacking.

We further show that the histone deacetylase in-
hibitor vorinostat penetrates the CSF. The concentra-
tion, however, was about 10-fold lower as compared
to ICso values in preclinical models of medulloblas-
toma [72].

Using in silico based metabolite prediction ap-
proaches and high-resolution mass spectrometry, the
metabolic fate of the target analytes in CSF was mon-
itored for the first time. Although predominantly
phase I metabolites such as oxidation, hydroxylation
and hydrolysis products were detected, their existence
in CSF is an exciting finding, since especially phase
one metabolites, which we detected for imatinib and
ribociclib, might still be pharmacologically active [73,
74]. Additionally, the main metabolite of vorinostat,
succinanilic acid, was found in CSF samples at high
concentrations. In conclusion, we show that the com-
bination of in silico based metabolite prediction ap-
proaches and high-resolution mass spectrometry is a
highly versatile tool in drug metabolite analysis, which
may also have a therapeutic effect.

Last, we sought to evaluate the obtained patient
data with respect to physicochemical properties of the
respective small molecules and commonly applied
predictors of BBB penetration comprehensively. We
confirm that low MW, low protein binding and low
ABCBI1-affinity as in case of vorinostat and ribociclib
are favorable predictors of BBB-penetration. It has to
be noted that unfavorable characteristics for only one
of the parameters may already lead to significantly
lower CSF concentrations as in case of panobinostat,
which exhibits low MW and moderate protein bind-
ing but high ABCBIl-affinity. Moreover, we evaluated
the in silico tools SwissADME and ADMET Predictor
which integrate multiple physicochemical properties
to predict BBB penetration of molecules. Interestingly,
there was no or only a poor correlation to the find-
ings in our data. This highlights the overall complex-
ity of prediction BBB penetration as multiple
physicochemical and biological factors determine the
permeability of the BBB barrier. It might also reflect
that ABCB1-affinity is difficult to predict in silico and
that preclinical evaluation should be based on a com-
bination of physicochemical and biological tests.
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Taken together, our comparative analyzes emphasize
the necessity to evaluate the BBB barrier penetration
in clinical studies.

Conclusions

In summary, we present CSF-sampling via Ommaya-
reservoirs as a feasible, reliable and safe strategy to investi-
gate CSF-concentrations of small molecule inhibitors in
brain tumor patients. This method could open new oppor-
tunities to evaluate BBB penetration in patients with brain
tumors in future clinical trials. Finally, our correlations of
patient-derived data to established predictors of CNS-
penetration emphasize the importance of a comprehensive
approach for preclinical assessments, taking into account
both biological and physicochemical properties.
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