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Abstract
Particle tracking is a computationally advantageous and fast scheme to determine travel times and trajectories in subsurface
hydrology. Accurate particle tracking requires element-wise mass-conservative, conforming velocity fields. This condition
is not fulfilled by the standard linear Galerkin finite element method (FEM). We present a projection, which maps a
non-conforming, element-wise given velocity field, computed on triangles and tetrahedra, onto a conforming velocity
field in lowest-order Raviart-Thomas-Nédélec (RT N 0) space, which meets the requirements of accurate particle tracking.
The projection is based on minimizing the difference in the hydraulic gradients at the element centroids between the
standard FEM solution and the hydraulic gradients consistent with the RT N 0 velocity field imposing element-wise mass
conservation. Using the conforming velocity field in RT N 0 space on triangles and tetrahedra, we present semi-analytical
particle tracking methods for divergent and non-divergent flow.We compare the results with those obtained by a cell-centered
finite volume method defined for the same elements, and a test case considering hydraulic anisotropy to an analytical
solution. The velocity fields and associated particle trajectories based on the projection of the standard FEM solution are
comparable to those resulting from the finite volume method, but the projected fields are smoother within zones of piecewise
uniform hydraulic conductivity. While theRT N 0-projected standard FEM solution is thus more accurate, the computational
costs of the cell-centered finite volume approach are considerably smaller.

Keywords P1 Galerkin finite element method · Lowest-order Raviart-Thomas-Nédélec space · Local mass conservation ·
Simplices · Groundwater flow

Mathematics subject classification (2010) 76M10 · 76M12 · 76R05 · 76S05

1 Introduction

Groundwater flow is commonly simulated by substituting
Darcy’s law into the continuity equation, resulting in an
elliptic (steady-state problem) or parabolic (transient prob-
lem), second-order differential equation of the hydraulic
head [4, 29, 32]. Conservative solute transport is tradition-
ally described by the advection-dispersion equation (ADE)
employing the velocity field originating from the solution
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Hölderlinstr. 12, 72074 Tübingen, Germany

of the flow problem [4, 25]. The ADE may numerically be
solved by Eulerian methods, such as finite volume methods
(FVM), continuous Galerkin methods, such as the standard
Galerkin finite element method (P1 Galerkin FEM) [4, 25],
or discontinuous Galerkin (DG) methods [32, 33], which are
all computationally expensive and prone to numerical diffu-
sion [10, 32]. In advection-dominated transport, Lagrangian
methods based on random walk particle tracking are an
attractive alternative and have repeatedly been used to com-
pute travel times in engineering practice and to analyze the
impact of the spatial hydraulic conductivity distribution on
solute spreading [5, 26, 44], among others. Particle track-
ing has also been used to construct streamlines, on which
efficient one-dimensional Eulerian transport schemes using
a travel time discretization can be applied [2, 13, 19, 28].

Pollock [34] presented a particle tracking method for
cell-centered finite volumes on rectangular quadrilaterals
and cuboids, which has been extended to deformed
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quadrilaterals and deformed hexahedra, split into tetrahedra,
for non-divergent flow by Cordes and Kinzelbach [11].
Pollock’s [34] method has been classified as semi-analytical
because it uses an analytical solution for particle trajectories
based on a numerical approximation of the velocity field.
It computes the exit point from a particle’s entry point
on an element boundary by evaluating the fluxes over the
volume boundaries, assuming that the normal component
of the velocity vector on each volume-face is constant
and each velocity component varies linearly in its own
direction within the cell [29]. This assumption about the
velocity field corresponds to the lowest-order admissible
velocity approximation [23, 29]. Such a velocity field is in
the lowest-order Raviart-Thomas-Nédélec (RT N 0) space,
which is also used for the velocity approximation of lowest-
order mixed (hybrid) finite element methods [3, 29–31, 37,
38]. Higher-order schemes are possible but seldom used in
the simulation of groundwater flow and solute transport [7,
8, 23, 29].

By construction, finite volume methods lead to con-
forming velocity fields. Such a field is characterized by
a continuous normal component of the velocity field on
element boundaries and local mass conservation in each ele-
ment. While continuous Galerkin finite element methods
approximate the unknown head field as continuous func-
tions, they do not yield a conforming velocity field [32,
37]. If a particle is tracked on the basis of an element-wise
approximated velocity field originating from P1 Galerkin
FEM, the non-conforming property of the velocity field
leads to severe numerical artifacts, possibly including par-
ticle stagnation because the approximated normal velocity
component points into opposite directions at the two sites of
an element interface [37]. Therefore, the consistent appli-
cation of particle tracking methods to standard FEM flow
fields remains a problem.

Several authors have emphasized that the P1 Galerkin
FEM is locally mass conservative if appropriate grids
and control volumes, which differ from the elements, or
nodal fluxes are considered [15, 21, 37]. Especially, locally
mass-conservative sub-control volumes can be assigned
to the element-wise approximation of the Darcy velocity
field obtained by P1 Galerkin FEM for some sub-control-
volumes on triangular elements carrying heterogeneous
material coefficients [37]. According to the latter authors,
such regions can be obtained by Voronoi tessellation or by
patches around the nodes bounded by direct connections
between the midpoints of edges of triangular elements
sharing the respective node. They call these control volumes
“internal A-cells.” A delineation of control volumes in
analogy to vertex-centered finite volumes for triangular
grids was proposed by Durlofsky [15]. In three dimensions,
however, comparable control volumes are not definable
with similar ease if hydraulic conductivity varies in space

[36, 37]. Also, a conforming velocity interpolation within
polygonal control volumes with a large number of faces,
which may result from the reconstruction of Durlofsky
[15] or from vertex-centered Finite Volumes, can be non-
trivial. That is, while local mass conservation is a necessary
condition for reliable particle tracking, it may not be
sufficient. In any case, considering the elements of a P1

Galerkin FEM grid itself, fluid mass is not conserved, and
the normal component of the velocity is discontinuous,
experiencing a jump on element interfaces, while the
primary unknown is continuous [37, 41].

Cordes and Kinzelbach [11] introduced a scheme to
reconstruct a conforming velocity field on linear triangular
and bilinear quadrilateral Galerkin finite elements. It is
based on the mass conservation property of the internal
A-cells [11, 37]. Considering the total fluxes on the
boundaries of the internal A-cell, a system of equations can
be set up for the total fluxes on all its inner boundaries
[11]. This system has N equations with N variables, in
which N is the number of inner edges of the internal A-
cell. However, the circular structure causes the system of
equations to be underdetermined. For regularization, Cordes
and Kinzelbach [11] set the constraint that the rotation of
the hydraulic gradient within the elements must be zero. A
direct extension of the method of Cordes and Kinzelbach
[11] to three dimensions is impossible, as there are 1.5 times
more unknowns than equations related to internal nodes for
tetrahedra, resulting in a highly underdetermined system of
equations.

Larson and Niklasson [27] presented an approach to con-
struct conforming velocity fields by postprocessing of P1

Galerkin FEM solutions that was originally defined for the
case of a constant isotropic hydraulic conductivity. Sun and
Wheeler [43] introduced a similar, element-wise approach
of flux correction to obtain local mass conservation and
continuous normal components of fluxes on element bound-
aries for non-conforming velocity approximations, origi-
nating from continuous Galerkin finite elements [35, 41].
The approach of Larson and Niklasson [27] and Sun and
Wheeler [43] is based on a discontinuous enrichment of the
velocity field by applying a piecewise constant correction
term which is added to the non-conservative, element-wise
velocity approximation of the FEM on the element inter-
faces[33]. An adapted formulation applied to the Richards
equation for variably saturated flow is given by Kees et al.
[24] and further employed and investigated by [41].

An advantage of the flux correction proposed by Larson
and Niklasson [27] and Sun and Wheeler [43] is that it
can be formulated as a local variant, which is parallelizable
[27, 41]. However, numerical experiments conducted by
Schiavazzi [40] indicate that numerical errors are non-
negligible for this scheme, if hydraulic conductivity strongly
varies in space even in the isotropic case. Schiavazzi
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[40] shows that the absolute values of element-wise
constant Darcy velocities can be orders of magnitude
difference in the postprocessed solution compared to
the initial estimate of a velocity space based on a P1

Galerkin FEM. Considering the particle tracks presented
by Schiavazzi [40], it appears that also some artificial
rotation is numerically introduced in the postprocessed
solution. This might also be the reason why neither most
of the particle tracks evaluated by Schiavazzi [40] cross
significantly zones of low permeability nor concentrations
evaluated by Scudeler et al. [41] enter zones of lower
permeability to a significant extent, although Schiavazzi
[40] reports that the absolute magnitude of the element-
wise postprocessed velocities can be orders of magnitude
higher than those estimated on the basis of a P1 Galerkin
FEM. Furthermore, it has to be noted that, depending on the
actual computational scheme, numerically induced rotation
is known to become a problem in the computation of the
RT N 0 mixed (hybrid) finite element method [20].

Recently Odsæter et al. [33] presented an adapted
scheme, in which the residual between an element-
wise given non-conforming velocity approximation and a
conforming velocity solution is minimized with respect to
a weighted L2-norm imposing local mass conservation.
Odsæter et al. [33] introduce weighting factors, which are
chosen such that the normal component of the gradient
rather than the Darcy velocity is considered on element
boundaries, leading to very good results that apparently
avoid the problems of the flux corrections applied and
evaluated by Schiavazzi [40] and Scudeler et al. [41].

In this paper, we present a novel formulation of an
RT N 0 projection employing concepts similar to those
described by Odsæter et al. [33]. Our RT N 0 projector
maps a non-conforming, element-wise approximated Darcy
velocity field of an FEM solution, representing the non-
mass-conservative flow, onto a conforming velocity field
in lowest-order Raviart-Thomas-Nédélec space. The target
velocity space ensures continuity of the normal velocity
component on element boundaries, zero divergence of
the element-wise velocity field for non-divergent flow,
and element-wise mass conservation. Implemented as a
postprocessing code, the RT N 0 projector is formulated
such that it can be coupled to any FEM code, but it comes
at the costs that a new global system of equations has to
be solved, which is of a size comparable to that of mixed
finite elements. The key of the approach is that we minimize
differences in the hydraulic gradient at the element centroids
between the P1 Galerkin FEM solution of hydraulic heads
and the targetRT N 0 velocity field, subject to the constraint
that the RT N 0 velocity field is element-wise mass
conservative. We consider the residuals of the hydraulic
gradient rather than that of the Darcy velocity because
the hydraulic gradient varies much less than the Darcy

velocity if the hydraulic conductivity field is heterogeneous.
Moreover, such a minimization procedure should guarantee
that the postprocessed velocity field has the same order
of convergence as the original velocity approximation. In
this regard, our postprocessing scheme is equivalent to the
projection presented by Odsæter et al. [33], who give a
thorough analysis of the convergence behavior applicable
also to our scheme. We found that a projection, in which
residuals of the Darcy velocity were minimized, comparable
to flux corrections formerly applied by Schiavazzi [40] and
Scudeler et al. [41], introduced severe numerical artifacts
because meeting the Darcy velocities in low-conductivity
regions was less important in the optimization procedure
than meeting those in high-conductivity regions, resulting in
velocities of too high magnitude, and erroneous rotation and
even reversal of the flow direction in zones of low hydraulic
conductivity. OurRT N 0 projector is reasonably applicable
to any finite element method yielding non-conforming
element-wise velocity fields. It can, in principle, be applied
to various element types also in higher dimensions. The
theory is given for simplices in two and three spatial
dimensions, i.e., triangles and tetrahedra. For demonstration
purposes, we evaluate the numerical results on triangular
and tetrahedral grids in detail. For comparison purposes, we
define a cell-centered finite volume method on simplicial
centroids against which the results of the RT N 0 projector
are evaluated. On this basis, we present semi-analytical
particle tracking methods for divergent and non-divergent
flow, similar to those of Pollock [34].

2Methodology

2.1 Governing equation

We consider a bounded model domain � ⊂ R
d with

dimensionality d ∈ {2, 3}. The domain boundary, ∂� = �,
is subdivided into a Dirichlet boundary, �D , and a Neumann
boundary, �N , such that ∂� = �D ∪�N and �D ∩�N = ∅.

We consider the elliptic steady-state groundwater flow
equation:

−∇ · (K∇h) = f in �, (1)

subject to the following boundary conditions:

h = ĥD on �D,

n · (−K∇h) = n · qN on �N,
(2)

in which K ∈ R
d×d [LT −1] is the symmetric, positive-

definite hydraulic conductivity tensor, h ∈ R [L] is the
hydraulic head, f ∈ R [LdL−dT −1] is a volumetric
source/sink term per unit volume, qN is a specified
volumetric flux density, and n is the unit normal vector
pointing outwards. If the material properties are locally



Comput Geosci

isotropic, the hydraulic conductivity tensor reduces to K =
kI, where k ∈ R [LT −1] is the directional independent
scalar hydraulic conductivity and I is the identity matrix
of order d . Furthermore, the specific discharge, or Darcy
velocity, q ∈ R

d [LT −1], is defined by Darcy’s law:
q = −K∇h, (3)

and related to the average linear velocity, v ∈ R
d [LT −1],

via q = �v, in which� ∈ ]0, 1[ [−] is the porosity assumed
constant in the present analysis, even though the extension
to element-wise constant porosities is straightforward.

2.2 Numerical discretization

2.2.1 Spatial discretization of the domain

Let T be a topological triangulation of� into triangles (d =
2), or tetrahedra (d = 3). Furthermore, we restrict ourselves
to conforming grids such that boundaries of neighboring
elements perfectly fit. Elements within the triangulation are
denoted Ei ∈ T , for i = 1, 2, ..., N , in which N is the
total number of elements. EI is the set of inner elements,
ED is the set of elements sharing a Dirichlet boundary, and
EN is the set of elements sharing a Neumann boundary.
The set of nodes of T is denoted N , while NE is the set
of nodes of the element E. The set of edges (d = 2)
or faces (d = 3) is denoted F , for m = 1, 2, ..., M ,
in which M is the total number of faces. For the sake
of simplicity, we will only use the term “face” in the
following, meaning either edges (d = 2) or faces (d = 3).
Furthermore, let FI be the set of all interior faces; FD is
the set of faces on the Dirichlet boundary, �D; and FN

is the set of faces on the Neumann boundary, �N , while
FB = FD ∪ FN is the set of all faces on the boundary
∂� of the domain. The Neumann boundary is split in a no-
flow boundary, �N,0; an inflow boundary, �N,+; and an
outflow boundary, �N,−, comprising associated face sets
such that all boundary segments are pairwise disjoint, and
�N = �N,0 ∪�N,+ ∪�N,− holds. Note that all sets of faces
are pairwise disjoint such that any face F is an element of
only one of the sets, FI , FD , or FN . Furthermore, let FE

be the set of faces of the element E, such that F ∈ FEi
is

an individual face of the element Ei . On every face, there
is a unit normal vector, νF , following a sign convention.
Furthermore, on every face. there is an outer unit normal
vector, nE , pointing out of E.

2.2.2 Further notation

We denote measures by | · |, in particular |E| denotes the
area (d = 2), or the volume (d = 3) of an element, E ∈ T ,
and |F | denotes the length (d = 2), or the area (d = 3) of a
face, F ∈ F . The Euclidean norm of a vector is denoted by

‖ · ‖2, while 〈·,·〉 is the standard inner product. Furthermore,
[·]F denotes the jump of a function on a face.

2.2.3 Piecewise polynomial spaces

For clarification purposes, we briefly introduce some rele-
vant, fundamental function spaces skipping their subspaces
refined by boundary conditions [3, 32, 33]. In the following
sections, we will only refer to the respective function spaces,
if we believe this is absolutely necessary for proper under-
standing of computations. Let P1 be the space of continuous
piecewise linear polynomials such that

P1(T ) = {u ∈ C(�) : u|E ∈ Qd
1 , ∀E ∈ T }, (4)

where C is the space of continuous functions andQd
1 denotes

the tensor product of linear polynomial spaces in each
spatial direction [33]. The space P1(T ) is defined such
that it contains the approximated solution of the hydraulic
head h computed by the standard Galerkin FEM. Therefore,
it follows that [h]F = (h|Ei

)|F − (h|Ej
)|F = 0 for

the hydraulic head on a face, F = Ei ∩ Ej , shared by
two neighboring elements Ei and Ej , while [q · νF ]F =
(q|Ei

)|F · νF − (q|Ej
)|F · νF can be non-zero in a P1

Galerkin solution. That is, the hydraulic head is conforming
and continuous on elemental boundaries, while the normal
component of the element-wise evaluated specific discharge
can be discontinuous, experiencing a jump on element
boundaries, leading to non-conforming specific discharges.

In lowest-order Raviart-Thomas-Nédélec space for sim-
plices [3, 30, 31, 38, 39], a vector-valued function in R

d , in
our case the specific discharge, is considered element-wise
such that

RT N 0 = {u ∈ L2(�,Rd) : ∀E ∈ T ∃a ∈ R
d ∃b ∈ R∀x

∈ E, u(x) = a + bx, and

∀F ∈ FI , [u · νF ]F = 0}, (5)

in which L2(�,Rd) is the usual Lebesgue space of square-
integrable functions in R

d [3]. Considering the definition
of the RT N 0 space in equation 5, it is obvious that not
only the normal component of a vector-valued function is
continuous on the faces, but also its divergence is element-
wise constant and linear dependent on b, i.e., the divergence
is element-wise zero for non-divergent flow. In this study,
we intend to project an element-wise approximated specific
discharge field originating in our application from a P1

Galerkin FEM onto a conforming velocity field in RT N 0

space. This can be expressed by the following map:

πRT N0 : L2(�,Rd) → RT N 0. (6)
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2.2.4P1 Galerkin FEM

The standard Galerkin FEM is a common numerical method
to solve the groundwater flow equation (Eq. 1 [4, 22, 25]).
P1 Galerkin FEM yields a continuous approximation of
the hydraulic head field and can easily handle unstructured
grids and anisotropy. Considering the space P1(T ), the
linear shape functions χi corresponding to the nodes i can
be defined element wise such that they sum up to unity at
all points in all elements:
∑

i∈NE

χi(x) = 1 ∀x ∈ E, (7)

in which χi are the shape functions according to the space
P1(T ) equaling 1 on node i and 0 on any other node
j �= i. We replace the hydraulic head field h(x) and the
source/sink term field f (x) by the approximate, piecewise
linear functions ĥ and f̂ , respectively, such that

h ≈ ĥ =
∑

i∈N
hiχi, f ≈ f̂ =

∑

i∈N
fiχi, (8)

in which hi is the hydraulic head value at node i. Applying
the weak form of the groundwater flow equation (Eq. 1)
with the weighting functions being identical to the shape
functions, the standard Galerkin FEM discretization reads
element wise as
∫

E

∇χT
EKE∇χE dx ĥ =

∫

E

χT
EχE dx f̂ ∀E ∈ T , (9)

in which χE are the elemental shape functions, KE is the
element-wise given hydraulic conductivity tensor, ĥ are the
nodal hydraulic head values of element E, and f̂ are the
nodal sources/sink strengths. A nodal formulation of Eq. 9
in analogy to Forsyth [17] is also possible. Based on ĥ,
a unique, element-wise constant gradient can be computed
on simplices, leading to an element-wise constant, non-
conforming specific discharge vector. This unique gradient
can be obtained by evaluating the gradient of the shape
functions multiplied with the vector of nodal hydraulic
head values. Then, the element-wise approximated specific
discharge vector is approximated by

qFE
E = −KE∇χE ĥ ∀E ∈ T . (10)

2.2.5 Cell-centered FVM on simplices

In a cell-centered finite volume method (FVM) applied to
the groundwater flow equation (Eq. 1), the conservation of
fluid volume is enforced for each element E of a given
spatial subdivision, or topological triangulation T :
∫

E

∇ · q dx =
∫

E

f dx ∀E ∈ T . (11)

Then, the divergence theorem is employed such that the
normal component of the specific discharge nE · q is
assumed constant on each element face, F = ∂Ei ∩ ∂Ej ,
for two neighboring elements Ei and Ej of a topological
triangulation T leading to conforming fluxes in RT N 0

space:

∑

F∈FE

∫

F

nE · qF ds =
∫

E

f dx ∀E ∈ T , (12)

in which qF is the specific discharge on F (Fig. 1). Because
the normal flux νF · qF is assumed to be constant on any
F , and the source/sink strength f is assumed to be constant
on E, the integrals over F and E reduce to a multiplication
with |F | and |E|, respectively, assuming an RT N 0 space.
Then, in general, [q ·νF ]F = 0 is assured on any face, while
[h]F �= 0. Higher-order approximations of the specific
discharge on F are possible also in FVM [7, 8].

A cell-centered FVM discretization of Eq. 1 results in a
linear system of equations:

Aĥ = r, (13)

in which A is the mobility matrix, ĥ is the vector of all
approximated cell-related hydraulic head values, and r is
a vector containing sources, and sinks integrated over the
volume, as well as boundary conditions.

In order to construct the mobility matrix A, the nor-
mal component of the hydraulic gradient νF · ∇h at each
face needs to be approximated from the head values in the
cells. Towards this end, the standard procedure in FVM is
to formally allocate the cell-related hydraulic head value to
the cell center, compute the sum of distances of both cell
centers to the face, and divide the difference of the cell-
related head values by this distance. In our FVM approach,
we consider the centroids of triangles, or tetrahedra, as
the cell centers rather than the circumcenters because the
centroid is in general more representative for an element

Fig. 1 Definitions exemplified for two adjacent triangles. The
elements Ei and Ej share a face F on which a unit normal vector
νF following a sign convention is defined. The triangular face itself is
defined by the line between the two nodes xn1 and xn2. The coordinates
of the nodes opposite of F are denoted Pi for the node in Ei and Pj

for the node in Ej , respectively
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than the circumcenter, at least if hydraulic conductivity is
isotropic. Moreover, the centroid always lies within the
respective element, no matter how deformed it is. The dis-
advantage of taking the centroid as the characteristic point
of an element in a finite volume formulation is that the
line connecting the centroids of two neighboring elements
is in general not orthogonal to their shared face, making
an orthogonal projection of the distance vector onto the
face necessary when computing the associated coefficients
of the mobility matrix. Cordes and Kinzelbach [12] pre-
sented a finite volume method on triangles for isotropic
hydraulic conductivity employing circumcenters. Such an
approach is easier to compute than employing centroids, as
no orthogonal projection is required, but the results are less
accurate, and a valid application is restricted to triangles
strictly meeting the Delaunay criterion. Otherwise, circum-
centers may lie on an element face for right-angled triangles,
which could introduce divisions by zero, if the corres-
ponding face is also opposite to a right angle of the neigh-
boring volume. The circumcenters of elements with angles
larger than 90° lie outside of the elements, which can result
in coefficients of the mobility matrix with the wrong sign.

For an accurate representation of Dirichlet boundaries
and Neumann boundaries with a fixed, non-zero flux,
we introduce ghost nodes by orthogonally projecting the
centroid of an element next to the boundary,E ∈ ED∪EN,±,
onto the boundary. That is, we expand the discretization
by introducing surface elements of dimension d − 1. We
denote this expanded discretization by TD,N = T ∪
FD ∪ FN,±, where FD is the set of faces discretizing the
Dirichlet boundary �D , and FN,± is the union of the sets
of faces discretizing the inflow and the outflow boundary,
respectively.

The mobility coefficients related to a face of two
neighboring elements of the expanded discretization with
indices i and j is given by

mi,j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s⊥
i,j

|F |
li
ki

+ lj
kj

F = ∂Ei ∩ ∂Ej , Ei, Ej ∈ T ,

|F |ki

li
F = ∂Ei ∩ �D, Ei ∈ ED,

c Ei ∈ FN,±,

(14)

in which k is the element-wise isotropic hydraulic conduc-
tivity and c ∈ R is an arbitrary scalar with c > 0. Finite
volume methods employing full material tensors have been
developed for node-centered dual grids based on a primal
grid of triangles, and deformed quadrilaterals ( e.g., [16]),
and for general grids in two dimensions including cell-
centered triangular grids [18]. All these methods include
transformation of coordinates, which are beyond the scope
of our present consideration. Furthermore, if l is the distance
between two centroids, li is the part of l in the element i,

and lj is the part of l in the neighboring element j , and s⊥
i,j

is a scaling factor such that only the orthogonal part of a
mobility coefficient normal to an internal face is considered:

s⊥
i,j = ‖l − 〈f,l〉

〈f,f〉 f‖2
‖l‖2 F = ∂Ei ∩ ∂Ej , Ei, Ej ∈ T ,

(15)

in which l is the distance vector between the centroids of two
neighboring elements Ei and Ej , and f is the vector lying
on F = ∂Ei ∩ ∂Ej .

Then, the element Aik of the mobility matrix A ∈ R
N×N

with two indices i and j ranging over the elements in TD,N

is given by

Aik =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
j :Ei∩Ej =F

mi,j i = k, Ei ∈ T ,

1 i = k, Ei ∈ FD,

mi,k i = k, Ei ∈ FN,±,

−mi,k i �= k, Ei ∩ Ej = F,

0 otherwise,

(16)

and the right-hand side vector r ∈ R
N is given by

ri =

⎧
⎪⎨

⎪⎩

fi |Ei | if Ei ∈ T ,

−n · qf ix,i |Fi | if Fi ∈ FN,±
ĥi,D if Ei ∈ FD,

(17)

in which fi is the volumetric source/sink strength per unit
volume for an element Ei , ĥi,D is the assigned Dirichlet
boundary condition on the Dirichlet face Ei ∈ FD , and
qf ix,i is the specific discharge on a Neumann face with
non-zero flux, Ei = Fi ∈ FN,±.

2.3 Flux-postprocessing: theRT N 0 projection

Our flux correction method aims to project a non-
conforming, non-mass-conservative velocity field onto a
mass-conservative and conforming one. This is done by
minimizing the element-wise residual between the hydraulic
gradient of the P1 Galerkin FEM solution and a solution
corresponding to the velocity approximation in RT N 0

space, in which the normal component of the velocity
is constant on and continuous across every face, and the
velocity components vary linearly within an element.

The RT N 0 basis functions, ψF (x), can be set globally
for the topological triangulation T for all elements sharing
face F . Any face is either shared by two neighboring
elements, F = ∂Ei∩∂Ej , or it is a face of only one element,
F ∈ FD ∪ FN . For each face F = ∂Ei ∩ ∂Ej , there is one
vertex in both elements Ei and Ej each that is opposite of
the face F , or F is a face of only one element, F ⊂ ∂Ei . Pi

denotes the coordinates of the node opposite to F in element



Comput Geosci

Ei , and Pj those of the node opposite to F in Ej , if there is
an element Ej . Then, the basis function ψF (x) is

ψF (x) =

⎧
⎪⎪⎨

⎪⎪⎩

nEi
· νF

|F |
d|Ei | (x − Pi ) x ∈ Ei,

nEj
· νF

|F |
d|Ej |

(
x − Pj

)
x ∈ Ej

0 elsewhere.

(18)

Then, the element-wise RT N 0 velocity field in global
coordinates for a simplicial element Ei is given by

qRT N0
Ei

(x)=(aj + bxj

)
j=1,...,d =

∑

F∈FEi

ψF (x)q⊥
F x ∈ Ei,

(19)

in which q⊥
F = νF · qF is the orthogonal component of

the specific discharge vector on F , which is assumed to
be constant on the face F ; aj is an individual scalar for
each spatial direction xj ; and b is a scalar independent
of the spatial direction equaling the divergence of the
velocity field integrated over Ei times (d|Ei |)−1; therefore,
b = 0 holds for non-divergent flow. It should be noted
that also in cell-centered FVM fluxes normal to the faces,
q⊥
F are directly computable, such that the RT N 0 basis

functions of Eq. 19 can be used to obtain the velocity
field within the cells of an FVM. For a divergent velocity
field, the RT N 0 velocity approximation varies within the
element, and the same holds for an FVM velocity field
with internal sources or sinks. For illustration, see Fig. 2
showing a divergent and a non-divergent velocity field. To
make specific values comparable on an element by element
basis, we evaluate the velocity at the element centroid, and
denote such an element-wise velocity originating from the
FVM discretization qFV M

Ei
(xc).

If qRT N0
Ei

is evaluated at the centroid xc of an element Ei ,
an element-wise residual vector εq,Ei

between the RT N 0-

based velocity qRT N0
Ei

and the element-wise constant P1

Galerkin FEM velocity qFE
Ei

can be determined:

εq,Ei
= qRT N0

Ei
− qFE

Ei
. (20)

However, it is advantageous to consider the residual
of the hydraulic gradient at the centroid instead of the
specific discharge within the proposed global optimization
procedure. If the specific discharge was considered directly,
residuals in zones of higher hydraulic conductivity, which
are small in relative terms, would have a higher contribution
to the objective function of the optimization procedure than
residuals in zones of lower hydraulic conductivity, which
are high in relative terms. We propose to minimize the L2

norm of the hydraulic gradient at the centroids xc, which
is a slight adaption of the approach of Odsæter et al. [33],
who considered normal components of hydraulic gradients
at the faces. Our residual vector at the centroid of the single
element Ei is

ε∇h,Ei
= −K−1

Ei
qRT N0

Ei
(xc) − ∇χEi

ĥ

= −K−1
Ei

∑

F∈FEi

ψF (xc)q
⊥
F − ∇χEi

ĥ. (21)

in which ∇χEi
is the gradient of the linear shape functions

χEi
in element Ei . Considering Eq. 21, a global system of

equations can be set up for the squared element-wise errors:

〈εT , εT 〉 = εT
T εT

= (q⊥
Fm

)TFm∈FNT N(q⊥
Fm

)Fm∈F
−2((∇h)FE

Ei
)Ei∈T N(q⊥

Fm
)Fm∈F

+((∇h)FE
Ei

)TEi∈T ((∇h)FE
Ei

)Ei∈T , (22)

in which the index i ranges over the elements and m

is an index ranging over the faces, both according to a
global numbering convention. Furthermore, εT ∈ R

Nd is
the vector of element-wise errors in each spatial direction,

Fig. 2 RT N 0 velocity fields. a
Divergent flow field, in which
flow leaves only at the bottom
face. The resulting velocity
varies linearly in every spatial
dimension. This velocity field is
equivalent to the velocity base
function ψF (x) related to the
normal flux density q⊥

F at the
bottom face. b Non-divergent,
uniform flow field, resulting
from the superposition of three
base functions in the case that
the total flux across all faces
equals zero
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where Nd is the number of elements times the number
of dimensions and (q⊥

Fm
)Fm∈F ∈ R

M is the vector of
normal components of the specific discharge following
global indexing of faces, where no-flow boundaries are
excluded. In the following, ((∇h)FE

Ei
)Ei∈T ∈ R

Nd is the

vector of element-wise hydraulic gradients with (∇h)FE
Ei

=
∇χEi

ĥ obtained by a P1 Galerkin FEM solution, and
N ∈ R

Nd×M is the matrix, in which M is the number of
faces minus the number of faces belonging to Neumann
boundaries containing all RT N 0 basis functions ψF (xc),
evaluated at the centroids, scaled by K−1

Ei
according to a

global numbering scheme of elements and faces:

Nim =
{
K−1

Ei
ψFm

(xc) if Ei ∈T , Fm ⊂∂Ei, Fm ∈FI ∪FD,

0 otherwise,

(23)

in which ψFm
(xc) is the RT N 0 basis function of the face

Fm evaluated at the respective component of the centroid.
Nim has d elements, so that Nimq⊥

Fm
are the contributions of

the normal flux at face Fm to the hydraulic gradient vector
at the centroid of element Ei . The full matrix N ∈ R

Nd×M

is assembled from the individual contributions Nim.
The squared errors of Eq. 22 are minimized under the

constraint that mass is conserved element wise, leading to
the following auxiliary condition:

M(q⊥
Fm

)Fm∈F =
⎛

⎜⎝
∫

Ei

fEi
dx

⎞

⎟⎠

Ei∈T

, (24)

in which i ranges over all elements and m ranges over all
faces following a global numbering scheme and fEi

is the
divergence of the specific discharge in element Ei which
equals the source/sink strength.M ∈ R

N×M is a matrix with
the following elements:

Mim =
{

νFm ·nEi
|Fm| if Ei ∈T , Fm ⊂∂Ei, Fm ∈FI ∪FD,

0 otherwise.

(25)

Minimizing the squared residuals of Eq. 22 subject to the
constraint of Eq. 24 is done by the method of Lagrangian
multipliers, in which the following objective function is
minimized:

L((q⊥
Fm

)Fm∈F , λ) =1

2
εT
T εT

+ λ
(
M(q⊥

Fm
)Fm∈F −(|Ei |fEi

)
Ei∈T

)
,

(26)

in which λ ∈ R
N is the vector of element-wise Lagrangian

multipliers. To obtain the minimum of the objective

function, the derivatives with respect to (q⊥
Fm

)Fm∈F and λ

must be zero:

∂L

∂(q⊥
Fm

)Fm∈F
= NT N(q⊥

Fm
)Fm∈F

−NT ((∇h)FE
Ei

)Ei∈T + MT λT != 0, (27)

∂L

∂λ
= M(q⊥

Fm
)Fm∈F − (|Ei |fEi

)
Ei∈T

!= 0, (28)

leading to the following system of equations in block matrix
form:
[
NT N MT

M 0

] [
(q⊥

Fm
)Fm∈F
λT

]
=
[
NT ((∇h)FE

Ei
)Ei∈T(|Ei |fEi

)
Ei∈T

]
.

(29)

Equation 29 describes the system of equations of the
RT N 0 projection, which is square and has the order
M + N independent of the spatial dimensionality d . For
incorporating a fixed, non-zero flux boundary condition
with a normal flux component q⊥

Fm
, we replace the

corresponding entry on the main diagonal of the matrix by
a one, set all other entries of the respective row to zero, and
specify the normal component of the flux in the entry m of
right-hand side vector.

2.4 Particle trackingmethods

In advective particle tracking, the trajectories of ideal,
point-like particles are computed via integrating the particle
velocity over the travel time. A trajectory Xp(t) =
(xj,p(t))j=1,...,d in x ∈ � for a particle p is given by

Xp(t0 + �t) = Xp(t0) +
∫ t0+�t

t0

v(Xp(τ), τ ) dτ, (30)

where t0 is the starting time, �t is a discrete time increment,
v is a velocity field, and τ is the travel time. In the following,
we present element-wise analytical solutions of Eq. 30 to
compute the exit location of a particle on an element face
from the start location of that particle within the element,
or from the entry location on another element face, for non-
divergent and divergent flow on arbitrarily shaped triangles
and tetrahedra in global coordinates. With this, we can track
a particle from one element face to the next throughout the
whole domain.

2.4.1 Particle tracking in non-divergent flows on triangles

We first consider non-divergent flow on triangles, which
implies an element-wise constant velocity vector. Given
an entry point of a particle on the starting face Fs , the
element-wise constant velocity vector defines a straight line,
starting at the entry point. The point of the first intersection
of this line with one of the element faces not being the
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starting face is the exit point. It is computed by intersection
of hyperplanes, i.e., lines (d = 2), or planes (d = 3),
containing the element faces with the trajectory line. Let
xp = (xp, yp) be the starting point of a particle in an
element Ei , or on a face FS ∈ FEi

. Then, the other
points lying on the trajectory, given the velocity vector,
(vj,Ei

)j=1,...,d = vEi
, starting from xp, is given by xl =

(xl, yl) = xp + rvEi
, where r > 0 is a positive scalar. Every

face F of an element Ei can be described by two nodes
xn1 = (xn1, yn1) and xn2 = (xn2, yn2). Then, a possible exit
point, xe,p = (xe,p, ye,p), on the face F is given by line-line
intersection:

xe,p =
(

(xn2−xn1)·(xl ·yp−xp ·yl)−(xl −xp)·(xn2 ·yn1−xn1 ·yn2)

(yn2−yn1)·(xl −xp)−(yl −yp)·(xn2−xn1)
,

(yp−yl)·(xn2 ·yn1−xn1 ·yn2)−(yn1−yn2)·(xl ·yp−xp ·yl)

(yn2−yn1)·(xl −xp)−(yl −yp)·(xn2−xn1)

)

∀F ∈ FEi
\ {Fs}, (31)

in which Fs is the face on which the particle starts, if the
particle starts on a face. Let (xj )j=1,..,d = xd be the distance
vector xe,p − xp, then the travel times leading to possible
intersection points are simply given by

τ =
( ||xd ||2

||vEi
||2
)

F∈FEi
\{Fs }

with sign(xj ) = sign(vj,Ei
)

(32)

The actual exit point xe is the possible exit point with the
corresponding smallest positive travel time:

xe = (
xe,p

)
i
with i = min{k : τk = min

1≤j≤n,
τj >0

τj }, (33)

in which i is the corresponding index of the possible exit
point with the corresponding minimum travel time τi .

2.4.2 Particle tracking in divergent flows on triangles

For divergent flow on triangles in global coordinates, we
again consider the intersection of the particle trajectory
within an element with the element faces. Considering the
space (5) and Eqs. 18 and 19, we know that for every spatial
dimension xj with x = (x, y), the velocity varies linearly
within the element:

vEi
= (

vj

)
j=1,...,d =

(
ax + bx

ay + by

)
. (34)

Furthermore, we can compute the acceleration of the
particle along its trajectory in the j th direction by

dvj

dt

∣∣∣∣
p

= dvj

dxj

dxj

dt

∣∣∣∣
p

, (35)

in which t is time and p denotes the position of the particle.
The derivatives of the right-hand side of Eq. 35 are

dvj

dxj

= b,
dxj

dt

∣∣∣∣
p

= vj . (36)

Combining Eqs. 35 and 36 and given two distinct particle
positions p1 and p2 on a trajectory within an element
separated by a travel time �t yield

ln

(
vj,p2

vj,p1

)
= ln

(
aj + bxj,p2

aj + bxj,p1

)
= b�t . (37)

On every face, F ∈ FEi
, of an element Ei a vectorized

line equation for every point, xl = (xl, yl) on F , can be
defined independent of the orientation of the line including
the respective face:

xl = xn1 + stl , (38)

in which s is a scaling factor, and tl =(tx,l, ty,l) is a tangential
unit normal vector parallel to the respective face, and starting
from one facial node, xn1 = (xn1, yn1), pointing towards
the second facial node, xn2 = (xn2, yn2). Furthermore, we
know that for two points p1 and p2 on a trajectory, the
travel time �t in Eq. 37 is the same no matter which spatial
dimension xj is considered, such that�t = �tx = �ty , and
the factor b in Eq. 37 is element-wise constant. Considering
these findings and Eq. 37, we observe that

ax + bxe,p

ax + bxp

= ay + bye,p

ay + byp

, (39)

in which xe,p = (xe,p, ye,p) is a possible exit point of a parti-
cle on a face and xp = (xp, yp) is an entry point of that par-
ticle. Then, a possible exit point on a face is given by substi-
tuting Eq. 38 into Eq. 39 yielding the scalar factor s such
that Eq. 38 points to the possible exit point xe,p on a face:

s =
(

ay +byn1

ay + byp

− ax + bxn1

ax + bxp

)
·
(

btx,l

ax + bxp

− bty,l

ay +byp

)−1

.

(40)

Then, the vector of travel times τ = (�t)F∈FEi
\{Fs } for

divergent flow on triangles is given by evaluating the travel
times in an arbitrary spatial dimension:

τ =
(
1

b
ln

(
ax + bxe,p

ax + bxp

))

F∈FEi
\{Fs }

=
(
1

b
ln

(
ay + bye,p

ay + byp

))

F∈FEi
\{Fs }

. (41)

Finally, the actual exit point is determined according to
Eq. 33.

2.4.3 Particle tracking for non-divergent flow on tetrahedra

On tetrahedra, the velocity is again element-wise constant
for non-divergent flow and a possible exit point of a particle
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on a face is given by simple line-plane intersection. Again,
let xp = (xp, yp, zp) be the starting point of a particle in
an element Ei , or on a face Fs ∈ FEi

, and let vn,Ei
=

(vx,n, vy,n, vz,n) be a vector of unit length pointing in the
same direction as the element-wise velocity vector, vEi

, and
let ne = (nx,e, ny,e, nz,e) be a normal vector on a possible
exit face, F ∈ FEi

\ {Fs}. Furthermore, let d = pF − xp =
(dx, dy, dz) be a distance vector between the entry point xp

and an arbitrary point, pF = x ∈ F , on the respective face.
Given the following scalar factor

dl = 〈d,ne〉
〈vn,Ei

,ne〉 , (42)

then the possible exit point on a face is given by

xe,p = xp + dlvn,Ei
. (43)

The vector of travel times is

τ =
( ||xd ||2

||vEi
||2
)

F∈FEi
\{Fs }

with sign(xj ) = sign(vj,Ei
)

(44)

in which xd = xe,p − xp. The actual exit point is again
determined with Eq. 33.

2.4.4 Particle tracking for divergent flow on tetrahedra

For divergent flow, a particle tracking scheme on tetrahedra
can be derived in analogy to those for triangles. On
tetrahedra, the element-wise velocity field, with x =
(x, y, z), is given by

vEi
= (

vj

)
j=1,...,d =

⎛

⎝
ax + bx

ay + by

az + bz

⎞

⎠ , (45)

and every face is embedded in a plane equation such that

xl = xn1 + sp1 + tp2, (46)

where xl = (xl, yl, zl) is the vector of coordinates of an
arbitrary point on a face F , xn1 = (xn1, yn1, zn1) is the
vector of coordinates of one of the nodes defining F , and
p1 = (px1, py1, pz1) and p2 = (px2, py2, pz2) are the
direction vectors of unit length parallel to F , which have to
be linearly independent. For every point of a trajectory of a
particle p, we again know that the travel time is the same
no matter which spatial direction we consider �t = �tx =
�ty = �tz. Reconsidering (Eq. 37), we observe that

ax + bxe,p

ax + bxp

= ay + bye,p

ay + byp

= az + bze,p

az + bzp

, (47)

in which xe,p = (xe,p, ye,p, ze,p) is again a possible exit
point of a particle on a face and xp = (xp, yp, zp) is
an entry point of a particle. Obviously, there are three

possibilities to compute s for d = 3. We opt for s1 such that
�tx = �ty which yields

s1 =
(

ay + byn1 + btpy2

ay + byp

− ax + bxn1 + btpx2

ax + bxp

)

·
(

bpx1

ax + bxp

− bpy1

ay + byp

)−1

︸ ︷︷ ︸
=:K

, (48)

furthermore, s2 is set such that �tx = �tz which is then
given by

s2 =
(

az + bzn1 + btpz2

az + bzp

− ax + bxn1 + btpx2

ax + bxp

)

·
(

bpx1

ax + bxp

− bpz1

az + bzp

)−1

︸ ︷︷ ︸
=:L

. (49)

The factor t is computed by s1 = s2 yielding

t =
(

az + bzn1(
az + bzp

)
L

− ax + bxn1(
ax + bxp

)
L

−
(

ay + byn1(
ay + byp

)
K

− ax + bxn1(
ax + bxp

)
K

))

(
bpy2(

ay + byp

)
K

− bpx2(
ax + bxp

)
K

−
(

bpz2(
az + bzp

)
L

− bpx2(
ax + bxp

)
L

))−1

(50)

Possible exit points xe,p on planes including the faces F ∈
FEi

\ {Fs} for an element Ei , are then uniquely determined
by inserting t (Eq. 50) and either s1 (Eq. 48) or s2 (Eq. 49)
for s in the plane (Eq. 46) for a face F . It is obvious that
s1 (Eq. 48), s2 (Eq. 49), and t (Eq. 50) have, in any case,
to be defined such that gaps in definition are avoided. That
is, it has always to be checked, if the direction vectors tl for
triangles and p1 and p2 for tetrahedra are chosen such that
divisions by zero are avoided.

The vector of travel times, τ = (�t)F∈FEi
\{Fs }, for

divergent flow on tetrahedra is again given by evaluating the
travel times in an arbitrary spatial dimension:

τ =
(
1

b
ln

(
ax + bxe,p

ax + bxp

))

F∈FEi
\{Fs }

=
(
1

b
ln

(
ay + bye,p

ay + byp

))

F∈FEi
\{Fs }

=
(
1

b
ln

(
az + bze,p

az + bzp

))

F∈FEi
\{Fs }

. (51)

Finally, the actual exit point is determined according to
Eq. 33.
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2.4.5 Particle tracking through the entire domain

In our particle tracking code, we track particles from
one Dirichlet or Neumann boundary to the next. Given
a starting location of a particle, we first search for the
starting element. If particles are tracked only from Dirichlet
or Neumann boundary conditions, we can also restrict the
search to the respective elements sharing a boundary. If
the start location is at an interface or a distinct node,
we pragmatically choose the first possible starting element
found in the search. Details on the search employing
barycentric coordinates are given in the appendix. If the
starting element is determined, all the following elements
are determined, by tracking a particle from face to face.
This scheme is in analogy to that of Pollock [34].
According to some criteria reflecting numerical accuracy,
our particle tracking algorithm automatically switches
between a tracking for non-divergent or divergent flow,
depending on the properties of the element-wise flow field.
The tracking procedure is continued until a particle reaches
a Dirichlet or Neumann boundary.

2.5 Measures of differences between
the discretizationmethods

We define difference measures comparing the specific
discharge values at all element centroids of the RT N 0

projection with a reference solution being either analytical
or obtained by the cell-centered FVM. The first difference
measure εabs is the ratio between the absolute values:

εabs = ||qRT N0
Ei

(xc)||2
||qRef

Ei
(xc)||2

Ei ∈ T , (52)

in which qRT N0
Ei

(xc) is the specific discharge evaluated at the
centroid of element Ei , obtained by the RT N 0 projection
of the P1 Galerkin FEM solution, and qRef

Ei
(xc) is the

specific discharge computed by the reference solution. The
second difference measure quantifies the discrepancy in
direction by evaluating the scaled angle between the specific
discharge vectors:

εdir =
∠
(
qRT N0

Ei
(xc),q

Ref
Ei

(xc)
)

180°
Ei ∈ T , (53)

in which ∠(·, ·) denotes the angle in degrees between two
vectors. For evaluating the overall behavior of a model,
the element-wise measures εabs and εdir are assembled to
vectors listing all element-wise values.

2.6 Implementation

The grids for the two-dimensional test cases are generated
by the algorithm “triangle” [42], accessed via MeshPy

using Python 3.4.2 employing the compiler GCC 4.9.1 on
Linux Debian 8. The P1 Galerkin FEM solution is obtained
using HydroGeoSphere [1] on Windows 7. However, any
P1 Galerkin FEM code, or moreover any FEM code
yielding a non-conforming velocity field, could be used.
The cell-centered FVM as well as the RT N 0 projection
and all particle tracking routines are implemented in Matlab
R2016b.

3 Application to numerical test cases

3.1 Non-divergent flow on triangles

We first compare theRT N 0 projection to the cell-centered
FVM, and the original P1 Galerkin velocity approximation
for non-divergent flow in a square domain of dimension
100 × 100 m containing two nearly impervious walls. The
discretized domain consists of 2554 elements and 1333
nodes (see Fig. 3a–c). The left boundary of the domain is a
Dirichlet boundary with a fixed head value of ĥD,l = 11.0 m.
The right boundary of the domain is split. Over a central
section (x = 100, y ∈ [30, 70]), the hydraulic head is
fixed to ĥD,r = 10.0 m. All other boundary sections (top,
bottom, remaining parts of the right-hand side boundary) are
no-flow boundaries. Yellow shaded elements in Fig. 3a–c
have an isotropic hydraulic conductivity value of k = 10−4

(m/s). The blue-gray shaded elements belong to the nearly
impermeable walls in x ∈ [30, 40], y ∈ [0, 70] and x ∈
[60, 70], y ∈ [30, 100]. They exhibit a reduced hydraulic
conductivity value of k = 10−10 (m/s). The uniform
porosity is � = 0.4. Particles are started on the left-hand
Dirichlet boundary with a spacing reflecting the cumulative
flux across the boundary. For the case of non-divergent flow,
the latter implies that the calculated particle trajectories
are streamlines, and any two neighboring trajectories are
streamtubes with the same discharge.

Figure 3a shows particle trajectories using the element-
wise velocity approximation qFE

E based on the P1 Galerkin
FEM. As discussed, specific discharge and average linear
velocity fields, q(x) and v(x), respectively, are non-
conforming, causing jumps of the normal components on
faces. The erroneous physical interpretations of these jumps
are virtual sources and sinks on the faces. These numerical
sources and sinks are preserved in the tracking patterns. In
the most extreme case, the element-wise velocity vectors of
neighboring elements both point towards the same face. In
such cases, we could not track the particles any further and
we made the trajectories end on the respective face.

Figure 3b shows the particle trajectories of the conform-
ing cell-centered FVM solution of the groundwater flow (1)
on triangles, whereas Fig. 3c shows the trajectories result-
ing from the RT N 0 projection of the P1 Galerkin FEM
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Fig. 3 Particle trajectories and difference measures of the two con-
forming velocity fields for non-divergent flow in a 2-D domain
with two nearly impermeable walls. a Trajectories based on non-
conforming P1 Galerkin FEM velocity approximation. b Trajec-
tories based on cell-centered FVM. c Trajectories based on the
projection of the P1 Galerkin FEM velocity approximation onto a

mass-conservative field in RT N 0 space. d Ratio of absolute veloc-
ities at cell centroids (εabs ) resulting from the proposed RT N 0
projection of the non-conforming P1 Galerkin FEM velocity field
and the cell-centered finite volume method. e Angle between the two
velocities at cell centroids (εdir )

velocity approximation. The trajectories of the cell-centered
FVM solution are somewhat more angular with small rapid
changes of the direction at cell interfaces. This is due to the
strong constraints of the FVM discretization and has also
been observed for mixed finite element solutions inRT N 0

[20, 23, 29, 37]. In contrast, our RT N 0 projection leads
to smoother trajectories, which we assess as being more
correct in sub-domains of uniform hydraulic conductivity.
We believe that the smoothness of the RT N 0 projection
stems from the smoothness of the hydraulic gradients in
the P1 Galerkin FEM solution. While the latter needs to
be corrected in order to obtain a mass-conservative RT N 0

solution of the velocity field, the correction is minimized
within the constraints of a conforming, mass conservative
velocity approximation. Of course, the velocity fields of
both the FVM solution and our projection are in RT N 0

space, which are conforming and element-wise mass con-
servative. While the RT N 0 projection of the P1 Galerkin
FEM velocity approximation is smoother, the computational

effort to obtain the cell-centered FVM solution is consider-
ably lower.

We quantify the difference between the two conforming
velocity fields depicted in Fig. 3b and c by the ratio
of absolute velocities according to Eq. 52 and the angle
between the two velocities according to Eq. 53. Figure 3d
and e show the spatial distribution of these two difference
measures, and Table 1 lists norms over the entire domain.

Table 1 Measures for the differences between the discretization
methods in the 2-D application with two nearly impervious walls

Mean(·) Median(·) ||(| · |)||∞
εabs 1.08 1.06 0.63

εdir 2.30 · 10−2 1.70 · 10−2 1.43 · 10−1

As εabs is a ratio, we give the respective infinity norm as ||(|1 −
εabs |)||∞
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From this, we conclude that the velocities originating from
our RT N 0 projection are very similar to those directly
obtained from cell-centered FVM, with respect to both the
absolute values and directions of the velocities throughout
the domain, including the zones within or nearby the
nearly impervious walls of very low hydraulic conductivity.
In particular, the RT N 0 projection does not introduce
a noticeable numerical rotation, which might occur in
other flux correction schemes [40], and occasionally also
within the normal framework of mixed finite elements in
RT N 0 space [20]. Note that even though both solutions
are in RT N 0 space, one would expect different results
as they are computed differently. As both solutions are
numerical approximations, we cannot say which solution
is more accurate. In general, the difference measures
depicted in Table 1 are all very low and also depend on
the numerical accuracy of the linear solvers used in the
computations.

3.2 Divergent flow on triangles

In our next benchmark, we consider a 100 × 100 m domain
with uniform isotropic hydraulic conductivity of k = 10−5

(m/s), in which groundwater recharge takes place in a
30 × 30 m squared subdomain in the center of the domain,
indicated by a blue-gray shaded square in Fig. 4. The
recharge flux is qin = 200 (mm/a)≈ 6.3376 · 10−9 (m/s).
The domain is discretized by 1252 triangular elements and
667 nodes. The left and right boundaries of the domain
are Dirichlet boundaries with a head difference of 1.0 (m),
whereas no flow is allowed across the upper and lower
boundaries.

Figure 4a and b show the corresponding particle trajecto-
ries for the FVM velocity field and theRT N 0 projection of
the P1 Galerkin FEM velocity field, respectively. Both tra-
jectory patterns appear reasonable. The trajectories diverge
in the recharge area depicted by the blue-gray square. The

Fig. 4 Particle trajectories and difference measures comparing the
velocity fields resulting from the RT N 0 projection of a non-
conforming field with the velocity field computed by cell-centered
FVM for a 2-D domain with a recharge zone. a Trajectories for

cell-centered FVM. b Trajectories for the P1 Galerkin FEM velocity
approximation projected onto a field inRT N 0 space. c Ratio of abso-
lute velocities at cell centroids (εabs ). d Angle between the velocities
at cell centroids (εdir )
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trajectories of the FVM solution are again more angular,
while the RT N 0-projected solution preserves the smooth-
ness of the P1 Galerkin FEM solution.

Like in the non-divergent case, we quantify the difference
of the two conforming velocity fields in the divergent case
depicted in Fig. 4a and b by the ratio of absolute velocities
according to Eq. 52 and the angle between the two velocities
according to Eq. 53. Figure 4c and d show the spatial
distributions of these two difference measures, and Table 2
lists norms over the entire domain. These metrics confirm
that the two velocity fields are quite similar. All measures
listed in Table 2 are very low. We also computed the infinity
norm of the relative error in mass conservation, which was
on the order of machine precision for double-precision real
variables.

3.3 Empirical consistency and convergence
tests for anisotropic hydraulic conductivity
on triangles

For evaluating the performance of the RT N 0 projection in
cases with anisotropic hydraulic conductivity, we consider
a unit square � = [0, 1]2 in which a fixed non-zero flux
is defined as Neumann boundary condition over the central
sections (y ∈ [0.25, 0.75]) of the left and right boundaries,
all other boundary sections are no-flow boundaries. The
domain is discretized by 812 elements and 439 nodes, the
maximum diameter of the elements, hT , is chosen such that
1/hT = 16. We consider a uniform hydraulic conductivity
with the component kxx = 10−4 (m/s) remaining identical
in all cases, whereas the kyy component is varied such
that kyy/kxx = 1, kyy/kxx = 0.1, and kyy/kxx = 0.01.
The off-diagonal entries remain zero. The normal flux at
the inflow and outflow boundaries is uniformly set to n ·
qN,+ = −n · qN,− = −10−4 (m/s). As in the preceding
case, the starting positions of particles are chosen such
that the spacing reflects an equal cumulative flux across
the boundary, so that the particle trajectories represent
streamlines. For illustration, see Fig. 5, which illustrates the
case of kyy/kxx = 0.1.

We show consistency by comparing the results of the
RT N 0 projection to the corresponding analytical solution

Table 2 Measures for the differences between the discretization
methods in the 2-D application with a rectangular recharge zone

Mean(·) Median(·) ||(| · |)||∞
εabs 1.05 1.04 0.45

εdir 2.60 · 10−2 2.16 · 10−2 1.38 · 10−1

As εabs is a ratio, we give the respective infinity norm as ||(|1 −
εabs |)||∞

rather than a numerical result based on cell-centered FVM.
The analytical solution for our test case is

qAna =
(

Q

Ly

− kxx

∞∑

r=1

αr

(
a⊕,r exp (αrx)

−a�,r exp (−αrx)
)
cos

(
2πyr

Ly

))
,

(
kyy

2π

Ly

∞∑

r=1

r
(
a⊕,r exp (αrx) + a�,r exp (−αrx)

)

× sin

(
2πyr

Ly

))
, (54)

in which Q (m2/s) is the total volumetric flux and Ly (m)
denotes the total vertical length of the domain, which equals
unity in our case. Furthermore,

a⊕,r = 1 − exp (−αrLx)

2 sinh (αrLx)

q̃in,r

kxxαr

, and

a�,r = 1 − exp (αrLx)

2 sinh (αrLx)

q̃in,r

kxxαr

, (55)

and

q̃in,r = 2

rπ

Q

Lw

sin

(
rπ
(
Ly − Lw

)

Ly

)
, and

αr = 2πr

Ly

√
kyy

kxx

, (56)

in which Lw is the length of the inflow/outflow boundary
and Lx [m] denotes the total horizontal length of the
domain, which equals unity in our case.

Figure 5a and b show the corresponding particle
trajectories based on the analytical solution and the
RT N 0 projection of the P1 Galerkin FEM velocity field,
respectively, for the case of an anisotropy ratio of 0.1.
Figure 5c and d show the ratio of absolute velocities of
the RT N 0 projection over the analytical solution and
the difference in the direction, respectively. The trajectory
pattern gives the visual impression that the result of the
RT N 0 projection of the P1 Galerkin FEM velocity field is
very close to the analytical solution. The patterns of the two
other anisotropy ratios show the comparable similarities, but
the trajectories are more centered in the middle section for
kyy/kxx = 0.01 and more evenly distributed in the vertical
direction for kyy/kxx = 1.

Table 3 lists the norms of difference measures, con-
firming the good agreement of the RT N 0 projection with
the analytical solution for the isotropic case and for the
case with the anisotropy ratio of kyy/kxx = 0.1. For an
anisotropy ratio of kyy/kxx = 0.01, the RT N 0 projec-
tion of the P1 Galerkin FEM velocity introduces numerical
artifacts, which mainly occur in low-flow regions near the
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Fig. 5 Non-divergent test case with hydraulic anisotropy for the case
of kyy/kxx = 0.1. a Particle trajectories of the analytical solution
(Eq. 54). b Particle trajectories of the RT N 0 projection of the P1

Galerkin FEM velocity field (bold black line at the boundary: no-flow
boundary). c Ratio of absolute velocities at cell centroids (εabs ). d
Angle between the velocities at cell centroids (εdir )

no-flow boundaries. Already the case of kyy/kxx = 0.1,
Fig. 5c and d indicate these tendencies. For kyy/kxx =
0.01, however, the orientation of the velocities near the

Table 3 Measures for the differences between the RT N 0 projection
in 2-D and the analytical solution for three anisotropy ratios kyy/kxx

kyy/kxx Mean(·) Median(·) ||(| · |)||∞
1 εabs 1.00 1.00 0.31

εdir 1.04 · 10−2 4.16 · 10−3 1.30 · 10−1

0.1 εabs 1.00 1.00 0.51

εdir 1.50 · 10−2 5.80 · 10−3 1.72 · 10−1

0.01 εabs 3.12 1.02 23.73

εdir 2.64 · 10−1 1.72 · 10−2 1.00

As εabs is a ratio, we give the respective infinity norm as ||(|1 −
εabs |)||∞

top and the bottom is mostly reverted. In these regions,
the absolute velocity is significantly smaller than that in
the central section, particularly in cases of high anisotropy.
Because of the small values, getting the velocity right in
these regions has a relatively low significance in the mini-
mization procedure, which induces the described numerical
artifacts.

To analyze the performance of the RT N 0 projection
more rigorously, we extend this test by an empirical
convergence analysis comparing our obtained results with
those of the base P1 Galerkin FEM solution. We employ
the same models as exemplarily shown in Fig. 5 using
iteratively refined grids. The base grid discussed above
has a maximum diameter of the elements, hT , such that
1/hT = 16. For the empirical convergence analysis, we use
this grid among other refinement levels, whereas keeping all
adjustments for the grid generation identical on all levels.
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Table 4 Convergence behavior
of the numerically
approximated velocity fields
for different anisotropy ratios
kyy/kxx of hydraulic
conductivity with
kxx = 1 · 10−4 (m/s)

kyy/kxx 1/hT N 1
N

∑
Ei∈T

||qRT N0
Ei

(xc) − qAna
Ei

(xc)||2,Ei

1
N

∑
Ei∈T

||qFE
Ei

(xc) − qAna
Ei

(xc)||2,Ei

1 4 48 2.15 · 10−5 (−) 2.14 · 10−5 (−)

8 196 1.07 · 10−5 (1.01) 1.09 · 10−5 (0.97)

16 812 5.36 · 10−6 (1.00) 5.45 · 10−6 (1.00)

32 3354 2.68 · 10−6 (1.02) 2.73 · 10−6 (1.00)

0.1 4 48 2.21 · 10−5 (−) 4.04 · 10−5 (−)

8 196 1.16 · 10−5 (0.93) 1.74 · 10−5 (1.22)

16 812 6.31 · 10−6 (0.88) 8.72 · 10−6 (0.99)

32 3354 3.16 · 10−6 (0.99) 4.38 · 10−6 (0.99)

0.01 4 48 2.23 · 10−5 (−) 5.41 · 10−5 (−)

8 196 1.97 · 10−5 (0.18) 2.77 · 10−5 (0.97)

16 812 1.02 · 10−5 (0.95) 1.61 · 10−5 (0.78)

32 3354 4.48 · 10−6 (1.19) 8.19 · 10−6 (0.97)

The empirical order of convergence is given in parentheses. hT is the maximum diameter of the triangles,
i.e., the maximum face length, and N is the number of elements. Furthermore, qRT N0 and qAna are the
velocity fields of theRT N 0 projection and the analytical solution, respectively

According to Table 4, the velocity field approximated by
the RT N 0 projection essentially shows the same order of
convergence as the original velocity field based on the P1

Galerkin FEM. It is also worth noting that, besides of the
coarsest grid for an anisotropy ratio of unity, all other norms
indicate that the conforming velocity field of the RT N 0

projection is overall closer to the analytical solution than
the original flux approximation of the P1 Galerkin FEM.
Nevertheless, the numerical artifacts of reverted velocity
fields and wrongmagnitudes of the velocities induced by the
RT N 0 projection for an anisotropy ratio of kyy/kxx = 0.01
are also preserved in the reduced empirical convergence
order shown in the first refinement step in Table 4.

We conclude the test case by reporting on the compu-
tation time needed to solve the equation systems resulting
from theRT N 0 projection for the isotropic case, for which
we can also perform the cell-centered FVM simulations as
a comparison. The systems of equations are solved by the
direct solver UMFPACK [14], accessed via the backslash
operator of Matlab.

The CPU times shown in Table 5 clearly indicate that the
final system of equations resulting from the cell-centered

FVM can be solved quicker for larger systems than the
system resulting from the RT N 0 projection. This is so
because the system of equations resulting from the cell-
centered FVM discretization is symmetric, positive definite,
and of order N , whereas the system of equations resulting
from the RT N 0 projection is, though symmetric, an
indefinite saddle point problem of order N +M comparable
to an RT N 0 MFEM discretization.

3.4 Three-dimensional test case

Our three-dimensional benchmark model is a cube with an
edge length of 10.0 (m). The background isotropic hydraulic
conductivity is k = 10−4 (m/s). Two cuboid inclusions (
x ∈ [2, 4], y ∈ [0, 5], z ∈ [2, 4] and x ∈ [6, 8], y ∈
[5, 10], z ∈ [6, 8], respectively) have a strongly reduced
isotropic hydraulic conductivity of k = 10−10 (m/s). In
Fig. 6a, the inclusions are highlighted as blue blocks. The
uniform porosity is � = 0.4. The domain is discretized
into cubes of 1 (m) edge length, which are split into six
tetrahedra such that effects of grid orientation in the cell-
centered FVM solution is minimized. This leads to 6000

Table 5 Comparison of the computational costs for the RT N 0 projection and the cell-centered FVM for the isotropic case given in CPU time
and wall time in seconds needed to solve the final systems of equations given as median value over 11 runs each. hT is the maximum diameter of
the triangles, N is the number of elements, and M is the number of element edges

1/hT N M CPU time (wall time):RT N 0 projection CPU time (wall time): cell-centered FVM

4 48 68 0.09375 (0.054655) 0.09375 (0.022623)

8 196 286 0.09375 (0.038496) 0.1250 (0.044168)

16 812 1202 0.296875 (0.062972) 0.203125 (0.053037)

32 3354 4999 0.265625 (0.069596) 0.046875 (0.01447)
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Fig. 6 Three-dimensional, non-divergent test case with two nearly
impermeable cuboid inclusion. a Particle tracks based on the proposed
RT N 0 projection of theP1 Galerkin FEM velocity approximation on
tetrahedra. b Ratio of the absolute velocity resulting from theRT N 0

projection and from the cell-centered FVM solution at the cell cen-
troids (εabs ). c Angle between the two velocity approximations at the
cell centroids (εdir )

tetrahedral elements and 1331 nodes. The left boundary of
the domain (i.e., the set of faces with x = 0 (m)) and the
right boundary (i.e., the set of faces with x = 10 (m)) are
Dirichlet boundaries with uniform hydraulic head values,
in which the head difference is 1.0 (m) between the left
and right boundaries. No flow is permitted across all other
boundaries of the domain.

Figure 6a shows a few particle trajectories starting
at the inlet boundary of the domain, which have been
computed using the RT N 0 projection of the specific
discharge field originating from the P1 Galerkin FEM
solution. The particle trajectories circumvent the inclusions
in a physically reasonable manner. In contrast to the two-
dimensional test cases, we do not show particle trajectories
for the FVM solution, because the visual impression does
not indicate any obvious differences to trajectories obtained
from the RT N 0 projected velocity field of the standard
FEM solution.

Figure 6b and c visualize the measures of differences in
the velocity field between the FVM solution and the velocity

approximation by our RT N 0 projection. Figure 6b shows
the ratio of absolute velocities, and Fig. 6c the normalized
angle between the two velocity vectors at the cell centroids.
Table 6 lists the associated norms for the entire domain. The
magnitude of the differences are visualized in Fig. 6b and c
by both the size and color of spheres at the cell centroids.
In the largest part of the domain, these differences are
negligible. Only at certain points next to the inclusions the
difference measures exceed average values. The difference

Table 6 Measures for the differences between the discretization
methods in the 3-D application with two nearly impervious cuboid
inclusions

Mean(·) Median(·) ||(| · |)||∞
εabs 9.89 · 10−1 9.74 · 10−1 8.34

εdir 5.83 · 10−2 5.86 · 10−2 1

As εabs is a ratio, we give the respective infinity norm as ||(|1 −
εabs |)||∞
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in the direction is mainly caused by a slight shift of
points where the particle trajectories separate to circumvent
the inclusions. By coincidence, two cells show a larger
difference in the absolute value of the velocity.

As indicated by the difference metrics listed in Table 6,
the results are very similar. Like in the 2-D test cases, the
trajectories based on the FVM solution on simplices are
more angular than those based on the RT N 0 projection of
the P1 Galerkin FEM solution, because the projection tries
to preserve the smoothness of the standard FEM solution.
We would deem the projected results to be physically more
accurate, but the FVM solution is achieved at considerably
lower computational costs.

4 Conclusions

We have proposed an RT N 0 projection of velocities
obtained from solving the groundwater flow equation by P1

Galerkin FEM. Our projection yields physically reasonable
flow fields preserving the smoothness of the P1 Galerkin
FEM solution for isotropic test cases and mild anisotropy.
For comparison, we have presented an analytical solution
and a cell-centered finite volume formulation on simplices
in which we account for Dirichlet and Neumann boundary
conditions by ghost nodes. The results of our projection are
similar to those obtained by an analytical solution and the
cell-centered finite volumes for two- and three-dimensional
isotropic and mildly anisotropic flow fields. The velocity
approximations of our RT N 0 projection and of the FVM
are in the same function space, and the velocity fields are
similar in magnitude and the direction for the evaluated
cases.

We claim that our flux correction method, like that
of Odsæter et al. [33], gives better results than the
postprocessing methods of Schiavazzi [40] and Scudeler
et al. [41], in which velocity differences between the P1

Galerkin solution and the RT N 0 projection showed much
larger relative differences in low-flow regions. The latter can
be avoided by minimizing differences in hydraulic gradients
rather than velocities between the P1 Galerkin FEM and
the RT N 0 solutions. While Odsæter et al. [33] considered
hydraulic gradients on element faces, we minimize the
difference in hydraulic gradients at the element centroids.
Our approach yields physically reasonable velocity fields
regarding the magnitude of the velocity vectors and does
not introduce erroneous numerical rotation, neither for
two-dimensional nor for three-dimensional flow fields
with isotropic or mildly anisotropic hydraulic conductivity,
which seems to occur in other flux correction schemes
even in the isotropic case [40], and have occasionally been
observed in RT N 0-based mixed (hybrid) FEM schemes
[20]. However, if stronger anisotropy is considered, our

RT N 0 projection may numerically induce rotation and
wrong magnitudes of the velocities leading to partial failure
of the scheme in low-flow regions. Similar problems were
already observed occasionally for former flux corrections,
but here even in isotropic cases, which were evaluated by
Schiavazzi [40] and applied by Scudeler et al. [41].

By construction, the velocity fields of our RT N 0

projection are conforming and mass conservative. In
comparison with velocity fields obtained from cell-centered
FVM, the projected fields are smoother and trajectories are
less angular so that we assess the projected velocity fields
to be physically more accurate than the fields obtained by
the FVM scheme, at least in regions of uniform hydraulic
conductivity. However, the computational costs of a cell-
centered FVM scheme are much lower than those of our
RT N 0 projection. For an FVM solution, one system of
equations of the order of elements has to be solved, in which
the matrix is symmetric and positive definite. By contrast,
the projection requires first solving a system of equations
of the order of the number of nodes involving a symmetric,
positive-definite matrix to obtain the P1 Galerkin FEM
solution, followed by solving a saddle point problem in the
RT N 0 projection step, in which the matrix is symmetric,
non-definite, and of the order of the number of elements plus
the number of faces without no-flow boundary conditions.
Both velocity fields are in RT N 0 space. For large-scale
applications, the computational advantage of the FVM
scheme may outweigh the smoothness of the RT N 0

projection. Conversely, two variable velocity fields may
cause erroneous twisting of streamlines in heterogeneous
formations, which can have significant effects on the
simulation of transverse mixing [6, 9].

We have presented semi-analytical particle tracking
methods for conformingRT N 0 velocity fields on triangles
and tetrahedra. Extending the RT N 0 projection, FVM
discretization, and particle tracking scheme to other element
types (e.g., triangular prisms, pyramids, hexaeder) is
possible, but addressing deformed elements would require
formulating all schemes in local coordinates applying a
contravariant Piola transformation [39]. Projecting velocity
fields obtained by other finite element methods like
higher-order Galerkin FEM onto a higher-order conforming
velocity field would be possible as well, although one
might opt to minimize weighted differences in the hydraulic
gradient at more than a single point per element in such
cases, but these considerations are beyond the scope of the
present analysis.

We have developed the presented RT N 0 projection
for steady-state, potentially divergent flow including mild
anisotropy. An extension to transient flow is probably
possible by treating the change of storage like a source/sink
term in steady-state flow. In order to do this, however,
the nodal loads computed by P1 Galerkin FEM must
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be distributed to the elements associated with the nodes.
Likewise, extensions to unsaturated flow or other nonlinear
flow laws would require modifications, although the
complexity of the final equation system to solve would
remain the same. Especially for nonlinear flow laws,
the application of an RT N 0 projection to postprocess
an existent non-conforming flow solution might still be
computationally cheaper than computing a conforming
flow solution from scratch using an RT N 0 MFEM or
comparable methods. As a postprocessor, the RT N 0

projection has to be performed only at time points at which
a velocity field is wanted, and the nonlinear dependence of
hydraulic conductivity on the simulated head and saturation
fields would be evaluated within the primary solution step,
deeming the projection itself linear.
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Appendix: Using barycentric coordinates
to find the starting element of a particle
trajectory

Every point x̂s within a simplex can be described by a
linear combination of the coordinates of the nodes, x̂i , and
a barycentric, nodal weight, βi ≥ 0, respectively, such that

x̂s =
∑

i∈NE

βi x̂i , (57)

with
∑

i∈NE

βi = 1, and βj = 1 −
∑

i �=j∈NE

βi , (58)

in which j is the index of a node and βj is its associated
weight, such that every point in the simplex can be
described by the coordinates of its nodes and d + 1 weights.
Combining (57) and (58) leads to

Tβ = x̂s − x̂j , (59)

⇒ β = T−1 (x̂s − x̂j

)
, (60)

in which T is a transformation matrix only depending
on the coordinates of the nodes; T−1 can easily be
evaluated analytically; β is the vector of the d independent,
barycentric, nodal weights; and x̂j is the vector of
coordinates of node j of the element.

We exploit the concept of barycentric coordinates in the
search for the element in which the starting point of our
particle tracking scheme resides. To do so, we set xp = x̂s

and solve equation (60) for every element. If a particle lies
within an element, all weights β = (βi )i=1,...,d+1 are within
the interval 0 ≤ βi ≤ 1 and sum up to unity. We stop the
search at the first instance at which both criteria are met.
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and G. Chavent. Water Resour. Res. 32(6), 1905–1909 (1996).
https://doi.org/10.1029/96WR00567

13. Crane, M.J., Blunt, M.J.: Streamline-based simulation of solute
transport. Water Resour. Res. 35(10), 3061–3078 (1999)

14. Davis, T.A.: A column pre-ordering strategy for the unsymmetric-
pattern multifrontal method. ACM Trans. Math. Softw. (TOMS)
30(2), 165–195 (2004). https://doi.org/10.1145/992200.992205

15. Durlofsky, L.J.: Accuracy of mixed and control volume finite
element approximations to Darcy velocity and related quantities.
Water Resour. Res. 30(4), 965–973 (1994). https://doi.org/10.
1029/94WR00061

16. Edwards, M.G.: Unstructured, control-volume distributed, full-
tensor finite-volume schemes with flow based grids. Com-
put. Geosci. 6(3), 433–452 (2002). https://doi.org/10.1023/
A:1021243231313

17. Forsyth, P.: A control volume finite element approach to NAPL
groundwater contamination. SIAM J. Sci. Stat. Comput. 12(5),
1029–1057 (1991). https://doi.org/10.1137/0912055

18. Friis, H., Edwards, M., Mykkeltveit, J.: Symmetric positive
definite flux-continuous full-tensor finite-volume schemes on
unstructured cell-centered triangular grids. SIAM J. Sci. Comput.
31(2), 1192–1220 (2009). https://doi.org/10.1137/070692182

19. Ginn, T.R.: Stochastic-convective transport with nonlinear reac-
tions and mixing: finite streamtube ensemble formulation for mul-
ticomponent reaction systems with intra-streamtube dispersion. J.
Contam. Hydrol. 47(1-2), 1–28 (2001). https://doi.org/10.1016/
S0169-7722(00)00167-4
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