Skip to main content
Log in

Diet-gene interaction: effects of polymorphisms in the ACE, AGT and BDKRB2 genes and the consumption of sodium, potassium, calcium, and magnesium on blood pressure of normotensive adult individuals

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Functional variants in genes of the renin-angiotensin (RAS) and kallikrein-kinin (KKS) systems have already been implicated in blood pressure (BP) modulation, but few studies have focused on a nutrigenetics approach. Thus, the aim of this study is to verify the effects of the interaction between genetic polymorphisms (rs4340-ACE, rs699-AGT, and rs1799722-BDKRB2) and micronutrient consumption (sodium, potassium, calcium, and magnesium) on BP values of normotensive adult individuals. The study included 335 adults, men and women, 25.5 (6.6) years old. Biochemical, anthropometric, BP measurements, and food intake data were assessed for all participants. Gene-nutrient interaction on BP outcome was tested by multiple linear regression with manual backward stepwise modeling. Our results indicated that individuals with G allele for rs699 polymorphism, in the increase of sodium and magnesium consumption, both in the genotypic model (sodium, p = 0.035; magnesium, p = 0.016) and in the dominant model (sodium, p = 0.009; magnesium, p = 0.006) had higher systolic BP (SBP) levels compared to AA homozygotes (sodium, p = 0.001; magnesium, p < 0.001). Also, individuals with the T allele for the rs1799722 polymorphism, with higher calcium intake, had significantly higher levels of SBP and diastolic BP (DBP) when compared to CC homozygotes (p = 0.037). In conclusion, our findings pointed for significant interactions between genetic polymorphisms (rs699-AGT and rs1799722-BDKRB2) and the consumption of micronutrients (sodium, magnesium, and calcium) on the BP variation. These findings contribute to the understanding of the complex mechanisms involved in BP regulation, which probable include several gene-nutrition interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Franklin SS, Wong ND (2013) Hypertension and cardiovascular disease: contributions of the Framingham Heart Study. Glob Heart [Internet] 8(1):49–57. https://doi.org/10.1016/j.gheart.2012.12.004

    Article  Google Scholar 

  2. IHME I for health metrics and evaluation (2018) Findings from the global burden of disease study 2017. Lancet:1–7

  3. Salfati E, Morrison AC, Boerwinkle E, Chakravarti A (2015) Direct estimates of the genomic contributions to blood pressure heritability within a population-based cohort (ARIC). PLoS One 10(7):1–14. https://doi.org/10.1371/journal.pone.0133031

    Article  CAS  Google Scholar 

  4. Gu W, Li Z, Wang Z, Liu Y, Liu J, Wen S (2016) Association of the bradykinin receptors genes variants with hypertension: a case-control study and meta-analysis. Clin Exp Hypertens 38(1):100–106. https://doi.org/10.3109/10641963.2015.1060989

    Article  CAS  PubMed  Google Scholar 

  5. Singh KD, Jajodia A, Kaur H, Kukreti R (2014) Gender specific association of RAS gene polymorphism with essential hypertension – a case control study. Biomed Res Int. https://doi.org/10.1155/2014/538053

  6. Carey RM (2015) The intrarenal renin-angiotensin system in hypertension. Adv Chronic Kidney Dis 22(3):204–210. https://doi.org/10.1053/j.ackd.2014.11.004

    Article  PubMed  Google Scholar 

  7. Madeddu P, Emanueli C, El-Dahr S (2007) Mechanisms of disease: the tissue kallikrein-kinin system in hypertension and vascular remodeling. Nat Clin Pract Nephrol 3(4):208–221. https://doi.org/10.1038/ncpneph0444

    Article  CAS  PubMed  Google Scholar 

  8. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F (1990) An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 86(4):1343–1346. https://doi.org/10.1172/JCI114844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sethi AA, Nordestgaard BG, Tybjærg-Hansen A (2003) Angiotensinogen gene polymorphism, plasma angiotensinogen, and risk of hypertension and ischemic heart disease: a meta-analysis. Arterioscler Thromb Vasc Biol 23(7):1269–1275. https://doi.org/10.1161/01.ATV.0000079007.40884.5C

    Article  CAS  PubMed  Google Scholar 

  10. Braun A, Kammerer S, Maier E, Böhme E, Röscher AA (1996) Polymorphisms in the gene for the human B2-bradykinin receptor. New tools in assessing a genetic risk for bradykinin-associated diseases. Immunopharmacology 33(1–3):32–35. https://doi.org/10.1016/0162-3109(96)00079-3

    Article  CAS  PubMed  Google Scholar 

  11. Ji L, Zhang L, Shen P, Wang P, Zhang Y (2010) Association of angiotensinogen gene M235T and angiotensin-converting enzyme gene I/D polymorphisms with essential hypertension in Han Chinese population: a meta-analysis. J Hypertens 28(3):419–428. https://doi.org/10.1097/HJH.0b013e32833456b9

    Article  CAS  PubMed  Google Scholar 

  12. Takeuchi F, Yamamoto K, Katsuya T, Sugiyama T, Nabika T, Ohnaka K et al (2012) Reevaluation of the association of seven candidate genes with blood pressure and hypertension: a replication study and meta-analysis with a larger sample size. Hypertens Res 35(8):825–831. https://doi.org/10.1038/hr.2012.43

    Article  CAS  PubMed  Google Scholar 

  13. Mondry A, Loh M, Liu P, Zhu A-L, Nagel M (2005) Polymorphisms of the insertion/deletion ACE and M235T AGT genes and hypertension: surprising new findings and meta-analysis of data. BMC Nephrol 6:1–11. https://doi.org/10.1186/1471-2369-6-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Luo K, Kang W, Xu G (2015) The risk of bradykinin B2 receptor-58T/C gene polymorphism on hypertension: a meta-analysis. Int J Clin Exp Med 8(11):19917–19927. https://doi.org/10.1111/nep.12782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li Y, Zhang H, Xu J, Qian Y, Lu X, Yang B et al (2012) Bradykinin b 2 receptor 2 58T/C gene polymorphism and essential hypertension: a meta-analysis. PLoS One 7(8):1–6. https://doi.org/10.1371/journal.pone.0043068

    Article  CAS  Google Scholar 

  16. Niu W, Qi Y, Gao P, Zhu D (2010) A meta-analysis of the bradykinin B2 receptor gene − 58C/T polymorphism with hypertension. Clin Chim Acta 411(5–6):324–328. https://doi.org/10.1016/j.cca.2009.12.015

    Article  CAS  PubMed  Google Scholar 

  17. Ehret GB, Ferreira T, Chasman DI, Jackson AU, Schmidt EM, Johnson T et al (2016) The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat Genet 48(10):1171–1184. https://doi.org/10.1038/ng.3667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Warren HR, Evangelou E, Cabrera CP, Gao H, Ren M, Mifsud B et al (2017) Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet 49(3):403–415. https://doi.org/10.1038/ng.3768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Lucia A, Hunter DJ et al (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753. https://doi.org/10.1038/nature08494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ehret GB, Caulfield MJ (2013) Genes for blood pressure: an opportunity to understand hypertension. Eur Heart J 34(13):951–961. https://doi.org/10.1093/eurheartj/ehs455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Studies EG, Munroe P, Rice K, Bochud M, Johnson A et al (2011) Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478(7367):103–109. https://doi.org/10.1038/nature10405

    Article  CAS  Google Scholar 

  22. Ferguson JF, Allayee H, Gerszten RE, Ideraabdullah F, Kris-Etherton PM, Ordovás JM et al (2016) Nutrigenomics, the microbiome, and gene-environment interactions: new directions in cardiovascular disease research, prevention, and treatment. Circ Cardiovasc Genet 9(3):291–313. https://doi.org/10.1161/HCG.0000000000000030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Corella D, Ordovás JM (2014) Aging and cardiovascular diseases: the role of gene-diet interactions. Ageing Res Ver 18:53–73. https://doi.org/10.1016/j.arr.2014.08.002

    Article  CAS  Google Scholar 

  24. Gröber U, Schmidt J, Kisters K (2015) Magnesium in prevention and therapy. Nutrients 7(9):8199–8226. https://doi.org/10.3390/nu7095388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O’Donnell M, Mente A, Yusuf S (2015) Sodium intake and cardiovascular health. Circ Res 116(6):1046–1057. https://doi.org/10.1161/CIRCRESAHA.116.303771

    Article  CAS  PubMed  Google Scholar 

  26. Das UM (2001) Nutritional factors in the pathobiology of human essential hypertension. Nutrition 17(4):337–346. https://doi.org/10.1016/s0899-9007(00)00586-4

    Article  CAS  PubMed  Google Scholar 

  27. Iqbal S, Klammer N, Ekmekcioglu C (2019) The effect of electrolytes on blood pressure: a brief summary of meta-analyses. Nutrients 11(6):1362. https://doi.org/10.3390/nu11061362

    Article  CAS  PubMed Central  Google Scholar 

  28. Grave N, Tovo-Rodrigues L, da Silveira J et al (2016) A vitamin D pathway gene-gene interaction affects low-density lipoprotein cholesterol levels. J Nutr Biochem 38:12–17. https://doi.org/10.1016/j.jnutbio.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  29. Authority European Food Safety (2009) General principles for the collection of national food consumption data in the view of a pan-European dietary survey. EFSA J 7(12):1–51. https://doi.org/10.2903/j.efsa.2009.1435

    Article  Google Scholar 

  30. Lahiri DK, Numberger JI (1991) A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res 19(19):5444. https://doi.org/10.1093/nar/19.19.5444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Igić R, Škrbić R (2014) The renin-angiotensin system and its blockers. Srp Arh Celok Lek 142(11–12):756–763. https://doi.org/10.2298/sarh1412756i

    Article  PubMed  Google Scholar 

  32. Schmaier AH (2003) The kallikrein-kinin and the renin-angiotensin systems have a multilayered interaction. Am J Physiol Regul Integr Comp Physiol 285(1):217–221. https://doi.org/10.1152/ajpregu.00535.2002

    Article  Google Scholar 

  33. Whelton PK, He J (2014) Health effects of sodium and potassium in humans. Curr Opin Lipidol 25(1):75–79. https://doi.org/10.1097/MOL.0000000000000033

    Article  CAS  PubMed  Google Scholar 

  34. Zemel MB (2001) Calcium modulation of hypertension and obesity: mechanisms and implications. J Am Coll Nutr 20(5 Suppl):428S–435S; discussion 440S–442S. https://doi.org/10.1080/07315724.2001.10719180

    Article  CAS  PubMed  Google Scholar 

  35. Norat T, Bowman R, Luben R, Welch A, Kay TK, Wareham N et al (2008) Blood pressure and interactions between the angiotensin polymorphism AGT M235T and sodium intake: a cross-sectional population study. Am J Clin Nutr 88(2):392–397. https://doi.org/10.1093/ajcn/88.2.392

    Article  CAS  PubMed  Google Scholar 

  36. Poch E, González D, Giner V, Bragulat E, Coca A, de La Sierra A (2001) Molecular basis of salt sensitivity in human hypertension. Evaluation of renin-angiotensin-aldosterone system gene polymorphisms. Hypertension 38(5):1204–1209. https://doi.org/10.1161/hy1101.099479

    Article  CAS  PubMed  Google Scholar 

  37. Giner V, Poch E, Bragulat E, Oriola J, González D, Coca A, de La Sierra A (2000) Renin-angiotensin system genetic polymorphisms and salt sensitivity in essential hypertension. Hypertension 35(part 2):512–517. https://doi.org/10.1161/01.hyp.35.1.512

    Article  CAS  PubMed  Google Scholar 

  38. Franklin SS (1999) Ageing and hypertension: the assessment of blood pressure indices in predicting coronary heart disease. J Hypertens Suppl 17(5):S29–S36

    CAS  PubMed  Google Scholar 

  39. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Himmelfarb CD et al (2018) 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults. Hypertension 71(6):1269–1324. https://doi.org/10.1161/HYP.0000000000000066

    Article  CAS  PubMed  Google Scholar 

  40. Imaizumi T, Ando M, Nakatochi M, Maruyama S, Yasuda Y, Honda H et al (2017) Association of interactions between dietary salt consumption and hypertension-susceptibility genetic polymorphisms with blood pressure among Japanese male workers. Clin Exp Nephrol 21(3):457–464. https://doi.org/10.1007/s10157-016-1315-3

    Article  CAS  PubMed  Google Scholar 

  41. National Academies (2004) Dietary Reference Intakes (DRIs): recommended intakes for individuals, vitamins food and nutrition board, Institute of Medicine, National Academies Dietary Reference Intakes (DRIs): recommended intakes for individuals, elements food and nutrition. Fluoride 62(10):1–7

    Google Scholar 

  42. Guerrero-Romero F, Rodr Iguez-Mor M, Hern Andez-Ronquillo G, Omez-D Iaz RG, Ia M, Pizano-Zarate L et al (2016) Low serum magnesium levels and its association with high blood pressure in children. J Pediatr 168:93–98. https://doi.org/10.1016/j.jpeds.2015.09.050

    Article  CAS  PubMed  Google Scholar 

  43. Lee SY, Hyun YY, Lee KB, Kim H (2015) Low serum magnesium is associated with coronary artery calcification in a Korean population at low risk for cardiovascular disease. Nutr Metab Cardiovasc Dis 25(11):1056–1061. https://doi.org/10.1016/j.numecd.2015.07.010

    Article  CAS  PubMed  Google Scholar 

  44. Joris PJ, Plat J, Bakker SJ, Mensink RP (2016) Long-term magnesium supplementation improves arterial stiffness in overweight and obese adults: results of a randomized, double-blind, placebo-controlled intervention trial. Am J Clin Nutr 103(5):1260–1266. https://doi.org/10.3945/ajcn.116.131466

    Article  CAS  PubMed  Google Scholar 

  45. Fraga-Silva RA, Ferreira AJ, Dos Santos RAS (2013) Opportunities for targeting the angiotensin-converting enzyme 2/angiotensin-(1-7)/mas receptor pathway in hypertension. Curr Hypertens Rep 15(1):31–38. https://doi.org/10.1007/s11906-012-0324-1

    Article  CAS  PubMed  Google Scholar 

  46. Moreau ME, Garbacki N, Molinaro G, Brown NJ, Marceau F, Adam A (2005) The kallikrein-kinin system: current and future pharmacological targets. J Pharmacol Sci 99(1):6–38. https://doi.org/10.1254/jphs.srj05001x

    Article  CAS  PubMed  Google Scholar 

  47. Li Y (2012) Angiotensin-converting enzyme gene insertion/deletion polymorphism and essential hypertension in the Chinese population: a meta-analysis including 21058 participants. Intern Med J 42(4):439–444. https://doi.org/10.1111/j.1445-5994.2011.02584.x

    Article  CAS  PubMed  Google Scholar 

  48. Pereira AC, Mota GFA, Cunha RS, Herbenhoff FL, Mill JG, Krieger JE (2003) Angiotensinogen 235T allele “dosage” is associated with blood pressure phenotypes. Hypertension 41(1):25–30. https://doi.org/10.1161/01.hyp.0000047465.97065.15

    Article  CAS  PubMed  Google Scholar 

  49. Bonfim-Silva R, Guimarães LO, Santos JS, Pereira JF, Leal Barbosa AA, Souza Rios DL (2016) Case-control association study of polymorphisms in the angiotensinogen and angiotensin-converting enzyme genes and coronary artery disease and systemic artery hypertension in African-Brazilians and Caucasian-Brazilians. J Genet 95(1):63–69. https://doi.org/10.1007/s12041-015-0599-5

    Article  CAS  PubMed  Google Scholar 

  50. Bashiardes S, Abdeen SK, Elinav E (2019) Personalized nutrition: are we there yet? J Pediatr Gastroenterol Nutr 69(6):633–638. https://doi.org/10.1097/MPG.0000000000002491

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the academic community of the University of Vale do Taquari – Univates for their voluntary participation in this study, and the Nutrigenetics team, for their assistance in data collection. We are also thankful to the following funding sources: Fundação Vale do Taquari de Educação e Desenvolvimento Social (FUVATES, grant 08/Reitoria/Univates), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grants 308546/2017-2 and 432392/2018-1), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, scholarship code 001).

Funding

This study was supported by Fundação Vale do Taquari de Educação e Desenvolvimento Social (FUVATES, grant 08/Reitoria/Univates), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grants 308546/2017-2 and 432392/2018-1), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, scholarship code 001).

Author information

Authors and Affiliations

Authors

Contributions

JG and LMW collected, analyzed, and interpreted the data, and wrote the manuscript. LC and FD helped in the data collection and assisted in literature reviews. JPG and VC supervised the study, interpreted the data and wrote the manuscript. All authors read and approved final manuscript.

Corresponding author

Correspondence to Verônica Contini.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

The study was approved by the Research Ethics Committee of the University of Vale do Taquari – Univates (protocol number 110/11), complying with all the research ethics criteria of the Helsinki Declaration. The subjects were informed about the protocol objectives and goals and signed an informed consent when they decided to participate in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giovanella, J., Wollinger, L.M., Capra, L. et al. Diet-gene interaction: effects of polymorphisms in the ACE, AGT and BDKRB2 genes and the consumption of sodium, potassium, calcium, and magnesium on blood pressure of normotensive adult individuals. Mol Cell Biochem 476, 1211–1219 (2021). https://doi.org/10.1007/s11010-020-03983-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03983-5

Keywords

Navigation