Skip to main content
Log in

Direct-Write Microfabrication of Single-Chamber Solid Oxide Fuel Cells with Interdigitated Electrodes

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Miniaturized single-chamber solid-oxide fuel cells (SC-SOFC) are a promising class of devices for portable power generation required in the operation of distributed networks of microelectromechanical systems (MEMS) in harsh environments. The single-face configuration, which consists of interdigitated (comb-like) array of electrodes on an yttria-stabilized zirconia (YSZ) electrolyte substrate, is of particular interest because of the ease of high-temperature microfluidic packaging and integration with MEMS. The primary design consideration for this configuration is the minimization of electrode widths and inter-electrode spacings to dimensions on the order of a few micrometers. This is necessary to minimize polarization resistance and increase fuel cell efficiency. Achieving these geometries using standard microfabrication methods is difficult because of the thickness, porosity, and complex chemistries of the electrodes. Here, we report the development of an innovative and rapid method for manufacturing SC-SOFCs with interdigitated electrodes using robot-controlled direct-writing. The main steps consist of: (i) formation of inks (or suspensions) using anode (NiO-YSZ) and cathode (lanthanum strontium manganite) powders, (ii) pressure-driven extrusion of inks through a micronozzle using a robot-controlled platform, and (iii) sequential sintering to form the fuel cell. The first-generation SC-SOFC device, with electrode widths of 130 µm and inter-electrode spacing of 300 µm, has been manufactured using direct-write microfabrication. The electrodes have been extensively characterized using electron microscopy and x-ray diffraction to assess porosity and to confirm phase identity. The primary process parameters in this approach are the particle size and size distribution, rheological properties of the suspension, extrusion pressure, nozzle size, stage velocity, and sintering conditions. As the first step in the development of detailed process-structure-performance correlations for the fuel cells, we have studied the effects of extrusion pressure (in the range 30-40 bar) and stage velocity (in the range 0.2-2.0 mm/s) on the geometry and size of electrodes, for fixed suspension viscosity and nozzle diameter. An optimal combination of speed and pressure has been identified and catalogued in the form of process maps. Similarly, the particle size distribution of the anode and cathode powders is found to have a significant effect on the microstructure, especially porosity, of the sintered electrodes. The implications of these results for the design of the next generation of SC-SOFC, with reduced electrode dimensions and improved electrochemical performance, will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.D. Baertsch, K.F. Jensen, J.L. Hertz, H.L. Tuller, S.T. Vengallatore, S.M. Spearing and M.A. Schmidt, J. Mater. Res. 19, 2604 (2004).

    Article  CAS  Google Scholar 

  2. V.T. Srikar, K.T. Turner, T.Y.A. Ie and S.M. Spearing, J. Power Sources 125, 62 (2004).

    Article  CAS  Google Scholar 

  3. D. Nikbin, Fuel Cell Review 3, 21 (2006).

    Google Scholar 

  4. T. Hibino, K. Ushiki and Y. Kuwahara, Solid State Ionics 91, 69 (1996).

    Article  CAS  Google Scholar 

  5. T. Hibino, A. Hashimoto, T. Inoue, J. Tokuno, S. Yoshida and M. Sano, Science, 288, 2031 (2000).

    Article  CAS  Google Scholar 

  6. T. W. Napporn, F. Morin, and M. Meunier, Electrochem. Solid-State Lett. 7, A60 (2004).

    Article  CAS  Google Scholar 

  7. T.W. Napporn, X. Jacques-Bedard, F. Morin and M. Meunier, J. Electrochem. Soc. 151, A2088 (2004).

    Article  CAS  Google Scholar 

  8. Z. Shao, S. M. Haile, J. Ahn, P. D. Ronney, Z. Zhan, and S. A. Barnett, Nature, 435, 795 (2005).

    Article  CAS  Google Scholar 

  9. S.-J. Ahn, J.-H. Lee, J. Kim and J. Moon, Electrochem. Solid-State Lett. 9, A228 (2006).

    Article  CAS  Google Scholar 

  10. A. Bieberle-Huetter and H. Tuller, J. Electroceram. 16, 151 (2006).

    Article  CAS  Google Scholar 

  11. J.-W. Son, S.-J. Ahn, S.M. Kim, H. Kim, S.-H. Choi, J. Moon, H.-R. Kim, S.E. Kim, J.-H. Lee, H.-W. Lee and J. Kim in Fabrication and Operation of Co-Planar Type Single Chamber Solid Oxide Fuel Cells,7th European SOFC Forum, Lucerne, Switzerland, 2006.

    Google Scholar 

  12. T. Hibino, H. Tsunekawa, S. Tanimoto, and M. Sano, J. Electrochem. Soc. 147, 1338 (2000).

    Article  CAS  Google Scholar 

  13. T. Hibino, A. Hashimoto, M. Suzuki, M. Yano, S. Yoshida, and M. Sano, J. Electrochem. Soc. 149, A195 (2002).

    Article  CAS  Google Scholar 

  14. A. K. Shukla, R. K. Raman and K. Scott, Fuel Cells 4, 436 (2005).

    Article  Google Scholar 

  15. J. Fleig, H.L. Tuller and J. Maier, Solid State Ionics 174, 261 (2004).

    Article  CAS  Google Scholar 

  16. C.-Y. Chung, Y.-C. Chung, J. Power Sources 154, 35 (2006).

    Article  CAS  Google Scholar 

  17. D. Therriault, S.R. White and J.A. Lewis, Nat. Mater. 2, 265 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhn, M., Napporn, T., Meunier, M. et al. Direct-Write Microfabrication of Single-Chamber Solid Oxide Fuel Cells with Interdigitated Electrodes. MRS Online Proceedings Library 972, 809 (2006). https://doi.org/10.1557/PROC-0972-AA07-09-BB08-09

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0972-AA07-09-BB08-09

Navigation