Skip to main content
Log in

Defect Dynamics in Amorphous Silicon – the Recrystallization Process

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The mechanism that underlies the recrystallization of amorphous silicon tas not been established. It is generally argued, however, that the rearrangement of the network occurs through the breaking of bonds or the introduction of vacancies and that this step is responsible for the observed activation energy (∼2.5 eV). It is suggested here that the rearrangement of the network is accomplished through the migration of intrinsic overcoordination defects (“floating bonds”) and that this process has a small activation energy (∼0.4 eV). The observed large activation energy is actually due to a reaction that inhibits recrystallization. This reaction may be the elimination of preexisting dangling bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Values of this quantity for undoped a-Si vary from 2.3 to 2.9 eV. See, e.g., L. Csepregi, E. F. Kennedy, T. J. Callagher, J. W. Mayer, and T. W. Sigmon, J. Appl. Phys. 48, 4234 (1977); A. Lietoila, A. Wakita, T. W. Sigmon, and J. F. Gibbons, J. Appl. Phys. 53, 4399 (1982); G. L. Olson, J. A. Roth, L. D. Hess, and J. Narayan, in Layered Structures and Interface Kinetics, edited by S. Furukawa, (KTK Scientific Publishers, Tokyo, 1985), p. 73.

    Article  CAS  Google Scholar 

  2. R. Car, P. J. Kelly, A. Oshiyama, and S. T. Pantelides, Phys. Rev. Lett. 52, 1814 (1984), and 54, 360 (1985); Y. Bar-Yam and J. D. Joannopoulos, J. Electron. Mater. 14, 261 (1985).

    Article  CAS  Google Scholar 

  3. S. Dannefaer, P. Mascher, and D. Kerr, Phys. Rev. Lett. 56, 2195 (1986).

    Article  CAS  Google Scholar 

  4. F. Spaepen and D. Turnbull, in Laser-Solid Interactions and Laser Processing, edited by S. D. Ferris, H. J. Leamy, and J. M. Poate, (American Institute of Physics, New York, 1978), p. 73.

    Google Scholar 

  5. P. J. Germain, M. A. Paesler, D. E. Sayers, and K. Zellama, MRS Symp. Proc. vol. 13, p. 135 (1983).

    Article  CAS  Google Scholar 

  6. L. E. Mosley and M. A. Paesler, Appl. Phys. Lett. 45, 86 (1984)

    Article  CAS  Google Scholar 

  7. R. Drosd and J. Washburn, I. Appl. Phys. 53, 397 (1982).

    Article  CAS  Google Scholar 

  8. J. Narayan, J. Appl. Phys. 53, 8607 (1982).

    Article  CAS  Google Scholar 

  9. S. T. Pantelides, Phys. Rev. Lett. 57, 2979 (1986); ibid. 58, 1344 (1987); Phys. Rev. B 36, 3479 (1987).

    Article  CAS  Google Scholar 

  10. Ρ. Α. Thomas, M. H. Brodsky, D. Kaplan, and D. Lepine, Phys. Rev. B 18, 3059 (1978).

    Article  CAS  Google Scholar 

  11. J. Linnros, B. Svensson, and G. Holmen, Phys. Rev. Β 30, 3629 (1984).

    Article  CAS  Google Scholar 

  12. See, e.g., R. A. Street, Phys. Rev. Lett. 49, 1187 (1982).

    Article  CAS  Google Scholar 

  13. J. H. Stathis and S. T. Pantelides, to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantelides, S.T. Defect Dynamics in Amorphous Silicon – the Recrystallization Process. MRS Online Proceedings Library 100, 387 (1987). https://doi.org/10.1557/PROC-100-387

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-100-387

Navigation