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Abstract

Taxonomic over-splitting of extinct or endangered taxa, due to an incomplete knowledge of

both skeletal morphological variability and the geographical ranges of past populations, con-

tinues to confuse the link between isolated extant populations and their ancestors. This is

particularly problematic with the genus Equus. To more reliably determine the evolution and

phylogeographic history of the endangered Asiatic wild ass, we studied the genetic diversity

and inter-relationships of both extinct and extant populations over the last 100,000 years,

including samples throughout its previous range from Western Europe to Southwest and

East Asia. Using 229 bp of the mitochondrial hypervariable region, an approach which
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allowed the inclusion of information from extremely poorly preserved ancient samples, we

classify all non-African wild asses into eleven clades that show a clear phylogeographic

structure revealing their phylogenetic history. This study places the extinct European wild

ass, E. hydruntinus, the phylogeny of which has been debated since the end of the 19th cen-

tury, into its phylogenetic context within the Asiatic wild asses and reveals recent mitochon-

drial introgression between populations currently regarded as separate species. The

phylogeographic organization of clades resulting from these efforts can be used not only to

improve future taxonomic determination of a poorly characterized group of equids, but also

to identify historic ranges, interbreeding events between various populations, and the impact

of ancient climatic changes. In addition, appropriately placing extant relict populations into a

broader phylogeographic and genetic context can better inform ongoing conservation strate-

gies for this highly-endangered species.

Ethics statement

No animals were used in the present study. Samples used in this study and their archeological

contexts are described in the Supporting Information and listed in Table A in S1 File. Briefly,

we analyzed 189 archaeological bone and teeth specimens that had been assigned osteologically

to E. hemionus sp., E. hydruntinus or E. kiang and were dated between 3,500 and 100,000 years

ago. These samples originated from 49 archaeological sites in ten European and six southwest

Asian countries (Fig 1A and Table A in S1 File). In addition, we analyzed 11 historical museum

specimens (between 60 and 180 years old) of onagers, hemippi, khurs and kiangs and 53 pres-

ent-day samples, 94% of which originated from wild individuals, coming from the Gobi Desert

and protected nature reserves in Iran and Israel. The samples from the Negev desert in Israel

came from the Israel Nature and Park Authority (INPA) breeding core and had been collected

there between 1989 and 1991 as part of the INPA management activities toward reintroduction

(e.g., medical treatment, translocations between enclosures): http://www.parks.org.il/sites/

English/parksandreserves/haibaryotvata/Pages/default.aspx.

Introduction

The Asiatic wild ass (Equus hemionus), once widely distributed over a vast geographical area, is

witnessing a dramatic range reduction leaving nearly all of the remaining but isolated popula-

tions endangered. In many high-altitude plains or deserts of Asia, these arid-adapted and cold-

tolerant animals have long been the largest and most widespread herbivore taxon, and their

disappearance threatens to eliminate a major ecological agent from these extreme environ-

ments. In contrast to the caballoids, or horses, Asiatic wild asses belong to the stenonids, a

group which also includes zebras and the African wild ass Equus africanus along with its

domestic form E. asinus. Currently, Asiatic wild asses are subdivided into two species, Equus
kiang–the kiang of Tibet, and Equus hemionus with four living and one extinct subspecies, i.e.,

E. h. hemionus (also known as E. h. luteus)–the Mongolian kulan or dziggetai, E. h. khur–the

Indian khur, E. h. kulan–the Turkmen kulan, E. h. onager–the Iranian or Persian onager, and

E. h. hemippus–the extinct Syrian wild ass [1–3] (see Fig 1A for their geographic ranges). The

two largest surviving populations, the dziggetais in the Mongolian Gobi Desert [3] and the

kiangs of the Tibetan plateau [4], still occur over large parts of their former distribution range.

However, increased livestock grazing, fencing, railway and highway construction, and
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poaching also threaten the future of dziggetais and kiangs. The Iranian onagers, the Turkmen

kulans, and the Indian khurs are reduced to small pocket populations with contracted distribu-

tions in protected areas located either in endemic centers or in refuge zones in Iran, Turkmen-

istan and northwest India, respectively [3,5,6].

Understanding the evolution as well as past and present genetic diversity of these species is

essential for the design of appropriate conservation strategies [7,8]. Asiatic wild asses, however,

are not well characterized genetically. The profound lack of data on the past and recent distri-

bution and population structures of these regionally endangered animals is particularly worri-

some at a time so critical for the conservation of Asiatic wild asses. Shrinking population sizes

and habitat reduction of species on their way to extinction lead to isolated pocket populations

the analyses of which tend to overemphasize their differences. This may result in taxonomic

Fig 1. Map representing the origin of the samples and the results of the landscape genetics sPCA analyses. A) Origin of the samples. The

color code indicates the dates of the sites from which the samples originated. The dotted lines indicate the past range of the various hemione

populations. B) Results from a spatial principal component analysis (sPCA) performed as described in the Material & Methods. The sPCA values of

each individual were displayed as a single color by converting each of the three principal scores into a color channel (red, green, and blue for 1st, 2nd

and 3rd principal components respectively, see Materials & methods). To legibly display all samples analyzed, each individual sequence was placed as

closely as possible to its original geographical location while avoiding overlaps. Additional samples for which only partial sequences were obtained but

which contained enough information to allow unambiguous assignment to a specific clade are represented using a dotted outer line. Since they did not

contain enough sequence information to be used in the sPCA, they are given the color of a representative member of the clade. The specimens from

the Hai-Bar Yotveta reserve in Israel that descended from hemiones captured in Turkmenistan and Iran are represented in the magnified box on the

lower left side of the map connected by an arrow to their original location.

https://doi.org/10.1371/journal.pone.0174216.g001
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over-splitting. The knowledge of past distributions and diversity assessed using paleontological

and paleogenetic approaches helps to minimize this problem and to define and implement

adequate conservation biology strategies.

Although palaeontology has accumulated much data concerning equid evolution, long con-

sidered a paradigmatic evolutionary model [7], much taxonomic uncertainty remains. Indeed,

the classification of ancient equids based on osteomorphometry is ambiguous since modern

skeletons used for comparisons represent mosaics of various, restricted combinations of a rela-

tively small number of characteristics [1]. Whole skeletons are required for reliable morphologi-

cal determination and these are extremely rare in the fossil record [8]. Consequently, knowledge

of past morphological diversity within and between equid species is scarce. These features put

the presently accepted equid taxonomy on shaky ground and question interpretations about the

ancient geographical and temporal distribution of this taxon ([9], and citations therein).

Paleontological approaches have identified a European wild ass, termed E. hydruntinus, or

hydruntine, known only from skeletal remains and prehistoric engravings such as that found

in the cave of Les Trois Frères in France. The oldest Western European remains that have been

attributed to this morphotype are from France and date to around 350,000 years ago [10]. The

hydruntine was widespread during the Late Pleistocene, with a geographic distribution from

Western Europe to the Volga, Turkey, the Levant and the northern Middle East [11–13]. Dur-

ing the Holocene hydruntine populations declined and were reduced to small patches of their

previous range, before eventually becoming extinct [12].

Paleogenetic analyses of the mitochondrial and, very recently, nuclear genomes preserved

in equid bones have allowed researchers to revisit equid taxonomy, which has reduced the

number of species proposed in paleontological studies [14–18]. These recent paleogenetic

studies suggested that the “oversplitting” of earlier palaeontological work was the consequence

of an underestimation of the morphological plasticity of equids throughout their ranges and

evolutionary history [17]. Indeed, ancient DNA research has the potential to unravel the phy-

logeographic structure of populations and species, past migrations, gene flow, erosion of past

diversity and population fragmentation. By correctly identifying the past geographic distribu-

tion of genotypes, it is possible to reconstruct the sequences of such events (e.g., [19,20]).

We studied the mitochondrial lineages of the wild asses from Europe and Asia in archeolo-

gical, historical and recent samples spanning the last 100,000 years and the area from western

Europe to eastern Asia. The ancient DNA (aDNA) results obtained show that during the

Upper Pleistocene the distribution of the Asiatic wild ass ranged from western Europe, where

it is now extinct, to eastern Asia where it is still found at present. The genetic relationships

between these taxa explain why we subsume these populations under the unifying term “Eura-

siatic wild ass”. We explored the patterns of the past and present genetic diversity to recon-

struct the population structure of the species and its evolution since the Late Pleistocene.

Materials & methods

Samples used in this study and their archeological contexts are described in the Supporting

Information and listed in Table A in S1 File. Briefly, we analyzed 189 archaeological bone and

teeth specimens that had been assigned osteologically to E. hemionus sp., E. hydruntinus or E.

kiang and were dated between 3,500 and 100,000 years ago. These samples originated from 49

archaeological sites in ten European and six southwest Asian countries (Fig 1A; Table A in S1

File). In addition, we analyzed 11 historical museum specimens (between 60 and 180 years

old) of onagers, hemippi, khurs and kiangs and 53 present-day samples, 94% of which origi-

nated from wild individuals, coming from the Gobi Desert and protected nature reserves in

Iran and Israel.
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Working procedures

Modern and historical specimens were processed in a laboratory of the Jacques Monod Insti-

tute (IJM) dedicated to modern, non-amplified DNA analysis, which is physically separated

from the ancient DNA facility and post-amplification laboratory, using aDNA procedures.

Ancient specimens (those older than 150 years) were processed in the core facility of palaeoge-

nomics of the IJM, a high containment laboratory physically separated from the modern DNA

laboratories and dedicated to the analysis of ancient DNA.

Ancient samples were processed in the Core Facility of Palaeogenetics at the IJM, Paris

(http://www.ijm.fr/ijm/plates-formes/pole-paleogenomique/). This highly contained pressur-

ized laboratory dedicated to aDNA analysis is isolated on a floor of the institute where no

other laboratories of molecular biology are located. It consists of an airlock chamber and three

different laboratory rooms, each subjected to a positive air pressure gradient, dedicated to the

specific steps of the experimental procedures, (i) sample preparation, (ii) DNA extraction and

purification, (iii) PCR set-up. Within the laboratory, each experimental step is carried out in a

working station or flow hood. The working stations and equipment are cleaned with bleach

(3.5% hypochlorite solution) or RNase away1 (Molecular Bio-Products, USA) and UV irradi-

ated at short distance between each experiment to ensure efficient decontamination [21]. To

minimize contamination with exogenous DNA and maximize the aDNA yield, low retention

microtubes (Axygen, Union City, USA) and extra-long filtered pipette tips were used for

extraction and PCR preparation. Experimenters entered the laboratory only after having

removed their street clothes and replaced them with lab clothing washed with bleach. All-body

protection was worn during each step of pre-PCR work consisting of a disposable protective

suit (one specific to each laboratory room), two pairs of gloves, shoe covers and a facemask.

Purification was carried out in a flow hood and pipetting of the PCRs in an enclosed PCR

workstation (COY, MI, USA), both cleaned with bleach and UV-irradiated at a short distance

after each experiment. Capillaries containing the reagent mixtures for the PCR and the fossil

extracts were closed in the PCR workstation of the PCR-preparation room in the contained

laboratory prior to transfer to the PCR machines on a different floor of the building. The han-

dling of post-PCR products was exclusively performed in a dedicated laboratory that is physi-

cally separated from the pre-PCR laboratory and the room containing the PCR machines.

Protective disposable clothing and shoe covers are also worn when entering the post-PCR lab-

oratory and removed when exiting.

DNA extraction

Samples from extant specimens. Genomic DNA isolation from blood, muscle and lung

tissue was performed with the NucleoSpin1-Tissue Kit (Macherey-Nagel, Dueren, Germany).

Feces were processed using the QIAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany).

Skin, hoof, and hair samples were digested with a hair lysis buffer containing 100 mM Tris-

HCl pH 8.0, 100 mM NaCl, 40 mM DTT, 3 mM CaCl2, 2% N-lauryl sarcosyl, 250 μg/mL pro-

teinase K (modified after [22]), and DNA was subsequently extracted with the NucleoSpin-Tis-

sue Kit (Macherey-Nagel).

Blood samples of individuals from the Hai-Bar Yotveta breeding core, Israel, had been col-

lected between 1989 and 1991 as part of the Israel Nature and Park Authority (INPA) breeding

core management activities toward reintroduction [23].

Samples from museum specimens. Historical bone and teeth samples were extracted

using ancient DNA methods (see below). Sinew and cartilage samples were crushed in liquid

nitrogen in a mortar and DNA was purified using the QIAamp DNA Stool Minikit (Qiagen,

Hilden, Germany).
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Ancient samples. In the high containment laboratory, bone and tooth surfaces were

removed with a sterilized razor blade and, depending on the individual bone characteristics,

either drilled with a heat-sterilized bit using either a Dremel 4000 or Dremel Fortiflex (Dremel

Europe, The Netherlands), or cut into fragments and powdered using a freezer mill (SPEX

CertiPrep 6750, USA), or powdered manually using a razor blade. Bone powder (34–1896 mg)

was incubated in 1–10 mL extraction buffer (0.5 M EDTA, 0.25 M PO4
3-, pH 8.0, 1% beta-mer-

captoethanol) for 48–70 hours at 37˚C with agitation. Some samples required changes of

extraction buffer to increase digestion of bone powder. Hair and hoof samples were added to a

hair lysis buffer (as above) and incubated 4–24 hours at 50˚C, shaken with 300 RPM. Solutions

were then pelleted and the supernatant was purified using a QIAquick Gel extraction kit (Qia-

gen, Hilden, Germany) with protocol modifications [24].

For external reproduction of the results, some ancient samples (S1, D4, K2, ASE24, ASE25,

ASE382, ASE383, ASE384) were analyzed by M.P. in the laboratory of the Humboldt-Univer-

sity Berlin, Landwirtschaftlich-Gärtnerische Fakultät, Molekularbiologisches Zentrum Ostbau,

Berlin, Germany: Approximately 250 mg of bone material was used for each extraction. Exter-

nal surfaces of bones were removed by abrasion to minimize environmental contaminations.

Each sample was ground to powder with a freezer mill and incubated in 0.45 M EDTA (pH

8.0) and 0.25 mg/ml Proteinase K overnight at room temperature under rotation. After centri-

fugation for 5 min at 4,000 rpm in a Universal 320 centrifuge (Hettich), DNA was purified

from the supernatant using a silica based method as previously described [25,26].

DNA amplification and sequencing

Primers for archeological samples were designed to amplify a total of up to 328 base pairs of

the hypervariable region of wild ass mitogenome using short, overlapping fragments. A list of

primers used and product sizes is given in Table B in S1 File.

Purified DNA was amplified by qPCR, the extract making up 5–20% total reaction volume

(10–20μl). Inhibition characteristics were determined for failed samples indicating possible

inhibition. For evaluation of the inhibition, three parameters were taken into consideration: (i)

delay of the threshold value Ct (crossing point at threshold), (ii) the kinetics of the synthesis of

the PCR product, and (iii) the efficiency of the PCR. The quantity of aDNA extract amplified

by PCR was adjusted according to the results of the inhibition tests to minimize interference of

the inhibitors with the PCR.

QPCR was performed using Lightcycler 1.5 or Lightcycler 2 (Roche Applied Science, Mann-

heim, Germany). To protect against cross-contamination, the UQPCR method was used [21,27]

in which uracil was substituted for thymidine for all PCRs, and incubation with uracil N-glyco-

sylase (UNG, extracted from G. morhua; ArcticZymes, Trømsø, Norway) was performed prior

to each reaction. Mock extraction blanks were performed with each extraction and amplified to

control for contamination. QPCR reactions varied slightly depending on the sample, but a typi-

cal reaction included 1.77 μL of LC FastStart DNA MasterPLUS mix 1b and 0.23 μL of either

FastStart DNA MasterPLUS mix 1a or FastStart Taq (Roche Applied Science, Mannheim, Ger-

many), 1 μM of each primer (Sigma Aldrich, St. Louis, USA) and 1U of UNG and water to

10 μL total volume. QPCR programs consisted of a UNG incubation step at 37˚C for 15 minutes,

followed by polymerase activation at 95˚C for 8 minutes, 60 to 80 two-step cycles of denatur-

ation at 95˚C for 10 seconds, primer annealing and extension at 58–62˚C for 40–60 seconds,

and finally a temperature increase of 0.1˚C/1 second from the annealing temperature to 95˚C

with continuous fluorescence measurement to generate melt-curves of the products.

For each ancient sample, at least two independent extractions were performed, separated in

time. Each extract was amplified with several primers and each PCR product was obtained at
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least twice. An average of one non-template control (NTC) was run for every 6.6 samples

(including mock extracts). No DNA was amplified in either NTCs or mock extracts, indicating

no detectable exogenous equid DNA was introduced during sample or PCR preparation, or

was present in reagents.

Products were purified using QIAquick PCR purification kit (Qiagen, Hilden, Germany)

and both strands were sequenced by capillary electrophoresis at Eurofins/MWG Operon

(Ebersberg, Germany) using an ABI 3730xl DNA Analyzer (Life Technologies). Sanger electro-

pherograms were visually inspected and sequences manually curated, assembled and aligned

using the Geneious software suite [28].

PCR analyses of the samples replicated at Humboldt University in Berlin were performed

using an overlapping set of primers as described [29]. Using these primers, 713 bp (15.468–

16.181 nps) were amplified with a two-step multiplex PCR. Overlapping PCR products,

including primers, varied in length between 108 bp and 178 bp. PCR conditions were as

described [29]. Multiple negative extraction controls and negative PCR controls were per-

formed. Amplification products were visualized on agarose gel and sequenced on an ABI

PRISM 3730 capillary sequencer using the BigDye Terminator v3.1 cycle sequencing kit

(Applied Biosystems). The resulting sequences were aligned with those obtained in Paris and

found to be identical over their overlapping lengths.

DNA amplification from blood samples originating from individuals at the Hai-Bar Yotveta

breeding core, Israel, was performed at the Jacob Blaustein Institutes for Desert Research, Ben-

Gurion University of the Negev, Israel. The 20 μl reactions contained 20 ng DNA, 0.25 μM of

each of the primers EA1 and EA63, 500 μM dNTPs, 2 mM MgCl2 and 1 U Taq DNA polymer-

ase (Hylabs, Rehovot, Israel). PCR conditions were: 5 minutes at 95˚C followed by 40 cycles of

10 seconds at 95˚C, 30 seconds at 62˚C and 15 seconds at 68˚C, and a final elongation step of

10 minutes at 72˚C. PCR products were purified using Exosap IT (USB, Cleveland, OH), and

sequenced by ABI 3730XL DNA analyzer (Applied Biosystems).

Phylogenetic and phylogeographic analyses

Phylogenetic analyses were performed on the sequences obtained from 26 archeological sam-

ples, 9 museum specimens, 53 modern samples, and supplemented with 33 sequences from

public databases.

Spatial genetics (sPCA). To investigate the potential relationship between geographic dis-

tances and genetic variation, a spatial principal component analysis (sPCA) was carried out on

a 229-bp-long sequence of 102 archeological, museum and modern georeferenced samples

(Table D in S1 File) using the R packages ade4 and adegenet [30–32].

While with PCA the optimization criterion only deals with genetic variance, sPCA aims at

finding independent synthetic variables that maximize the product of the genetic variance and

spatial autocorrelation measured by Moran’s I [33]. This is accomplished by the eigenvalue

decomposition among individuals via a neighboring graph (in this study a Delaunay triangula-

tion was chosen) connecting the individuals on the geographical map to model spatial struc-

ture. Resulting eigenvalues can be either positive or negative reflecting respectively either a

global or local spatial pattern. A global structure implies that each sampling location is geneti-

cally closer to neighbors than randomly chosen locations. Conversely, a stronger genetic differ-

entiation among neighbors than among random pairs of entities characterizes a local

structure. To evaluate the consistency of the detected geographical structures versus a random

spatial distribution of the observed genetic variance, a Monte-Carlo based test was applied

[32]. This test simulated a random distribution of the genetic variability (null hypothesis) on

the Delaunay triangulation connection network and calculated a p-value depending on the
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dataset. The simulated distribution represents the correlation of the randomized genetic vari-

ables with the vectors of the Moran’s I predicting for the global or local structure. If the value

associated to the observed pattern is higher than the p-value, the spatial distribution of the

genetic variance is not random and the null hypothesis can be rejected. We applied the test

with 10,000 iterations.

For representing the sPCA scores of each individual we used the colorplot function imple-

mented in the R-software package adegenet [31]. This function visualizes up to three scores at

the same time by translating each score into a color channel (RGB for red, green, and blue).

The values obtained were expressed as a single color under the RGB system as a parameter of

the individual genetic constitution and projected on a world map. The sPCA scores, RGB and

GPS values for each georeferenced individual shown in the phylogenetic tree are listed in

Table D in S1 File. The sPCA scores correspond to the first three axes, as well as the last (36th)

one. The RGB values are derived from the first three axes of the analysis. The graphical repre-

sentation of the various results of the sPCA analysis are represented in Figs C-G in S2 File.

Each successfully analyzed sample was placed on the map as closely as possible to its geo-

graphical location and colored using the attributed RGB values representing the sPCA results

(Fig 1B). The color obtained from the sPCA scores was also manually assigned to each

sequence on the median joining network (Fig 2A), the maximum likelihood tree (Fig 2B) and

the Beast tree (Fig 3).

Median joining network. The median joining network of mitochondrial HVR (Fig 2A)

was constructed using the 229-bp-long sequences and the Network 4.6.0.0 program with a

maximum parsimony post processing step (http://www.fluxus-engineering.com) [34].

Maximum likelihood analysis. Maximum likelihood (ML) analyses were computed using

either the 229-bp-long HVR sequences of both ancient and modern samples (Fig 2B) or the

contiguous 295-bp-long HVR sequence to analyze both historical and present-day kiangs and

dziggetais (Fig 4B) with the software PHYML 3.0 [35,36]. Since E. hemionus mitochondrial

sequences harbor a specific 28-bp-deletion that distinguishes them from all other equid

sequences, and since the phylogenetic information of a deletion is not properly accounted for

by substitution models, we performed ML analyses of the hypervariable regions using only

sequences with this deletion. Based on model comparison criteria performed with jModelTest

[37], we considered a TN93 model for the nucleotide substitution model [38] and a gamma-

distributed rate of variation among sites (+G) with four rate categories (i.e., TN93+G model).

We used 1000 bootstraps to estimate node robustness. We also used RaXML 8.2.3 [39] with

the bootstrap convergence criterion autoMRE, which performed about a 1000 bootstraps, to

determine the ML bootstrap support of the nodes of the maximum clade credibility tree of the

Bayesian analysis presented in Fig H in S2 File.

BEAST analysis. Phylogenetic analyses were conducted under the Bayesian framework

implemented in the program BEAST v. 1.7.5, which allows estimation of mutation and popula-

tion history parameters simultaneously from temporally spaced sequence data [40]. We used

the 229-bp-long HVR sequence and the corresponding mitochondrial reference sequence of

the domesticated donkey as an outgroup, and enforced monophyly to all sequences harboring

the specific 28-bp-deletion. We used a strict molecular clock with a uniform prior over the

(10−12, 10−6) interval for the substitution rate measured in substitutions per site and per year.

Based on model comparisons criteria performed with jModelTest [37], we further considered

a TN93 model for the nucleotide substitution model [38] and a gamma-distributed rate of vari-

ation among sites (+G) with four rate categories (i.e., TN93+G model). Default priors were

used for the seven parameters (alpha, kappa1, kappa2 and the four nucleotide frequencies) of

the TN93+G nucleotide substitution model. Finally, a standard coalescent model was consid-

ered for the tree prior with a constant population size [41,42] and a log-normal prior

Eurasiatic wild asses through time and space

PLOS ONE | https://doi.org/10.1371/journal.pone.0174216 April 19, 2017 8 / 28

http://www.fluxus-engineering.com
https://doi.org/10.1371/journal.pone.0174216


distribution for the tree prior height with a mean of 13.5, a standard deviation of 0.843 and an

offset of 1,500,000 years. This prior distribution is centered on 2,230,000 years, which integrate

the various assumed and estimated divergence times between the ancestors of African and Asi-

atic wild asses [17,43,44], but within a relatively large range of possible values as the 95% credi-

bility interval covers 1,640,000 to 5,300,000 years. The simplifying assumption of a constant

Fig 2. Median joining network analysis (A) and maximum likelihood analysis based on PHYML (B).

The names of the deduced clades are indicated in italics. The colors of the box with the clade name follow the

same convention as in the sPCA analysis displayed in Fig 1.

https://doi.org/10.1371/journal.pone.0174216.g002
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population size overall was made to avoid overfitting of the data with too many parameters

because populations must have expanded and contracted locally in a complex manner given

the very wide spatial and temporal ranges considered in this study.

To estimate the posterior distribution of each parameter of interest, we used the Markov

Chain Monte Carlo algorithm implemented in the BEAST software. We ran ten independent

chains with initial values sampled as described above and an input UPGMA tree constructed

using a Juke-Cantor distance matrix. Each of these chains was run for 10,000,000 iterations

Fig 3. Phylogenetic tree of the mitochondrial control region of the Eurasiatic wild ass constructed through BEAST analysis. The corresponding

E. asinus DNA region was used as an outgroup. The estimated median height of the nodes is indicated in red, in kiloyears (kyears), and the thickness of

the lines is proportional to the posterior clade probability (the scale is represented). The mean substitution rate averaged across the whole tree is 8.5 E-8

substitutions per site per million years (95% HPD interval: 2.1–18.8 E-8). The colors of the box surrounding each individual sequence follow the same

convention as in the sPCA analysis displayed in Fig 1. The names of the deduced clades are indicated in italics. The symbols following each sequence

name indicated the origin of the sample (Square: Archeological; Triangle: Historical; Circle: Modern), and the red circles indicate the modern dziggetais

(see text). For an enlarged representation of the tree containing the names of the sequences, the 95% HPD of the node height values, the posterior

probabilities of the nodes and their bootstrap values by ML analysis, see Fig H in S2 File.

https://doi.org/10.1371/journal.pone.0174216.g003
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Fig 4. Geographic distribution of the analyzed kiangs and dziggetais and maximum likelihood phylogeny

of the K/KD clades. (A) The map indicates the current areas of distribution of kiangs (pink) and dziggetais

(orange) as determined by IUCN [3,4], as well as the location of the collected wild samples. Symbols and colors

schemes are used to represent the various samples and populations. The southern Tibetan reserves populated by

kiangs (Nyalam, Gyirong, Ngamring and Tingri; [54]), are represented by green circles, whereas the blue circles

indicate the kiang samples collected north of Tibet [49]. The dziggetai samples analyzed herein, as well as those

from the Kalamaili natural reserve [54], whose mitogenomes belong to the D1 and D2 clades are indicated by white

circles and stars, respectively, whereas those belonging to the KD clade are represented by red circles.

Differences in the East-West distribution of the Dziggetai D1 and D2 clades are observed, although it is unclear

Eurasiatic wild asses through time and space
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and for each parameter of interest, 4,500 samples (one every 2,000 generated ones) were

drawn after discarding a 10% burn-in period. The BEAST output was analyzed with the soft-

ware TRACER v. 1.5.0 [45]. Visual inspection of the traces and the estimated posterior distri-

butions suggested that each MCMC had converged on its stationary distribution. In particular,

effective sample size (ESS) values varied from around 300 to around 3,000 (most being over

600). Using Logcombiner, we further combined all the results from the 10 independent chains

leading to combined ESSs ranging from 3,500 to 34,000. The maximum clade credibility tree

with the median height of the nodes was finally calculated using TreeAnnotator v. 1.7.5 and

visualized using FigTree v.1.4.0 http://tree.bio.ed.ac.uk/software/figtree/webcite.

Summary statistics. The various summary statistics were computed using DNASP v5.1

[46] and Arlequin v3.5.1.3 [47] and are presented in Tables 1–3 using the 229-bp-long HVR

sequences and in Table E in S1 File using the 295-bp-long HVR sequence of the historical and

present-day kiangs and dziggetais.

Results

In order to characterize the ancient and extant genetic diversity and population structure, we

studied the mitochondrial lineages of the wild asses from Europe and Asia, over the last

100,000 years from 70 sites in Europe and Asia. We targeted a 295-bp-region in the E. hemio-
nus mitogenome that encompasses a specific 28-bp-deletion, absent in other equids, which is a

useful barcode for this taxonomic group of Equus. Although this choice restricted our analyses

to a single marker of the maternal lineage, thus limiting the phylogenetic resolution and infor-

mation that can be obtained [17], making use of this high copy marker allowed us to include a

large number of important ancient samples from warm environments, which would otherwise

have been excluded having extremely poor DNA preservation. We obtained DNA sequences

from (i) 57 out of the 189 archeological samples analyzed that had been attributed on

how these correlate with the East-West distributions observed for microsatellite markers in [76]. (B) The ML

phylogeny of the kiang and dziggetai sequences of the KD and K clades was performed with PHYML [35] using the

full contiguous 295-bp-long HVR sequence. The bootstrap values of the nodes are indicated (1000 bootstraps).

The red, green and blue circles indicate the geolocalized dziggetais, northern Tibetan kiangs, southern Tibetan

kiangs, respectively, as in panel A. The modern kiang from zoos are represented with black circles whereas the

historical kiang specimens are represented with a grey triangle. See also Table E in S1 File for the summary

statistics of the kiang and dzigettai populations analyzed here.

https://doi.org/10.1371/journal.pone.0174216.g004

Table 1. Population pairwise Fst values. Population pairwise Fst values: Distance method pairwise difference.

Gobi Tibet Iran

(ancient)

Iran-Turkmenistan

(modern)

Caucasus Anatolia-

Balkans

Syria

Gobi 0 0.00901 ± 0.0091 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Tibet 0.14212 0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Iran (ancient) 0.34288 0.52891 0 0.00 ± 0.00 0.08108 ± 0.0212* 0.00 ± 0.00 0.00 ± 0.00

Iran-Turkmenistan

(modern)

0.42786 0.54144 0.29414 0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Caucasus 0.54529 0.73930 0.10069* 0.57956 0 0.00 ± 0.00 0.00901 ± 0.0091

Anatolia-Balkans (with

Artenac)

0.42281 0.60104 0.50186 0.55531 0.79964 0

Syria 0.45511 0.68097 0.33034 0.55005 0.82065 0.77230 0

Fst values are indicated in bold letters in the lower diagonal, whereas the Fst P values (number of permutations: 110) are indicated in the upper diagonal.

The Fst value marked with a * is not significant (Pval>0.05). For Iran, sequences from ancient and modern specimens are treated separately, as indicated.

https://doi.org/10.1371/journal.pone.0174216.t001
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morphological grounds to E. hemionus, E. kiang, or E. hydruntinus: (ii) all of the 11 historical

museum specimens analyzed (between 60 and 180 years old) of onagers, hemippi, khurs and

kiangs; (iii) 53 present-day samples, 94% of which originated from wild individuals, coming

from the Gobi Desert (dziggetais) and from protected nature reserves in Iran and Israel. These

sequences were enriched by 32 sequences of present-day individuals and one sequence of an

ancient specimen published in GenBank. Since several of the archeological samples yielded

only partial coverage of the full 295-bp-region (see Fig A in S2 File), we searched for the opti-

mal combination balancing sequence length with sample representation. To satisfy these crite-

ria, we selected a 229-bp sub-region for phylogenetic analyses that allowed for the inclusion of

27 archeological samples, 9 museum specimens, and all modern samples.

Population structure of the wild ass in Asia and Europe

To investigate the potential relationship between geographic distances and genetic variation

we used a spatial principal component analysis (sPCA; [32]) that integrates genetic data and

georeferenced positions of the samples and displays the three principal component relation-

ships as a color code, allowing a visual characterization of the sPCA results (Fig 1B; see also

Material & methods and Table D in S1 File). These sPCA-derived color codes were further

used to represent the samples in the other genetic and phylogenetic analyses presented in this

Table 3. Measurements of intrapopulation diversity.

Population Nind Nhap Haplotype diversity Nucleotide diversity, Pi Theta(k) Theta(S) Theta(Pi) Theta (per site)

Gobi 23 12 0.93 ± 0.03 0.041 ± 0.021 9.41 6.23± 2.36 9.40 ± 5.00 0.028

Tibet 17 11 0.95 ± 0.03 0.026 ± 0.014 12.40 4.44 ± 1.88 5.93 ± 3.33 0.019

Iran (ancient) 12 9 0.94 ± 0.06 0.043 ± 0.024 14.69 9.27 ± 3.89 9.89 ± 5.49 0.040

Iran-Turkmenistan (modern) 45 7 0.76 ± 0.05 0.028 ± 0.015 2.08 5.49 ± 1.87 6.51 ± 3.48 0.024

Caucasus 5 2 0.60 ± 0.18 0.008 ± 0.006 0.69 1.44 ± 1.02 1.80 ± 1.44 0.006

Anatolia-Balkans with Artenac 9 5 0.83 ± 0.10 0.018 ± 0.011 3.83 4.42 ± 2.16 4.11 ± 2.56 0.019

Anatolia-Balkans without Artenac 8 4 0.79 ± 0.11 0.012 ± 0.008 2.50 2.31 ± 1.31 2.79 ± 1.87 0.010

Syria 6 3 0.60 ± 0.21 0.005 ± 0.004 1.70 1.31 ± 0.91 1.20 ± 1.02 0.006

Nind: number of individuals, Nhap: number of haplotypes. The ± indicates the standard deviation. These summary statistics were calculated using Arlequin

and DNAsp.

https://doi.org/10.1371/journal.pone.0174216.t003

Table 2. Pairwise distance between population.

Gobi Tibet Iran (ancient) Iran-Turkmenistan (modern) Caucasus Anatolia-Balkans Syria India

Gobi 0.00618 0.02551 0.02678 0.04816 0.02288 0.03182 0.03025

Tibet 0.03861 0.04194 0.03585 0.06341 0.03309 0.04793 0.04369

Iran (ancient) 0.06694 0.07538 0.01501 0.00532 0.03328 0.01822 0.03200

Iran-Turkmenistan (modern) 0.06071 0.06179 0.04995 0.04163 0.01771 0.03648 0.04013

Caucasus 0.07234 0.08330 0.03050 0.05932 0.05687 0.03012 0.05241

Anatolia-Balkans (with Artenac) 0.05564 0.05785 0.06705 0.05806 0.07338 0.04230 0.02289

Syria 0.05467 0.06279 0.04208 0.05283 0.03672 0.05748 0.03632

India 0.05265 0.05809 0.05679 0.05604 0.05857 0.03762 0.04115

The lower half of the diagonal of the table represents the pairwise nucleotide divergence (average number of nucleotide substitution per site) with Jukes and

Cantor correction, Dxy(JC), whereas the upper half (italicized) represents the net pairwise nucleotide divergence (net average number of nucleotide

substitution per site) with Jukes and Cantor correction, Da(JC). Analyses were conducted using DNAsp [46].

https://doi.org/10.1371/journal.pone.0174216.t002
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study, such as the representation of the relationships between sequences with the median join-

ing network (MJN, Fig 2A), as well as maximum likelihood (ML, Figs 2B and 4B) and Bayesian

(Fig 3; Fig H in S2 File) phylogenies.

The sPCA reveals a clear phylogeographic structure of the data. The MJN and phylogenetic

analyses show the sequences recovered belonging to eleven clades that we named with letters

coding for either their geographical origin or their taxon (Figs 2B and 3). Each of the eleven

clades is essentially dominant in a distinct geographical territory, i.e., Anatolia-Balkans-west-

ern Europe, Syria, the Caucasus, the Tibetan Plateau, modern Iran-Turkmenistan and north-

west India, apart from ancient Iran and the Gobi, which contain three different clades each. In

the following, we will consider only the most robust phylogenetic relationships between clades

that were consistently observed irrespective of the phylogenetic analysis method used (MJN,

ML, and Bayesian).

We used summary statistic approaches to analyze the genetic diversity within and

between each territory (Tables 1–3). The analysis of the genetic distance between the popula-

tions as expressed through the fixation index FST is reported in Table 1. While there is mod-

erate genetic differentiation between the modern populations from the Gobi and the Tibetan

plateau (FST = 0.104), and between the ancient Caucasian and Iranian populations (FST =

0.1), the other populations including the modern wild asses from Iran and Turkmenistan, as

well as the ancient populations from Syria, Anatolia and the Balkans are highly differentiated

with FST values between 0.33 and 0.82, a differentiation with high statistical support

(Table 1).

Several measures of molecular genetic variability within populations were used, namely

nucleotide diversity Pi (P) and the population parameter Theta (ϴ) as estimated using several

methods (Table 3). The highest intra-population genetic diversity was detected in the ancient

Iranian and extant Gobi populations followed by the extant population of the Tibetan plateau

(Table 3). The other populations are less diverse, the least diverse being the ancient, extinct

populations from Anatolia and the Balkans, the Caucasus, and Syria (Table 3).

In the following we describe the various clades grouped by larger geographical regions and

correlate them with present-day subspecies.

I, CI and TI clades: onagers and kulans. The ancient (9,000 to 3,000-year-old) and modern

Iranian specimens were found to belong to three clades (Figs 2 and 3) named I, CI and TI that

are distributed over a large portion of the phylogenetic trees (Figs 2 and 3). The CI clade

includes the ancient samples from the Caucasus and Iran and shows a high diversity. All but

one of the ancient Caucasian samples belong to this clade (Fig 1B). The Caucasian population

has since disappeared and the CI clade is presently poorly represented in Iran with only a sin-

gle present-day sequence in the database [44].

A few ancient (9,000 to 3,000-year-old) and most present-day Iranian onagers (E. h. onager)
belong to the I clade whereas the present-day Turkmen kulans (E. h. kulan) belong to the TI
clade (Figs 2 and 3). A small number of both ancient (8,000 to 3,000-year-old) and modern Ira-

nian onagers also belong to the TI clade, albeit to a sub-clade (TI�) that diverged from Turk-

men kulans at an early stage of the radiation of the TI clade. Consistent with the above

findings, the wild ass colony that was established in Israel in the 1970s from 6 Iranian and 5

Turkmen wild asses belong to both the I and TI clades.

Kh clade: khurs. The wild asses of northern India, or khurs (E. h. khur), are at present

found in the reserve of the Rann of Kachchh (Kutch) and its surroundings. We analyzed 19th

century museum specimens of the khur originating from northwest India. Their sequences

form the Kh clade (Figs 2 and 3). HVR sequences (240 bp) from the present-day khurs of Rann

of Kachchh [48] share with the historic khur samples the characteristic SNPs of the Kh clade

(Fig B in S2 File).
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K, KD, D1 and D2 clades: kiangs and dziggetais. Mongolia and Tibet host two populations

of wild asses: dziggetais (also called “kulans”; E. h. hemionus), and kiangs (E. kiang). Our find-

ings show the intrapopulation nucleotide diversity of the Mongolian dziggetais to be the high-

est of all present-day wild ass populations, similar only to that found in the ancient Iranian

population (Table 3). This high diversity suggests that these populations have not been subject

to the severe bottlenecks that appear to have affected other modern hemione populations. All

dziggetais studied correspond to present-day individuals and belong to either the KD, D1 or
D2 clades (dziggetais are indicated by a red dot in Figs 2–4). The 17 analyzed kiangs, corre-

sponding to museum specimens from the 19th century as well as present-day individuals,

belong to the KD and K clades. The branches of the K, KD, D1 and D2 clades emerge at differ-

ent locations in the phylogenetic trees (Figs 2 and 3). The K and KD clades are phylogenetically

closely related (Figs 2 and 3). The K clade encompasses only kiangs, in particular the wild

kiangs from the southern part of Tibet (Fig 4). The present-day dziggetais from the KD clade

have sequences that are closely related to those of kiangs found outside of southern Tibet,

which include 60% of the kiangs originating from zoos as well as those from an area north of

Tibet [49] (Fig 4).

Clade S: hemippi. The smallest of the Eurasiatic wild asses, the Syrian wild ass, or hemi-

ppus (E. h. hemippus), which stood only one meter at the withers, is now extinct. The last

recorded animal was captured in the desert of Alep and died in 1929 in Vienna (Fig P in S2

File) [50]. Expectedly, the mitochondrial lineages from four museum samples of the 19th and

20th century cluster together but, strikingly, these same lineages are also found in ancient spec-

imens from Tall Munbāqa (Syria), located on the Middle Syrian Euphrates and dating to ca.

1,500–1,200 BCE. Together, they form the S clade that is related to the CI and D1 clades (Figs 2

and 3). The paternal lineage of the hemippus based on the analysis of the Y chromosomes of

both ancient and museum samples is also distinct from that found in other wild asses (Bennett

et al., in preparation), indicating a continued reproductive isolation of this group.

Our observation of the genetic continuity over 5,000 years of the Syrian wild ass population

led us to revisit the observation that Syrian wild asses from the site of Shams ed-Din Tannira

(6th millennium BCE) were larger than the modern hemippi [51]. We thus compared osteo-

metric data from the Shams ed-Din Tannira specimens with those of this study: the 19th-20th

century hemippi, and Bronze Age Syrian wild asses from Tell Munbāqa (2nd millennium

BCE). For this comparison osteometric data (provided by L. Gourichon and D. Helmer) from

10th-9th millennia BCE Tell Mureybet, located in the middle Syrian Euphrates valley, were also

used, and, as an outgroup, individuals from Göbekli Tepe (10th-9th millennia BCE), about 150

km further north in southeastern Anatolia, where genetically determined individuals belonged

to clade CI. The comparison of various measurements from post-cranial skeletal parts reveals

that the prehistoric Syrian individuals range within the upper part of the size variation of their

modern descendants or even surpass these in size (Supporting Information, section III.1.4. in

S2 File; Table H in S1 File and Fig K-L in S2 File). This analysis showed a difference in average

bone size between the prehistoric Syrian and Anatolian sub-populations: the wild asses hunted

near Göbekli Tepe were clearly heavier than those living further south (Tell Mureybet and

Munbāqa). The difference from these two areas both in bone size and of the two correspond-

ing mitochondrial clades point to two distinct morphotypes. Thus, even though the prehistoric

Syrian wild asses were already smaller than their neighboring Anatolian relatives, they were

still of a more robust build compared to their modern descendants.

H1 and H2 clades: hydruntines. After observing inconsistencies between our preliminary

genetic data and the initial taxonomic assignment of certain remains, we subjected all available

bone and tooth samples from which we obtained DNA sequences to a “cross-determination”

performed as a blind test by several of the osteologists participating in this research. In a
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number of cases, substantial disagreement among them was observed (Table K in S1 File). As

emphasized previously ([9] and citations therein), this demonstrates the difficulties of assign-

ing equid remains to (sub)species level based on osteomorphology and/or osteometry. For this

reason, paleontologists tend to include non-morphological criteria in their taxonomic assess-

ments, such as the time period and the geographical area from which the specimen in question

originated, a strategy which can lead to circular reasoning (see discussion in [9]). Accurate tax-

onomic identification of hydruntine (E. hydruntinus), known only from fossil remains for

which osteological and odontological diversity have not been well characterized, proved to be

particularly problematic. In our study, 40% of the bones and teeth assigned on osteomorpholo-

gical grounds to hydruntine by a subset of the osteologists involved yielded sequences cluster-

ing with E. caballus. Some of the caballine sequences obtained from these ancient specimens

are either at present extinct or have not yet been found in modern horses (data not shown).

Thus, for this taxon we adopted a ‘specificity index’ based on the degree of agreement among

the specialists of equine osteomorphology that allowed us to consider archeological specimens

most confidently assigned as hydruntine (see discussion in the Supporting Information section

III.3 in S2 File, Fig O in S2 File and Table K in S1 File). This procedure enabled us to character-

ize the distinct genetic structure of these ancient populations that has eluded previous

attempts.

This approach revealed an extinct clade, H1, comprising sequences from archaeological

specimens dated from 5,000 to 8,000 years BP, from bones and teeth that achieved the highest

specificity index in our classification of morphological determination of hydruntine (Table K

in S1 File; Fig O in S2 File). This group comprises all remains that were identified as hydrun-

tine with a specificity index >0.5 including the three remains all osteologists unanimously

agreed upon. Nearly all specimens found in Anatolia and the Balkans belong to the H1 clade

(Figs 2 and 3). Despite their geographical proximity, the H1 clade is genetically distant from

the S, CI and I clades and appears more closely related to the TI and Kh clades suggesting a dif-

ferent phylogenetic history than that of its geographic neighbors. Additionally, a metapodial

from the Early Upper Pleistocene cave of Artenac, France, with a stratigraphic age of roughly

100,000 years was determined as clearly belonging to E. hydruntinus with a specificity index of

1 (Table K in S1 File; Fig O in S2 File). This sample yielded a mitochondrial sequence that was

assigned to a distinct H1-related clade, H2. Surprisingly, this clade was also found in an early

20th century museum specimen originating from Iran. This allowed us to identify two mito-

types: H1 and H2, most likely representing the extinct hydruntine. All presumed hydruntines

that belonged genetically to another wild ass clade had an average specificity index at least

twice as low (Fig O in S2 File). The phylogenetic proximity of the H1 and H2 clades with the

TI and Kh clades (Figs 2B and 3) indicates the hydruntine to be a subspecies of E. hemionus, to

the same degree as kiangs, dziggetais, hemippi, kulans, khurs, extinct and extant onagers, alto-

gether forming a group that can be referred to as the Eurasiatic wild ass.

Discussion

Origins

Equids evolved in North America before dispersing into Asia around 2.6 million years ago

(Mya) [52]. Genomic data indicate that caballoid and stenonid equids diverged from each

other ca. 4.5 Mya, and that gene flow between them ceased around the beginning of the Asian

dispersal [14]. Among stenonids, the separation of asses and zebras has been estimated at ca. 2

Mya while that of African and Eurasiatic asses has been estimated at ca. 1.7 Mya ([14], see Fig I

in S2 File). Our data, based on the mitochondrial HVR, are consistent with these estimates

(Fig 3, Figs H-I in S2 File). Since the mitochondrial genomes of all Eurasiatic wild asses are
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characterized by a 28-bp deletion that has a very low probability of being homoplasic, they

most likely constitute a monophyletic group. Where did this group emerge? All present-day

stenonids are African, except for the Eurasiatic wild asses, and the earliest datable fossil evi-

dence of Equus in Africa occurs ca. 2.33 Mya [53]. Thus, it could be hypothesized that the last

common ancestor of all present-day stenonids was African. In this scenario, the Eurasiatic

wild ass could have emerged ca 1.7 Mya from an ancestral ass-like population living in north-

ern Africa, the Arabian peninsula and the Levant. Since all Eurasiatic wild ass mitogenomes

evolved from an ancestral stenonid mitogenome after a single 28-bp-deletion event has

occurred, the ancestral population of the Eurasiatic wild ass must have gone through a severe

bottleneck before or during its migration into Eurasia. Alternatively, the ancestral stenonids

population could have evolved in the plains of central Asia, from where at least two indepen-

dent migration waves into Africa gave rise first to the zebras around 2 Mya, and second to the

African asses ca. 1.7 Mya. In this scenario, a severe bottleneck must have affected the popula-

tion that remained in Asia leaving only the descendents of the deletion-harboring lineage that

emerged between about 700 and 800 kiloyears ago ([14, 44] and Fig 3). The mitogenome

sequence of a ca. 45,000-year-old Siberian Sussemionus (E. ovodovi) is in favor of this latter

hypothesis since it reveals an extinct Asian lineage that has diverged from other stenonids

around the time of separation of the zebras and the asses ([44]; Fig I in S2 File). Genomic data

do not yet enable us to decide which of the two hypotheses is more likely, and fossil evidence

in certain regions is lacking, due in part to taphonomic reasons, but also to the rarity of

detailed morphological description, consistent analyses and rigorous comparison [53]. Follow-

ing divergence from other stenonids, the ancestral population of hemiones would have dis-

persed on the Eurasiatic continent where the populations would have further evolved and

phylogeographic stratification taken place.

The phylogenetic relationships between the various mitogenome clades do not reveal a sim-

ple relationship with geographical distance but rather suggest a complex phylogeographic his-

tory with back-and-forth migrations. It is important to note that we base our conclusions only

on those differences between clades that are found irrespective of the phylogenetic methods

used and that have the strongest support. Our data suggest that Eurasiatic wild asses harboring

the KD/K clade mitogenomes may have migrated during the Middle Pleistocene into the Gobi

and Tibet where they evolved independently. Eurasiatic wild asses with either of the I, CI, S,

D1 clade mitogenomes may have evolved in Southwest Asia where most of them were found

in the Holocene, from where some of them (D1 clade) migrated to the Gobi, presumably not

before the end of the Middle Pleistocene. Central Asia, where clade TI is still found, may also

have allowed evolution of the Eurasiatic wild asses that are related to the TI clade and that have

spread into Europe (H1 and H2 clades), India (Kh clade) and the Gobi (D2 clade). Since the

H1 and H2 clades are more distantly related to the clades established in Southwest Asia (I, CI,
S) than to the TI clade (Figs 2 and 3, see also Tables 1 and 2), we hypothesize that they have col-

onized Europe during the Pleistocene through a route skirting Southwest Asia, for example

through a northern route involving the Pontic-Caspian Steppes, and that they arrived later in

Anatolia coming from Europe at times when the Bosporus was a land bridge. Such a scenario

would explain the strong differentiation of the H1 clade in Anatolia with respect to the geo-

graphically neighboring populations of the Syrian hemippi S and the Iranian onagers I and CI
(Tables 1 and 2) as well as their closer relatedness to the Turkmen kulans TI, the Indian khurs

Kh and the Mongolian dziggetais D2 (Figs 2 and 3).

The colonization of Northeast Asia was likely to have involved several waves. Since the K/
KD clades are the most distantly related to the other clades (Figs 2 and 3) and the Bayesian

analysis (Fig 3) indicates that they were the earliest to diverge from the other hemiones, they

may descend from the initial population that established itself in northeast Asia and adapted to
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the high altitude of Tibet. The sampling of the present-day wild populations is biased in favor

of the southern Tibetan population from the natural reserves of Nyalam, Gyirong, Ngamring

and Tingri ([54] and Fig 4A). The corresponding samples belong to the K clade alongside a

19th century museum sample and two zoo specimens (Fig 4B). All other kiang sequences

belong to the KD clade and correspond to zoo and museum specimens of various origins as

well as to samples from wild animals collected north of Tibet (Fig 4B; Tab. C in S1 File). This

suggests that the KD and K clades correspond to the northern and southern Tibetan kiang

populations, respectively, and the two corresponding populations may have had limited

exchange due to the Himalayan chain.

In contrast, three phylogenetically distant mitochondrial clades, KD, D1 and D2, are found

in the dziggetai populations from Mongolia, which suggests that they may have resulted from

three colonization waves: the first corresponded to the initial population giving rise to the

kiang that could have extended from Mongolia to northern Tibet (KD). The later colonization

waves introduced the D2 clade that is most closely related to the Turkmen TI clade, as well as

the D1 clade that is most closely related to the Caucasian (CI) and Syrian (S) clades. The differ-

ent phylogenetic affiliations of these latter two clades suggest independent colonization events.

Since a large part of the diversity of the mitogenomes of the KD clade is found among both

kiangs and dziggetais, including recently evolved haplotypes (compare the distribution of the

dziggetais indicated by a red dot with that of the kiangs on the phylogenetic trees shown in

Figs 2–4) and that very similar sequences are found in the two populations, there must have

been multiple admixture events in the more recent past. These must have been asymmetric,

because 10 dziggetais belong to the D(1+2) and 13 to the KD clade, but none of the 17 kiangs

belonged to either the D1 or D2 clade. A Fisher exact test indicates that there is a probability of

only 0.2% that such an unequal distribution would be observed in the absence of asymmetric

gene flow. Different scenarios could account for this asymmetry. In the first scenario, asses of

the D1 and D2 clades would have arrived in Mongolia already occupied by kiangs, whose

range extended from Mongolia to Tibet. The various ass populations would have interbred in

Mongolia giving rise to the present-day dziggetais. The later arriving asses of the D1 and D2
clades would not have pursued their migration to Tibet, maybe because they were not adapted

to high altitude. An alternative scenario would be that the members of the northern Tibetan

kiang population migrated regularly from the Himalayas to the Mongolian plain and interbred

with the Mongolian asses. Whatever the scenario, the interbred Mongolian population does

not appear to have migrated back to the highlands of Tibet. The regular introgression of mito-

chondrial genomes from northern Tibetan kiangs to dziggetais must have occurred rather

recently, in the Late Pleistocene or early Holocene at the latest, given the similarity between

the shared HVR sequences. These recent and multiple admixtures question the validity of the

classification of the kiang as a separate species (e.g., [55]).

Taxonomy and conservation biology

Conservation programs aim to preserve the evolutionary potential of a species using the classi-

fication of populations by their evolutionary significance based on ecological, morphological,

geographic and genetic criteria [56,57]. The characterization of clades presented in this study

thus provides a helpful guide for taxonomy and conservation biology. Our dataset reveals

events of past and recent mitochondrial introgression between populations that are now con-

sidered separate species, such as kiang (E. kiang), or subspecies, such as onager (E. h. onager)
and kulan (E. h. kulan) [55]. Poor genetic differentiation between kiangs and dziggetais (E. h.

hemionus) has also been observed in a microsatellite study of equid diversity involving a

smaller sample size (6 kiangs and 3 dziggetais) [58], indicating that our observation is not a
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peculiarity of the mitogenome transmission. We believe it may be more appropriate to con-

sider the kiang as a distinct population or perhaps even a metapopulation [59] of E. hemionus,
with specific adaptations to the high-altitude climate and vegetation of the Tibetan plateau.

The designation of onagers and kulans as separate evolutionary significant units has been

questioned [60]. Among the three clades that had representatives in Iran during the last 8,000

years, the I clade remained centered in Iran and is the prevalent clade in present-day onagers;

the CI clade shows a cline towards the Caucasus, where the corresponding population is now

extinct, and the TI clade shows a cline towards Turkmenistan. All three clades coexisted in the

past at a single location near present-day Tehran (Sagzabad, 3,500 years ago), and members of

these clades are still interbreeding, showing that these clades do not define true diverging allo-

patric lineages. Currently, Iranian and Turkmen wild asses kept in the Hai-Bar Yotveta reserve

in Israel are reported to interbreed and hybrids thrive without showing signs of outbreeding

depression [23,61]. Given the fact that the endemic relict populations in Iran and Turkmeni-

stan are shrinking rapidly, it is worth considering that in a not so distant past, when they occu-

pied large interconnected areas, crosses between neighboring populations allowed gene flow

events that have only recently been interrupted, enhancing the risk of inbreeding depression.

Ensuring the survival of the Asiatic wild ass is a challenge that may justify managing the last

remaining populations as components of a viable metapopulation [62].

Palaeoecology of the Eurasiatic wild ass

The repeated glaciations alternating with warmer phases throughout the Pleistocene had

major impacts on the fauna, flora and the environment (e.g., [63,64]). These climatic oscilla-

tions were likely to also affect the distribution, speciation and population size of the wild asses.

In Western Europe, hydruntines were present only during the warmer and more humid inter-

glacial periods of the Pleistocene (e.g., [11,65]). This Western European ecomorphotype was

apparently adapted to milder climatic conditions and hilly landscapes (e.g., [11,65]). Indeed,

the analyzed specimens from the caves of Artenac and Quéroy in western France were dated

to ca. 100,000 (the Eemian interglacial) and ca. 12,700 years ago, respectively, periods charac-

terized by a milder climate corresponding to Marine Oxygen Isotope Stages 5 and 1 (e.g., [66–

68]). The populations of E. hydruntinus adapted to the warmer and more humid climate in

Europe during the interglacial stages were probably repeatedly separated from each other and/

or went locally extinct during subsequent glacial periods [6], a process that was possibly accel-

erated through competition with cold-adapted horses [69]. For example, the historical onager

we identified as belonging to the same H2 clade as the ca. 100,000-year-old individual from the

Artenac cave in France might be a descendant of the populations that retracted to the northern

Middle East during the Lower Pleniglacial cold period roughly 70,000 years ago (Fig 3). Corre-

spondingly, during the cold periods of the Pleistocene, the European wild ass likely withdrew

to Southwest Asia, solely or in addition to the southern European glacial refuges, a behavior

we also observed for the European bison [64].

The genetic structure of the Asiatic population of the wild ass seems conditioned by geo-

graphical and climatic factors: the Asiatic steppe belt, the Iranian highlands and the Kara Kum

desert in Turkmenistan, the mountainous Armenian highlands (Caucasus and western Iran),

the arid lowlands of Syria-Mesopotamia, the Anatolian highlands and the Balkans. Each of

these ecogeographical units harbored a genetically distinct population, which therefore can be

considered to be different ecomorphotypes. During the last glacial maximum, Anatolia’s for-

ests and woodlands disappeared and were replaced by cold steppe vegetation [70], climatic

conditions that could be compared to those of present-day Tibet where kiangs live today.

Thus, it may have been a favorable habitat for the Asiatic wild ass. Colder periods in the
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Pleistocene and the beginning of the Holocene, when the sea level was low, would have allowed

exchange between the European and the Anatolian populations until around 10,600–7,600 BP,

the presumed date of the filling of the Black sea (e.g., [71]). The steppe vegetation remained

dominant in Anatolia even after 10,000 BP, when humidity increased, slowly being replaced

by woodlands, a change that reached its peak around 8,000 BP, followed by a last regression

until 6,800 BP [70]. Unstable climatic conditions which began after 8,200 BP were marked by

climatic oscillations and fluctuating hydromorphological conditions, leading to drought and

heavy floods and to the increase of swamps in central Anatolia [72]. This, alongside anthropo-

genic pressure, could have been one of the reasons for the gradual disappearance of the Anato-

lian-Balkans population. The most recent specimens from the Anatolian plain harboring the

H1 mitotype date from 4,200–4,000 BP setting a lower limit for the date of disappearance of

the hydruntine in Anatolia.

The differentiation of the Syrian population with respect to the Iranian and Anatolian pop-

ulations could be explained by a long independent evolutionary history of these wild ass popu-

lations caused by the ecological barriers of the Zagros and the Taurus mountain ranges, which

separate the Syrian plain from the plateaus in Anatolia and Iran. South of the Taurus Moun-

tains, landscape and vegetation near the headwaters of the Upper Balikh received more precipi-

tation than the Middle Syrian Euphrates Valley near Tell Mureybet and likely offered more

favorable living conditions to E. hemionus [73]. This may explain the larger size of the Early

Neolithic E. hemionus from southeastern Anatolian Göbekli Tepe compared to the contempo-

raneous specimens from Middle Syrian Tell Mureybet and Late Bronze Age Tell Munbāqa.

Following the main vegetation zones [73], the larger subspecies was associated with the

xerophilous deciduous forest steppe, while the smaller one was confined to the Mesopotamian

steppes. Drought, desertification, overgrazing by livestock and increased anthropogenization

of the landscape combined with hunting pressure may explain the decline and extinction of

the hemippus. Despite genetic continuity through time, the Syrian wild ass population wit-

nessed a significant and previously unreported reduction in body size preceding its extinction.

The new genetic evidence presented here supports the hypothesis that the animal became

smaller in the relatively recent stages of its evolution preceding its extinction [51]. This might

be the result of impoverished living conditions and/or increasingly arid conditions in historical

times [74] pushing it into an ecological pessimum or the consequence of inbreeding depression

due to a decrease in population size (see Supporting Information section III 1.4.1 in S2 File).

The Asiatic populations of the northeast (kiangs and dziggetais) and of the southeast (ona-

gers, Turkmen kulans, khurs and hemippi) have been continually separated by the Central

Asian massif, which was covered by glaciers during the cold periods [75]. Nevertheless, at least

limited gene flow between populations of Eurasiatic wild asses could have taken place via the

Irtych valley and the Dzungarian basin, which were accessible owing to a very dry climate [6].

The observation that the extant dziggetai D1 and D2 clades cluster with the ancient and pres-

ent-day onagers and kulans argues in favor of the existence in the rather recent past of a popu-

lation continuum with introgression from Iran and/or Central Asia to the Gobi.

In summary, in the past, the Eurasiatic wild ass was able to adapt to changing climatic con-

ditions through population range shifts, which has become increasingly difficult due to habitat

destruction and fragmentation, preventing the animals from reacting according to their natu-

ral behavior and local habitat conditions [76].

H1 and H2, the hydruntine mitotype

It was formerly assumed, based on geographic distribution through time, rate of speciation

and capacity for sympatry deduced from morphological features of fossil remains, that
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stenonid and caballoid horses of the genus Equus differed ecologically, the stenonids being

more specialized and therefore adapted to narrower niches [77]. In contrast, the ecological

flexibility in the caballoids was considered to be the consequence of behavioral versatility

rather than increased morphological variation [77]. The present results question this conclu-

sion since fossils with presumed stenonid features were found during the course of this study

to show a caballine mitotype. Further genetic analysis of three of these samples revealed SNPs

of a Y-chromosome marker specific for E. caballus (Table A in S1 File), thus ruling out the pos-

sibility that these animals were F1 hybrids. This result rather indicates that the morphological

plasticity of past equids appears to be higher than previously assumed and that some criteria

used to determine species within this genus are in fact pleiomorphic.

Perhaps due to incorrect taxonomic identification of samples, no hydruntine-specific mito-

chondrial signature had been found in previous paleogenetic studies, which considered the

hydruntine to be an onager-like wild ass [16,17]. Despite these identification difficulties, we

could obtain data from a sufficient number of consensually assigned hydruntine bones to

establish that the E. hemionus H1 and H2 clades correspond to the paleontological species of E.

hydruntinus (see section III.3 in S2 File and table K in S1 File). The co-occurrence of an E.

hemionus mitotype signature with a set of distinctive morphological features found in this

study argues in favor of the hydruntine being a particular morphotype or ecomorphotype of E.

hemionus. Since the separation of the H1+2 clades from other mitotypes of E. hemionus is not

as ancient as that separating mitotypes of interfertile populations, like the KD, D1 and D2
clades of the dziggetais, our data do not support the classification of the hydruntine as a dis-

tinct species. Instead, it is probably more appropriate to consider it a subspecies (Equus hemio-
nus hydruntinus), as has been proposed for other current Eurasiatic wild ass populations, even

though it is not clear whether in biological terms this level of taxonomic differentiation corre-

sponds to something more than naming a population. The identification of the hydruntine as

a Eurasiatic wild ass finds additional support in contemporary cave art representations, such

as in Lascaux cave (Fig 5). The presence of E. hemionus in Europe when these works were cre-

ated challenges the assumption that, due to a previously presumed absence of this species in

Europe during the Upper Paleolithic, these images must therefore represent “deformed” horses

[78,79]. Representations of the hydruntine in other French caves (Engraving in the cave “Les

Trois Frères”, Grottes des Volpes, France; engraving on a pendant in the cave of Putois,

France) resemble present-day hemiones (Fig 5B and 5C) but show even longer ears. Strikingly,

long ears are also a distinct feature of the wild asses represented in hunt scenes on Late Neo-

lithic vessels excavated from the Anatolian site of Kösk Höyük (Fig 5D). In this site we found

eight equid bones with H1 haplotype suggesting that these depictions are representations of

the local hydruntine since there is no evidence for donkeys in Anatolia until the 4th millen-

nium BC at the earliest (e.g., [80,81]). Altogether these representations suggest that the ani-

mals’ ears were characteristic enough to be depicted. Their similarity lends further support to

our finding that the hydruntine populations from Anatolia and Europe were closely related.

The surprising recovery of the H2 subgroup known from a 100,000-year-old specimen

from Western Europe, which may represent an older hydruntine population, from an early

20th century museum specimen from Persia, suggests the possibility of ancient interbreeding

events between hydruntines and other Eurasiatic wild asses. Two other specimens yielded

incomplete sequences that were nevertheless sufficient to assign them to the H1 subgroup, one

from the Quéroy cave in western France, 12–13,000 years BP, and one from Scladina cave [16]

in Belgium, estimated to be between 30,000 and 40,000 years old (D. Bonjean, pers. comm.).

Later specimens from Romania and Turkey dated at 8,000 to 4,000 years BP belong to the H1
subgroup. Thus, all specimens belonging to the H1 subgroup, which shows a low level of diver-

sity, are between 40,000 to 4,000 years old (see Table A in S1 File). The distance from the H1 to
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Fig 5. Ancient representations of the Eurasiatic wild asses. A: Comparison of the “Panel of the hemione”

from the Lascaux cave, France (photo & copyright*: J.-M. Geneste, Centre National de Préhistoire-MCC) with a

Dziggetai from the southeastern Gobi in Mongolia (photo & copyright*: P. Kaczensky). B: Engraving of a

presumed hydruntine in the cave “Les Trois Frères”, Grottes des Volpes, France (photo modified from an

original of Robert Begouën by selective contrasting to enhance the visibility of the carving; original photo &

copyright*: R. Begouën), and graphical reconstruction of a hydruntine based on prehistoric engravings as well

as the morphological and genetic results presented here (drawing and copyright*: Erich Pucher). C:

Comparison of an engraving of a presumed hydruntine on a pendant in the cave of Putois, France (photo &

copyright*: Ph. Jugie, Musée National de Préhistoire MNP, Les Eyzies, Dist.RMN) with an onager from Touran,

Iran (photo & copyright*: Gertrud & Helmut Denzau). D: Depiction of a hunt scene of presumable hydruntines

on a vessel from the Late Neolithic site of Köşk Höyük in Anatolia (photo & copyright*: Aliye Öztan). *Reprinted

under a CC BY license, with permission from the copyright holders mentioned above.

https://doi.org/10.1371/journal.pone.0174216.g005
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the H2 mitotype suggests that the hydruntine population could have gone through a bottleneck

during the last two glacial periods and that Europe could have been recolonized from a refugial

population, as proposed earlier on morphological grounds [11]. Notably, “hydruntine” speci-

mens post-dating 4,000 years BP do not contain the genetic signature of hydruntines (Table A

in S1 File), but rather can be ascribed to other hemione clades. Our results are indicative of the

disappearance of the hydruntine-type of Eurasiatic wild ass around the end of the Bronze Age,

presumably following habitat fragmentation and human exploitation as proposed recently

[12].

This characterization of a past population of Eurasiatic wild ass in Europe should be noted

when considering low-intervention conservation management strategies of abandoned rural

areas such as “rewilding”, where an abundant wild large herbivore population was concluded

to have been instrumental in maintaining biodiversity of vegetation structures under a temper-

ate climate in the absence of human management [82]. Although the challenges of the reintro-

duction of species which have disappeared from Europe a few millennia ago are many [83],

consideration of the Eurasiatic wild ass may be appropriate for such initiatives.
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80. Bökönyi S (1983) Late Chalcolithic and Early Bronze I animal remains from Arslantepe (Malatya): a Pre-

liminary report. Origini 12: 581–598.

81. Siracusano G (2004) Preliminary results of the faunal analysis from the site of Zeytinlibahçe. In: Frangi-
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