Skip to main content
Log in

Effects of various nitrogen fertilizers on emission of nitrous oxide from soils

  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Summary

Field studies of the effects of different N fertilizers on emission of nitrous oxide (N20) from three Iowa soils showed that the N2O emissions induced by application of 180 kg ha−1 fertilizer N as anhydrous ammonia greatly exceeded those induced by application of the same amount of fertilizer N as aqueous ammonia or urea. On average, the emission of N2O-N induced by anhydrous ammonia was more than 13 times that induced by aqueous ammonia or urea and represented 1.2% of the anhydrous ammonia N applied. Experiments with one soil showed that the N2O emission induced by anhydrous ammonia was more than 17 times that induced by the same amount of N as calcium nitrate. These findings confirm indications from previous work that anhydrous ammonia has a much greater effect on emission of N2O from soils than do other commonly used N fertilizers and merits special attention in research relating to the potential adverse climatic effect of N fertilization of soils.

Laboratory studies of the effect of different amounts of NH4OH on emission of N2O from Webster soil showed that the emission of N2O-N induced by addition of 100 μg NH4OH-N g−1 soil represented only 0.18% of the N applied, whereas the emissions induced by additions of 500 and 1 000 μg NH4OH-N g−1 soil represented 1.15% and 1.19%, respectively, of the N applied. This suggests that the exceptionally large emissions of N2O induced by anhydrous ammonia fertilization are due, at least in part, to the fact that the customary method of applying this fertilizer by injection into soil produces highly alkaline soil zones of high ammonium-N concentration that do not occur when urea or aqueous ammonia fertilizers are broadcast and incorporated into soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blackmer AM, Bremner JM (1977) Gas chromatographic analysis of soil atmospheres. Soil Sci Soc Am J 41:908–912

    Google Scholar 

  • Blackmer AM, Robbins SG, Bremner JM (1982) Diurnal variability in rate of emission of nitrous oxide from soils. Soil Sci Soc Am J 46:937–942

    Google Scholar 

  • Breitenbeck GA, Blackmer AM, Bremner JM (1980) Effects of different nitrogen fertilizers on emission of nitrous oxide from soil. Geophys Res Lett 7:85–88

    Google Scholar 

  • Bremner JM, Blackmer AM (1980) Mechanisms of nitrous oxide production in soils. In: Trudinger PA, Walter MR, Ralph BJ (eds) Biogeochemistry of ancient and modern environments. Australian Academy of Science, Canberra, Australia, pp 279–291

    Google Scholar 

  • Bremner JM, Breitenbeck GA, Blackmer AM (1981a) Effect of anhydrous ammonia fertilization on emission of nitrous oxide from soils. J Environ Qual 10:77–80

    Google Scholar 

  • Bremner JM, Breitenbeck GA, Blackmer AM (1981b) Effect of nitrapyrin on emission of nitrous oxide from soil fertilized with anhydrous ammonia. Geophys Res Lett 8:353–356

    Google Scholar 

  • Chalk PM, Keeney DR, Walsh LM (1975) Crop recovery and nitrification of fall and spring applied anhydrous ammonia. Agron J 67:33–37

    Google Scholar 

  • Conrad R, Seiler W (1980) Field measurements of the loss of fertilizer nitrogen into the atmosphere as nitrous oxide. Atmos Environ 14:555–558

    Google Scholar 

  • Conrad R, Seiler W, Bunse G (1983) Factors influencing the loss of fertilizer nitrogen into the atmosphere as N2O. J Geophys Res 88:6709–6718

    Google Scholar 

  • Crutzen PJ, Ehhalt DH (1977) Effects of nitrogen fertilizers and combustion on the stratospheric ozone layer. Ambio 6:112–117

    Google Scholar 

  • Hogg TJ, Henry JL (1982) The ammonia content in soils following field application of anhydrous ammonia. Can J Soil Sci 62:213–216

    Google Scholar 

  • Joyce C (1985) Trace gases amplify greenhouse effect. New Sci 1456:3–4

    Google Scholar 

  • Matthias AD, Blackmer AM, Bremner JM (1980) A simple chamber technique for field measurements of emissions of nitrous oxide from soils. J Environ Qual 9:251–265

    Google Scholar 

  • McElroy MB, Wofsy SC, Yung YL (1977) The nitrogen cycle: Perturbations due to man and their impact on atmospheric N2O and O3. Phil Trans R Soc 277B:159–181

    Google Scholar 

  • McKenney DJ, Shuttleworth KF, Findlay WI (1978) Rates of N2O evolution from N-fertilized soils. Geophys Res Lett 5:777–780

    Google Scholar 

  • McKenney DJ, Shuttleworth KF, Findlay WI (1980a) Nitrous oxide evolution rates from fertilized soil: Effects of applied nitrogen. Can J Soil Sci 60:429–438

    Google Scholar 

  • McKenney DJ, Shuttleworth KF, Findlay WI (1980b) Temperature dependence of nitrous oxide production from Brookston clay. Can J Soil Sci 60:665–674

    Google Scholar 

  • Peters DB (1965) Water availability. In: C.A. Black (ed.) Methods of soil analysis. Part 1. Physical and mineralogical properties including statistics of measurement and sampling. Am Soc Agron, Madison, WI Agronomy 9:279–285

    Google Scholar 

  • Weiss RF (1981) The temporal and spatial distribution of tropospheric nitrous oxide. J Geophys Res 86:7185–7195

    Google Scholar 

  • Whitehouse MJ, Leslie JK (1973) Movement, pH effect and nitrification of band-applied anhydrous ammonia, urea and sulfate of ammonia in an alkaline black earth. Queensland J Agric Sci 30:301–310

    Google Scholar 

  • Witten RC, Borucki WJ, Woodward HT, Capone LA, Riegel CA (1983) Revised predictions of the effect on stratospheric ozone of increasing atmospheric N2O and chlorofluoromethanes: a two-dimensional model study. Atmosph Environ 17:1995–2000

    Google Scholar 

  • Yung YL, Wang WC, Lacis AA (1976) Greenhouse effect due to atmospheric nitrous oxide. Geophys Res Lett 10:619–621

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breitenbeck, G.A., Bremner, J.M. Effects of various nitrogen fertilizers on emission of nitrous oxide from soils. Biol Fert Soils 2, 195–199 (1986). https://doi.org/10.1007/BF00260843

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00260843

Key words

Navigation