Skip to main content
Log in

Signaling Pathways That Control the Growth and Survival of Prostate Carcinoma Cells in the Absence of Androgens

  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Androgen-dependent human prostate adenocarcinoma cell line LNCaP was used to study the effect of androgen deprivation on the cell response to TNF-related cytokines. Several signaling pathways were implicated in cell survival in the absence of androgens. In androgen-deprived LNCaP cells, TNF-α and TRAIL stimulated the cell growth and activated the mitogenic and antiapoptotic signaling pathways involving NF-κB, STAT3, PI3K, and β-catenin. The results suggested a role of cytokines in the survival of prostate adenocarcinoma cells deprived of androgens in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Isaacs J.T., Lundmo P.I., Berges R., Martikainen P., Kyprianou N., English H.F. 1992. Androgen regulation of programmed death of normal and malignant prostatic cells. J. Androl. 13, 457–464.

    Google Scholar 

  2. Richard A., Hipakka J.M, Yoshihisa U. 1996. Human prostate tumor growth in athymic mice and stimulation by finasteride. Proc. Natl. Acad. Sci. USA. 93, 1180–11807.

    Google Scholar 

  3. Furuya Y., Isaacs J.T. 1993. Differential gene regulation during programmed death (apoptosis) versus proliferation of prostatic glandular cells induced by androgen manipulation. Endocrinology. 133, 2660–2666.

    Google Scholar 

  4. Dies J., Dobbelsteen C., Stefan I., Nobel J., Schlegel A., Cotgrave O. 1996. Rapid and specific efflux of reduced glutathione during apoptosis induced by anti-Fas/apo-1 antibody. J. Biol. Chem. 271, 15420–15427.

    Google Scholar 

  5. Lozano E., Cano A. 1998. Cadherin/catenin complexes in murine epidermal keratinocytes: E-cadherin complexes containing either beta-catenin or plakoglobin contribute to stable cell-cell contacts. Cell Adhes. Commun. 6, 51–67.

    Google Scholar 

  6. Reuther J.Y., Baldwin A.S., Jr. 1999. Apoptosis promotes a caspase-induced amino-terminal truncation of IkappaBalpha that functions as a stable inhibitor of NF-κB. J. Biol. Chem. 274, 20664–20670.

    Google Scholar 

  7. Korinek V., Barker N., Morin P.J., van Wichen D., de Weger R., Kinzler K.W., Vogelstein B., Clevers H. 1997. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC -/-colon carcinoma. Science. 275, 178–1787.

    Google Scholar 

  8. Bromberg J.F., Fan Z., Brown C., Mendelsohn J., Darnell J.E., Jr. 1998. Epidermal growth factor-induced growth inhibition requires Stat1 activation. Cell Growth Differ. 9, 505–512.

    Google Scholar 

  9. Bromberg J.F., Wrzeszczynska M.H., Devgan G., Zhao Y., Pestell R.G., Albanese C., Darnell J.E., Jr. 1999. Stat3 as an oncogene. Cell. 98, 295–303.

    Google Scholar 

  10. Denmeade S.R., Lin X.S., Isaacs J.T. 1996. Role of programmed cell death (apoptosis) during the progression and therapy for prostate cancer. Prostate. 28, 251–265.

    Google Scholar 

  11. Martikainen P., Kuprianou N., Isaacs J.T. 1990. Effect of transforming growth factor-beta 1 on proliferation and death of rat prostatic cells. Endocrinology. 127, 296–2968.

    Google Scholar 

  12. Kemler R. 1993. From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet. 9, 317–321.

    Google Scholar 

  13. Peifer M. 1997. β-catenin as oncogene: the smoking gun. Science. 275, 1752–1753.

    Google Scholar 

  14. Palacios J., Gamallo C. 1998. Mutations in the β-catenin gene (CTNNB1) in endometrioid ovarian carcinomas. Cancer Res. 58, 1344–1347.

    Google Scholar 

  15. Potempa S., Ridley A.J. 1998. Activation of both MAP kinase and phosphatidylinositide 3-kinase by Ras is required for hepatocyte growth factor/scatter factor-induced adherens junction disassembly. Mol. Biol. Cell. 9, 2185–2200.

    Google Scholar 

  16. Sander E.E., van Delft S., ten Klooster J.P., Reid T., van der Kammen R.A., Michiels F., Collard J.G. 1998. Matrix-dependent Tiam1/Rac signaling in epithelial cells promotes either cell-cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J. Cell Biol. 143, 1385–1398.

    Google Scholar 

  17. Espada J., Perez-Moreno M., Braga V.M., Rodriguez-Viciana P., Cano A. 1999. H-Ras acivation promotes cytoplasmic accumulation and phosphoinositide 3-OH kinase association of β-catenin in epidermal keratinocytes. J. Cell Biol. 146, 967–980.

    Google Scholar 

  18. Furuya Y., Isaacs J.T. 1993. Differential gene regulation during programmed death (apoptosis) versus proliferation of prostatic glandular cells induced by androgen manipulation. Endocrinology. 133, 2660–2666.

    Google Scholar 

  19. Foo S.Y., Nolan G.P. 1999. NF-κB to the rescue: RELs, apoptosis and cellular transformation. Trends Genet. 15, 229–235.

    Google Scholar 

  20. Karin M. 1999. The beginning of the end: IκB kinase (IKK) and NF-βB activation. J. Biol. Chem. 274, 27339–27342.

    Google Scholar 

  21. Odajima J., Matsumura I., Sonoyama J., Daino H., Kawasaki A., Tanaka H., Inohara N., Kitamura T., Downward J., Nakajima K., Hirano T., Kanakura Y. 2000. Full oncogenic activities of v-Src are mediated by multiple signaling pathways. J. Biol. Chem. 275, 2409–24105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adler, V.V., Polotskaya, A.V., Gershtein, E.S. et al. Signaling Pathways That Control the Growth and Survival of Prostate Carcinoma Cells in the Absence of Androgens. Molecular Biology 37, 585–590 (2003). https://doi.org/10.1023/A:1025143528771

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025143528771

Navigation