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Gekoppelte Transportprozesse in natürlichen
porösen Medien

Da die Wechselwirkungen zwischen verschiedenen Transportprozessen für eine
Reihe interessanter Systeme wichtig sind, wurde ein System partieller Differential-
gleichungen und effektiver Parameterfunktionen für die Untersuchung des gekoppel-
ten Wasser-, Wärme-, Gas- und Stofftransportes formuliert und in einem State-of-
the-Art Computermodell implementiert. Dabei wurde für die Beschreibung des ge-
koppelten Gas-/Wassertransportes eine neue Druck/Druckformulierung entwickelt.

Mit dem Modell wurde der Wasser- und Energiehaushalt eines Permafrostbo-
dens simuliert, wobei die wesentlichen Phänomene reproduziert werden konnten.
Unterschiede lassen sich durch Heterogenität und die Sensitivität des Modells auf
die Änderung der hydraulischen Parameter erklären. Während Wasserdampf- und
Stofftransport keine Auswirkung auf das Ergebnis der Simulation hatten, erwies
sich der Transport flüssigen Wassers als wichtig für den Energietransport nahe dem
Gefrierpunkt.

Bei der Untersuchung der Auswirkung der gewählten Parametrisierung und des
verwendeten Modells auf die Simulation eines Multistep Outflow Experiments zeig-
ten sich Unterschiede zwischen Richardsgleichung und Zweiphasen-Modell nur bei
Verwendung einer Brooks-Corey Parametrisierung. Mit dem Zweiphasen-Modell er-
gab sich dann eine langsamere Entwässerung und eine Hysterese beim Aufsättigen,
was gut mit experimentellen Befunden übereinstimmt.

Coupled Transport in Natural Porous Media

As the interactions between transport processes are important for a number of
interesting systems, a set of partial differential equations and appropriate para-
meter functions for the study of coupled water, heat, gas and solute transport was
formulated and a state of the art computer model for the numerical solution of the
equation system was created. A new phase pressure/partial pressure formulation
for the coupled transport of liquid and gas phase was developed.

The model was used to simulate the water and energy dynamics of a permafrost
soil. A good qualitative agreement was achieved. Differences between modeled
and measured data could be explained with heterogeneity in combination with the
model’s sensitivity to a change in hydraulic parameters. Water vapor and solute
transport had no effect on the simulation result but transport of liquid water proved
to be an important heat transfer process near 0 ◦C.

The impact of the chosen parameterization and model on the simulation of a
multistep outflow experiment was analyzed. Differences between a model based on
Richards’ equation and a twophase model only occurred when the Brooks-Corey
parameterization was used. The results of the twophase model showed a retarded
drainage and a hysteresis during imbibation which is in good agreement with exper-
imental results.
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• Ute Wollschläger. She often helped me to keep a realistic view.

• Marco Bittelli with whom I had some inspiring discussions about freezing soils.

• Hermann Lauer, Mihael Brajdic and Günter Balschbach for the assistance in
the installation of a Linux cluster and in the common struggle against all types
of computer problems.

iii



Acknowledgments

• all colleagues at the University of Hohenheim and the Institut für Umwelt-
physik in Heidelberg.

• the Alfred-Wegener-Institute.

• all my personal friends, who helped me through some difficult times.

• the “unknown helper” as a substitute for all the people I forgot to mention.

Finally I’d like to thank my family. Without their support it would not have
been possible for me to finish my study.

This work was done as part of a research project supported by the Deutsche
Forschungsgemeinschaft (Ro 1080/4-1&2).

iv



Contents

Zusammenfassung i

Summary i

Acknowledgments iii

List of Figures ix

Notation xii

1 Introduction 1

2 Theory of Coupled Transport Processes in Porous Media 3
2.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Basic Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Continuum Approach . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Representative Elementary Volume . . . . . . . . . . . . . . . 6
2.2.3 Further Assumptions . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Balance Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.1 Storage Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Flux Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Multiphase Transport and Richards’ Equation . . . . . . . . . 11

2.4 Effective Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1 Soil Water Characteristic . . . . . . . . . . . . . . . . . . . . . 11

2.4.1.1 Temperature Dependence . . . . . . . . . . . . . . . 12
2.4.1.2 Gas Phase Saturation . . . . . . . . . . . . . . . . . 13
2.4.1.3 Freezing Curve . . . . . . . . . . . . . . . . . . . . . 13

2.4.2 Gas and Liquid Phase Conductivity . . . . . . . . . . . . . . . 15
2.4.3 Diffusion Coefficients . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.4 Water/Solute Interaction . . . . . . . . . . . . . . . . . . . . . 18
2.4.5 Fluid/Gas Properties . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.5.1 Gas Solubility . . . . . . . . . . . . . . . . . . . . . . 19
2.4.5.2 Viscosity of Liquid and Gas Phase . . . . . . . . . . 20

v



Contents

2.4.5.3 Densities . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.6 Heat Conductivity . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.6.1 Water Vapor Transport . . . . . . . . . . . . . . . . 22
2.4.7 Mechanical Interactions . . . . . . . . . . . . . . . . . . . . . 26

3 Numerical Solution 28
3.1 Mathematical Formulation of the Equation System . . . . . . . . . . 28

3.1.1 Phase Pressure/Saturation Formulation . . . . . . . . . . . . . 28
3.1.2 Partial Pressure/Phase Pressure Formulation . . . . . . . . . . 29

3.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 Spatial Discretization . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1.1 Heterogeneity . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1.2 Boundary Conditions . . . . . . . . . . . . . . . . . . 33

3.2.2 Time Discretization . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Solution of the Nonlinear Equation System . . . . . . . . . . . . . . . 35
3.4 Solution of the Linear Equation System . . . . . . . . . . . . . . . . . 35
3.5 Process Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Variable Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7 Time Stepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.8 Testing and Verification . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.8.1 Mass Balances . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.8.2 Comparison with Analytical Solutions . . . . . . . . . . . . . 38

3.8.2.1 Water Transport . . . . . . . . . . . . . . . . . . . . 39
3.8.2.2 Heat-/Solute-/Gas Transport . . . . . . . . . . . . . 40

4 Application: Simulation of a Permafrost Soil 46
4.1 Dynamics of Permafrost Soils . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Field Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.2 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.3 Climate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.4 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.4.1 Transport Parameters . . . . . . . . . . . . . . . . . 53
4.2.4.2 Pseudo-Mechanical Submodel . . . . . . . . . . . . . 55
4.2.4.3 Boundary Conditions . . . . . . . . . . . . . . . . . . 56
4.2.4.4 Initial Conditions . . . . . . . . . . . . . . . . . . . . 59

4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.1 Homogeneous Simulations . . . . . . . . . . . . . . . . . . . . 60

4.3.1.1 Numerical Tests . . . . . . . . . . . . . . . . . . . . 63
4.3.1.2 Relevance of Different Heat Transport Processes . . . 64
4.3.1.3 Solute Transport . . . . . . . . . . . . . . . . . . . . 66

4.4 Heterogeneous Simulation . . . . . . . . . . . . . . . . . . . . . . . . 67

vi



Contents

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Application: Multiphase Transport 69
5.1 Multistep Outflow Experiments . . . . . . . . . . . . . . . . . . . . . 69
5.2 Laboratory Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.1 Transport Parameters . . . . . . . . . . . . . . . . . . . . . . 70
5.3.2 Initial and Boundary Conditions . . . . . . . . . . . . . . . . . 71

5.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4.1 Homogeneous Medium . . . . . . . . . . . . . . . . . . . . . . 72
5.4.2 Heterogeneous Medium . . . . . . . . . . . . . . . . . . . . . . 73

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Conclusions 79

Bibliography 81

Appendix 89

A Hydraulic Parameters for the Test Calculations 91
A.1 Yolo Light Clay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.2 Sand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

B Texture and Composition of the Bayelva Profile 92

C Algorithm for the Evaluation of TDR-traces 93

D Freezing Curves 95

E Simulation Results 97
E.1 Measured Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
E.2 Loam/Silt Homogeneous . . . . . . . . . . . . . . . . . . . . . . . . . 100
E.3 Loam/Silt with Reduced Permeability . . . . . . . . . . . . . . . . . . 102
E.4 Loam Freezing/not Freezing . . . . . . . . . . . . . . . . . . . . . . . 104
E.5 Loam Coarse Grid/Fine Grid . . . . . . . . . . . . . . . . . . . . . . 106
E.6 Loam with Different Initial Conditions . . . . . . . . . . . . . . . . . 108
E.7 Loam with Dirichlet Boundaries at the Sides . . . . . . . . . . . . . . 110
E.8 Loam with 2m deep Lower Boundary . . . . . . . . . . . . . . . . . . 112
E.9 Loam 3D Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
E.10 Loam without Vapor Transport . . . . . . . . . . . . . . . . . . . . . 116
E.11 Loam with Vapor Transport Formulated According to Philip and de

Vries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

vii



Contents

E.12 Loam with Inclusion of Solute Transport . . . . . . . . . . . . . . . . 120
E.13 Heterogeneous Simulation . . . . . . . . . . . . . . . . . . . . . . . . 122

viii



List of Figures

2.1 The main elements of a natural porous medium and their interactions
as considered in this work . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Schematic representation of a porous medium at pore scale and con-
tinuum scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Change of hydraulic conductivity with increasing averaging volume . 7

2.4 Molar enthalpy of the phase change liquid water/ice resulting from
the balance equation and fitted to measured values . . . . . . . . . . 9

2.5 Schematic representation of the pore space before and after freezing . 14

2.6 Comparison of measured relative diffusion coefficients with different
tortuosity models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Example for the dependence of the heat conductivity of a porous
medium on ice and water saturation calculated with the generalized
de Vries model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8 Water vapor transport through a liquid island . . . . . . . . . . . . . 24

2.9 Temperature distribution in a simple heterogeneous medium . . . . . 25

3.1 Element mesh and control volumes . . . . . . . . . . . . . . . . . . . 31

3.2 Elements with sub-control volumes . . . . . . . . . . . . . . . . . . . 32

3.3 Comparison of profiles calculated with the model and with Philip’s
quasianalytical solution for the Yolo Light Clay . . . . . . . . . . . . 40

3.4 Comparison of infiltration rates and cumulative infiltration calculated
with the model and with Philip’s quasianalytical solution for the Yolo
Light Clay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Comparison of profiles calculated with the model and with Philip’s
quasianalytical solution for the sand . . . . . . . . . . . . . . . . . . . 41

3.6 Comparison of infiltration rates and cumulative infiltration calculated
with the model and with Philip’s quasianalytical solution for the sand 42

3.7 Comparison of the simulated partial pressure of air and solute con-
centration profiles and the analytical solution with pure diffusion . . . 44

3.8 Comparison of the simulated temperature profile and the analytical
solution with pure heat conduction . . . . . . . . . . . . . . . . . . . 44

ix



List of Figures

3.9 Comparison of the simulated partial pressure of air and solute con-
centration profiles and the analytical solution with convection . . . . 45

3.10 Comparison of the simulated temperature profile and the analytical
solution with pure heat conduction . . . . . . . . . . . . . . . . . . . 45

4.1 View from Leirhaugen hill southward over the Bayelva catchment
toward the East Brøggerbreen glacier . . . . . . . . . . . . . . . . . . 48

4.2 Surface of the selected unsorted circle before instrumentation . . . . . 49

4.3 Soil profile of the unsorted circle . . . . . . . . . . . . . . . . . . . . . 49

4.4 Aerial view of the field site in April 2000 . . . . . . . . . . . . . . . . 50

4.5 Comparison of the relative permittivity determined by the datalogger
algorithm and the modified Heimovaara algorithm . . . . . . . . . . . 51

4.6 Data measured at a TDR-probe before and after filtering, interpola-
tion and smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.7 Air temperature and humidity at the Bayelva site . . . . . . . . . . . 52

4.8 Snow depth and precipitation at the Bayelva site . . . . . . . . . . . 53

4.9 Solar and net radiation at the Bayelva site . . . . . . . . . . . . . . . 53

4.10 Freezing characteristic for three representative probes . . . . . . . . . 55

4.11 Positions of the probes used in the simulation . . . . . . . . . . . . . 57

4.12 Plot of 3D domain with a cross section showing temperature . . . . . 58

4.13 Temperature and relative permittivity profiles during thawing . . . . 61

4.14 Temperature and relative permittivity profiles during freezing . . . . 62

4.15 Simulated cumulative flow of water over the upper and lower bound-
ary in the loam scenario . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.16 Simulated heat flux over the upper and lower boundary in the loam
scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.17 Effective heat transport due to liquid water flux . . . . . . . . . . . . 65

4.18 Profiles of temperature, ice saturation, liquid phase pressure, water
saturation, phase state, relative permittivity, water flux and heat flux.
Values in brackets are the maximum and minimum values used in scaling 66

5.1 Heterogeneous test column composed of sintered glass with fine, me-
dium and coarse pores . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Soil water characteristic for the coarse, medium and fine material
using the van Genuchten and Brooks-Corey parameterization . . . . . 72

5.3 Outflow of water calculated with Richards’ equation and the twophase
model obtained with the van Genuchten parameterization for the ho-
mogeneous column made of medium material . . . . . . . . . . . . . . 74

5.4 Outflow of water calculated with Richards’ equation and the twophase
model obtained with the Brooks-Corey parameterization for the ho-
mogeneous column made of medium material . . . . . . . . . . . . . . 74

x



List of Figures

5.5 Outflow of water calculated with Richards’ equation and the twophase
model obtained with the van Genuchten parameterization for the het-
erogeneous column . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6 Outflow of water calculated with Richards’ equation and the twophase
model obtained with the Brooks-Corey parameterization for the het-
erogeneous column . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.7 Distribution of liquid phase pressure, gas pressure, water saturation,
gas saturation and fluxes in the heterogeneous column after 5 hours . 77

5.8 Distribution of liquid phase pressure, gas pressure, water saturation,
gas saturation and fluxes in the heterogeneous column after 6 hours . 77

5.9 Relative permeabilities for gas phase and liquid phase for the medium
material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

C.1 TDR waveform for a probe immersed in water, its first derivative
and the regression lines for the determination of the first and second
reflection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

E.1 Positions of the probes used in the simulation . . . . . . . . . . . . . 97

xi



Notation

Scalar values, functions and sets are denoted by normal letters (e.g. pl, kr, Si, . . .).
Vectors are typeset in boldface symbols (e.g. x), whereas tensors are written in
boldface italic letters (e.g. K).

Lowercase Latin Symbols

bi, bj Control volumes
bk
i , bk

j Sub control volumes
∂bi Boundary of control volume i
ca
l Concentration of dissolved air in the liquid phase [mole/m3]

cs
l Concentration of solute in the liquid phase [mole/m3]

cs
li

Concentration of solute species i in the liquid phase [mole/m3]
cw
l Concentration of water in the liquid phase [mole/m3]

e1,. . . ,ek Elements
ej Unity vector
fSi

Damping parameter of ice on liquid phase permeability [–]
ga, gb, gc Form factors for the de Vries model [–]
hm Matrix head [m]
ja Molar air flux [mole m−2 s−1]
je Energy flux [W/m−2]
je
convl

Convective energy flux in the liquid phase [W/m−2]
je
convg

Convective energy flux in the gas phase [W/m−2]

je
lat Latent heat flux [W/m−2]

je
cond Conductive energy flux [W/m−2]

ji
g Total flux of component i in the gas phase [mole m−2 s−1]

ji
l Total flux of component i in the liquid phase [mole m−2 s−1]

ji
gD

Molar flux of component i in the gas phase due to molecular
diffusion [mole m−2 s−1]

jk
N Flux at Neumann boundary

js Molar solute flux [mole m−2 s−1]
jw Molar water flux [mole m−2 s−1]
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jw
infreeze Water flux between the high flow domain and the normal liquid

phase [mole m−2 s−1]

kO2
H Henry coefficient for oxygen [Pa]

kN2
H Henry coefficient for nitrogen [Pa]

ki
H Henry coefficient of gas i [Pa]

ki Ratio of the average temperature gradient in particles of type i
to the average temperature gradient in the surrounding medium [–]

krg Relative permeability of the gas phase [–]
krl

Relative permeability of the liquid phase [–]
krlhf

Relative permeability of the high flow domain [–]

n Van Genuchten parameter [–]
nk

ij Outward directed normalized vector normal to γk
ij

m Van Genuchten parameter [–]
pad Capillary pressure above which adsorption forces are prevalent [Pa]
patm Gas pressure in the free air above the soil [Pa]
pcap Capillary pressure below which capillary forces are prevalent [Pa]
pa

g Partial pressure of air [Pa]
pc Capillary pressure [Pa]
pe Air entry pressure [Pa]
pg Gas phase pressure [Pa]
pw

g Partial pressure of water [Pa]
pl Liquid phase pressure [Pa]
pi

g Partial pressure of gas i [Pa]
qa Air source/sink term [mole m−3 s−1]
qe Energy source/sink term [W/m−3]
ql Volumetric liquid phase flux [m3/s]
qs Solute source/sink term [mole m−3 s−1]
qw Water source term [mole m−3 s−1]
r Pore radius [m]
rH Humidity [–]
t Time [s]
vl Pore water velocity [m/s]
vw

l Molar volume of liquid water [m3/mole]
vw

i Molar volume of ice [m3/mole]
xi Position of vertex i
xk

ij Barycenter of sub-control volume face i
z Height [m]
z0 Reference height [m]

xiii



Notation

Uppercase Latin Symbols

A Flux term
Cs Volumetric heat capacity of the matrix [J m−3 K−1]
Ca

g Molar heat capacity of air [J mole−1 K−1]
Cw

g Molar heat capacity of water vapor [J mole−1 K−1]
Cw

i Molar heat capacity of ice [J mole−1 K−1]
Cw

l Molar heat capacity of liquid water [J mole−1 K−1]
Di

g Dispersion coefficient of component i in the gas phase [m2/s]
Di

l Dispersion coefficient of component i in the liquid phase [m2/s]
Dij

g Binary diffusion coefficient of components i and j in the gas
phase [m2/s]

Dw
gT

Diffusion coefficient for water vapor transport due to a temperature
gradient [mole m−1 s−1 K−1]

Dw
gpc

Diffusion coefficient for water vapor transport due to a

moisture gradient [mole s m−1 kg−1]
Dw

gatm
Diffusion coefficient for water vapor transport in free air [m2/s]

E Energy density [J/m3]
F k

ij Area of sub-control volume face [m2]
∆Hw

lg Molar phase change enthalpy of water vapor at reference
temperature [J/mole]

∆Hw
il Molar phase change enthalpy of ice at reference

temperature [J/mole]
J Jacobi matrix
Jg Volumetric convective flux of the gas phase [m/s]
Jl Volumetric convective flux of the liquid phase [m/s]
Kl Hydraulic conductivity [m3 s kg−1]
Kg Gas phase conductivity [m3 s kg−1]
M Storage term
Mi Molar mass of component i [kg/mole]
Mw Molar mass of water [kg/mole]
Q Source term
R Ideal gas constant [J mole−1 K−1]
S Saturation [–]
Seg Effective gas phase saturation [–]
Sel

Effective liquid phase saturation [–]
Sg Gas phase saturation [–]
Si Ice phase saturation [–]
Sl Liquid phase saturation [–]
Slhf

Liquid phase saturation of the high flow domain [–]
Srg Residual gas phase saturation [–]
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Srl
Residual liquid phase saturation [–]

Sw
l Entropy of liquid water [J/K]

Sw
i Entropy of ice [J/K]

Sw
tot Total water saturation (liquid water plus ice) [–]

T Temperature [K]
V k

i Volume of sub-control volume [m3]
(∇T )g Average temperature gradient in the gas phase [K/m]
Xw

l Molar fraction of water in the liquid phase [–]
X i Volumetric fraction of component i [–]
X i

l Molar fraction of gas i in the liquid phase [–]

Lowercase Greek Symbols

α Van Genuchten parameter [Pa−1]
α Exponent in mixing formula [–]
αh Heat exchange parameter [W m−2 K−1]
χg Stress partition factor for the gas phase [–]
χi Stress partition factor for the ice phase [–]
χl Stress partition factor for the liquid phase [–]
εa Relative permittivity of air [–]
εi Relative permittivity of ice [–]
εm Relative permittivity of the soil [–]
εs Relative permittivity of the soil matrix [–]
εw Relative permittivity of water [–]
ηi Parameter function
γ Contact angle [–]
γk

ij Sub control volume face
λ Brooks-Corey parameter [m]
λ Heat conductivity [W m−1 K−1]
λ0 Heat conductivity of the surrounding medium [W m−1 K−1]
λi Heat conductivity of component i [W m−1 K−1]
λ∗ Heat conductivity of a soil without vapor transport [W m−1 K−1]
λeff Effective heat conductivity of a soil [W m−1 K−1]
µl Dynamic viscosity of the liquid phase [Pa s]
µg Dynamic viscosity of the gas phase [Pa s]
νa Total molar density of air [mole/m3]
νa

g Molar density of air in the gas phase [mole/m3]
νs Total molar density of solute [mole/m3]
νw Total molar density of water [mole/m3]
νw

g Molar density of water in the gas phase [mole/m3]
νw

i Molar density of ice [mole/m3]
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νw
g0

Molar density of saturated water vapor above a solution [mole/m3]
νw•

g0
Molar density of saturated water vapor above pure water [mole/m3]

νi
g Molar density of component i in the gas phase [mole/m3]

φi Nodal basis function i
ψg Gravitational potential [J/m3]
ρg Density of the gas phase [kg/m3]
ρl Density of the liquid phase [kg/m3]
ρw

l Density of liquid water [kg/m3]
σe Effective stress [Pa]
σn Neutral stress [Pa]
σla Surface tension of the liquid phase/air phase interface [J/m2]
θw Volumetric water content [–]
τ Tortuosity in the Mualem model [–]
υi, υj Vertices
ξ Tortuosity factor [–]
ξg Tortuosity factor for the gas phase [–]

Uppercase Greek Symbols

Γ Model boundary
Ω Model domain
Φ Porosity [–]
Πo Osmotic pressure [Pa]

Norms, Operators

∇ Divergence operator
∇ Gradient operator

Indices

e Energy
g, l, i Gas, liquid, ice phase
s Soil matrix
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n Index for discretized time
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1 Introduction

Coupled transport processes are important for two rather different but neverthe-
less very relevant environmental problems: Global warming and the pollution of
groundwater.

Water, heat and solute transport processes are strongly coupled in freezing or
thawing soils. As a significant part of the earth’s continental area (∼ 25 % of the
exposed land surface in the Northern Hemisphere, Zhang et al. 1999) is underlain
by permafrost1 and permafrost soils are an important storage of organic carbon and
methane, a thawing of wide areas could lead to a dangerous feedback for global
climate change (Goulden et al. 1998). A 12 to 15 % reduction of the near-surface
permafrost area and a 15 to 30 % increase of the active layer2 thickness is indicated
by recent modeling studies (Anisimov and Nelson 1996, Anisimov and Nelson 1997,
Anisimov et al. 1997) for the middle of the 21st century. For the prediction of the
future development of climate, the understanding of the water and heat dynamics
of permafrost soils is therefore of great significance. The possibility to simulate
the response of permafrost soils to global warming would facilitate reliable climate
predictions.

Many permafrost soils are heterogeneous due to slow weathering and periglacial
mixing processes in cool climates. An adequate description therefore requires at
least two-dimensional models. However most of the models commonly used are
either one-dimensional (Nakano and Brown 1972, Jansson 1998, Flerchinger and
Saxton 1989, Padilla and Villeneuve 1992, Shoop and Bigl 1997, Zhao et al. 1997)
or they are intended for the modeling of frost heave and ice lense development and
have a simplified description of water and energy transport (O’ Neill and Miller
1982, Fowler and Krantz 1994, Selvadurai et al. 1999, Li et al. 2000).

Another problem of great environmental and economic importance is the pollu-
tion of groundwater. Computer models based on Richards’ equation (Richards 1931)
are often used to predict the transport of dissolved chemicals (especially pesticides,
fertilizers and heavy metals). However, the interaction of gas phase and liquid phase
is assumed to be negligible in the derivation of Richards’ equation. This is not true
at high water saturations, which can occur during infiltration events and are of great

1Permafrost is defined as ground or substrate that is continuously below 0 ◦C for two or more
years (National Research Council of Canada 1988).

2The active layer is the temporarily unfrozen part at the surface of a permafrost soil.
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1 Introduction

importance for the transport of contaminants.
The objective of this study is the development of a flexible, stable and robust

model with state-of-the-art numerical solvers to study the coupled water, heat, solute
and gas transport in frozen and unfrozen soils at the laboratory to plot scale. Two-
and three-dimensional simulations must be possible in order to represent the het-
erogeneity of a soil. Although mechanical processes are important in freezing soils,
they are not considered explicitly, as this would be beyond the scope of this study.
However, the possibility to integrate a mechanical model later was accommodated
in the development. The model is used to simulate the heat and water dynamics
of a permafrost site near Ny Ålesund, Spitsbergen and of laboratory experiments
commonly used to estimate the water transport properties of soils.

2



2 Theory of Coupled Transport
Processes in Porous Media

A set of equations for the description of coupled mass and energy transport in frozen
and unfrozen soil and porous media is developed in this chapter. A discussion of
basic concepts is followed by the formulation of balance equations, flux laws and the
specification of parameter functions.

2.1 System Description

Soils are complex dynamic entities. The soil surface usually has some microrelief
and is covered by different types of vegetation. Horizontal layers, soil horizons,
of varying size and extension can be seen in the soil profile. The horizons are
often composed of lumps of material called aggregates separated by a network of
pores. The aggregates themselves are a mixture of different mineral components with
smaller pores in between. Water, heat and solutes are transported, ions and organic
molecules adsorbed and released, minerals are decomposed and newly created, and
the soil is populated by an incredible variety of bacteria, insects and animals. Under
the influence of climate, the soil structure is changed by swelling and shrinking,
freezing and thawing.

In this study soil is envisaged as a porous medium composed of a solid matrix and
an interconnected pore space filled with water, air and solutes. Water, solutes and
dissolved air (the consideration of dissolved air is necessary to solve some numerical
difficulties) form the liquid phase1 and the gas phase consists of air and water vapor.
The components2 are transported by diffusion and convective transport processes in
liquid and gas phase. Energy is associated with the heat capacity of the components

1A phase is defined as a “chemically and physically uniform or homogeneous quantity of matter
that can be separated mechanically from a nonhomogeneous mixture and that may consist of a
single substance or of a mixture of substances” (Encyclopaedia Britannica 2001). In this study,
besides the soil matrix, a liquid, gas and ice phase are considered

2A component is defined by Bear and Bachmat (1991) as part of a phase that is composed of an
identifiable homogeneous chemical species or of an assembly of species (ions, molecules). The
three components water, air and one solute are used in this work.

3



2 Theory of Coupled Transport Processes in Porous Media

Water Gas

Solute

Soil
Matrix

Heat

displacement

water vapor transport

so
lu

tio
n 

ef
fe

ct
s

(o
sm

ot
ic

 p
re

ss
ur

e,
 v

ap
or

 p
re

ss
ur

e,
 

fre
ez

in
g 

po
in

t d
ep

re
ss

io
n)

tra
ns

po
rt

(c
on

ve
ct

io
n,

di
ffu

si
on

 c
oe

ffi
ci

en
t)

adsorption

ice pressure
perm

eability, diffusion coefficient,

capillary pressure

heat capacity, heat conductivity,

convective heat transport

freezing/thawing, water vapor transport

density, viscosity, vapor pressure, surface tension

density, viscosity,

diffusion coefficient

heat capacity,

heat conductivity

convective heat transport

pe
rm

ea
bi

lit
y,

di
ffu

si
on

 c
oe

ffi
ci

en
ts

heat c
onductiv

ity,

heat c
apacity

rel. permeability, diffusion coeff., pressure

Figure 2.1: The main elements of a natural porous medium and their interactions
as considered in this work

and the phase change of water. Mass movements and heat conduction transport
energy. Figure 2.1 shows the main elements and their interactions.

For simplicity, a detailed analysis of solute transport is not performed. Only the
transport of one solute, representing ionic strength, is taken into account. Mechan-
ical interactions are also not considered in detail. Although they might be quite
important in freezing porous media, the complexity of the interactions is beyond
the scope of this work.

2.2 Basic Considerations

2.2.1 Continuum Approach

The observable phenomena and their description are closely linked to the resolution
with which an porous medium is analyzed. At least three scales can be distinguished.

Molecular scale
At the molecular scale the interactions between individual atoms and molecules in
the pore space and the solid material are treated explicitly. Interesting variables

4



2.2 Basic Considerations

are the velocity and mass of the molecules, their rotation, and the distribution
of electrical charges. Interaction is dominated by electrical forces either on large
distances if charged particles or surfaces are involved, or in the short range, when
atoms or molecules collide.

Pore scale

The motion of individual molecules can be averaged, if the mean free path length3

is much larger than the scale of interest. Positions, velocities and molecular masses
are replaced by continuous state variables like density, pressure or temperature.
Regions with a distinct change in state variables (e.g. in density: liquid/gas) are
called phases. In a porous medium normally more than one phase coexist (gas
phase/liquid phase/solid phase). Molecules may be able to change from one phase
to another.

If the mean free path length is large compared to the pores of the solid, trans-
port can be described by Knudsen diffusion. Interactions between molecules in the
pore space and the solid material (including the geometry of the solid material) are
lumped into the Knudsen diffusion coefficient.

If the mean free path length is much smaller than the pore diameter, the Navier-
Stokes equations can be applied. The average interactions between molecules in
the mobile phase are described by the effective parameters viscosity and diffusion
coefficient. The surface properties and geometry of the pore space must be treated by
appropriate boundary conditions. High resolution measurements of the geometry of
the pore space are limited to small sample volumes. The speed of available computers
also sets tight bounds to the size of a sample which can be simulated with a pore
scale model.

Continuum scale

On the continuum scale phases are treated as continuous fields. At each point of
space there are no longer distinct phases, but fractions of different phases. The
phases are not mixed but microscopic geometry is no longer resolved (Figure 2.2).
Phase boundaries and the geometry of the pore space are taken into account by
new effective parameters like permeability. Transition from pore scale to continuum
scale is possible if the pore space is either homogeneous above a certain scale or
heterogeneities are hierarchical. The applicability of a continuum scale model for
porous media is therefore closely linked to the existence of a so called “representative
elementary volume” (REV).

3The mean free path length is defined as the mean distance a molecule travels before hitting
another molecule
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2 Theory of Coupled Transport Processes in Porous Media

Figure 2.2: Schematics representation of a porous medium at pore scale (left) and
continuum scale (right)

2.2.2 Representative Elementary Volume

If a horizontal pressure gradient in x-direction is applied to a water saturated soil
column, the water transport is often described with Darcy’s law (Darcy 1856):

ql = −Kl · ∂ pl

∂ x
, (2.1)

where ql is the volumetric flux, Kl is a material specific parameter called hydraulic
conductivity and pl is the liquid phase pressure. If we know the flux and pressure
field at the pore scale, we can calculate Kl at a certain position by averaging over a
certain volume. If the averaging volume is gradually increased, we might get a result
similar to figure 2.3. For small averaging volumes the variations are quite large, as
changes of velocity and pressure can be very large at small distances (either large
pores, small pores or solid material are included). With increasing volume less new
information is incorporated. The variations are getting smaller until a plateau may
be reached. If we increase the volume even further the value might change again,
because of large scale heterogeneities. The plateau exists only, if the pore space is
homogeneous at least at some intermediate scale. The smallest volume at which the
average value does no longer change significantly with changing averaging volume is
called “representative elementary volume” (cf. Bear 1972).

The REV can be different for different effective parameters (porosity, hydraulic
conductivity, . . . ). Transport in a porous medium can only be described at the
continuum scale, if a common REV for all necessary effective parameters exists.
In general the existence of an REV can not be proven easily for a specific porous
medium. The applicability of a macroscale description must be verified by compar-
ison of results from experiment and simulation.
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Figure 2.3: Change of hydraulic conductivity with increasing averaging volume. The
conductivity is essentially constant in the marked interval

Heterogeneity due to changes of composition or pore space geometry at a larger
scale can be considered by using different sets of effective parameters for each re-
gion. Effective parameters can also have tensorial character (e.g. permeability) to
represent directional differences in the structure of the pore space.

2.2.3 Further Assumptions

The following basic assumptions are made in the description of the system:

• Air can be treated as a single gas. Oxygen, nitrogen and carbon dioxide are
not treated separately. Air and water vapor are assumed to be ideal gases.

• Dissolved air and the modeled solute can be considered to be ideal solutes. In
the solution they behave exactly like water molecules.

• Local thermodynamic equilibrium is assumed. Kinetic effects are not taken
into account.

2.3 Balance Equations

To derive continuum scale transport equations, the principle of mass and energy
conservation is used to formulate balance equations for each component.

For a non-isothermal system consisting of water, gas and one solute we get a
system of four partial differential equations:

∂ νw

∂t
+∇ · jw = qw (2.2)
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∂ νa

∂t
+∇ · ja = qa (2.3)

∂ νs

∂t
+∇ · js = qs (2.4)

∂E

∂t
+∇ · je = qe (2.5)

with νw, νa, νs: Molar density of water, air, solute [mole/m3]
E: Energy density [J/m3]
jw, ja, js: Molar flux (water/air/solute) [mole m−2 s−1]
je: Energy flux [W/m−2]
qw, qa, qs: Source/sink term (water/air/solute) [mole m−3 s−1]
qe: Energy source/sink term [W/m−3]

2.3.1 Storage Terms

The total mass of a component is calculated as sum over the phases. If we assume
that the gas phase is composed of water vapor and air, the liquid phase of water,
solute and dissolved air and the ice phase of pure water, we get the storage terms:

νw = Φ ·
(
Sg · νw

g + Sl · cw
l + Si · νw

i

)
(2.6)

νa = Φ ·
(
Sg · νa

g + Sl · ca
l

)
(2.7)

νs = Φ · Sl · cs
l (2.8)

with Φ: Porosity [–]
Sg, Sl, Si: Phase saturation4 (gaseous/liquid/ice) [–]
νw

g , νa
g : Molar density of water and air in the gas phase [mole/m3]

cw
l , ca

l , cs
l : Concentration5 of water, air, solute in the liquid phase [mole/m3]

νw
i : Molar density of ice [mole/m3]

Energy storage can be computed from porosity, phase saturations and the heat
capacity of the components. As we use liquid water at 0 ◦C as reference state, the
phase change enthalpy of water vapor and ice must be taken into account as well.
If we use the phase change enthalpies at the reference temperature in this storage
equation, the phase change enthalpy varies with temperature in the model due to
the different heat capacity of ice, water and vapor. Figure 2.4 shows a comparison
of the resulting temperature dependence of the phase change enthalpy of ice with a
formula fitted to experimental results (Spaans and Baker 1996). As we assume an

4The saturation is defined as the fraction of pore space occupied by a phase.
5The term concentration is used instead of the term molar density in solutions, as the concentra-

tion also depends on the composition of the liquid phase.
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Figure 2.4: Molar enthalpy of the phase change liquid water/ice resulting from the
balance equation (dashed line) and fitted to measured values (solid line)

ideal solution, dissolved molecules behave like water molecules and the molar heat
capacities Ca

l , Cs
l and Cw

l are identical.

E = T ·
{
Φ ·

[
SlC

w
l (cw

l + ca
l + cs

l ) + Sg

(
Ca

g νa
g + Cw

g νw
g

)
+ SiC

w
i νw

i

]

+(1− Φ) · Cs

}
+ ∆Hw

lgΦSgν
w
g −∆Hw

il ΦSiν
w
i (2.9)

with T : Temperature [K]
Cw

l , Cw
g , Ca

g , Cw
i : Molar heat capacities (liquid water,vapor,air,

ice) [J mole−1 K−1]
Cs: Volumetric heat capacity of the matrix [J m−3 K−1]
∆Hw

lg , ∆Hw
il : Molar phase change enthalpies of water vapor and ice at

reference temperature [J/mole]

2.3.2 Flux Laws

The formulation of flux laws is a central step in the development of a model. One
possibility is the definition of a potential for every component and the calculation
of the flux as product of the negative gradient of the potential and an effective
parameter. For water the “hydraulic potential” is defined as the energy difference
between bound water in a porous medium with dissolved solutes and free, pure
water at a reference height. However this potential can hardly be measured and
as an integral quantity it is also difficult to calculate. The gravitational potential
for example is usually (e.g. Kutilek and Nielsen 1994) given as ψg = ρw

l g(z − z0).
This is only correct if the density of water is constant. If the density varies, a term
g(z − z0)∇ρw

l would occur in ∇ψg besides the gravity force ρw
l g ez, where ez is the

9



2 Theory of Coupled Transport Processes in Porous Media

unity vector in z-direction. The correct expression for ψg in the case of varying
density is

∫ z
z0

ρw
l (z)gdz.

An alternative approach specifies the transport processes and relates them to
gradients of state variables which can be measured. Water for example is transported
by convection6 driven by gravity and the gradient of liquid phase pressure, and by
diffusion7. In laboratory experiments the liquid phase pressure can be measured
with tensiometers and pressure transducers. At very low water contents water is
transported in liquid films on solid surfaces. As this is normally included into the
calculation of convection, the liquid phase pressure may also become negative. This
reminds us that further research on water transport in very dry porous media is
needed. The resulting transport equations are:

Jl = −Kl(Sl) · (∇pl − ρl · g) (2.10)

ji
l = ci

l · Jl −Di
l · ∇νi

l (2.11)

Jg = −Kg(Sg) · (∇pg − ρg · g) (2.12)

ji
g = νi

g · Jg −Di
g · ∇νi

g (2.13)

with Jg, Jl: Volumetric convective flux of the gas/liquid
phase [m/s]

ρl =
∑

i=w,a,s
ci
lMi: Density of the liquid phase [kg/m3]

ρg =
∑

i=w,a
νi

gMi: Density of the gas phase [kg/m3]

Mi: Molar mass of component i [kg/mole]
Kl(Sl),Kg(Sg): Liquid/gas phase conductivity tensor [m3 s kg−1]
pl: Liquid phase pressure [Pa]
pg =

∑
j=w,a

pj
g: Gas phase pressure [Pa]

pw
g , pa

g: Partial pressure of water/air [Pa]
g: Acceleration of gravity [m/s2]
ji
l , ji

g: Total flux of component i in the liquid/gas
phase [mole m−2 s−1]

Di
l , Di

g: Dispersion coefficient of component i in the
liquid/gas phase [m2/s]

Equation 2.10 is equivalent to the Darcy-Buckingham-Equation (Buckingham 1907).
Energy is transported either by convection of the gas and liquid phase, as latent

heat with water vapor or by heat conduction. This processes can be described by
(de Vries 1958):

je = je
convl

+ je
convg

+ je
lat + je

cond (2.14)

6Convection is defined as transport of a phase as a whole
7Diffusion is defined as transport of molecules, resulting from concentration gradients, relative to

a frame of reference in which the phase as a whole is stationary
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where

je
convl

= T · Cw
l · Jl (2.15)

je
convg

= T · ∑

i=w,a

Ci
g · ji

g (2.16)

je
lat = ∆Hw

lg · jw
g (2.17)

je
cond = −λ(Sl, Sg) · ∇T (2.18)

with λ(Sl, Sg): Heat conductivity [W m−1 K−1].

2.3.3 Multiphase Transport and Richards’ Equation

Liquid and gas phase transport are coupled as they share the same pore space. Due
to its smaller viscosity, the gas phase is much more mobile than the liquid phase.
It is often assumed that the gas phase is mobile enough to be always (nearly) at
atmospheric pressure and to be no obstacle to the liquid phase flow. Gas and liquid
phase transport can then be decoupled. The result is Richards’ equation (Richards
1931), which is identical to the combination of equations 2.2, 2.6 and 2.10 if pg = patm

is used in the calculation of Sl.

2.4 Effective Parameters

To fill the flux laws and balance equations with life, we have to specify the effective
parameters used in the calculation of storage terms and in the flux laws.

2.4.1 Soil Water Characteristic

In experiments a strong relationship between the water content of a porous medium
and the pressure difference between liquid and gas phase is observed. This relation
will be called “soil water characteristic” in this work. The pressure difference be-
tween gas and liquid phase pressure is called “capillary pressure” pc = pg − pl as
water is bound by capillary forces at high saturations. A gas phase develops in a
pore if the capillary pressure is higher than the entry pressure pe of the pore

pe =
2σla cos(γ)

r
. (2.19)

with σla: surface tension of the liquid phase/air phase interface [J/m2]
γ: contact angle [–]
r: pore radius [m]
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2 Theory of Coupled Transport Processes in Porous Media

With increasing capillary pressure smaller and smaller pores drain. At very high
capillary pressures, water retention is no longer caused by effects of capillarity, but
by interaction between solid surfaces and water films.

The soil water characteristic is generally highly nonlinear. It is also often strongly
hysteretic, which may be a result of of gas phase entraption and/or varying contact
angles between a receding or advancing wetting front.

It is convenient to represent the soil water characteristic by a parameterization
fitted to the measured data. The two most popular models have been formulated
by van Genuchten (1980) and by Brooks and Corey (1966).

If we define an effective saturation Sel

Sel
=

Sl − Srl

1− Srl
− Srg

, (2.20)

the van Genuchten model is given by

Sel
= [1 + (αpc)

n]
−m

(2.21)

and the Brooks-Corey parameterization is

Sel
=

{
(pc/pe)

−λ pc ≥ pe

1 pc < pe

. (2.22)

Srg , Srl
, α, n, m, λ and pe are empirical parameters. Srg and Srl

are called residual
gas and water saturation and m is often assumed to be m = 1− 1

n
. Both parameter-

izations approach each other for αpc À 1 if α−1 = pe and mn = λ. pe is the entry
pressure associated with the biggest pores in the porous medium connected to the
gas phase. The van Genuchten model does not consider an entry pressure, which
implies the assumption of the existence of a fraction of pores with infinite diameter.

2.4.1.1 Temperature Dependence

As the soil water characteristic is a result of capillary effects in moist porous media
it should change with the temperature dependence of surface tension. Döll (1996)
gives a thorough review of literature on the temperature dependence of the water
characteristic and comes to the conclusion that “it appears that the surface tension
model for the temperature dependence of the water retention curve underestimates
the effect of temperature by a factor of 1 to 8. This factor seemingly decreases
with increasing saturation, but is more or less independent of temperature.” As
possible reasons she mentions entrapped air, different behavior of soil solution and
pure water and influence of temperature on the contact angle γ (Equation 2.19). As
no definite explanation exists which makes a calculation of the effect possible, only
the temperature dependence of capillary pressure will be considered in this work.
The water characteristic is scaled according to the formula:

Sl(pc, T ) = Sl(
pc

σ∗rel(T )
) (2.23)
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with

σrel = σw(T )/σw(T0)

σ∗rel =





1.0 pc ≥ pad

1.0 +
(pc−pad)

(pcapσrel−pad)
pad > pc > pcapσrel

σrel pc ≤ pcapσrel

. (2.24)

This scaling takes care of the fact that capillary effects are not relevant for water
in very small pores, where liquid adsorption on solid surface prevails. pad is the
capillary pressure above which the soil water characteristic is dominated by surface
adsorption and the soil water characteristic doesn’t have to be scaled any more
due to changes of surface tension. pcap is the potential below which the soil water
characteristic is dominated by capillary forces. Values of 1.5 · 107Pa and 1.5 · 108Pa
were chosen for pcap and pad, which correspond to pore radii of 10 and 1 nm. T0 is the
temperature at which the soil water characteristic was measured. With a standard
deviation of ±0.08 N/m a linear approximation can be used between 10 and 100 ◦C
for the temperature dependence of the surface tension of pure water according to
Jasper (1972):

σla(T ) = 116.19 N/m− T · 0.1477 N m−1K−1. (2.25)

This function is used for temperatures above 0 ◦C; below 0 ◦C surface tension is
assumed to be constant.

2.4.1.2 Gas Phase Saturation

The sum of saturations is always equal to one. The gas phase saturation is therefore
Sg = 1− Sl in unfrozen or Sg = 1− Sl − Si in frozen porous media.

2.4.1.3 Freezing Curve

In frozen soils water does not freeze completely at the freezing point. Measurements
show a more gradual decrease of the liquid water content and even at temperatures
of −10 ◦C liquid water is still present. This phenomenon is explained in analogy
to unsaturated unfrozen soils, by capillary and surface adsorption forces (Figure
2.5). As solutes are excluded from the ice phase, osmotic pressure has also to
be considered. The surface tension σwi of the water/ice interface is found to be
approximately half the surface tension σwa of the water/air interface. Spaans and
Baker (1996) found that water characteristic and freezing curve could be related to
each other. The pressure difference at the water ice interface can be calculated from
the Clausius-Clapeyron equation.

vw
l dpl − vw

i dpi = (Sw
l − Sw

i ) dT =
∆Hw

il

T
dT (2.26)
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Figure 2.5: Schematic representation of the pore space before (left) and after (right)
freezing. Complete exclusion of solutes (yellow) from the ice phase is
assumed

with Sw
l , Sw

i : Entropy of liquid water, ice [J/K]
vw

l = (νw
l )−1, vw

i = (νw
i )−1: Molar volume of liquid water/ice [m3/mole]

If we assume that the molar volumes are not temperature and pressure dependent
and the phase change enthalpy is not pressure dependent, this equation can be
integrated and yields

(νw
l )−1 (pl − patm)− (νw

i )−1 (pi − patm) =
∫ T

T0

∆Hil(T
∗)

T ∗ dT ∗ (2.27)

=⇒ pl − pi = νw
l ·

∫ T

T0

∆Hil(T
∗)

T ∗ dT ∗ +

(
νw

l

νw
i

− 1

)
· (pi − patm) (2.28)

If we calculate the osmotic pressure Πo using the assumption of complete exclu-
sion of the solutes from the ice phase we can calculate the liquid phase pressure at
a temperature T below the freezing point from:

pl(T ) = pi + Πo + νw
l ·

∫ T

T0

∆Hil(T
∗)

T ∗ dT ∗ +

(
νw

l

νw
i

− 1

)
· (pi − patm) . (2.29)

Miller (1980) got the same equation by a slightly different derivation.
Using pc = pi − pl(T ) the unfrozen water content can then be calculated from

the soil water characteristic. This derivation is only an approximation. Difficulties
arise from the difference in surface tension at the water/air and water/ice interface.
If capillary forces are not prevalent, like in dry soils or in very clayey soils this
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2.4 Effective Parameters

difference is not relevant and the unfrozen water content can be derived directly
using the formula above. If the soil is completely saturated so that only water/ice
interfaces exist the pressure differences between liquid and ice phase should be scaled
with the ratio of surface tensions. In the range between these extremes it depends on
the geometry of the gas and ice phase. Two extreme cases can be imagined: Either
the whole liquid phase is covered by ice and there are only water/ice and ice/air
interfaces, or the ice is concentrated at a few points and water/air interfaces are
prevalent (Figure 2.5). As this question has not been answered until today (Miller
(1980) hints at a tendency of the ice to reduce the number of ice/air interfaces), the
unfrozen water content is derived without any scaling due to differences in surface
tension in this work.

2.4.2 Gas and Liquid Phase Conductivity

It is not easy to measure the gas and liquid phase conductivity of a porous medium.
The saturated conductivities are usually measured directly, but boundary effects are
hardly negligible and the results have a large standard deviation. The unsaturated
conductivity can either be measured directly at distinct capillary pressures or it can
be derived from multistep outflow measurements by inverse modeling. Unlike the
soil water characteristic, the conductivities are only mildly hysteretic if expressed
as function of saturation.

Conductivity can be separated in absolute permeability, relative permeability
and dynamic viscosity:

Kl = K · krl
(Sl)

µl

(2.30)

Kg = K · krg(Sg)

µg

(2.31)

The absolute permeability tensor is a material property of the porous medium, the
dynamic viscosities µl and µg are specific for the fluid/gas, whereas the relative
permeabilities krl

and krg depend in a complex manner on the geometry of the solid
phase and the arrangement of the phase boundaries.

Mualem (1976) derived a parameterization for the relative permeability using the
assumption that the porous medium can be regarded as a bundle of interconnected
capillaries and that the distribution of capillary radii is given by the soil water
characteristic:

krl
(Sel

) = Sτ
el

Sel∫

0

dS

p2
c(S)

/

1∫

0

dS

p2
c(S)

(2.32)
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with τ called “tortuosity” factor. Mualem modified this function after comparison
with the conductivity functions of 50 soils to:

krl
(Sel

) = Sτ
el




Sel∫

0

dS

pc(S)
/

1∫

0

dS

pc(S)




2

(2.33)

If the van Genuchten model (Equation 2.21) is inserted for the water characteristic,
we get:

krl
(Sel

) = Sτ
el

[
1−

(
1− S1/m

el

)m]2
(2.34)

krl
(pc) =

{
1− (αpc)

n−1 [1 + (αpc)
n]
−m

}2

[1 + (αpc)
n]

mτ (2.35)

With the Brooks-Corey model (Equation 2.22) the Mualem model yields:

krl
(Sel

) = S2+τ+2/λ
el

(2.36)

krl
(pc) =





[pc/pe]
−2−λ[τ+2] pc ≥ pe

1 pc < pe

(2.37)

The tortuosity factor τ was set to 0.5 by Mualem. Today it is often used as additional
fitting parameter.

Dury et al. (1999) derive the gas phase permeability defining Seg analogue to Sel

using the same derivation as for the liquid phase. They get

krg(Seg) = Sτ
eg

[
1−

(
1− Seg

)1/m
]2m

(2.38)

for the van Genuchten and

krg(Seg) = Sτ
eg

[
1−

(
1− Seg

)(1+λ)/λ
]2

(2.39)

for the Brooks-Corey model. Additionally they demonstrated that it might be neces-
sary to adjust the equations if the gas phase becomes discontinuous before full water
saturation is reached. Heterogeneity in combination with the air entry pressure of
the pores might be one reason for this observation. Other transport processes like
diffusion of dissolved gases and the rising of air bubbles might get important. As
some of these processes are included explicitly in this work the approach of Dury
et al. (1999) is not used.

As the liquid phase distribution is determined by interactions of liquid and solid
phase even in frozen porous media, the liquid phase conductivity is still calculated
from liquid phase saturation. Additional friction at boundaries between liquid phase
and ice is neglected. Gas permeability in a frozen soil is much harder to estimate,
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2.4 Effective Parameters

as it depends much more on the ice distribution. For this work it is assumed that
the coarsest pores are filled with air and gas phase conductivity can be calculated in
the same way as in unfrozen soils. These assumptions will lead to an overestimation
of both liquid and gas phase conductivities.

If huge amounts of water infiltrate into a frozen soil during snowmelt in spring,
water can also infiltrate into the coarse pores filled with air and into macro pores
generated by mechanical processes during freezing. The assumption that water is
always in the finest pores, which is the basis of the Mualem model, is then no
longer valid and infiltration could be much faster than expected. Stähli et al. (1999)
suggested a model which includes this effect by introducing a high flow domain for
water which’s conductivity is given by:

krlhf
= e−Si/fSi ·

(
krl

(Sl + Si + Slhf
)− krl

(Sl + Si)
)

(2.40)

fSi
is a fitting parameter describing the damping effect of ice and Slhf

is the liquid
phase saturation of the high flow domain. Water in the high flow domain refreezes
with time. The water flux between high flow domain and the normal liquid phase
is given by

jw
infreeze = αh

T

∆Hw
il

. (2.41)

As this model introduces two new fitting coefficients fSi
and the heat exchange

parameter αh, which can not be measured independently, and as the aim of this
work is to study the physical interactions in porous media based on a deterministic
process model, this approach is not used.

2.4.3 Diffusion Coefficients

Depending on gas phase density two different descriptions have to be used for gas
diffusion in porous media: Knudsen diffusion and molecular diffusion.

Knudsen diffusion is not important in natural porous media. It occurs only if
gases diffuse in very small pores8 or at very low pressures. The mean free path
length is then much larger than the pore radius and the probability for a molecule
to hit the pore wall is much higher than the probability to hit another molecule.

If the mean free path length is much smaller than the pore diameter, molecules
collide with each other more often than with the pore walls. Molecular diffusion
therefore depends mainly on the composition of the gas or liquid phase. The presence
of the porous medium nevertheless influences the diffusion processes.

In free space, molecular diffusion of two gases can be described by Fick’s law:

ji
gD

= −Dij
g ∇νi

g (2.42)

8at normal temperature and pressure Knudsen diffusion occurs at a pore radius smaller than
50 nm (Schulz 1995).
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2 Theory of Coupled Transport Processes in Porous Media

with ji
gD

: Molar flux of component i due to molecular diffusion [mole m−2 s−2]
Dij

g : Binary diffusion coefficient of components i and j [m2/s]
νi

g: Molar density of component i in the gas phase [mole/m3].

Fick’s law is no longer applicable if there are more than two components or in
the presence of walls. It can be shown still to be valid for a trace gas or solute with a
very small concentration. However it has been frequently applied for the calculation
of gas diffusion (Findikakis and Leckie 1979, Lindgren and Rasmuson 1994, Baehr
and Baker 1995, Freijer and Leffelaar 1996) and solute transport in soils. The porous
medium is taken into account by multiplication of the binary diffusion coefficients
with a saturation dependent relative diffusion coefficient ξ(S).

A better founded theory for the transport of a gas mixture in a porous medium
is given by the dusty gas model. In this model soil particles are treated as very big
gas molecules, which are stationary in the frame of reference (Thorstenson and Pol-
lock 1989a, Thorstenson and Pollock 1989b, Cunningham and Williams 1980, Mason
et al. 1967). From this assumption an equation system can be derived which de-
scribes molecular diffusion, Knudsen diffusion and viscous flow as well as nonequimo-
lar flux. Nonequimolar flux results from the different speed of gas molecules with
different mass at the same temperature. Molecular diffusion then results in a pres-
sure gradient, generating a quasi-viscous counter flux. As this equation system can
not be solved explicitly for the flux of individual gases, it is difficult to incorporate in
a coupled model and would increase computing time significantly. In this work gas
and solute transport therefore are calculated with the modified Fick’s law despite
the legitimate problems. It is necessary to check at a later time if the dusty gas
model yields better results. The effect of nonequimolar flux can be approximated if
diffusion coefficients are adapted for molecules with different mass, which leads to a
pressure gradient and a net flux.

There are a lot of formulas for the estimation of the saturation dependent relative
diffusion coefficient. In a study made by Jin and Jury (1996)

ξ(S) =
S2Φ2

Φ2/3
(2.43)

gave the best correspondence with measured gas diffusion coefficients. A diploma
thesis by Ott (1996) confirmed the applicability of this formula. It is used in this
work for both gas and solute transport.

2.4.4 Water/Solute Interaction

It is often suggested to include an osmotic potential ψo = −Πo into the hydraulic
potential driving the water transport. An osmotic pressure Πo exists between a
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2.4 Effective Parameters

Figure 2.6: Comparison of measured relative diffusion coefficients with different tor-
tuosity models. Penman Model: ξg(SgΦ) = 0.66SgΦ, M-Q Model 1:
ξg(SgΦ) = (SgΦ)10/3/Φ2, M-Q Model 2: ξg(SgΦ) = (SgΦ)2/Φ2/3 (from
Jin and Jury 1996)

solution and pure water separated by a membrane which is permeable to water
molecules but not to the solutes. It can be calculated as

Πo = −νw
l RT log(Xw

l ) ≈ RT
∑

i

cs
li
, (2.44)

where Xw
l is the molar fraction of water in the liquid phase and R the ideal gas

constant. The summation index i runs over all solute species.
If the density of water is approximately constant, the gradient of osmotic poten-

tial is

ψo = −νw
l RT∇ log(Xw

l ) = −νw
l RT

1

Xw
l

∇Xw
l ≈ −RT

Xw
l

∇cw
l , (2.45)

which is obviously a diffusion term. In analogy to the discussion of nonequimolar
flux in the previous section, the interaction between solute transport and water
transport seems to be important if the concentration of solutes is high and the mass
of the solutes is different from the mass of water molecules. If a semipermeable
membrane exists, e.g. in root water uptake, water vapor transport or soil freezing,
the osmotic pressure (Equation 2.44) must be taken into account.

2.4.5 Fluid/Gas Properties

2.4.5.1 Gas Solubility

As gas solubility is low in water, each gas molecule can be assumed to be completely
surrounded by water molecules at usual temperatures and pressures. The tendencies
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2 Theory of Coupled Transport Processes in Porous Media

of gas molecules to leave the solution is then proportional to their molar fraction
and the solubility is described by Henry’s law: (Moore 1990)

pi
g = ki

HX i
l (2.46)

with pi
g: partial pressure of gas i [Pa]

ki
H : Henry coefficient of gas i [Pa]

X i
l : molar fraction of gas i in the liquid phase [–]

The temperature dependent Henry coefficients for oxygen and nitrogen are given in
Weast (1995):

kO2
H = e−66.735+8747.5K/T+24.453∗log(T/100K) Pa (2.47)

kN2
H = e−67.388+8632.1K/T+24.798∗log(T/100K) Pa (2.48)

The Henry coefficient for air is calculated by 0.21 · kO2
H + 0.79 · kN2

H .

2.4.5.2 Viscosity of Liquid and Gas Phase

Atkins (1990) gives the temperature dependency of the dynamic viscosity of water
µl as:

µw = µw20 · 10−A

A =
1.37023 · (T − 293.15K) + 8.36 · 10−4K−1 · (T − 293.15K)2

−164.15K + T
(2.49)

µw20 = 1.0019 · 10−3 Pa s, [T in K]

A constant liquid phase viscosity is used for temperatures below 0 ◦C. Changes of
viscosity with composition are neglected.

The viscosity of air at 273 K and 293 K is given by Atkins, the gas phase viscosity
is therefore linearly interpolated from:

µg = 1.73 · 10−5Pa s + 4.5 · 10−8 Pa s/K · (T − 273K) (2.50)

2.4.5.3 Densities

A polynomial of fourth degree can be fitted to the values given by Kuchling (1991)
for the density of water for temperatures above 0 ◦C:

ρw
l = −3.6247 · 10−7 kg/K4 · T 4 + 4.6537 · 10−4 kg/K3 · T 3

−0.22767 kg/K2 · T 2 + 49.823 kg/K · T − 3089.3 kg (2.51)

For temperatures below 0 ◦C, the equation

ρw
l = 999.8kg + 1.584 · 10−2 kg/K · ϑ− 1.475 · 10−2 kg/K2 · ϑ2 (2.52)

ϑ = T − 273.15 K (2.53)
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is given by Hare and Sorensen (1987). Molar density of water is calculated using a
molar mass of 0.018015 kg/mole.

The density of ice is assumed to be constant νw
i = 917 kg/m3, the density of air

is calculated from the ideal gas law using Ma = 0.026 kg/mole.

2.4.6 Heat Conductivity

The heat conductivity of a porous medium depends not only on its composition,
but also on the geometry of the pore space and the distribution of the phases. The
problem is simplified by the strong dissipative nature of heat transport. Kersten
(1949) derived an empirical conductivity function for frozen and unfrozen soils that
was used, for example, in the SOIL model by Jansson (1998).

De Vries (1952) developed a method to estimate the composition dependence of
heat conductivity9. In analogy to the description of polarization, heat conductivity
can be estimated with the formula

λ =

∑N
i=0 kiX iλi

∑N
i=0 kiX i

(2.54)

with ki: Ratio of the average temperature gradient in particles of type i
to the average temperature gradient in the surrounding medium [–]

X i: volume fraction of component i [–]
λi: heat conductivity of component i [Wm−1K−1]

The value of ki depends on the ratio λi/λ0,
10 and the size, form and position of the

particles. If they are assumed to be ellipsoids with a distance large enough to be
treated independently, ki can be calculated:

ki =
1

3

∑

a,b,c

[
1 +

(
λi

λ0

− 1

)
ga

]−1

(2.55)

ga, gb, gc are dimensionless form factors, depending on the ratio of the axes a, b and
c of the ellipsoid. Their sum is equal to one. If two axes are equal, their form factors
are equal as well. For spherical particles ga = gb = gc = 1/3. Both assumptions are
clearly not valid for a natural porous medium, but according to de Vries theoretical
reasons as well as measurements hint at an applicability of equation 2.55. My
own research (Ippisch et al. 1998) showed a good agreement of this approximation
with results obtained from simulations explicitly considering the structure of a soil
sample.

9The heat conductivity is also temperature dependent. This dependence is not considered.
10λ0 is the heat capacity of the surrounding medium.
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Figure 2.7: Example for the dependence of the heat conductivity of a porous medium
on ice and water saturation calculated with the generalized de Vries
model

The heat conductivity can only be calculated with equations 2.54 and 2.55 for
fully saturated frozen or unfrozen porous media or completely dry soils. For wa-
ter contents in between, the form factors ga, gb, gc for air bubbles (or ice crys-
tals) are necessary. De Vries (1963) gives in example 7.6.1 a method to estimate
them. Additionally, the increase in heat conductivity of the gas phase due to wa-
ter vapor transport must be considered (chapter 2.4.6.1). The de Vries model is
widely used in models for frozen and unfrozen soils (Blom and Troelstra 1972, Huwe
1992, Flerchinger and Saxton 1989).

To calculate the heat conductivity of frozen soils the de Vries model was applied
for unfrozen soils (only air and water), completely frozen soils (only air and ice) and
completely saturated soils with an increasing ice content (only water and ice). For
water contents in between, the heat conductivity was interpolated in a way which
takes care of the change of phase continuities. An example for the resulting heat
conductivity distribution can be seen in figure 2.7.

2.4.6.1 Water Vapor Transport

Philip and de Vries (1957) and de Vries (1958) wrote two fundamental papers on
the peculiarities of water vapor transport. If local thermodynamic equilibrium is
assumed, no separate equation for water vapor transport is necessary. According to
Philip and de Vries (1957) the molar density of water vapor is given by

νw
g (pc, T ) = νw

g0
(T )rH = νw

g0
(T ) exp

(−pc Mw g

R T

)
(2.56)
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with νw
g0

: molar density of saturated water vapor [mole/m3]
rH: humidity [–]
Mw: molar mass of water [kg/mole]

The molar density of water vapor above pure water at saturation is given by Weischet
(1991):

νw•
g0

(T ) =
610.78Pa

R T
exp

(
17.08085 (T − 273.15K)

T − 38.975K

)
(2.57)

Vapor pressure above a solution is lower than above pure water, as a part of the
interface between gas and liquid phase is covered by solute molecules, which reduces
the tendency of water molecules to leave the liquid phase. For an ideal solution this
effect can be calculated by Raoult’s law (Moore 1990)

νw
g0

(T ) = Xw
l νw•

g0
(T ). (2.58)

Xw
l is the molar fraction of water in the solution.

The molar density gradient in Fick’s law can be separated using equation 2.56

∇νw
g = rH∇νw

g0
+ νw

g0
∇rH (2.59)

At constant capillary pressure the temperature dependency of humidity is small
enough to set ∂rH/∂T = 0.

⇒ ∇νw
g = rH

dνw
g0

dT
∇T + νw

g0

drH

dpc

∇pc = rH
dνw

g0

dT
∇T − νw

g g

RT
∇pc (2.60)

The flux law for water vapor diffusion is then

~Jw
gD

= −Dw
gT
∇T −Dw

gpc
∇pc (2.61)

For the derivation of Dw
gT

it is useful to look at a single pore in a relatively dry porous
medium (Figure 2.8). If there are neither temperature nor potential gradients, the
curvature at A and B is equal.

Transport of gases across the liquid island is very limited, as solubility in water is
small and the diffusion coefficients in solution are some orders of magnitude smaller
than the diffusion coefficients in air.

If there is a vapor density gradient in the direction indicated by the arrow, water
vapor condenses at side A, which decreases curvature whereas the curvature at B
is increased by evaporation. In equilibrium water flux between A and B equals the
water vapor flux in the gas phase. According to Philip and de Vries (1957) the
equilibrium is reached quickly. This increases the cross section available for vapor
flux markedly.
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Figure 2.8: Water vapor transport through a liquid island. The arrow gives the
direction of transport (from Philip and de Vries 1957)

A precise analysis of the small scale temperature and water vapor distribution
would be quite complicated. The authors therefore further analyzed water vapor
flux in a single pore. The flux density is:

−Dw
gatm

rH
dνw

g0

dT
(∇T )g (2.62)

(∇T )g is the average temperature gradient in the pore, Dw
gatm

the diffusion coefficient
for water vapor in free atmosphere. This equation is based on the assumption of
similarity between the temperature field and the molar density distribution of water
vapor in a pore. It is also valid for the average flux density in all air filled pores,
if (∇T )g is interpreted as the average temperature gradient in these pores. If it is
further assumed that the flux density in the liquid islands is equal to the average
flux density in air filled pores, we get:

− (Sg + Sl)ΦDw
gatm

rH
dνw

g0

dT
(∇T )g = −Dw

gT
∇T (2.63)

Tortuosity is already included in (∇T )g.
As a result of the different heat conductivities of the phases in a natural porous

medium, the average temperature gradient is not the same for all phases. If a
temperature gradient is applied to a one-dimensional system consisting of a layer of
quartz, a water film on the surface of the quartz layer, an air gap and another water
covered quartz block, the temperature gradients will be quite different (Figure 2.9).
As a natural porous medium has a complicated three-dimensional structure, we get
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Figure 2.9: Temperature distribution (right) in a simple heterogeneous medium
(left) if a vertical temperature gradient is applied

a complicated temperature distribution, resulting in different average temperature
gradients.

At high water contents the water flux caused by water vapor transport will be
reduced, as the capillary radii can not adjust fast enough and the liquid islands
become scarce and more elongated. The saturation Slk at which the liquid phase
conductivity is nearly zero, because of phase discontinuity, can be taken as limit for
the process. In equation 2.63 (Sg+Sl) is therefore replaced by a factor (Sg+f(Sg) Sl):

Dw
gT

= (Sg + f(Sg) Sl)ΦDw
gatm

rH
dνw

g0

dT

(∇T )g

∇T
(2.64)

Philip and de Vries (1957) suggest a value of f(Sg) = 1 for Sg ≥ (1 − Slk) and
f(Sg) = Sg/(1− Slk) for Sg < (1− Slk).

The ratio between the average temperature gradient in the air filled pores and
the average temperature gradient across the whole porous medium, can be estimated
with de Vries’ method for the estimation of heat conductivity given in the previous
section (chapter 2.4.6).

Philip and de Vries (1957) argue that water flux across liquid islands is not
relevant for isothermal water flux, as very small changes in the radius of curvature
would be sufficient to reverse the direction of water flux. The diffusion coefficient is
then given by:

Dw
gpc

=
Dw

gatm
ξgν

w
l gMw

RT
(2.65)

where ξg is a tortuosity coefficient calculated as given in chapter 2.4.3.
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In equation 2.14 heat conduction and transport of latent heat with water vapor
are additive processes on the macro scale. As water vapor transport can increase
the effective heat conductivity of the gas phase, this is only a first approximation.
De Vries (1958) suggests therefore two alternative formulations of the heat conduc-
tivity λ of a porous medium.

λ1 = λ∗ (2.66)

λ2 = λeff −Dw
gT

(2.67)

λ∗ is the (hypothetical) heat conductivity of a porous medium without any water
vapor transport. It can be calculated with the method given in section 2.4.6, if
the heat conductivity of air filled pores is set to the heat conductivity of dry air.
λeff is the effective heat conductivity, resulting from the interaction of water vapor
transport and heat conduction. One approximation is the addition of Dw

gT
to the

heat conductivity of air in the de Vries model for heat conduction. The difference
between λ1 and λ2 is small but not negligible according to de Vries. Depending on
direction and size of isothermal diffusive and convective water vapor transport, the
first or the second approximation is more correct.

As it is hard to separate the two cases and λeff depends strongly on temperature,
λ1 will be used in the current work.

2.4.7 Mechanical Interactions

In most existing models of transport in porous media, soils are assumed to be rigid
bodies, with properties not changing with time. If this assumption was used for
freezing soils, the equation system was not solvable. A strong redistribution of
water occurs during freezing resulting in frost heave (Miller 1980). Two different
types of frost heave occur: In coarse textured material, the water freezes just on the
spot. As the density of ice is lower than the density of water, this leads to a volume
increase. In fine textured media, water moves to the freezing front for some time, as
the hydraulic conductivity remains high even for low unfrozen water contents. Ice
lenses form, while the dessicated material is compressed.

A full mechanical model of a freezing porous media is out of the scope of this
work. A simplified model is needed, to deal with the numerical difficulties.

At continuum scale deformation of a porous medium can be described by a visco-
plastic model (Miller 1980). The envelope pressure σ (caused for example by the
weight of the overburden), is balanced by two forces: the effective stress σe, caused
by the resistance of intergranular contacts to compression, and the neutral stress σn

resulting from the reaction of the phases in the pore space. If there is more than
one phase in the pore space, the neutral stress can be calculated from the phase
pressures and partition factors.

σn = χlpl + χgpg + χipi (2.68)
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The partition factors χj add up to one and are equal to one for a phase if the soil is
completely saturated with this phase or zero if the phase is completely absent. An ice
lens can form if σe becomes zero or negative. This is the case if σ ≤ χlpl+χgpg+χipi.

It is assumed that ice pressure and gas phase pressure are equal. Equation 2.68
can then be rewritten as σn = χlψl + (χg + χi)pg or σn = χlψl + (χg + χi)pi. As
saturations are used as partition factors χl is equal to Sl and χg + χi = (1− Sl).

It is assumed that the porous medium reacts fully elastic. The porous medium
expands proportional to the absolute value of effective stress, if effective stress is
negative. Expansion is only allowed if ice is present. It is assumed that the volume
expansion is only a consequence of ice accumulation.

This approach can be used in two ways: If Richards’ equation is used for the
liquid phase transport or in absence of a gas phase, the ice pressure can be calculated
from the pore volume. If multiphase equations are used, the pore volume can be
calculated from gas pressure.
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3 Numerical Solution

3.1 Mathematical Formulation of the Equation
System

Mathematically the model formulated in the previous chapter consists of a set of up
to four partial differential equations (the balance equations 2.2-2.5 combined with
the storage terms 2.6-2.9 and flux laws 2.10-2.14) and a set of algebraic relations
(the effective parameters defined in section 2.4). To solve the equation system, a set
of independent variables has to be chosen. The selection of temperature T for the
energy balance equation and concentration cs

l for the solute balance equation are
quite natural. For the water and gas balance equation variables can be substituted
by others using the algebraic relations, which makes more than one choice possible.
Depending on the selection, different mathematical models can be derived, which
have a strong impact on the numerical simulation. There are a lot of possibilities,
including the creation of new artificial variables with favorable numerical properties.
Bastian (1999) gives an overview of some commonly used formulations. In this work
only the frequently used phase pressure/saturation formulation and a new partial
pressure/phase pressure formulation will be discussed.

3.1.1 Phase Pressure/Saturation Formulation

In the phase pressure/saturation formulation either liquid phase pressure pl and gas
saturation Sg, or gas phase pressure pg and liquid saturation Sl are chosen as the
independent variables. Pressure and saturation of the other phase can be elimi-
nated using the physical constraints (e.g. saturations add up to one ⇒ Sl = 1−Sg).
Depending on the choice of the phase for which pressure is calculated, the phase pres-
sure/saturation formulation remains solvable either for complete water saturation
(Sg = 0 is still defined) or complete gas saturation (with Sl = 0). As the capillary
pressure pc has to be calculated from inversion of the soil water characteristic, the
Brooks-Corey parameterization can not be used in the phase pressure/saturation for-
mulation without regularization. Another problem arises if the pressure/saturation
formulation is used in strongly heterogeneous media, as the phase pressure is con-
tinuous across material discontinuities, whereas saturation is not.
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3.1.2 Partial Pressure/Phase Pressure Formulation

The problem of a pressure/pressure formulation is the specification of the pressure
of an absent phase, when the porous medium is saturated with the other phase. In
natural porous media this is typically the gas phase pressure, as there are always
some liquid water films on the solid surface, which can be related to a capillary
pressure. This problem can be resolved, if dissolution of gases1 in water is taken
into account using Henry’s law (section 2.4.5.1). The partial pressure of air pa

g

can be chosen as independent variable. The concentration of dissolved air is then
given by ca

l = pa
g/k

a
H · νw

l and the gas phase pressure is either equal to the partial
pressure of air pg = pa

g, if water vapor transport is neglected or the sum of the
partial pressures of air and water vapor2 pg = pa

g + pw
g . The partial pressure of

air thus remains defined even in complete absence of an air phase (if there’s not
even dissolved air, it is just zero). As capillary pressure is defined as the difference
between gas and liquid phase pressure, it is always well defined and liquid phase
saturation can be calculated from the soil water characteristic. A gas phase emerges,
if the capillary pressure is higher than the air entry pressure in the Brooks-Corey
model or above zero if the van Genuchten model is used. Transition to Richards’
equation is easy, as all effective parameters can be calculated in the same way for
both Richards’ equation and partial pressure/phase pressure formulation. To get
Richards’ equation, gas phase pressure must be set to atmospheric pressure and the
balance equation for air and the calculation of gas phase fluxes have to be skipped.
As there is an abrupt change in gas phase saturation at the entry pressure, when
the Brooks-Corey model is used, numerical difficulties might arise. The partial
pressure/phase pressure formulation should also be advantageous in heterogeneous
media, as both pressures are continuous across material discontinuities.

The partial pressure/phase pressure formulation is used in this work, as it allows
the use of the Brooks-Corey parameterization. It also makes the investigation of
differences between water transport calculated with Richard’s equation and with
twophase equations easier.

1In the black oil model (Peaceman 1977) air solubility is also considered, as it is an important
process at high pressures, but not with the objective to deal with numerical problems at satu-
ration.

2The water vapor pressure can then no longer be expressed explicitly, as it depends on capillary
pressure, but has to be calculated from the nonlinear equation
νw

g = νw
g0

(T ) exp
(−(pa

g+νw
g RT−pl) Mw g

R T

)
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3 Numerical Solution

3.2 Discretization

3.2.1 Spatial Discretization

There are numerous spatial discretization schemes. Besides various finite diffe-
rence, finite element and finite volume methods there are methods of characteristics
(MMOC, ELLAM...). They differ in their numerical properties (global or local mass
conservation, resolution of steep fronts, monotonicity of the solution...) and their
precision at large time steps. Helmig (1997) and Bastian (1999) give comparisons
of various methods.

In this work a fully implicit, fully coupled, vertex centered finite volume scheme
will be used. The advantages of this discretization are stability, consistency, ro-
bustness, local mass conservation, monotonicity of the solution and the ability to
handle unstructured meshes, which makes it possible to deal with complex geome-
tries. The model was realized using the numerical toolbox UG (Bastian et al. 1997),
which provides routines for the management of unstructured grids, the solution of
linear and nonlinear equation systems, time-stepping schemes, parallelization and
visualization.

As an example, the discretization of Richards’ equation will be demonstrated. If
the discretization is done properly, calculations are possible in 2D as well as in 3D.
Combination of equations 2.2, 2.6 and 2.10 yields:

∂ (Φ · Sl · cw
l )

∂t
−∇ · [νw

l Kl(Sl) (∇pl − ρlg)] = qw. (3.1)

The equation is solved for liquid phase pressure pl.

To discretize equation 3.1, the domain of interest Ω with boundary Γ is divided
into k elements e1, . . . , ek. With UG, triangular and quadrilateral elements can be
used in 2D, tetrahedrals, pyramids, prisms and hexahedra can be used in 3D. Sup-
port for cylindrical coordinates using rectangular elements parallel to the coordinate
axes was added by the author. Different element types can be mixed, as long as
there are no gaps between elements and two elements share either a corner node
(called vertex), an edge (the connection of two vertices, the side of an element in
2D) or a face (the side of an element in 3D). The N vertices υ1, . . . , υN are located at
positions x1, . . . ,xN . For the vertex centered finite volume method a control volume
bi is defined for every vertex υi, which is constructed by connecting the barycenters
of all elements containing υi to edge midpoints (2D) or face barycenters (3D). In
3D face barycenters are also connected to edge midpoints (Figures 3.1 and 3.2).
Interior vertices are approximately in the center of their associated control volume,
while boundary vertices are at its boundary. Nodal basis functions φi are defined
on each element ei, with the usual property φi(xj) = δij so that the value of pl at
position x is pl(x) =

∑
i pliφ(x) where pli is the solution at vertex i.
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vi

vj

bi

bj

Figure 3.1: An element mesh with two vertices υi and υj and their control volumes
bi and bj marked (from Bastian 1999)

Integration of equation 3.1 and application of Gauss’ theorem yields:

∂M(x)

∂t
− A(x) = Q(x) (3.2)

M(x) =
∫

Ω

(Φ · Sl · νw
l ) dx (3.3)

A(x) =
∫

Γ

[νw
l Kl(Sl) (∇pl − ρlg)] · dn (3.4)

Q(x) =
∫

Ω

qwdx (3.5)

M is the storage term, A is the flux term and Q the source term of the equation.
In a weak formulation we demand only that equation 3.2 is valid for each control
volume i (∂bi is the boundary of the control volume).

∂Mi(x)

∂t
− Ai(x) = Qi(x) (3.6)

Mi(x) =
∫

bi

(Φ · Sl · νw
l ) dx (3.7)

Ai(x) =
∫

∂bi

[νw
l Kl(Sl) (∇pl − ρlg)] · dn (3.8)

Qi(x) =
∫

bi

qwdx (3.9)
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Figure 3.2: 2D and 3D elements with their sub-control volumes and sub-control vol-
ume faces (from Bastian 1999)

Due to the nodal basis function, only the elements containing the vertex υi are
involved in the calculation of the integrals. As parameters like permeability can
be different for each element, it is reasonable to split the integrals into a sum of
integrals over sub-control volumes. A sub-control volume bk

i is the intersection of
a control volume and an element. Each sub-control volume has at least two sub-
control volume faces γk

ij, which are the boundaries of bi on element k and can be
associated with the edge (υi,υj).

Mi(x) =
∑

k

∫

bk
i

(Φ · Sl · νw
l ) dx (3.10)

Ai(x) =
∑

k

∑

j

∫

γk
ij

[
νw

l Kl(Sl) (∇pl − ρlg) + Dw
g ∇νw

g

]
· dn (3.11)

Qi(x) =
∑

k

∫

bk
i

qwdx (3.12)

The integrals are evaluated using the mid point rule, where the mid point of the
control volume bi (i.e. the position of the vertex υi) is used for the volume integration
and the barycenter xk

ij of the sub-control volume face γk
ij is used for the surface

integrals. If the outward directed normalized vector normal to γk
ij is called nk

ij, the
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volume of the sub-control volume is designated V k
i and the area of the sub-control

volume face is termed F k
ij, we get:

Mi(x) =
∑

k

Φk · Sk
l (pli) · νw

l (xi) · V k
i (3.13)

Ai(x) =
∑

k

∑

j

[
νw

l (xk
ij)K

k
l (x

k
ij)

(
∇pl(x

k
ij)− ρl(x

k
ij)g

)]
· F k

ij (3.14)

Qi(x) =
∑

k

[qw]k (xi) · V k
i (3.15)

Weakly nonlinear functions (e.g. νw
l ) are interpolated from the values at the

vertices using the nodal basis functions. Highly nonlinear functions (e.g. Sk
l ) are

calculated from the values of the interpolated primary variables at the barycenters
of the sub-control volume faces. Gradients are evaluated using the nodal basis
functions. Upwinding is done for the relative hydraulic conductivity using

[krl
]kij =

{
[krl

]i Jl(x
k
ij) · nk

ij ≥ 0
[krl

]j else
(3.16)

Upwind stabilization leads to monotone solutions but also to numerical smoothing
of sharp fronts and a higher sensitivity to grid orientation, as it is only first or-
der accurate. Centered differences are second order accurate but yield oscillatory
numerical approximations if the solution is not smooth enough.

3.2.1.1 Heterogeneity

As it must be possible to evaluate the effective parameter functions at the sub-
control volume faces, only one set of effective parameter functions is allowed for
every element. Different elements may have different sets of effective parameters. In
the model this is done by giving each element a property called material, which is
linked to a set of parameter functions. The function which determines the material
is evaluated at the barycenter of the element.

3.2.1.2 Boundary Conditions

The sides of a sub-control volume at the boundary of the domain are called boundary
faces. The type of the boundary condition for a boundary face is evaluated at the
barycenter of the boundary face.

Dirichlet boundary conditions can be given for any vertex of the grid. The trivial
equation pli = plDi

is solved for a Dirichlet node instead of equation 3.6, where plDi

is the Dirichlet value set for the vertex υi. If the flux over the boundary is to be
computed for a Dirichlet node, the flux across the sub-control volume faces between
a Dirichlet boundary node and non-Dirichlet nodes must be calculated. If a Dirichlet
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3 Numerical Solution

boundary condition is given for one boundary face of a sub-control volume, it is used
for all boundary faces of the sub-control volumes belonging to the vertex.

If no Dirichlet boundary condition is given for a vertex, Neumann boundary
conditions are evaluated. The normal flux at the barycenter of the boundary face
jk
N (N is an index running over all Neumann boundary faces of a sub-control volume)

has to be given and is integrated by multiplication with the area of the boundary
face. The flux can be different for each boundary face of a sub-control volume. As
Neumann boundary fluxes are an input of mass into the system they are included
in the source term Qk

i :

Qi(x) =
∑

k

qw(xk
i ) · V k

i +
∑

k

∑

N

jk
N · F k

N (3.17)

3.2.2 Time Discretization

The equation is now discretized in space and proper boundary conditions have been
specified. Now the time derivation in equation 3.6 must be taken care of. The time
interval (0, T ) is divided into M time steps t0, . . . , tn, . . . , tM . The duration of a
single time step is ∆tn = tn+1 − tn. An approximation for the differential quotient
∂Mi/∂t and a method to average the flux and source term Ai + Qi over a time step
must be chosen. The differential quotient can be replaced by a difference quotient

∂Mi

∂t
≈

∑1
q=−r an+qMn+q

∆tn
(3.18)

and the flux and source terms can be calculated from the values at the last time
step and at the new time step

Ai + Qi ≈ α · (An
i + Qn

i ) + (1− α) · (An+1
i + Qn+1

i ). (3.19)

Values at time tn are marked by the superscript n. If we select r = 0, an = −1 and
an+1 = 1 we get one-step methods, if r > 0 we get higher order schemes. Selection
of α = 0 yields explicit methods (the explicit Euler scheme for r = 0), α = 1 fully
implicit methods (the implicit Euler scheme for r = 0), and for r = 0 and α = 1/2 we
get the Crank-Nicolson scheme, which is second order accurate, but has a tendency
to produce oscillatory solutions. Explicit and implicit Euler schemes are both first
order accurate. UG provides explicit and implicit Euler schemes, a Crank-Nicolson
scheme and BDF(2), a second order implicit scheme.

Only the implicit Euler scheme was used in this work. It provides a stable and
non-oscillatory solution and global mass conservation is granted in combination with
the spatial discretization described above. BDF(2) is only global mass conservative
if the time step is constant, which is not desirable.
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3.3 Solution of the Nonlinear Equation System

3.3 Solution of the Nonlinear Equation System

Discretization in space and time results in a system of nonlinear equations, which
must be solved for every time step. The nonlinear equations are solved by an inexact
Newton method. If we write the nonlinear equation system as

ui(pl) = Mn+1
i −Mn

i −∆tn · (An+1
i + Qn+1

i ) = 0 (i = 0, . . . , N), (3.20)

an improved approximation can be calculated from a initial guess pν
l by

ui(p
ν
l ) +

N∑

j=1

∂ ui(p
ν
l )

∂ plj

· (pν+1
lj

− pν
lj
) = 0. (3.21)

A linear equation system

J(pν
l ) · (pν+1

l − pν
l ) = u(pν

l ) (3.22)

must be solved for every Newton step, where J(pν
l ) is the Jacobi matrix

J(pν
l ) =




∂ u1(pν
l )

∂ pl1
. . .

∂ u1(pν
l )

∂ plN
...

. . .
...

∂ uN (pν
l )

∂ pl1
. . .

∂ uN (pν
l )

∂ plN




. (3.23)

The components of J(pν
l ) are evaluated numerically:

∂ ui(p
ν
l )

∂ plj

=
ui(p

ν
l + ∆pljej)− uj(p

ν
l )

∆plj

. (3.24)

ej is the j-th unity vector and ∆plj = ε · (1 +
∣∣∣pν

lj

∣∣∣) with ε ∈ [10−10, 10−6] chosen
as interval. The value of the previous time step is used as initial guess. The linear
equation system is not solved exactly in every Newton step to save computation
time. With increasing convergence, the precision with which the linear equation is
solved is increased to secure the quadratic convergence of the Newton method. If a
Newton step doesn’t lead to convergence, a line search is done with an appropriate
damping strategy (Bastian 1999).

3.4 Solution of the Linear Equation System

Direct resolution of the linear equation system in each Newton step using Gauss elim-
ination would require O(N3) arithmetical operations for a grid with N nodes, which
could be reduced to O(N1.5) or O(N2) for two-dimensional and three-dimensional
problems, respectively, if the sparsity structure of the matrix is taken into account.
If multigrid methods are used, the convergence rate in each iteration step can be
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shown to be independent of the mesh size for specific problems, the computational
complexity is therefore O(N) and thus optimal (Bastian 1999).

In this work the linear equation system in each Newton step is solved using a
“Krylov subspace” method (BiCGSTAB) in combination with a multigrid method
as preconditioner. An incomplete factorization is used as smoother in the multigrid
scheme. A ’V’ cycle is performed in the multigrid scheme with 2 presmoothing and
2 postsmoothing steps at each level. The coarse grid matrices are constructed from
the discretized equations. If the system heterogeneities can not be represented on
the coarse grid, the multigrid method will converge slower. In this case other solvers
could be more advantageous. The PDE toolbox UG permits a parallel solution on
various computer architectures, which is necessary especially for 3D simulations.
For details see Bastian (1999).

3.5 Process Coupling

Various combinations of transport processes must be simulated to study the cou-
pling between transport processes. Water transport is always calculated. It can be
combined with any or all of the following: Energy transport, gas transport and so-
lute transport. This means that between one and four equations per vertex must be
solved. A fully coupled solution is wanted, so the coupling must be resolved by the
Newton method. Technically this is achieved by using Macros and ’#ifdef’ state-
ments in the program code and a flexible formulation of the numerical derivation
of the Newton method. By a number of ’#define’ statements in a central include
file the processes to be simulated can be chosen at compile time. Possible processes
are gas transport, energy transport, water vapor transport, solute transport and
osmotic transport3. The selection of the processes at compile time results in an
optimal computation speed at high flexibility but requires some work at coding and
makes the code a bit less readable. On the other hand, it enables the investiga-
tion of the effect of process coupling with essentially the same source code just by
recompiling, which excludes many potential sources of error.

3.6 Variable Substitution

The liquid phase pressure pl is no longer an independent variable (cf. section 2.4.1.3)
and becomes a function of temperature T , when water starts to freeze in a porous
medium. On this account the target variable of the solution processes has to be
changed at the freezing point to ice saturation Si. When the ice phase vanishes,
the solution variable has to be switched back to pl. In other models of freezing

3The diffusive transport of water resulting from the coupling of water and solute transport (section
2.4.4)
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soils, approximations have been used to decouple the energy and water transport
equations and avoid the variable switching.

Variable substitution is done at the end of a time step, when the Newton method
converged. At every node it is checked if a change of the variable state/phase state
is necessary. If variables have to be switched at a node, new initial guesses are
calculated. For the other nodes the result of the last iteration is used as initial guess.
The time step is then recalculated and the variable check is performed again. This
is repeated until either no additional changes of variable state occur or a maximum
number of iterations is reached. If the number of iterations is exceeded without
convergence, the time step is reduced. Variable substitution after each Newton
iteration was tested as well, but the convergence was bad and computational costs
increased.

The variable state is changed if the freezing pressure calculated from temperature
using the Clausius-Clapeyron equation (2.29) is larger than the capillary pressure
pc, or if the ice saturation Si is negative4 at a node. As there is no direct relation
between ice content and capillary pressure, the new values for water pressure or ice
content cannot be calculated directly from the old values. An initial estimate has
to be made and the values have to be calculated by solving the nonlinear equation
system for the time step again.

If water starts to freeze, temperature is buffered and will remain near to the
freezing point until a huge amount of the water is frozen. If the variable state is
changed to frozen, the temperature is approximated by the temperature for which
the freezing pressure corresponds to the capillary pressure calculated for the node.
The ice saturation is set to zero.

If the ice saturation becomes negative in thawing, the temperature calculated by
the model is still very near to the temperature at which the ice phase vanished, but
the liquid water content is too high. The temperature is therefore kept unchanged.
An estimate for the capillary pressure is calculated from the total water saturation
by inversion of the soil water characteristic. If the total water saturation is negative,
the variable substitution process is interrupted and the time step is reduced. The
volume weighted average of the capillary pressure in each sub-control volume is used
for the node, to take heterogeneity into account.

3.7 Time Stepping

An adaptive time stepping is used. The time step is automatically reduced if no
convergence is reached. If the time step reaches a lower limit, the simulation is

4A hysteresis for the switching is not used. In general the scheme converges. The attempt to
insert a hysteresis resulted in patchy freezing with a wild pattern of frozen regions with huge
ice accumulation and unfrozen regions.
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terminated. The time step is increased, if the convergence rate in the first Newton
iteration is better than a given limit, until a maximal time step is reached.

3.8 Testing and Verification

With increasing complexity of a computer model the probability of wrong results or
numerical artifacts increases as well. The value of a model depends highly on the
carefulness with which it has been tested. There are different possibilities to test a
computer model:

• Calculation of mass balances.

• Plausibility checks on the results.

• Comparison with results calculated with other models.

• Comparison with analytical solutions.

3.8.1 Mass Balances

In the development of a computer model the calculation of mass balances serves
two purposes. On the one hand mass and energy balance are an excellent indicator
for program errors. On the other hand they are a good tool to control the qual-
ity of results calculated by iterative solution of nonlinear equation systems, as the
finite volume scheme used for space discretization in combination with an implicit
Euler scheme for time discretization is locally and globally mass conservative, if the
equations are solved exactly.

Global mass balances for all components are computed in the model as well
as a global energy balance. This is done by calculation of fluxes across Neumann
and Dirichlet boundaries and the global storage, which is the sum of the storage at
all non-Dirichlet vertices. The mass balance defect was in the order of computer
precision for all calculations.

3.8.2 Comparison with Analytical Solutions

Analytical solutions are the best tool to check the accuracy of a numerical model.
As they exist only for a small number of special problems, this method is limited by
their availability.

For a complex model only single transport processes can be tested separately.
There are no analytical solutions available for coupled transport in porous media.
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3.8.2.1 Water Transport

The infiltration of water into an initially dry homogeneous soil with constant water
content is described by the quasianalytical solution of Richards’ equation by Philip
(Kutilek and Nielsen 1994). The water content (θw = ΦSl) profile is given by an
infinite sum:

z(θw, t) =
∞∑

i=1

ηi(θw) · ti/2 (3.25)

The functions ηi(θw) can be calculated from the diffusivity of the soil D(θw), the
hydraulic conductivity Kl(θw) and from ηi−1(θw). The quasianalytical solution gives
for the cumulative infiltration I(t) and the infiltration rate Jw(t):

I(t) =
∫ ε

θwi

zdθ

= S · t1/2 + (A2 + Kl(θwi
)) · t + A3 · t3/2 + . . . + An · tn/2 (3.26)

Jw(t) =
1

2
S · t−1/2 + (A2 + Kl(θwi

)) +
3

2
A3 · t1/2 + . . . +

n

2
An · tn/2−1 (3.27)

with

An =
∫ ε

θwi

ηn(θ)dθ; S = A1

The coefficient S is called sorptivity.
Haverkamp et al. (1977) tested several water transport models and used Philip’s

quasianalytical solution. They give profiles of water content as well as parameters
A1, . . . , A4 for a clay soil (Yolo Light Clay) and a sandy soil.

The infiltration in both soils was simulated with the model. The hydraulic
parameters given by Haverkamp et al. (1977) are shown in appendix A.

Initial and boundary conditions given as matrix head hm by Haverkamp et al.
(1977) for the Yolo Light Clay:

hm = −599.97 cm if t < 0 z ≥ 0
hm = 0.0 cm if t ≥ 0 z = 0
hm = −599.97 cm if t ≥ 0 z = 300 cm

and for the sand:

hm = −61.5 cm if t < 0 z ≥ 0
hm = −20.73 cm if t ≥ 0 z = 0
hm = −61.5 cm if t ≥ 0 z = 100 cm

Conversion to liquid phase pressure was done by pl = patm + ρw
l · g · hm. Spatial

discretization width was 1 cm. A rectangular grid with four nodes in horizontal
direction was used, yielding a total number of 404 nodes for the sand and of 1204
nodes for the Yolo Light Clay. For the sand a time step was ∆t = 5 s, for the
Yolo Light Clay the time step was adjusted automatically between ∆t = 40 s and
∆t = 640 s.
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Figure 3.3: Comparison of profiles calculated with the model (red) and with Philip’s
quasianalytical solution (black) for the Yolo Light Clay after 105 s, 106 s
and 3 · 106 s

The relative mass balance error of −3 · 10−9 for the sand and −9 · 10−17 for the
Yolo Light Clay at the end of the calculation was in the range of iteration precision.
18.5 minutes were needed to solve the system for the Yolo Light Clay and 40 seconds
for the sand on a Athlon 1200 MHz system running Linux.

Water content profiles are shown in figure 3.3 and 3.5 together with values cal-
culated using Philip’s quasianalytical solution by Haverkamp et al. (1977). Figures
3.4 and 3.6 show the cumulative infiltration and the infiltration rates.

The agreement between values calculated from the quasianalytical solution and
the modeled values was quite satisfactory. The models tested by Haverkamp et al.
(1977) also showed small differences in the steepness of the infiltration front. With a
limited amount of terms, Philip’s quasianalytical solution is only valid for a limited
time range. With 4 terms this time range is t < 600 h for the Yolo Light Clay and
t < 0.29 h for the sand.

3.8.2.2 Heat-/Solute-/Gas Transport

Transport of a solute in a homogeneous, saturated porous medium is described by
the convection-dispersion equation. For constant pore water velocity vl = Jl

ΦSl
and

the initial and boundary conditions

cs
l = cs

li
if t < 0 z ≥ 0

cs
l = cs

l0
if t ≥ 0 z = 0

lim
z→∞

∂cs
l

∂z
= 0
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Figure 3.4: Comparison of infiltration rates and cumulative infiltration calculated
with the model (red) and with Philip’s quasianalytical solution (black)
for the Yolo Light Clay
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Figure 3.5: Comparison of profiles calculated with the model (red) and with Philip’s
quasianalytical solution (black) for the sand after 360 s, 720 s and 2880 s
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Figure 3.6: Comparison of infiltration rates and cumulative infiltration calculated
with the model (red) and with Philip’s quasianalytical solution (black)
for the sand

the concentration is given by:

cs
l (z, t) = cs

li
+ (cs

l0
− cs

li
) · A(z, t) (3.28)

with

A(z, t) =
1

2
erfc


 z − vlt√

4Ds
l t


 +

1

2
exp

(
vlz

Ds
l

)
erfc


 z + vlt√

4Ds
l t


 (3.29)

The same equation can be used for the transport of dissolved air if the partial
pressure pa instead of cs

l and apropriate effective parameters are used. The equation
can also be adjusted for heat conduction and convective transport of heat, if Ti and
T0 are defined analogue to cs

li
and cs

l0
:

T (z, t) = Ti + (T0 − Ti) ·B(z, t) (3.30)

with

B(z, T ) =
1

2
erfc





[(1− Φ) Cs + ΦCw
l ] z − Cw

l Jlt√
4 [(1− Φ) Cs + ΦCw

l ] λt





+
1

2
exp

(
Cw

l Jlz

λ

)
erfc





[(1− Φ) Cs + ΦCw
l ] z + Cw

l Jlt√
4 [(1− Φ) Cs + ΦCw

l ] λt



 (3.31)
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Table 3.1: Parameters used for the calculation of heat, solute and gas transport

parameter value unit
Φ 0.43 –
Sl 1.0 –
λ 2.0 W m−1 K−1

Cs 1.9 · 106 J m−3 K−1

Cw
l 4.198 · 106 J m−3 K−1

Da
l = Ds

l 2 · 10−7 m2/s
Ti 293.15 K
T0 298.15 K
pa

i 0.0 Pa
pa

0 101300 Pa
cs
li

0.0 mole/l
cs
l0

1.0 · 10−3 mole/l
∆z 1.0 cm
column length 5.0 m
∆t 1/256 h
simulation time 12 h

To get something similar to a semi-infinite column, a domain with a length of 5 m
was used (with 4 nodes in horizontal directions this yields a grid with 2004 nodes).
Simulation parameters are given in table 3.1. T = Ti was used as lower boundary
condition. The solution for t = 0.25 d and t = 0.5 d was calculated using Maple V
Release 5. Two scenarios have been simulated: For scenario 1 pore water velocity
was set to vl = 5 cm/h corresponding to a flux density of Jl = 0.331 mole m−2 s−1;
for scenario 2 pore water velocity was set to zero, yielding pure diffusion. Transport
of water, the solute, dissolved air and heat were simulated simultaneously. The
diffusion coefficient for the solute and dissolved air were multiplied by 100 to get
diffusion and heat conduction into the same time scale.

Computing time was 36 minutes for scenario 1 and 33 minutes for scenario 2.
Absolute mass balance was zero for the solute in both scenarios and −4 · 10−9 and
zero for the gas, for the water the relative mass balance error was 2 · 10−14 in
both scenarios and the energy balance error was −1 · 10−9 in both scenarios. The
analytical solution and the numerical solution are shown in figures 3.7, 3.8, 3.9 and
3.10. The agreement between modeled and simulated data is quite satisfactory.
Some numerical diffusion can be seen for the dissolved gas and solute transport in
scenario 1, which is to be expected for the discretization scheme used.
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Figure 3.7: Comparison of the simulated partial pressure of air (blue) and solute
concentration (red) profiles and the analytical solution (black circles)
with pure diffusion

294

295

296

297

298

299

0 0.20 0.40 0.60 0.80

���������
	���


����
�� �
�� ��
�� �
�

Figure 3.8: Comparison of the simulated temperature profile (red) and the analytical
solution (black circles) with pure heat conduction
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Figure 3.9: Comparison of the simulated partial pressure of air (blue) and solute
concentration profiles (red) and the analytical solution (black circles)
with convection
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Figure 3.10: Comparison of the simulated temperature profile (red) and the analyt-
ical solution (black circles) with convection
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4 Application: Simulation of a
Permafrost Soil

Freezing soils are especially interesting systems, as water, heat and solute transport
are strongly coupled in freezing soils. Soil freezing is hard to explore in temperate
climate, because of the short time scale of freezing and the shallow penetration
depth. Permafrost soils with their strong yearly dynamic are a much better object
to study the freezing of soils. After a brief discussion of the processes in permafrost
soils, measurement results from a field site in Spitsbergen are compared with model
calculations.

4.1 Dynamics of Permafrost Soils

The dynamic of the active layer at a permafrost site can be subdivided into four
periods: During fall freeze-back an expanded isothermal region with temperatures
very near to 0 ◦C (the so called “zero curtain”) develops, which vanishes when
the soil is completely frozen. In spring the soil warms up again, snow melts and
meltwater may infiltrate into the soil. Finally the soil thaws again gradually.

Several transport processes may be involved in heat transfer. While heat con-
duction is undoubtedly the most important process, other mechanisms are discussed
as well. Migration of liquid water may contribute to heat transport during freezing
and thawing. Hinkel and Outcalt (1993) showed that infiltration of precipitation
can be important in the summer. Ray et al. (1983) and Krantz (1990) even argued
that density driven convection of water in the thaw period initiates the formation
of sorted circles, which is shown to be unlikely by Putkonen (1998). Infiltrating and
refreezing snowmelt water may also be responsible for the rapid warming of soil in
spring, when the relevance of non-conductive heat transfer processes is supported
by many authors (e.g. Putkonen 1998, Hinkel and Outcalt 1994). The transport
of latent heat with liquid water may also stabilize the “zero curtain”, developing
in fall due to the buffering effect of latent heat released by freezing water. Hinkel
and Outcalt (1993) and Hinkel and Outcalt (1994) suggest that water vapor trans-
port driven by osmotic gradients may be involved in the heat transfer across this
nearly isothermal zone, but Romanovsky and Osterkamp (2000) demonstrated that
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4.2 Field Experiment

soil temperatures during freeze-back can be predicted by including conductive heat
transfer and the effects of unfrozen water without vapor transport. Roth and Boike
(2001) argue that water vapor transport may be important throughout the whole
year. Water vapor transport is definitely important in the summer, when evap-
oration from the surface consumes between 25 and 65 percent of total energy, as
measured by Boike et al. (1998) in Siberia and Kane et al. (1990) in Alaska.

The importance of the different heat transfer processes is rarely quantified. Ice
and vapor content of soils can at the moment hardly be measured with the necessary
resolution in space and time, neither in the laboratory nor in the field. Modeling of
heat transfer in frozen, unsaturated soils is complicated by the strong coupling of a
number of components (ice, liquid water, vapor, air, solutes, soil matrix).

4.2 Field Experiment

In the Bayelva catchment about 3 km from Ny-Ålesund, Svalbard (78◦55′ N 11◦50′ E)
a measurement site was instrumented at the end of August 1998, together with Paul
Overduin and Dr. Julia Boike from the Alfred-Wegener Institute, Potsdam, who
organized and headed the installation. The field site is located on top of a small
hill, called Leirhaugen in the northern forefield of the East Brøggerbreen glacier.
A nearly horizontal plateau of about a hundred square meters on top of the hill,
approximately 25 m above sea level, is covered with unsorted circles (Figure 4.1).
Each circle consists of a mound of bare soil with a maximum height of about 15 cm
and a diameter of about 1 m and a surrounding ring of mosses, low vascular plants
and lichens (Figure 4.2).

The coastal areas in the region are underlain by continuous permafrost with a
depth of about 100 m, which can increase up to 500 m in mountainous regions
(Liestøl 1977). As a consequence of the North Atlantic Current, the climate is quite
warm for the high latitude and rain on snow events can happen even in mid winter.
Average air temperatures are 5 ◦C and −13 ◦C in July and January, respectively,
and annual precipitation is 400 mm mainly deposited as snow between September
and May.

4.2.1 Instrumentation

A 2 m wide and 1.4 m deep profile was dug across one of the unsorted circles
(Figure 4.3). The soil material was separated according to depth and the surface
was cut carefully, to improve the restoration of the profile and the surface after
the instrumentation. The unfrozen layer was 1.2 m deep. The whole profile was
quite heterogeneous. The texture was mainly silty clay with a stone content below
10 percent, and an average organic carbon content of one percent in the upper part
of the soil. The stone content rises up to 50 percent in a slightly inclined layer in
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4 Application: Simulation of a Permafrost Soil

Figure 4.1: View from Leirhaugen hill southward over the Bayelva catchment toward
the East Brøggerbreen glacier (Photo: J. Boike)

50 cm depth, approximately 20 cm thick. The stones are quite massive (> 6 cm
diameter). At the bottom of the profile (> 85 cm) the soil is coal rich with massive
coal lenses. The stones in the profile are not oriented.

Soil samples were taken for texture and density analysis. Measured clay content
increases from 20 percent near the surface to over 60 percent in depths below 0.8 m
with a corresponding decrease of silt and sand content. Plots of the texture and
nitrogen, sulfur and organic carbon content can be found in appendix B. The
average bulk soil density obtained from 6 samples is 1.70 ·103 kg/m3, porosity varies
between 0.36 and 0.5 (Roth and Boike 2001).

The profile was instrumented with an array of 32 thermistors and 32 horizontal
TDR1-probes of 24.3 cm and 50 cm length, two heat flux plates, another TDR-probe
with 1 m length installed vertically and a well to measure ground water table. The
thermistors were calibrated at 0 ◦C with a precision of ±0.000024 ◦C and an absolute
error of less than ±0.02 ◦C over a temperature range ±30 ◦C. The TDR-probes were
used to measure dielectric constant (to derive unfrozen water content) and bulk soil
conductivity. Calibration was done in pure water, air and NaCl-solutions of varying
conductivity.

A climate station was installed within 5 m of the instrumented profile measuring
net radiation, solar radiation, air and snow temperature in different heights, precip-
itation, wind speed and direction and snow depth above the profile. The rain gauge

1Time Domain Reflectometry
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4.2 Field Experiment

Figure 4.2: Surface of the selected unsorted circle before instrumentation
(Photo: J. Boike)

Figure 4.3: Soil profile of the unsorted circle. The dark color at the bottom is partly
a result of reduction processes and partly caused by the presence of coal
lenses (Photo: J. Boike)
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Figure 4.4: Aerial view of the field site in April 2000 showing the influence of the
fence on snow accumulation (Photo: J. Boike)

is not heated. Comparison with data measured at Ny Ålesund showed reasonable
agreement for the measured liquid precipitation. The whole measurement system is
powered by a solar panel and a wind generator.

To protect the instruments against wild reindeer a fence had to be erected. The
fence increased the snow accumulation markedly (Figure 4.4).

Data collection started on September 15, 1998. Snow depth and TDR waveforms
were measured daily until the 17th of March 1999, after which they were measured
every 12 hours. TDR measurements evaluated with the built-in algorithm of the
data logger are done every hour between waveform measurements. All other data are
measured hourly. Major data gaps exist between 14th November and 9th December
1998 and 24th May and 1th July 2001 due to a failure of power supply and data
storage, respectively. Precipitation data are not available before August 1999, the
humidity sensor was installed in April 2000. Data are stored on memory cards and
collected every two months by the station manager of the Alfred-Wegener-Institute’s
Koldewey-Station in Ny Ålesund.

4.2.2 Data Preparation

To handle the huge amount of data, programs for the semi-automatic insertion of the
collected data into a PostgreSQL database and automatic data evaluation have been
written. The database is available to the cooperating scientists over the internet.

Special attention has been given to the derivation of the relative permittivity
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4.2 Field Experiment

Figure 4.5: Comparison of relative permittivity determined by the datalogger al-
gorithm (red) and the modified Heimovaara algorithm (black) for two
selected probes

from the TDR-waveforms. In TDR, the travel time of a signal pulse along a wave
guide is measured. The travel time depends on the relative permittivity of the
material between the probes and in its immediate vicinity. The reflection signal is
measured using a Tektronix 1502C cabletester. To get the travel time, the reflection
points at the probe start and end have to be determined. The Campbell CR10X
datalogger used has a built-in routine to do this. The reliability of this algorithm in
frozen soils was not clear. An existing algorithm published by Heimovaara (1993)
was modified for better stability. The modified algorithm is described in appendix C.
The results obtained with the two algorithms (Figure 4.5) show a similar trend, but a
small offset of varying size and direction. The signal determined by the datalogger’s
algorithm is also a bit noisier. Because of the higher temporal resolution, we decided
to use the values determined by the datalogger and filter the signal for runaway
values.

To filter the measured data, the following procedure was applied: Impossible
values (e.g. relative permittivities above 80 or below zero) were removed first. For
data which are continuous in time (e.g. temperature, relative permittivity) the stan-
dard deviation and the average of 10 values before and 10 values behind each data
value was calculated. If a time gap longer than 7 days was detected the time series
before and behind were treated separately. A value was rejected if the difference be-
tween the value and the average was larger then three times the standard deviation.
Finally some obvious runaway values were removed manually. Missing values were
interpolated afterwards and a five point moving average was applied to the measured
dielectric permittivities to remove noise generated by the measurement. Figure 4.6
shows the relative permittivity measured at a probe before and after filtering. From
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Figure 4.6: Data measured at a TDR-probe before (left) and after (right) filtering
(8.6 % of the values were rejected), interpolation and smoothing

the interpolated data daily average values were calculated as well.

4.2.3 Climate

Figures 4.7 to 4.9 show the weather parameters measured at the field site (no smooth-
ing or interpolation was done for these values). Time is given in julian days starting
at the first of January 1998. Air temperature and solar radiation show the character-
istic annual cycle of an arctic site. The snow cover is usually shallow at the beginning
of winter and reaches a thickness of around 1 m in spring. Precipitation shows rain
on snow events characteristic for Spitsbergen (around days 680, 800, 1000). The air
temperature varies between −30 ◦C and 15 ◦C, the humidity is always quite high.
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Figure 4.7: Air temperature and humidity at 2 m height at the Bayelva site
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Figure 4.8: Snow depth and precipitation at the Bayelva site
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Figure 4.9: Solar and net radiation at the Bayelva site

4.2.4 Model Parameters

4.2.4.1 Transport Parameters

Unfortunately the undisturbed soil cores were destroyed after the measurement of
bulk density. As a consequence it was not possible to measure the soil hydraulic
parameters independently. Besides texture information from disturbed samples, the
temperature and relative permittivities measured in the field, are the most valuable
information about hydraulic parameters.

The volumetric liquid water content θl = Sl ·Φ of a soil can be derived from the
measured relative permittivity εm using a mixing model, dielectric permittivities of
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4 Application: Simulation of a Permafrost Soil

the soil matrix εs and air εa and the temperature dependent relative permittivity of
liquid water εw(T ) (Roth et al. 1990):

θl =
εα
a − (1− Φ)εα

s − Φ · [Siε
α
i + (1− Si)ε

α
a ]

εα
w(T )− εα

a

(4.1)

εw(T ) = 78.54
[
1− 4.579 · 10−3T ∗ + 1.19 · 10−5T ∗2 − 2.8 · 10−8T ∗3]

with T ∗ = T/K − 298.15 (4.2)

For this study a value of 0.5 was used for the exponent α. In frozen soils also
ice saturation and relative permittivity of ice εi must be known. As there is no
easy method to measure the ice content independently and the available methods
to measure the total water content (γ-ray attenuation, neutron probes) can not be
used in automated field stations in the arctic, this problem can only be resolved
through additional assumptions. If the total water saturation Sw

tot (ice plus liquid
water) is assumed to be constant, the ice saturation is given by Si = Sw

tot − Sl and
the volumetric liquid water content can be calculated from:

θl =

√
εm − (1− Φ)

√
εs − Φ

[
(1− Swtot)

√
εa − Sw

tot

√
εi

]
√

εw(T )−√εi

(4.3)

This assumption is not true in freezing soil, since water moves toward the freezing
front, but it seems more reasonable then to assume an ice content of zero. The error
caused by the estimation of the ice content is reduced by the ratio of

√
εw and

√
εi,

which is approximately 9:2.
After filtering of the data as described above, all volumetric water content data

corresponding to below zero temperatures were plotted against temperature. The
plots are shown in appendix D together with freezing curves derived from hydraulic
parameter sets for a silt and a loam given by Roth (1996). All plots show a clear
relation between liquid water content and temperature, some of them display signs
of hysteresis and some variation between different winters. Maybe movement of the
probes due to upfreezing or changes due to mechanical forces may be responsible
for these variations. The minimal unfrozen water content varies between zero and
ten percent. Three general types of curves can be distinguished (Figure 4.10). Most
curves are very similar to the loam and silt curve in curvature and minimal unfrozen
water content. Deviating freezing characteristics can be found below the vegetation
at the surface, where the curve is much steeper and the liquid water content decreases
nearly to zero at low temperatures, and in a layer approximately 60 to 100 cm deep,
where the water content decreases markedly slower. This layer corresponds well
with a region of increased clay content.

As most of the probes correspond quite well with the silt as well as the loam
curve, both hydraulic parameter sets (Table 4.1) were used to study the influence
of hydraulic parameters on the model result in homogeneous simulations.
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Figure 4.10: Freezing characteristic for a probe indicating higher clay content (left),
a probe typical for most of the profile (middle), and a probe indicating
higher sand content (right). The lines were derived from hydraulic
parameters for the loam (red) and the silt (blue) used in the simulations.

The thermal conductivity was calculated using the de Vries model. It was as-
sumed that the sand fraction plus half of the silt fraction was composed of quartz
and half the silt fraction plus the clay fraction were composed of other soil minerals,
for which de Vries (1963) gives conductivities of 8.54 W/m K and 2.0 W/m K respec-
tively. The change of thermal conductivity with temperature was neglected. The
average organic matter content measured from disturbed samples was 2.0 percent.
A conductivity of 0.25 W/m K was used for the organic matter. For the calcula-
tion of volumetric fractions from the weight fractions, a density of 2.65 g/cm3 was
used for quartz and the minerals and 1.0 g/cm3 for the organic matter, which yields
volumetric fractions of 0.29, 0.66 and 0.05 for quartz, other minerals and organic
matter, respectively. Volumetric heat capacity of 1.93 · 106 J m−3 K−1 was used for
quartz and other minerals and 2.51 ·106 J m−3 K−1 for the organic material (de Vries
1963). Molar heat capacities of 75.8 J mole−1 K−1 for water, 37.1 J mole−1 K−1 and
28.98 J mole−1 K−1 for the gas phase were derived from values given by de Vries
(1963).

4.2.4.2 Pseudo-Mechanical Submodel

As discussed in section 2.4.7, a simplified mechanical model is needed for the simu-
lation of frozen conditions. The basic assumption is a fully elastic expansion of the
soil, if the pores are completely filled with ice and water. In reality this would lead
to an expansion in volume and an increase in porosity. As the structural change
of the soil is not simulated, it was convenient to keep the volume and the porosity
constant in the program thus securing the conservation of mass for the soil matrix
and to allow the total saturation to rise above one. This is only allowed if ice is
present in the soil.
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4 Application: Simulation of a Permafrost Soil

The effect of soil expansion on the liquid phase conductivity is not considered,
which leads to an overestimation of liquid water flux. As the saturations are used
for the calculation of the energy storage, energy conservation is granted. For the
calculation of the heat conductivity and diffusion coefficients, saturations are nor-
malized to one. This leads to an overestimation of heat conductivity, but as the
expansion is also not considered in the calculation of temperature gradients this is
partly compensated. As the mechanical approximation as a whole is quite crude, it
does not seem reasonable to make further improvements in parameter calculations.

If the soil is frozen, the total saturation is given by the sum of ice and liquid
water saturation, which is only a function of temperature. It is assumed that an
ice pressure builds up proportional to the excess saturation, with a proportionality
constant called soil rigidity, as long as the effective stress is smaller than an assumed
soil stability plus the weight of the overburden, which is calculated from the depth
and an assumed soil density of 1500 kg/m3. If the effective stress exceeds this limit
it is assumed, that the additional increase of ice pressure is only proportional to the
weight of the overburden. The values used for soil rigidity and soil stability can be
used to study the influence of soil rigidity. A soil rigidity of 100’000 Pa and a soil
stability of zero was used in the calculations.

The whole method is only a very crude tool and is only valid if the amount of
excess ice is small, but as long as soil mechanics are not simulated explicitly it seems
a reasonable solution.

4.2.4.3 Boundary Conditions

In winter the snow cover serves as a good insulation between the soil and the at-
mosphere and in spring the snow melt provides much melt water, which infiltrates
partially into the soil. As visual ice layers develop at the bottom of the snow pack
(Boike et al. 2001) an appreciable amount of water will run off at the surface. Tem-
perature and water pressure or ice content derived from the relative permittivity at

Table 4.1: Hydraulic parameters used in the model calculations

parameter loam silt unit
Φ 0.43 0.41 –
α 1.6 0.7 m−1

n 1.25 1.3 –
m 1− 1

n
1− 1

n
–

Srl
0.0 0.02 –

τ 0.0 0.0 –
K 3.06 · 10−13 1.03 · 10−12 m2
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4.2 Field Experiment

Figure 4.11: Position of the probes used in the simulation

the uppermost layer of probes2 was used as upper boundary condition to avoid mod-
eling of the snow pack and atmosphere/surface interactions. Daily averaged data
were used and values were linearly interpolated in space and time between probes
and measurement times. Lower boundary conditions were derived in the same way
from the measured values at the lowest horizontally installed probes3. The bound-
ary conditions are retrieved from the database at runtime using the PostgreSQL
database access library. As the plot was nearly horizontal, no-flux boundary condi-
tions were used at the sides of the profile.

A three-dimensional simulation was also done. As temperatures are only mea-
sured along a line, some assumptions were necessary to get a two-dimensional
field of temperature and relative permittivity. A cylindrical domain was used for
the three-dimensional simulation. For each point (x,y) the horizontal distance

r =
√

(x− x0)2 + (y − y0)2 from the center of the domain was calculated. The

temperatures T1 and T2 are the temperatures for the points (x1,0) and (x2,0) with
the same distance from the center along the measured transect. They are derived
using linear interpolation in space and time as in the two-dimensional case. The
temperature

T = T1 +
x− x1

x2 − x1

· (T2 − T1). (4.4)

is then used as boundary condition at the point (x,y). The same approach is used

2Probes 25, 26, 27, 28 and 29 were used for the upper boundary condition. As probe 25 and 29
were located outside the simulated region, the simulated and measured values are not identical.

3Probes 3,4 and 6
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4 Application: Simulation of a Permafrost Soil

Figure 4.12: Plot of 3D domain with a cross section showing temperature

to calculate the permittivity and height of a surface point. A typical result is shown
in figure 4.12

To avoid the assumption of constant total water saturation used in the calculation
of liquid water content above, the evaluation of relative permittivity for the boundary
conditions is done at runtime. When the soil is unfrozen, liquid water content is
calculated using 4.1 and capillary pressure is derived from the inversion of the soil
water characteristic used in the model at the particular position. To avoid numerical
problems, maximum liquid phase saturation was limited to 0.95, which is acceptable
given the precision of the TDR probes. When the soil is frozen, liquid phase pressure
can be calculated from temperature and volumetric liquid water content can be
derived from the soil water characteristic. Ice content θi is then calculated by:

θi =

√
ε− (1− Φ)

√
εs − θl

√
εw(T )− (Φ− θl)

√
εa√

εi −√εa

(4.5)

With a given set of hydraulic parameters it may not always be possible to re-
produce the measured relative permittivity at the boundary with the model, as the
liquid water content is given by temperature and soil water characteristic, and even
if the remaining pore volume is completely filled with ice this may not be sufficient
for the difference.
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4.3 Simulation Results

These boundary conditions are quite strong as probes near the boundary are
influenced primarily by the boundary conditions and will be near to the measured
values for all sets of model parameters. Probes in the middle of the profile are
therefore much more interesting.

4.2.4.4 Initial Conditions

Measured values were also used as initial condition. A linear interpolation was used
in the region between the probes. The initial conditions were also retrieved from the
database at runtime, which prevents errors resulting from file handling and makes
the change of starting time quite easy.

For the three-dimensional simulation the same scheme used for the boundary
conditions is used to compute initial values for temperature and permittivity. Inter-
polation is done between values at the same height with the same distance from the
center. If there is only one value with the same distance from the center, which is
possible in the lowest part of the profile where the left side of the profile is deeper,
this value is used unchanged.

4.3 Simulation Results

Several scenarios have been simulated for a time span of 982 days beginning at the
13th of September 1998 and ending at the 23rd of March 2001. A grid with 16
elements in horizontal and 32 elements in vertical direction was used, corresponding
to a spatial resolution of 6.5 cm in horizontal and 3.7 cm in vertical direction. Hy-
draulic parameters for a loam and a silt were used to study the model’s sensitivity.
To analyze the numerical behavior, simulations with a reduced grid spacing, a dif-
ferent starting time, varied boundary conditions and a three-dimensional simulation
have been performed. Simulations with changed parameters for the water vapor
transport and with inclusion of solute transport have been conducted.

The fully coupled equation system for water, heat and vapor transport could be
solved with the approach described in the last chapter. Variable substitution could
be done in a definite way, i.e. repeated switching of the same variable in one time
step did not occur, except when solute transport was included. Mass and energy
balances were excellent.

Plots comparing measured and modeled values of temperature and the square
root of relative permittivity at 24 probes for each of the different scenarios are shown
in appendix E. The square root of the relative permittivity is used, because it is
proportional to the measured travel time along the TDR rods and also to the liquid
water content. The relative permittivity was calculated by the program with the
mixing model described above. If an oversaturation of ice occurred, the volume
fractions of soil matrix, ice, liquid water and air were normalized to one.
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4 Application: Simulation of a Permafrost Soil

4.3.1 Homogeneous Simulations

Figures 4.13 and 4.14 show profiles of temperature and relative permittivity during
freezing and thawing for different scenarios. Although the freezing curves are quite
similar for the silt and the loam parameterization (Figure 4.10), the differences in
simulation results are quite pronounced. Due to the higher permeability and the
more gradual decrease of relative permeability with falling temperature, infiltration
in the silt is much faster, leading also to a quicker warming of the soil toward 0 ◦C,
but the infiltration leads also to a huge accumulation of ice in the lower part of
the profile, as infiltrating water refreezes. The differences are still quite big, if the
parameters of the soil water characteristic for the silt and the permeability of the
loam are used (scenario ’silt with reduced permeability’ in the appendix).

The simulation without freezing is not able to reproduce the behavior of the sys-
tem. A detailed comparison of the time series at the probes shows, that there is a
good agreement between temperatures between the unfrozen scenario and the mea-
sured values if the profile is completely frozen or completely thawed, but agreement
during freeze and thaw is quite bad. The simulated permittivity is only acceptable
when the profile is completely thawed. The very high permittivities in the lower
part of the profile are not matched by the unfrozen scenario. This means they are
not just a result of infiltrating snow melt water.

The agreement between the loam and silt scenarios and the measured values is
qualitatively quite good. The buffering of the temperatures due to freezing, which
leads to the “zero-curtain-effect”, is clearly visible. The strong difference between
permittivity in winter and summer is reproduced (although not the exact temporal
behavior). This change is not a consequence of infiltrating water, since the maximal
amount of water infiltrated in the loam scenario was below 45 mm (Figure 4.15). As
some water left the profile over the lower boundary at the end of the first summer,
when the profile was deeply thawed, the total water balance is even slightly negative
(This is completely different for the silt, where a huge amount of water infiltrated
the profile and left it again over the lower boundary). The difference between winter
and summer is therefore a local phenomenon depending on the energy state of the
soil and the material parameters. During thaw water is ponding on the still frozen
regions in the loam scenario as well as in the measured data. This effect is completely
absent in the unfrozen scenario. The comparison of the time series at the probes
with the measured values shows that the thawing depth is not reproduced by both
the silt and the loam scenario. Temperature at deeper positions remains therefore
close to zero even in the summer. Both simulation and measured data show that
the profile freezes from below as well as from above, but that freezing from above is
dominant. As the simulated temperature is too low in the lower part of the profile,
the simulated permittivity is much too low. In the silt this is partly compensated by
infiltrating water, partly made worse by a huge accumulation of ice, which leads to
a decrease in permittivity (as the liquid water content is lowered when saturations
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4.3 Simulation Results

Figure 4.13: Profiles made from measured data and simulation results for the loam,
silt and unfrozen scenario showing temperature (above) and relative
permittivity (below) at July 6, 1999 during thawing
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4 Application: Simulation of a Permafrost Soil

Figure 4.14: Profiles made from measured data and simulation results for the loam,
silt and unfrozen scenario showing temperature (above) and relative
permittivity (below) at December 8, 1999 during freezing
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4.3 Simulation Results

Figure 4.15: Simulated cumulative flow of water through the upper (red) and lower
(blue) boundary in the loam scenario

are normalized). This is also the reason for the very low permittivity in the silt
profile in figure 4.14. The calculated heat flux is similar for silt and loam and within
reasonable bounds (Figure 4.16). The very quick rising of the permittivity during
thawing can be reproduced and even outstripped by the silt scenario without any
macropores.

4.3.1.1 Numerical Tests

The effect of initial condition, spatial resolution, boundary conditions and dimen-
sionality on the result was checked with additional scenarios. For these simulations
the hydraulic parameters for the loam were used. Doubling the spatial resolution
yielded only marginally different results. When the simulation was started one year
later at September 13, 1999, the temperatures remained nearly unchanged. The sim-
ulated permittivities in the summer 2000 were markedly higher in the lower part of
the profile. This may be a consequence of a different total water content. At Septem-
ber 13, 1998 the profile was already partly frozen, whereas it was still thawed a year
later. If the profile is frozen, the ice content is estimated from permittivity and used
as initial condition. This is very unprecise and seems to lead to an overestimation
in 1998. If there is less water in the profile it leads to the paradoxical effect that the
permittivity will rise higher as thawing can reach deeper regions of the soil.

To analyze the effect of boundary conditions, one scenario was simulated, in
which Dirichlet boundary conditions derived from measured data were used also at
the side boundaries. If lateral flow would have been the reason for the deviation
of measured and modeled values, this would be visible in this scenario, but fluxes
were always directed either inward or outward on both side boundaries, indicating
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4 Application: Simulation of a Permafrost Soil

Figure 4.16: Simulated heat flux over the upper (red) and lower (blue) boundary in
the loam scenario

a mismatch of the used material parameters.

To check the influence of the strong boundary conditions, a 2 m deep profile was
simulated. Temperature at the lower boundary was kept constant at −4 ◦C and
a no-flux boundary condition was used for water flow. As the lowest probes are
already in permafrost, the same temperature was used as initial condition for the
region below the lowest probes and it was assumed that the pore space is completely
filled with ice. This simulation clearly shows too high temperatures in winter and
too low temperatures in summer in the lower part of the profile, leading to quite
small permittivities in the summer. The damping effect on temperature with depth
is obviously too high.

The differences between two-dimensional and three-dimensional simulation are
quite small. This is not really surprising. The real two-dimensional distribution
of temperature and permittivity at the boundaries is not known and the method
used to create the boundary conditions produces quite a smooth field. The no-flux
boundaries at the sides also force a vertical dynamic, for which dimensionality is
less important.

4.3.1.2 Relevance of Different Heat Transport Processes

Additionally to the normal loam scenario, in which water vapor diffusion was sim-
ulated like diffusion of a normal gas using the tortuosity formula 2.43, one scenario
without any water vapor transport and one scenario with water vapor transport
simulated according to the ideas of Philip and de Vries (1957) were computed.
The simulated time series are not distinguishable, which means that water vapor
transport is not an important heat transport process in the soil. This can also be
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4.3 Simulation Results

Figure 4.17: Effective heat transport due to liquid water flux for the loam (red) and
the silt (blue)

demonstrated by the following estimation:
Water vapor diffusion is calculated from Dw

g ∇νw
g . The molar density of water va-

por νw
g is a function of temperature and capillary pressure (Equation 2.56), which is

also a function of temperature in frozen soils. The density gradient can be expressed
as ∇νw

g = ∂ νw
g /∂ T · ∇T . For a given temperature gradient, the amount of water

transported by water vapor can then be estimated. If Dw
g · ∂ νw

g /∂ T is multiplied
with the latent heat of sublimation, the result is an effective heat conductivity. It
decreases exponentially with temperature. At 0 ◦C the effective heat conductivity is
0.026 W/m K, which is nearly negligible compared to the heat conductivity of soil,
which is approximately 2 W/m K. The diffusivity for mass flux due to a temperature
gradient is 9.3 · 10−9 kg/m s K.

A similar derivation can also be made for the transport of liquid water, for
which the pressure gradient is also a function of temperature. The effective heat
conductivity due to the transport of liquid water can then be calculated from

λeff = ∆Hw
il · νw

l (T ) ·K · krl
(Sl(T ))

µl(T )

∂ pl

∂ T
. (4.6)

Figure 4.17 shows the result for the silt and the loam. If the temperature is near 0 ◦C,
the effective heat conductivity can be quite large, which means that the transport
of liquid water would be an important heat transfer process. Depending on the
hydraulic parameters, this effective heat conductivity can drop quite rapidly, when
temperature decreases. The importance of this process can also be seen in the
model results. Figure 4.18 shows some state variables and fluxes calculated for the
loam during thaw at July 6, 1999, the day for which the plots shown in figure 4.13
were made. Two zones of high conductive heat fluxes (red) can be seen, separated
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4 Application: Simulation of a Permafrost Soil

Temperature

Ice Saturation

Water Pressure

Water Saturation

Phase State

Rel. Permittivity

Water Flux

Heat Flux

Water Flux

Heat Flux

295

Figure 4.18: Profiles of temperature [262:278], ice saturation [0:2], liquid phase pres-
sure [−1·10−6:9·10−4], water saturation [0:1], phase state (blue=frozen),
relative permittivity [3.6:27], water flux and heat flux at July 6, 1999.
Values in brackets are the maximum and minimum values used in scal-
ing

by a zone of nearly no heat flux. Below infiltrating water ponding on the still
frozen zone, a small band with nearly no water flux can be seen and further below
a second zone with higher water transport, which is identical to the zone of low
heat fluxes. Analysis of the divergence of heat fluxes confirms that water melts
at the thawing front, is transported downward in the liquid phase and refreezes
releasing the heat. During freezing this effect is not so clearly visible, but liquid
water transport contributes to the stabilization of the “zero curtain”, by transporting
energy to the freezing front.

4.3.1.3 Solute Transport

One scenario was calculated, which included solute transport. As only the bulk
electrical conductivity of the soil was measured, no good estimates for boundary and
initial conditions were available. The initial concentration was therefore assumed
to be 1 mmole/l, which is a typical value for soils. If the soil was already initially
frozen, the initial concentration was increased, so that the total amount of solutes
corresponded to the total water content, as if solutes had been completely excluded
from the ice phase at that spot. At the upper and lower boundary Dirichlet boundary
conditions were calculated in the same way. When solute transport was included,
problems with the variable substitution appeared. Switching loops occurred, where
the state was switched from frozen to unfrozen and backward in the same time
step. In this case the variable state was left unfrozen. After 372 days of simulation
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4.4 Heterogeneous Simulation

the solver broke down. For the time simulated, the curves with and without solute
transport were indistinguishable. This can be explained by calculation of the freezing
point depression resulting from a solute concentration of 1 mmole/l, which is only
0.002 ◦C.

4.4 Heterogeneous Simulation

In all simulations, the thaw depth was too shallow and the permittivity and tem-
perature were too low in the lower part of the profile. This can be explained by the
soil’s heterogeneity. The soil has an appreciable stone content with a stone layer in
50 cm depth. This leads not only to an increased heat conductivity, but also to a
smaller amount of water in the profile and less buffering of energy. In a first approxi-
mation this can be taken into account by lowering the porosity and the permeability
proportional to the stone content. As porosity and saturation were separated in the
parameterizations of water characteristic and relative permeabilities, this was a fast
way of estimating the influence of stone content. A stone content of 10 percent in
the whole profile and of 50 percent in a 20 cm thick band slightly falling from left to
right was used. As the stones were rather large and the TDR probes are inserted in
stone free material, the porosity was not reduced in the calculation of permittivity.
Simulation results show an increased thawing depth and a much higher permittivity
in summer in the lower part of the profile. This effect would be even larger in reality,
as the large stones have a higher effect on heat conductivity and permeability, which
would possibly lead to an ice accumulation in the stone band and a further increased
heat conductivity.

4.5 Discussion

The model works and is capable of solving the fully coupled equation system for
freezing soils. The major phenomena seen in the measured data and in other stud-
ies are reproduced. This includes the “zero-curtain”, ponding of water on the frozen
soil and the strong difference between permittivity in winter and summer. The
quantitative correspondence of measured and modeled data is not too good. The
thawing depth is underestimated. The strong heterogeneity of the profile with vari-
ation in texture as well as in stone content seems to be responsible for this deviation,
as simulation results depended very strongly on the hydraulic parameters used. In-
cluding the stone content even in a rather crude way led to a change in the right
direction. Water vapor transport and solute transport are not relevant for the heat
and water dynamics of the soil, but the transport of latent heat with liquid water is
an important heat transfer process near the freezing point. In the scenario without
freezing, agreement between simulated and measured temperatures was quite good
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4 Application: Simulation of a Permafrost Soil

in times when the profile was completely thawed or completely frozen, and in very
cold times also for nearly all other scenarios. Heat transport seems to be purely
conductive during these periods. Mechanical interactions might be important, but
no phenomena have been observed which could only be explained by inclusion of
mechanic. Even the fast infiltration in the spring can be explained by matrix con-
ductivity alone. No density driven convection was observed in the simulations.
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5 Application: Multiphase Transport

Especially close to liquid phase saturation, water and gas transport are strongly
coupled in a porous medium. Research is often concentrated on either liquid or gas
phase transport and not on the interactions between both. In this chapter single
and multiphase simulations of multistep outflow experiments are compared and the
differences are analyzed.

5.1 Multistep Outflow Experiments

Soil hydraulic parameters are difficult to measure. Direct methods are tedious and
time consuming. Multistep outflow experiments are a widely used alternative. A
soil core is placed on a ceramic plate and saturated with water. The pressure at
the lower boundary is then lowered either continuously or, in steps. At some lower
limit, the procedure is reversed and the soil sample is saturated again. The liquid
phase pressure at one or more positions in the sample is measured with tensiome-
ters, the water content in the sample is also periodically measured with TDR. The
volume of water emanating from the soil column is recorded with high temporal res-
olution. A parameterization of soil water characteristic and hydraulic conductivity
function is fitted to the measured values by inversion of Richards’ equation (Zach-
mann et al. 1982, Hornung and Messing 1982, Zurmühl 1994, Schultze 1998). The
parameterization is crucial for the result of the optimization. The van Genuchten
parameterization is used most frequently, and spline approximations have also been
applied (Chavent et al. 1980, Durner et al. 2001). An entry pressure as included in
the Brooks-Corey parameterization is rarely considered. Multiphase models usually
are not used in this inversion process.

The effect of the model used in the forward simulation (singlephase/multiphase,
van Genuchten/Brooks-Corey parameterization) on the result is analyzed in the
following section and compared qualitatively with the result of laboratory measure-
ments with an artificial porous medium.
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Figure 5.1: Heterogeneous test column composed of sintered glass with fine, medium
and coarse pores (Graf et al. 2001)

5.2 Laboratory Experiments

Columns made of sintered glass were proposed by Graf et al. (2001) as a static porous
material, which is similar to natural porous media. The columns are available with
different pore sizes. Homogeneous columns in the three pore size classes fine (10-
16 µm), medium (40-100 µm), coarse (250-500 µm) and a heterogeneous column
were (Figure 5.1) studied.

5.3 Model Parameters

5.3.1 Transport Parameters

Multistep outflow experiments with the different columns were simulated. The trans-
port parameters used for the simulations were estimated by H. Graf from a multistep
outflow experiment with the homogeneous column with coarse pores using an inverse
model based on Richards’ equation.

The parameters of the soil water characteristic were transferred to the medium
and fine soil using the assumption of Miller similarity. The concept of Miller similar-
ity (Miller and Miller 1956) implies that at a different location the geometry of the
pore space is exactly the same and only the size of the elements which compose the
pore space is different. If we can associate a scaling parameter with a typical scale
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5.4 Simulation Results

of the pore space (e.g. average or maximal pore diameter), the hydraulic parameters
measured at a certain scale χ∗ can be used at a different scale χ, if capillary pressure
and permeability are scaled by the relation:

Sl(ψl) = S∗l

(
ψl · χ
χ∗

)
(5.1)

K = K∗ ·
[

χ

χ∗

]2

(5.2)

By definition, porosity is constant in Miller similar media. Scaling parameters of
0.2 and 0.032 have been used for the medium and the fine material respectively
corresponding to maximal pore sizes of 500µm, 100µm and 16µ m for the coarse,
medium and fine material. The resulting water characteristics are shown in figure
5.2.

As the estimation error for the permeability of the coarse medium was huge,
permeabilities were not taken from the Miller scaling, but derived from measured
saturated hydraulic conductivity. Values of 6.5 · 10−13 m2 for the fine, and 3.3 ·
10−12 m2 for the medium material were used. The measured saturated hydraulic
conductivity for the coarse medium seemed too large, therefore a permeability of
10−11 m2 was assumed. Equivalent Brooks-Corey parameters were derived from the
van Genuchten parameters by ψentry = α−1 and λ = mn. The parameters for the
coarse material are shown in table 5.1. For the diffusion of air in water a diffusion
coefficient of 2 · 10−9 m2/s was used.

It was assumed, that a ceramic plate with a thickness of 1 cm, an entry pressure
of 2 m and the permeability of the medium material was at the lower end of the
column. Brooks-Corey parameters were always used for the ceramic plate, to prevent
the development of a gas phase. The choice of the parameter lambda is arbitrary
for this material, as it remains always saturated.

5.3.2 Initial and Boundary Conditions

At the upper boundary a no-flux boundary condition was used for water, and the
air pressure was kept constant at standard pressure. A typical multistep outflow
scheme was applied at the lower boundary. As the underpressure is generated by
a vacuum pump, the same pressure was used for air and water. No-flux boundary
conditions were used at the sides. Initially the column was fully water saturated
and it was assumed that the dissolved air was in equilibrium with the atmosphere.

5.4 Simulation Results

A multistep outflow experiment with a duration of 22 hours was simulated for the
heterogeneous column and homogeneous columns composed of coarse, medium and
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Figure 5.2: Soil water characteristic for the coarse (black), medium (red) and fine
(blue) material using the van Genuchten (solid line) and Brooks-Corey
(dashed line) parameterization

fine material. For each material the outflow of water was computed using either
the van Genuchten or Brooks-Corey parameterization in combination with either
the Richards’ equation, or a twophase model, based on the phase pressure/partial
pressure formulation. A two-dimensional grid with 48 elements in vertical and 16
elements in horizontal direction was used, corresponding to a horizontal resolution
of 0.25 cm and 0.31 cm in vertical direction. As the derivative of the Brooks-Corey
parameterization is not continuous, convergence problems occurred with the Newton
method when the Brooks-Corey parameterization was used in combination with the
twophase model. It was, however, possible to demonstrate the usefulness of the new
phase pressure/partial pressure formulation.

5.4.1 Homogeneous Medium

No outflow occurred from homogeneous columns of fine material in the simulations
using the Brooks-Corey parameterization with both Richards’ equation and the
twophase model, a small outflow was calculated with the van Genuchten parameter-
ization. For the coarse and the fine material, identical outflow curves were obtained
with both Richards’ equation and the twophase model with the Brooks-Corey and
the van Genuchten parameterization. The simulated outflow curves for the medium
material are shown in figures 5.3 and 5.4 together with the pressure applied at the
lower boundary. Apart from minute differences in the first drainage and the last
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Table 5.1: Van Genuchten and Brooks-Corey Parameters for the coarse material

parameter value unit
Φ 0.45 –
α 13.82 m−1

n 3.8789 –
m 1− 1

n
–

λ 2.8789 –
pe 708.6 Pa
Srl

0.247 –
Srl

0.0 –
τ 2.0 –

imbibation step, the outflow computed with the van Genuchten parameterization
was identical. When the Brooks-Corey parameterization was used the results of
the Richards’ equation model and the twophase model showed marked differences.
Drainage calculated by the multiphase model was slower in the first pressure steps
and hysteresis occurred during imbibation. This is in excellent agreement with ob-
servations made in the experiments. When gas phase continuity was reached, the
results obtained with Richards equation and the twophase model were identical for
all simulations.

5.4.2 Heterogeneous Medium

The lower boundary condition and the outflow computed for the heterogeneous
soil column for the first drainage steps is shown in figures 5.5 and 5.6. In both
simulations using the van Genuchten parameterization and in the simulation with
Richards’ equation and the Brooks-Corey parameterization, the lens of coarse mate-
rial is nearly completely drained in the first pressure step. In the twophase simulation
with the Brooks-Corey parameterization, only a minute amount of water emanates
from the column when an air phase forms in the coarse medium from dissolved air.
After 5 hours, the material above the coarse lens is drained, as the entry pressure of
the medium material is reached. As soon as the coarse lens is connected to the gas
phase, it is completely emptied. Unfortunately convergence problems of the Newton
solver led to a simulation breakdown after 6.5 hours simulated time for the twophase
simulation with Brooks-Corey parameters. Figure 5.8 shows the water and gas pres-
sure, saturations and fluxes calculated by the model after 5 and 6 hours simulated
time. In the plot made at 5 hours simulated time, a gas phase can be seen in the
coarse lens, which emerged from dissolved air and led to a corresponding pressure
drop in the gas phase. The medium material starts to drain at the upper boundary.
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Figure 5.3: Outflow of water calculated with Richards’ equation (red) and the
twophase model (blue) obtained with the van Genuchten parameteri-
zation for the homogeneous column made of medium material and lower
boundary condition (black dashed)
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Figure 5.4: Outflow of water calculated with Richards’ equation (red) and the
twophase model (blue) obtained with the Brooks-Corey parameteriza-
tion for the homogeneous column made of medium material and lower
boundary condition (black dashed)
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Figure 5.5: Outflow of water calculated with Richards’ equation (red) and the
twophase model (blue) obtained with the van Genuchten parameteriza-
tion for the heterogeneous column and lower boundary condition (black
dashed)
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Figure 5.6: Outflow of water calculated with Richards’ equation (red) and the
twophase model (blue) obtained with the Brooks-Corey parameteriza-
tion for the heterogeneous column and lower boundary condition (black
dashed)
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The gas saturation is still very low. After 6 hours, drainage has reached the coarse
lens. The gas phase pressure is again at atmospheric pressure. Below the coarse
lens, water originating from the coarse lens can be seen. It is not in contact with
a continuous gas phase and the partial pressure of air is still lower. Liquid phase
conductivity is now very low in the dry coarse lens and final drainage is efficiently
obstructed, resulting in an increased liquid phase pressure in the coarse lens. Water
in the medium material is ponding on the coarse lens.

5.5 Discussion

Richards’ equation and the twophase model deliver identical results if the gas phase
is continuous. When the van Genuchten parameterization was used, the results
obtained for water flow with the twophase model and Richards’ equation were hardly
distinguishable for all saturations.

Characteristic differences occurred between the Richards’ equation and the two-
phase model if Brooks-Corey parameterization was used. At high water saturations,
the water flux out of the column was slower and hysteresis was visible during im-
bibation. These observations are in agreement with measurements. They can be
explained by two factors: the existence of an air entry pressure, resulting from the
limited maximal pore diameter, and the difference in permeabilities between the
two parameterizations. As gas is transported primarily in the largest pores and the
maximal pore size is not limited in the van Genuchten parameterization, the rela-
tive permeability for the gas phase is always higher and the relative permeability
for the liquid phase is always lower at a given saturation than in the Brooks-Corey
parameterization (Figure 5.9).

The new phase pressure/partial pressure formulation makes solution of a two-
phase model in combination with the Brooks-Corey parameterization possible. It
therefore gives a better description of the measurements. The Newton method,
however, is not optimal for the solution of the resulting nonlinear and discontinuous
equation system.
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5.5 Discussion

Water Pressure Water Saturation Water Flux

Gas Pressure Gas Saturation Gas Flux

5

Figure 5.7: Distribution of liquid phase pressure [97’700:98’800], gas pres-
sure [98’700:101’000], water saturation [0:1], gas saturation [0:0.04] and
fluxes in the heterogeneous column after 5 hours. Values in brackets are
the maximum and minimum value used in scaling

Water Pressure Water Saturation Water Flux

Gas Pressure Gas Saturation Gas Flux

6

Figure 5.8: Distribution of liquid phase pressure [97’200:99’300], gas pres-
sure [98’400:101’000], water saturation [0:1], gas saturation [0:0.74] and
fluxes in the heterogeneous column after 6 hours. Values in brackets are
the maximum and minimum value used in scaling
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5 Application: Multiphase Transport
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Figure 5.9: Relative permeabilities obtained with the van Genuchten (solid lines)
and Brooks-Corey parameterization (dashed lines) for gas phase (red),
liquid phase (blue) and sum of both (black) for the medium material
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6 Conclusions

Coupled transport of water, air, solutes and heat in porous media was studied in
this work. An equation system with appropriate parameter functions has been
formulated. A computer model based on this equation system was developed with
special emphasize on robustness, consistency, stability and flexibility in the choice
of processes taken into account in the modeling. The model was tested successfully
and was applied to a permafrost soil and to multiphase transport. The model proved
to be a valuable tool for the study of process coupling.

Comparison between model results and data measured at a permafrost site near
Ny Ålesund showed a good qualitative agreement. The main features of the water
and energy dynamic were reproduced. However, small differences in the water trans-
port parameters lead to large differences in the modeled results. Unlike transport of
liquid water during freezing and thawing, water vapor transport proved to be unim-
portant. Inclusion of solute transport had no effect on the simulation result. The
rapid infiltration in spring could be reproduced without macropores. The deviations
between measured and modeled temperatures and relative permittivities are most
probably a result of the heterogeneity of the profile combined with the sensitivity
of the system. Even a rather simplistic consideration of the stone content in the
profile led to an improvement in correspondence. A simulation with a more detailed
consideration of the heterogeneity would be desirable.

The coupling of atmosphere and soil was not treated in this work, as it is compli-
cated by the dynamic of the snow cover. It should be taken into account in a future
version of the model. No clear phenomena were detected in the measured data which
could only be explained by mechanical processes. Yet the pseudo-mechanical model
used to overcome the numerical difficulties is not satisfactory and the integration
of a mechanical model would be of great importance for the understanding of the
system behavior.

A new phase pressure/partial pressure formulation for the solution of coupled
liquid and gas phase transport was developed. It was used to simulate multiphase
outflow experiments. Results of the twophase model and a model based on Richards’
equation combined with either the van Genuchten or the Brooks-Corey parameter-
ization of the soil water characteristic were compared. The new formulation made
the Brooks-Corey parameterization available for multiphase formulation without
regularization. Richards’ equation was equivalent to the twophase model as soon
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6 Conclusions

as the gas phase became continuous. Even close to water saturation only minute
differences could be observed between Richards equation and the multiphase model
when the van Genuchten parameterization was used. In contrast, marked differences
could be observed with the Brooks-Corey parameterization. The retarded drainage
of water and the hysteresis between drainage and imbibation are in agreement with
experimental results.

The Newton method was not stable and robust in the solution of the nonlinear
equations describing twophase transport in heterogeneous systems when the Brooks-
Corey parameterization was used. A better nonlinear solution method is necessary.
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dien - Auswirkungen der Bodenstruktur auf Wärmeleitung und Temper-
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densäulen. PhD thesis. Universität Bayreuth.
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A. Hydraulic Parameters for the Test
Calculations

A.1. Yolo Light Clay

Kw = Ks · A

A + |hm|β ; Ks = 4.428 · 10−2cm/h, A = 124.6, β = 1.77(A.1)

θw =
α(θs − θr)

α + (ln |hm|)β + θr;
θs = 0.495, θr = 0.124,
α = 739, β = 4

}
if hm < −1 cm

θ = θs if hm ≥ −1 cm

A.2. Sand

Kw = Ks · A

A + |hm|β ; Ks = 34cm/h, A = 1.175 · 106, β = 4.74 (A.2)

θw =
α(θs − θr)

α + |hm|β + θr; θs = 0.287, θr = 0.0.075,
α = 1.611 · 106

β = 3.96
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B. Texture and Composition of the
Bayelva Profile

The texture and composition of disturbed soil samples were measured at the Alfred-
Wegener-Institute, Potsdam. Wet soil was passed through a sieve with a mesh size of
63 µm to measure the sand content. Silt and clay were separated by sedimentation
in an Atterberg cylinder after destruction of limestone and organic carbon. Linear
interpolation was used between the 25 sampling points.
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C. Algorithm for the Evaluation of
TDR-traces

Heimovaara (1993) developed an algorithm for the automatic evaluation of TDR
waveforms. Only a rough description is given here to demonstrate the modification
which was made to the algorithm. For details the reader is referred to the original
source.

The travel time of a guided electromagnetic wave in soil (∆ts) is calculated from

∆ts = ∆tp −∆t0. (C.1)

∆tp is the difference in time between the reflections at the beginning and the end
of the TDR probe and ∆t0 is a correction for the travel time between the reflection
at the beginning of the probe and the point where the signal enters the soil. The
position of the first reflection depends on the cable length and changes with tem-
perature while the distance between both reflections depends on the square root of
the relative permittivity of the material between and around the rods of the probe.
The signal of a probe immersed in water is shown in figure C.1.

Figure C.1.: TDR waveform for a probe immersed in water (reflection coefficient ver-
sus travel time, red), its first derivative (blue dashed) and the regression
lines for the determination of the first (green) and second (turquoise)
reflection. Inflection points are marked by black rhombs.
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C. Algorithm for the Evaluation of TDR-traces

The intersection points of straight lines fitted to the measured signal are calcu-
lated to determine the reflection points. The lines fitted to the rising section are
drawn through the inflection point (the maximum of the first derivative). In the
practical application of the algorithm, the global maximum of the first derivative
was always found to be related to the second reflection point. A unique determina-
tion of the inflection point corresponding to the first reflection is not always possible
as there is more than one inflection near the first reflection as can also be seen in
figure C.1. This situation is exacerbated if the signal is noisy. In Heimovaara’s orig-
inal algorithm smoothing of the signal was used to cope with this problem which
led to a reduced precision and was not robust enough. In the modified algorithm
the search for the first inflection is limited to a given interval around the position
of the first reflection determined in the laboratory. Smoothing of the signal is no
longer necessary. The modified algorithm was applied to more than 200’000 TDR
waveforms measured at a site in Ny Ålesund and the rate of failure was below 0.1
percent.

The modified algorithm was incorporated in a program library for the measure-
ment and evaluation of TDR waveforms, which is available as open source under the
GNU Publication License.
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D. Freezing Curves

The freezing curves were derived from temperature and relative permittivity mea-
sured between September 13th 1998 and September 5th 2001. Volumetric water
content is plotted versus temperature. Filtering of the raw data is described in sec-
tion 4.2.2, the calculation of volumetric water content from relative permittivity in
section 4.2.4.1. The positions of the probes are shown in the next chapter. All values
below 0 ◦C were plotted as dots. The lines were derived from hydraulic parameters
for the loam (solid) and the silt (dashed) used in the simulations.
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D. Freezing Curves
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E. Simulation Results

Plots of temperature and square root of relative permittivity versus time at 24 probes
are shown for each scenario on the next pages. The probe number is shown in the
right upper corner of each plot. Time is given in julian days starting at January 1th
1998. Probe positions are shown below. The square root of the relative permittivity
is used, as it is proportional to the really measured travel time along the TDR rods
and also to the liquid water content. The black line in each plot shows measured
values, the result from the simulation with the hydraulic parameters for the loam is
always represented by the red line. The blue line shows the results of the particular
scenario.

Figure E.1.: Position of the probes used in the simulation
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E. Simulation Results

E.1. Measured Data
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E. Simulation Results

E.2. Loam/Silt Homogeneous
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E.2. Loam/Silt Homogeneous

Relative Permittivity
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E. Simulation Results

E.3. Loam/Silt with Reduced Permeability
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E.3. Loam/Silt with Reduced Permeability

Relative Permittivity
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E. Simulation Results

E.4. Loam Freezing/not Freezing
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E.4. Loam Freezing/not Freezing

Relative Permittivity
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E. Simulation Results

E.5. Loam Coarse Grid/Fine Grid
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E.5. Loam Coarse Grid/Fine Grid

Relative Permittivity

2

3

4

5

500 1000

 6

2

3

4

5

500 1000

 4

2

3

4

5

500 1000

 3

2

3

4

5

500 1000

 8

2

3

4

5

500 1000

 9

2

3

4

5

500 1000

10

2

3

4

5

500 1000

11

2

3

4

5

500 1000

12

2

3

4

5

500 1000

13

2

3

4

5

500 1000

14

2

3

4

5

500 1000

15

2

3

4

5

500 1000

16

2

3

4

5

500 1000

17

2

3

4

5

500 1000

18

2

3

4

5

500 1000

19

2

3

4

5

500 1000

20

2

3

4

5

500 1000

21

2

3

4

5

500 1000

23

2

3

4

5

500 1000

24

2

3

4

5

500 1000

25

2

3

4

5

500 1000

26

2

3

4

5

500 1000

27

2

3

4

5

500 1000

28

2

3

4

5

500 1000

29

107



E. Simulation Results

E.6. Loam with Different Initial Conditions
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E.6. Loam with Different Initial Conditions

Relative Permittivity
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E. Simulation Results

E.7. Loam with Dirichlet Boundaries at the Sides

Temperature

260

265

270

275

280

285

500 1000

 6

260

265

270

275

280

285

500 1000

 4

260

265

270

275

280

285

500 1000

 3

260

265

270

275

280

285

500 1000

 8

260

265

270

275

280

285

500 1000

 9

260

265

270

275

280

285

500 1000

10

260

265

270

275

280

285

500 1000

11

260

265

270

275

280

285

500 1000

12

260

265

270

275

280

285

500 1000

13

260

265

270

275

280

285

500 1000

14

260

265

270

275

280

285

500 1000

15

260

265

270

275

280

285

500 1000

16

260

265

270

275

280

285

500 1000

17

260

265

270

275

280

285

500 1000

18

260

265

270

275

280

285

500 1000

19

260

265

270

275

280

285

500 1000

20

260

265

270

275

280

285

500 1000

21

260

265

270

275

280

285

500 1000

23

260

265

270

275

280

285

500 1000

24

260

265

270

275

280

285

500 1000

25

260

265

270

275

280

285

500 1000

26

260

265

270

275

280

285

500 1000

27

260

265

270

275

280

285

500 1000

28

260

265

270

275

280

285

500 1000

29

110



E.7. Loam with Dirichlet Boundaries at the Sides

Relative Permittivity
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E. Simulation Results

E.8. Loam with 2m deep Lower Boundary
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E.8. Loam with 2m deep Lower Boundary

Relative Permittivity
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E. Simulation Results

E.9. Loam 3D Simulation
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E.9. Loam 3D Simulation
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E. Simulation Results

E.10. Loam without Vapor Transport
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E.10. Loam without Vapor Transport

Relative Permittivity
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E. Simulation Results

E.11. Loam with Vapor Transport Formulated
According to Philip and de Vries
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E.11. Loam with Vapor Transport Formulated According to Philip and de Vries

Relative Permittivity
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E. Simulation Results

E.12. Loam with Inclusion of Solute Transport
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E.12. Loam with Inclusion of Solute Transport

Relative Permittivity
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E. Simulation Results

E.13. Heterogeneous Simulation
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E.13. Heterogeneous Simulation

Relative Permittivity
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