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1.0 Introduction 

Natural killer (NK) cells are white blood lymphocytes of the innate immune system that have 

diverse biological functions, including recognition and destruction of certain microbial 

infections and neoplasms [1]. NK cells comprise ~ 10% of all circulating lymphocytes and are 

also found in peripheral tissues including the liver, peritoneal cavity and placenta. Resting NK 

cells circulate in the blood, but, following activation by cytokines, they are capable of 

extravasation and infiltration into most tissues that contain pathogen-infected or malignant 

cells [2-5]. NK cells discriminate between normal and abnormal cells (infected or 

transformed) through engagement and dynamic integration of multiple signaling pathways, 

which are initiated by germline-encoded receptors [6-8]. Healthy cells are protected from NK 

cell-mediated lysis by expression of major histocompatibility complex (MHC) class I ligands 

for NK cell inhibitory receptors [6, 9]. The MHC is a group of highly polymorphic 

glycoproteins that are expressed by every nucleated cell of vertebrates, and that are encoded 

by the MHC gene cluster. The human MHC molecules are termed human leucocyte antigen 

(HLA)-A, B and C molecules. Every NK cell expresses at least one inhibitory receptor that 

recognizes a self-MHC class I molecule. So, normal cells that express MHC class I molecules 

are protected from self-NK cells, but transformed or infected cells that have down-regulated 

MHC class I expression are attacked by NK cells [10].  

 

There are 2 distinct subsets of human NK cells identified mainly by cell surface density of 

CD56. The majority (approximately 90%) of human NK cells are CD56dimCD16bright and 

express high levels of FcγRIII (CD16), whereas a minority (approximately 10%) are 

CD56brightCD16dim/- [11]. Resting CD56dim NK cells are more cytotoxic against NK-sensitive 

targets than CD56bright NK cells [12]. However, after activation with interleukin (IL)-2 or IL-
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12, CD56bright cells exhibit similar or enhanced cytotoxicity against NK targets compared to 

CD56dim cells [12-14]. 

 

1.1 Regulation of NK cell function 

The functions of NK cells are regulated by a balance of signals (Fig. 1.1). These are 

transmitted by inhibitory receptors, which bind MHC class I molecules, and activating 

receptors, which bind ligands on tumors and virus-infected cells [15]. These receptors are 

completely encoded in the genome, rather than being generated by somatic recombinations, 

like T- and B-cell receptors.  

 

Figure 1.1: Control of NK cell function by the balance of activating/inhibitory signals. NK cell function is 

regulated by signaling through activation and inhibitory receptors. NK cell activation can occur by means of 

activating receptors, which signal through ZAP70/SYK when immunoreceptor tyrosine-based activating motif 

(ITAM)-containing adaptor proteins, such as DAP12, FcRγ and CD3ζ are activated. Alternatively, the CD28 

molecule or the lectin-like receptor NKG2D coupled to the adaptor protein DAP10, activates NK cells by 

associating with phosphatidylinositol-3-kinase (PI3K) through their binding motifs (YxxM motifs). NK cell 

inhibitory receptors such as Ly49 and KIR contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in 
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their cytoplasmic domains, which recruit intracellular tyrosine phosphatases such as SHP1 (adapted from 

reference 10). 

 

The NK cell receptors fall into two main structural classes that each contains activation and 

inhibitory members. Receptors in the immunoglobulin superfamily include killer inhibitory 

receptors (KIRs) and leucocyte inhibitory receptors, whereas receptors of the C-type lectin-

like family include lymphocyte antigen 49 (LY49), NKG2D and CD94/NKG2 [16-19]. These 

MHC receptors discriminate among different MHC class I molecules, recognizing specific 

products that are encoded by individual class I alleles. This is in contrast to the highly 

conserved NK-cell immunoglobulin (Ig) and lectin-like receptors, which recognize non-

classical MHC molecules such as HLA-G and HLA-E. These molecules are considerably less 

polymorphic, and differ from classical MHC molecules in their patterns of transcription and 

protein expression, as well as in their immunological functions [20]. An NK cell can express 

several inhibitory and stimulatory receptors at any one time.  

 

1.2 NK cell inhibitory receptors 

Three distinct receptor families that are involved in NK cell recognition of polymorphic MHC 

class I molecules contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in their 

cytoplasmic domains (Table 1.1, Fig. 1.1). Following ligation, these ITIMs become 

phosphorylated at tyrosine residues, allowing them to recruit the tyrosine phosphatases SHP1, 

and possibly SHP2. Expression of MHC class I molecules has been shown to protect normal 

and transformed hematopoietic cells from NK-mediated lysis [21, 22] in several graft versus 

leukemia (GVL) models. MHC class I expression has also been associated with protection 

against NK-mediated lysis in patients that have received allogenic bone marrow transplatation 

[23, 24]. The role of MHC class I molecules in NK cell recognition of solid tumors, by 

contrast, has been controversial. Disrupting the interaction between human NK cell KIRs and 
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ligands that are expressed by melanoma cells in vivo has been reported to enhance the 

antitumor responses that are mediated by both innate and adaptive immune effector cells [25]. 

In the mouse, Ly49C/I inhibitory receptor blockade increased the NK cell-mediated antitumor 

effects in vitro and in vivo [26]. Rodent Ly49D [27] also activated the activity of NK cells 

against hamster CHO tumor cells [28, 29]. Interestingly, MHC class I-specific receptors that 

inhibit interferon (IFN)-γ production might differ from those that reduce NK cell cytotoxicity 

[30]. 

NK cell receptor Ligand 

For MHC class I molecules  

Human KIR2DL HLA-C 

Human CD158/KIR3DL HLA-Bw4, HLA-A 

Human CD85i/ILT2 HLA class I 

Mouse Ly49 H-2K, H-2D 

For non-classical MHC class I molecules  

CD94/NKG2A 

(mouse: Qa-1b 

HLA-E 

Table 1.1: NK cell inhibitory receptors (adapted from reference 10) 

Human MHC class I molecules are encoded by HLA genes. HLA-E (and its rodent equivalent 

Qa-1b) binds to signal peptides that are derived from the polymorphic classical MHC class I 

molecules (such as HLA-A, B and C). This peptide binding requires the activity of the 

transporter associated with antigen processing (TAP)-1, which stabilizes the HLA-E protein 

and allows it to be transported to the cell surface. After the HLA-E protein is present on the 

cell surface, it can interact with CD94/natural killer group 2A (NKG2A) receptors to inhibit 
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NK cells. Some tumor cells no longer express HLA-A, B and C molecules or TAP, preventing 

HLA-E from reaching the cell surface. This allows the tumor cell to become vulnerable to NK 

cell-mediated killing. One in vitro study indicated that CD94/NKG2A ligation could inhibit 

antibody-dependent cellular cytotoxicity (ADCC) that is mediated by NK cells against tumor 

cell lines [31]. 

 

1.3 NK cell activating receptors 

NK cells kill certain cancer cell types in vitro, even though these cells express significant 

levels of MHC class I on their surface. Some activating receptors have been implicated in the 

NK cell recognition of tumors and stressed cells (Table 1.2) [32, 33]. Most of the activating 

NK cell receptors are transmembrane molecules with short intracellular domains that lack 

intrinsic signaling activity. They signal by interacting with transmembrane adaptor molecules, 

such as DAP12, FcRγ and CD3ζ, which contain immunoreceptor tyrosine-based activating 

motifs (ITAMs) (Fig 1.1). 

Receptor Species Ligand Signal transduction 

NKG2D Human 

Mouse 

MIC, ULBP 

Rae-1, H60 

Associated with 

DAP10 and activates 

PI3K pathway 

NKp30 Human Unknown Associated with 

ITAM-bearing CD3-

ζ or FcRγ and 

activates 

ZAP70/SYK 

pathway 
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NKp46 Human/mouse Unknown  

NKp44 Human Unknown Associated with 

ITAM-bearing 

DAP12 and activates 

ZAP70/SYK 

pathway 

KIR2DS Human HLA-C Same as NKp44 

CD94/NKG2C Human/mouse HLA-E/Qa-1 Same as NKp44 

Ly49D Mouse H-2Dd Same as NKp44 

Ly49H Mouse MCMV m157 Same as NKp44 

NKR-P1C (CD161c) Mouse Unknown Same as NKp30 

CD16 Human/mouse IgG Same as NKp30 

Co-stimulatory 

molecules 

   

CD28 Human/mouse CD80, CD86 Activates PI3K 

pathway 

CD27 Human/mouse CD70 Activates TRAF 

pathway and 

ZAP70/SYK 

pathway 

2B4 (CD244) Human/mouse CD48 Associated with SAP 
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Table 1.2: The activation receptors involved in NK cell function. SAP, SLAM-associated 

protein; SYK, spleen tyrosine kinase; TRAF, tumor-necrosis-factor-receptor-associated 

factor; ZAP70, zeta-associated phosphoprotein 70 (adapted from reference 10). 

 

1.3.1 Natural cytotoxicity receptors (NCRs). 

In vitro NK cell-mediated killing of various cancer cell lines can be blocked by combination 

treatment with monoclonal antibodies (mAbs) against three receptors that are responsible for 

the spontaneous cytotoxicity of NK cells. These are NCRs NKp30, NKp44 (only in humans) 

and NKp46 (in mice and humans) [34-36]. The density of NCRs on the surface of NK cells 

varies, and there is a direct correlation between NCR expression by human NK cells and their 

ability to kill tumor cells. NCRs can associate with different signal-transducing adaptor 

proteins. NK cells from mice with gene disruptions in DAP12, FcRγ or CD3ζ have shown 

selective deficiencies in their ability to kill certain tumors [37]. 

 

1.3.2 Natural Killer Group 2D (NKG2D) 

A recently characterized NK cell activating receptor, NKG2D, is a type II disulphide-linked 

dimer with a lectin-like extracellular domain that is expressed on cytolytic cells of the innate 

and adaptive immune systems [38]. NKG2D might be expressed as two isoforms (long and 

short). These forms of NKG2D are associated with the transmembrane adaptor protein 

DAP10 (NKG2Dlong and NKG2Dshort), which binds to and activates phosphatidylinositol-

3-kinase (PI3K) [39], or DAP12 (NKG2Dshort only). Several ligands that bind to mouse and 

human NKG2D are structurally related to MHC class I molecules, and show diverse 

expression patterns and modes of induction (Table 1.3) [38, 40-45]. NKG2D recognizes 

defined antigens that are induced on abnormal cells that are undergoing stress or primary and 
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secondary tumors [46, 47], and detection of ligands for NKG2D on stressed cells might 

provide a threshold of activation that allows the killing of abnormal cells.  

 

Ligand Expression Induction Structure 

Human    

MICA, 

MICB, α2 

 

Gut epithelium, 

epithelial and non-

epithelial tumors; 

tumor cell lines 

Heat shock; oxidative 

stress; tumor 

transformation; M. 

tuberculosis, E. coli or 

HCMV infection 

Transmembrane protein; 

MHC class-I-related α1 and 

domains 

UL16 

binding 

protein 

(ULBP)1,2,3 

Tumor cell lines Tumor transformation GPI-anchored proteins 

Mouse    

Rae-1 

family 

Rae-1α, -1β, 

-1γ, -1δ 

Embryonic tissues; 

tumor cell lines; not 

expressed in most 

normal adult tissues 

Retinoic acid; 

carcinogens; tumor 

transformation 

GP1-anchored proteins; MHC 

class-I-related α1 and α2 

domains 

Rae-1ε Strain-restricted 

expression 

  

H60 Strain-restricted 

expression; activated 

Carcinogens; tumor 

transformation 

Transmembrane protein; 

MHC class-I-related α1 and 
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peripheral blood 

leucocytes and 

splenocytes 

α2 domains 

Table 1.3: The ligands for the NKG2D receptor. GPI, gylcosylphosphatidylinositol; HCMV, human 

cytomegalovirus; MHC, major histocompatibility complex (adapted from reference 10). 

 

Transfection of human MHC class I-bearing targets with MHC class I chain-related molecule 

A (MICA) rendered these cells susceptible to NK cell-mediated cytotoxicity in vitro [38] and 

expression of H60 or glycosylphosphatidylinositol (GPI)-linked ligands for mouse NKG2D 

(Rae-1) by MHC class I-expressing tumor cells triggered in vitro NK cell and macrophage 

effector functions [45].  

 

Surveillance that is mediated by NK cell NKG2D might be regulated at the level of ligand 

availability. As only the long transcript of NKG2D is generally constitutively expressed in 

naive NK cells and it associates with DAP10, these cells might require secondary signals from 

other activation receptors, such as NCRs, before they are able to respond to tumors that 

express NKG2D ligands [48]. A better understanding about the ways in which cells respond 

to stress (heat shock, viral infection, retinoids, endotoxin and transformation) and signal their 

stress is required. 

 

1.3.3 NK cell antibody receptors 

NK cells also mediate ADCC by expressing a low-affinity Fc receptor for IgG, FcγRIII 

(CD16). NK cells express different levels of CD16 at various stages of development. The NK 

cell subset CD56dimCD16bright is responsible for ADCC [49, 50]. When an antibody binds to 

an antigen, the Fc portion of the antibody is recognized and bound by Fcγ receptors on NK 
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cells, leading to activation of NK cells and target cell destruction. This ADCC is the dominant 

component of the activity of antibodies against tumors [10].  

 

1.3.4 NK cell co-stimulatory molecules 

The activation of NK cells also results from the action of co-stimulatory molecules. The NK 

cell activation receptor CD28 interacts with CD80 and CD86 on target cells, which provide 

co-stimulatory signals for human and rodent NK cells [51, 52]. A proportion of human and 

most mouse NK cells constitutively express CD27 on their surface [53, 54]. Stimulation of 

NK cells with CD27 ligand (CD70)-transfected tumor cells could enhance proliferation and 

IFN-γ production of freshly isolated NK cells in the presence of IL-2. In contrast to signals 

that are transmitted by CD28 or NKG2D, NK cell cytotoxicity is not induced by CD27 

ligation. The NK cell surface molecule 2B4 (CD244) also functions as a co-receptor that is 

involved in human NK cell activation [55]. 2B4, together with NTBA, are members of the 

CD2 family. They serve a dual, inhibitory or activating, function depending on the availability 

of downstream regulating elements in their signaling pathway [56, 57]. Their cytoplasmic 

portion bind a small cytoplasmic protein termed signaling lymphocyte activation molecule-

associated protein (SAP) and delivers triggering signals leading to NK cell activation. The 

absence of SAP, a molecular defect typical of X-linked lymphoproliferative (XLP) disease, 

results in binding of SHP-1 phosphatase to 2B4. The consequent SHP-1 activation leads to 

inhibition of the activation pathways thus blocking NK cell function [58]. 2B4 has been 

proposed to provide a fail-safe mechanism to prevent killing of normal autologous cells [59]. 

Interestingly, 2B4 is expressed at the earliert stages of hemopoietic stem cell differentiation, 

while SAP transcripts are absent [59]. Accordingly 2B4 cross-linking by specific mAbs or by 

its ligand CD48 inhibits the function of immature NK cells. Remarkably, CD48 is expressed 

at high densities in bone marrow cells. Thus it is conceivable that 2B4 can provide an 
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effective fail-safe mechanism to prevent NK cell-mediated damages to bone marrow cells 

[60]. Other recently identified triggering co-receptors include DNAX accessory molecule 

(DNAM)-1, NKp80 and CD59. NK cells has also been reported to receive early stimulatory 

signals directly through binding of the intercellular adhesion molecule (ICAM)-1 to leucocyte 

function antigen (LFA)-1 expressed on NK cells [61]. 

 

1.3.5 Cytokine and chemokine regulation of NK cells 

Cytokines are crucial natural adjuvants that are involved in the activation of NK cells against 

tumor cells. NK cells can be rapidly activated in the periphery by NK cell stimulatory factors, 

such as IL-12, IFN-α, IFN-β, IL-15 or IL-2. The first indication of their importance came 

from the observations that virus-induced type I IFNs promoted NK cell-mediated cytotoxicity 

and proliferation, and promoted innate defence against viral infections [62]. Very little is 

understood about the IFN and IL-12 signaling pathways in the context of NK cell antitumor 

activity. IL-2 was the first growth and activation factor that was described for NK cells. The 

use of this cytokine in the immunotherapy of cancer has met with some success. IL-15 is also 

a pleiotropic cytokine that is involved in the development and maintenance of NK cells [63, 

64]. In NK cells, the IL-15 receptor includes IL-2/IL-15Rβ and –γ c subunits, which are 

shared with IL-2, and an IL-15-specific receptor subunit, IL-15Rα. While IL-2 is commonly 

used to activate and expand NK cells in vitro, it is conceivable that during the early phases of 

innate immune responses in vivo, IL-15 may exert a predominant role in NK-cell activation 

and function [65-67].  

 

1.4 Biology of Histone deacetylases (HDACs) and Histone acetyltransferases( HATs) 

DNA is packaged into nucleosomes, repeating complexes in chromatin, composed of 

approximately 146 base pairs of 2 superhelical turns of DNA wrapped around an octomer of 
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pairs of histones H4, H3, H2a, and H2b. Lysine-rich amino-terminal tails extend from the 

nucleosomes and are responsible for the conformational changes of the DNA [68-71]. 

Modification of the histones includes acetylation, methylation, phosphorylation, and/or 

ubiquitination [70-73]. The “histone code” or “epigenetic code” pertains to the discrete 

modifications of the histones that regulate chromatin function, including the transcription of 

genes. The amino acid tails of histones are subject to posttranslational modification by 

acetylation of lysines, methylation of lysines and arginines, phosphorylation of serines, and 

ubiquitination of lysines. The most extensively studied posttranslational modifications of 

histones are the acetylation and deacetylation of the lysine group. The acetylation status of 

histones and non-histone proteins is determined by HDACs and HATs. HATs transfer acetyl 

group from acetyl coenzyme A to the N terminal end of lysine tail, neutralizing the charge on 

the lysine tail and decreasing the attraction between the histones and DNA, thus allowing 

transcriptional activity [74-77]. HDACs remove the acetyl groups from the lysine residue, 

restoring the positive charge of the lysine causing condensation of the chromatin, thus leading 

to repression of gene expression. In humans, 18 HDAC enzymes have been identified and 

classified, based on homology to yeast HDACs [78-81]. Class I HDACs include HDAC1, -2, 

-3 and -8, which are related to yeast RPD3 deacetylase and have high homology in their 

catalytic sites. Recent phylogenetic analyses suggest that this class can be divided into classes 

Ia (HDAC1 and -2), Ib (HDAC3) and Ic (HDAC8) [82]. Class II HDACs are related to yeast 

Hda1 and include HDAC4, -5, -6, -7, -9 and -10 [80, 81]. This class is divided into class IIa, 

consisting of HDAC4, -5, -7 and -9, and class IIb, consisting of HDAC6, and -10, which 

contain two catalytic sites. All class I and II HDACs are zinc-dependent enzymes. Members 

of a third class, sirtuins, require nicotinamide adenine dinucleotide (NAD+) for their 

enzymatic activity [79]. Among them, SIRT1 is orthologous to yeast silent information 

regulator 2. Class IV HDAC is represented by HDAC11, which like yeast Hda 1, has 

conserved residues in the catalytic core region shared by both class I and II enzymes [83]. 
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HDACs are not redundant in function [81, 84, 85]. Class I HDACs are primarily nuclear in 

localization and ubiquitously expressed, while class II HDACs can be primarily cytoplasmic 

and/or migrate between the cytoplasm and nucleus and are tissue-restricted in expression. 

 

1.5 HDAC substrates 

Recent phylogenetic analyses of bacterial HDACs suggest that all four HDAC classes 

preceded the evolution of histone proteins [82]. This suggests that the primary activity of 

HDACs may be directed against non-histone substrates. At least 50 non-histone proteins of 

known biological function have been identified, which may be acetylated and substrates of 

HDACs [81, 84-88]. In addition, two recent proteomic studies identified many lysine-

acetylated substrates [89, 90]. In view of all these findings, HDACs may be better called ‘N-

epsilon-lysine deacetylase’. This designation would also distinguish them from the enzymes 

that catalyze other types of deacetylation in biological reactions such as acylases that catalyze 

the deacetylation of a range of Nα-acetyl amino acids [91]. Non-histone protein targets of 

HDACs include transcription regulators, signal transduction mediators, DNA repair enzymes, 

nuclear import regulators, chaperone proteins, structural proteins, inflammatory mediators, 

and viral proteins. Acetylation can either increase or decrease the function or stability of the 

proteins, or protein-protein interaction [86]. These HDACs substrates are directly or indirectly 

involved in many biological processes, such as gene expression and regulation of pathways of 

proliferation, differentiation and cell death.   

 

1.6 HDACs and HATs in cancer  

Disturbance of the HDAC-HAT dynamic appears to result in the development of cancer. In 

several hematological malignancies, chromosomal translocations result in the development of 

fusion proteins, which exert oncogenic effects through interactions with HDACs. 
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Chromosomal translocations 15;17 and 8;21 produce the fusion proteins PML-RARα and 

AML-ETO1, respectively. These proteins recruit HDAC-containing transcriptional repressor 

complexes, resulting in disrupted cell cycle control and the initiation of acute promyelocytic 

and myeloid leukemias. In the development of diffuse large B-cell lymphoma, BCL6, an 

oncogenic protein, recruits a HDAC-containing complex to mediate transcriptional repression 

[92]. Further alterations of the expression and function of HDACs and HATs have been noted 

in malignancies. Mutations in the HAT p300 and cyclic adenosine monophosphate (cAMP) 

response element-binding protein are found in patients with Rubinstein-Taybi syndrome, who 

exhibit developmental delays and increased risk for pediatric malignancies such as 

neuroblastoma (NB) and retinoblastoma [93]. Overexpression of HDACs has been reported in 

various solid tumors. Mice lacking the adenomatosis polyposis coli tumor suppressor gene 

overexpressed HDAC2, which prevented apoptosis in cultured colon cells. Elevated 

expression of HDAC2 has also been detected at high frequency in human colon carcinomas 

[94]. Disrupted activities of HDACs and HATs may potentially result in the hypoacetylation 

of histones in neoplastic cells. Recent evidence suggests that hypoacetylation of lysine 16 of 

histone H4 may represent a common hallmark or signature of human tumor cells. Analyses of 

normal tissues, cancer cell lines, and primary tumors indicated that cancer cells predominantly 

exhibit a loss of acetylated lysine 16 and trimethylated lysine 20 of histone H4. These losses 

were localized to DNA repetitive sequences that were hypomethylated [95]. These findings 

implicate the involvement of HDACs in tumorigenesis and emphasize their potential as 

therapeutic targets. 

 

1.7 Histone deacetylase inhibitors (HDACi)  

HDACi are therapeutic agents that inhibit angiogenesis and induce cell cycle arrest, apoptosis 

and differentiation in cancer cells. They form a new class of antineoplastic agents currently 

being evaluated in clinical trials for the treatment of various solid or hematologic 
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malignancies [96-98]. Finnin et al [99] elucidated the crystal structure of the catalytic site of 

an HDAC homolog and have shown that the direct interaction of HDACi with the active zinc 

binding site appears to be required to show inhibitory activity (Fig 1.2).  

 

Figure 1.2: Crystal structure showing binding of SAHA on the catalytic site of an HDAC homolog protein. 

(adapted from reference 99) 

 

Although the HDACi are structurally different, all agents contain a surface recognition site, a 

metal-binding domain that interacts with the zinc pocket, and a linker domain. Because of the 

structural differences, the potency and HDAC inhibitory capabilities are variable among 

classes of HDACi. For example, the enzymatic activity of class III HDACs is not inhibited by 

compounds such as vorinostat (also called suberoylanilide hydroxamic acid, SAHA) or 

trichostatin A (TSA) that inhibit class I and class II HDACs [78]. There are 5 classes of 

HDACi, which include (1) the short-chain fatty acids such as butyrate derivatives and 

valproic acid (VPA); (2) the hydroxamic acids, which include vorinostat (SAHA), PXD101, 
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pyroxamide, oxamflatin, cinnamic acid, bishydroxamic acid, LBH589, and scriptaid; (3) 

cyclic tetrapeptides containing a 2-amino-8-oxo-9, 10-epoxy moiety such as trapoxin A; (4) 

cyclic peptides that do not have the amino moiety but that include depsipeptide (FK228); and 

(5) the benzamides such as CI994 and MS 275. Many of these HDACi are in clinical trials 

both as mono-therapy and in combination with cytotoxic and biologic agents.  

 

 

 

Figure 1.3: Representative structures of the main classes of HDACi either from [a] natural sources or [b] 

synthetic (adapted from reference 87) 
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1.8 Biologic activities of HDACi 

HDACi have been shown to block the proliferation and the induction of differentiation or 

apoptosis in a wide variety of transformed cells in culture, including cell lines derived from 

both hematologic and epithelial derived malignancies. After inhibition of HDAC activity, 

accumulation of acetylated histones and non-histone proteins is a common upstream event in 

transformed cells; however, the critical downstream events underpinning the antitumor effects 

are poorly understood and will depend in part on the HDAC inhibitory spectrum of the 

specific HDAC inhibitor and resulting substrates of the HDACs affected as well as the 

cellular context of the tumor. The downstream effects can roughly be divided into 2 broad 

categories: transcriptional and non-transcriptional effects. Transcriptional and non-

transcriptional events can result from the HDACi-mediated accumulation of acetylated 

histones or non-histone proteins. Recently, evidence has also indicated that HDACi may 

function to inhibit factors in the angiogenesis pathway [100, 101].  

 

1.8.1 HDACi and cell cycle arrest  

HDACi induce an open chromatin conformation through the accumulation of acetylated 

histones, facilitating the transcription of numerous regulatory genes. Treatment with HDACi 

results in an increase in expression of cyclin-dependent kinase inhibitor p21waf1 and 

transcriptional repression of cyclin A and D genes, as well as the inhibition of thymidylate 

synthetase, which is involved in DNA synthesis. These events probably contribute to the cell 

cycle arrest at G1/S [102-104]. In normal cells, a G2-phase cell cycle checkpoint is activated 

by treatment with HDACi; however, this checkpoint was found to be defective in several 

tumor cell lines. Loss of this G2 checkpoint caused the tumor cells to undergo an aberrant 

mitosis, resulting in fractured multinuclei and micronuclei, and eventually cell death [105]. It 

is likely that the loss of this G2 checkpoint is somewhat responsible for the selective effects of 

HDACi treatment in tumor cells [98]. 
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1.8.2 Apoptotic effects of HDACi 

HDACi probably induce apoptosis in tumor cells through the activation of numerous 

mechanisms. It has been hypothesized that treatment with HDACi alters gene expression to 

favor a proapoptotic response [85]. Gene expression profiling of tumor cells treated with 

HDACi showed that proapoptotic genes involved in the extrinsic or death receptor pathway 

[such as Fas or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)] or the 

intrinsic or mitochondrial pathway (such as bax and bak) are generally up-regulated, whereas 

prosurvival genes such as XIAP and bcl-2 are generally down-regulated. The precise roles of 

the extrinsic versus (vs.) intrinsic pathways in HDACi-induced apoptosis in tumor cells and 

the mechanisms by which they function remain to be discerned.  

 

The production of reactive oxygen species (ROS) appears to play a role in HDACi-induced 

apoptosis as well. HDACi treatment may activate the production of ROS. Alternatively, 

expression of thioredoxin protein 2 (TBP2), a ROS regulatory protein that is expressed at low 

levels in many human cancers, is selectively increased by vorinostat. TBP2 may perhaps bind 

and inactivate thioredoxin, rendering cells more susceptible to oxidative stress [106]. ROS 

scavengers have been shown to suppress apoptosis after treatment with HDACi. 

Hyperacetylation of non-histone proteins may trigger unique apoptotic mechanisms. HDACi 

acetylate and destabilize Hsp90, a non-histone chaperone protein for a variety of 

oncoproteins, including Akt and c-raf, resulting in degradation of these oncoproteins [107].  

Ku70 is a DNA end-joining protein that sequesters the apoptotic protein Bax in the cytoplasm. 

When acetylated after treatment with HDACi, Ku70 releases Bax to the mitochondria to 

induce apoptosis [108, 109]. The HDAC6-specific inhibitor tubacin has been shown to cause 

accumulation of acetylated α-tubulin but not histones. Additionally, tubacin in certain cell 
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contexts does not inhibit cell progression but rather may elicit antitumor effects by affecting 

migration or aggresome function [110]. 

 

1.8.3 Antiangiogenic effects of HDACi 

The HDACi have recently been shown to be potent angiostatic agents in vitro and in vivo. In 

both endothelial and tumor cells, HDACi have been shown to down-regulate angiogenesis-

related gene expression. Within cancer cells, HDAC gene expression is thought to be 

transcriptionally activated by hypoxia, resulting in the down-regulation of tumor suppressor 

genes p53 and von Hippel-Lindau. HDACs complex with hypoxia-inducible factor 1α 

(HIF1α) under hypoxic conditions. This leads to increased HIF1α transcriptional activity and 

increased expression of HIF1α target genes, such as vascular endothelial growth factor 

(VEGF) [101, 111, 112]. HDACi have been shown to up-regulate inhibitors of angiogenesis, 

such as p53 and von Hippel-Lindau, and down-regulate angiogenesis-promoting factors, such 

as VEGF and HIF1α, as well as platelet-derived growth factor and basic fibroblast growth 

factor. Furthermore, HDACi down-regulate gene expression of survivin, an apoptotic 

inhibitor, in endothelial cells alone. It therefore appears that the antiangiogenic effects of 

HDACi may be exerted through inhibition of tumor endothelial cell growth as well as through 

altering the expression of genes to produce antiangiogenic effects [101, 111, 112]. The 

antiangiogenic effects of TSA, MS 275 and VPA were also linked to a decrease in the 

generation of nitric oxide (NO) by endothelial cells and a marked reduction in the expression 

of the endothelial nitric-oxide synthase (eNOS) [100, 111]. 

 

1.8.4 HDACi effects in  animal studies 

HDACi have been tested in several animal models including human breast, prostate, lung, 

pancreatic, ovarian, and stomach cancer, melanoma, synovial sarcoma, osteosarcoma, NB, 
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medulloblastoma multiple myeloma, and leukemia. Human lymphoma SCID mouse models 

and transgenic mouse models of acute promyelocytic leukemia have also been tested. Overall, 

inhibition of tumor growth was observed with little toxicity. Agents that have been or are 

being currently investigated in phase I and phase II clinical trials include TSA, depsipeptide, 

MS 275, FK 228, and PXD101. The accumulation of acetylated histones caused by HDACi in 

tumor and normal tissues such as spleen and peripheral blood mononuclear cells (PBMCs) 

further suggests that this may be an important biomarker to measure in clinical trials [113]. 

Vorinostat has also been shown to cross the blood-brain barrier in an R6/2HD mouse model 

and increase histone acetylation in the brain [114]. TSA, vorinostat, VPA, phenylbutyrate, and 

depsipeptide have been shown to block angiogenesis in vivo. Anti-proliferative effects may 

thus be exerted through the induction of apoptosis and the interference with tumor’s 

establishment of adequate vascularization [98]. 

 

1.9 Clinical trials with HDACi 

Several HDACi have been investigated in phase I and phase II clinical trials, as single agents 

and in combination with cytotoxic therapies (Table 1.4). SAHA (Vorinostat) and VPA are the 

most studied HDACi.  

 

Class Compound Phase of 

Development 

Potency (cells) HDAC 

targeta 

Hydroxamate Vorinostat 

(SAHA) 

approved µM Classes I, II 

 PXD101 I/II µM Classes I, II 

 ITF2357 I nM Classes I, II 
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Cyclic peptide Depsipeptide 

(FK228) 

I/II nM HDAC1, -2 

Aliphatic acid VPA I/II mM Classes I, 

IIa 

 Phenylbutyrate I/II mM Classes I, 

IIa 

Benzamide MS 275 I/II µM HDAC1, -2, 

-3 

Table 1.4: Examples of HDACi in clinical trials. a Based on relative sensitivity to HDACi (adapted from 

references 78 and 98) 

 

1.9.1 SAHA (Vorinostat) 

SAHA is a hydroxamic acid inhibitor of HDACs. It has been shown to inhibit the activity of 

HDACs in both class I and class II but does not inhibit the activity of class III HDACs [81, 

115, 116]. SAHA selectivity alters only 2-10% of expressed genes in different transformed 

cells-with the number of genes whose expression increased about equal to the number whose 

expression decreased [117]. Although the mechanisms of SAHA activity are not completely 

understood, it is clear that SAHA induces cell death of transformed cells by selectively 

altering gene expression and the function of proteins that cause caspase-dependent and 

caspase-independent cell death [81, 85, 115, 116, 118-122]. It arrests cell growth of a variety 

of transformed cells in culture at 2.5-5.0 µM [81, 102, 106, 115, 116, 123-125]. Initial trials of 

intravenous vorinostat in patients with refractory hematologic and advanced solid tumors 

showed that this agent was well tolerated, with neutropenia and thrombocytopenia being the 

dose-limiting toxicities in the patients with hematologic malignancies. Vorinostat inhibited 

HDACs and caused the accumulation of acetylated histones in both normal and malignant 
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tissues [126]. Subsequently, an oral preparation of vorinostat was tested in phase I trial of 73 

patients with advanced solid tumors. The major dose-limiting toxicities observed were 

anorexia, dehydration, diarrhea, and fatigue. Two of 4 patients with mesothelioma 

experienced partial responses, and a placebo-controlled, randomized phase III study of oral 

vorinostat is now open for patients with mesothelioma in whom treatment with pemetrexed 

has failed [127]. Vorinostat has been partially effective in patients with cutaneous T-cell 

lymphoma (CTCL). In a phase II trial of oral vorinostat in patients with CTCL, 8 of a total of 

33 patients enrolled in the study achieved a partial response, and 14 patients received relief 

from pruritus. The most common grade 3/4 drug-related adverse events were 

thrombocytopenia and dehydration [128]. On October 6, 2006, the U.S. Food and Drug 

Administration granted approval to vorinostat (Zolinza) for the treatment of CTCL in patients 

with progressive, persistent, or recurrent disease on or after 2 systemic therapies.  

 

1.9.2 VPA 

VPA has been used an an anticonvulsant for decades. It suppresses generalized and partial 

seizures, acts as a mood stabilizer, and augments the treatment of migraine and neuropathic 

pain [129]. Recently, cancer treatment has become a new sphere of application for VPA. VPA 

affects the growth and differentiation of a variety of malignant cells in vitro [130]. Similar to 

teratogenicity, the antitumor effect of VPA is independent of the drug’s antiepileptic activity 

because VPA can be modified to exhibit one effect or the other [131]. Antineoplastic activity 

includes an effect on the cell cycle through prolongation of the G1 phase [132]. VPA also has 

a differentiating effect, for example, as shown in NB cells, in which it causes increased 

expression of neural cell adhesion molecules (NCAM), decreased expression of n-myc 

oncoprotein, and morphologic alterations such as neuritogenesis [133-136]. In addition, VPA 

affects the cytoskeleton [137], inhibiting cell motility and tumor metastasis, and demonstrates 
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antiangiogenic activity in vitro [100]. The antineoplastic and teratogenic effect of VPA was 

shown to depend mainly on the inhibition of HDAC [135, 138]. VPA inhibits class I HDAC1, 

-2 and -3, and class II HDAC4, -5 and -7 [139]. VPA is now in clinical trial in patients with 

acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) [140, 141, 142]. VPA 

is also used as maintenance therapy for childhood malignant glioma after post-operative 

combined chemotherapy and irradiation [142, 143].  

 

1.10 HDACi and the immune system  

The influence of HDACi on antitumor responses of the innate immune system has been 

described. The effects were mostly based on priming malignant cells with HDACi for 

immune cell-mediated killing. Cinatl et al [144] reported that treatment of NB cells with 0.5 

mM VPA increased their sensitivity to lymphokine-activated killer lysis. Sodium butyrate 

(SB) was used to induce the expression of co-stimulatory/adhesion molecule on AML cells, 

thereby effectively inducing tumor immunity. SB up-regulated CD86 and ICAM-1 expression 

in several AML cell lines and enhanced allogenic mixed leucocyte reaction against HL60 

cells [145]. Cancer cells were also shown to become susceptible to NK cell killing after 

exposure to HDACi like SAHA and FR901228. This susceptibility was due to glycogen 

synthase kinase-3-dependent expression of MICA and MICB [146]. The specific priming of 

malignant cells for innate immune effector mechanisms was again reported to be mediated by 

VPA [147]. Here the authors showed that VPA increased transcription of MICA and MICB in 

hepatocellular carcinoma cells, leading to increased cell surface, soluble and total MIC 

protein expression, as well as increased lysis by NK cells. Furthermore, depsipeptide was 

shown to up-regulate tumor death receptor TRAIL-R2 (DR5) and thereby potentiate NK cell-

mediated tumor killing [148]. 
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HDACi have been reported to comprise a new class of immunosuppressive agents [149]. The 

investigators showed that HDACi FR901228 inhibited CD4 T-cell proliferation in a manner 

which was not caused by apoptosis or decreased viabilty. FR901228 also abrogated the 

characteristic aggregation of T cells following activation without affecting early intracellular 

signals such as tyrosine kinase activity and elevation of intracellular calcium concentration. 

This effect was reported to correlate with diminished activation-induced expression of the 

adhesion molecules, LFA-1 and ICAM-1. Furthermore, HDACi inhibited activation-induced 

CD25 (IL-2 receptor α-chain) and CD154 (CD40 ligand) but not CD69 expression on CD4 

cells [149]. HDAC6-mediated tubulin deacetylation was shown to be involved in CD3 and 

LFA-1 orientation and in the organization of the immune synapse in T lymphocytes [150]. 

However, separate studies ruled out major effects of HDAC inhibition on T-cell proliferative 

and cytotoxic responses and on IFN-γ production [151-153], thus leaving open the possibility 

that other immune cell types may be mostly affected by HDACi and thereby contribute to the 

immunomodulatory properties of these drugs. In this context, recent experiments have shown 

the capacity of a selective HDACi, LAQ824, to specifically modulate gene expression in 

macrophages and dendritic cells (DC) leading to impaired chemokine production and to 

preferential stimulation of Th2 versus Th1 T lymphocytes [154]. Also, VPA and MS 275 

reportly impaired DC differentiation by preventing the acquisition of the DC hallmark CD1a 

and by affecting the expression of co-stimulatory (CD80 and CD86) and adhesion (ICAM-1 

and DC-specific intercellular adhesion molecule 3-grabbing nonintegrin (DCSign)) molecules 

[155]. In addition, the authors demonstrated that macrophage inflammatory protein-

3β/chemokine, motif CC, ligand 19-induced migration, immunostimulatory capacity, and 

cytokine secretion by DCs were profoundly impaired. The observed defects in DC function on 

exposure to HDACi were suggested to reflect the obstruction of signaling through nuclear 

factor kappa B (NFκB), IFN regulatory factor (IRF)-3, and IRF-8 [155]. Reduction of pro-

inflammatory cytokine production was also reported for the HDACi SAHA and ITF2357. 
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Human PBMCs stimulated with lipopolysaccharide (LPS) in the presence of SAHA [153] or 

ITF2357 [156] released less tumor necrosis factor (TNF)-α, IL-1-β, IL-12, and IFN-γ. Other 

studies revealed that administration of HDACi to mice ameliorated the autoimmune 

manifestations of graft-versus-host disease, systemic lupus erythematosus, concanavalin A-

induced hepatitis, experimental autoimmune encephalomyelitis, rheumatoid arthritis, and 

colitis [151-153, 157-160]. How the immune effects of HDACi are exactly mediated is 

presently unclear.  

 

1.11 Nucleoside Analogs  

Nucleoside analogs represent a novel group of cytotoxic antimetabolites in the treatment of 

hematological malignancies, solid tumors and viral infections [161-164]. They mimic 

physiological nucleosides and share their metabolic pathways. Most nucleosides enter cells 

via specialized plasma membrane nucleoside transporter (NT) and are phosphorylated by 

cellular kinases to their cytotoxic 5’-triphosphates, which affect RNA and DNA synthesis and 

other metabolic targets. 

 

1.12 1-β-D-arabinofuranosylcytosine (Cytosine arabinoside, cytarabine, araC) 

AraC is one of the most important antileukemic drugs currently available for the treatment of 

AML [165, 166] and large cell lymphoma [167]. AraC was shown to be active against T-

lymphoid H9 cells [168]. Continuous cultivation of T-lymphoid C8166 cells in the presence 

of araC resulted in significantly decreased expression of the major cellular receptor molecule 

CD4 and co-receptor molecule CXCR4 of T-lymphotropic HIV-1 isolates [169]. AraC is a 

deoxynucleoside analog that has to be converted into its active triphosphate derivative 

(araCTP) to exert its cytotoxic effect [170]. AraCTP is then incorporated into the DNA 

causing chain termination, resulting in a block in DNA synthesis and facilitating programmed 
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cell death [171]. AraC is a hydrophilic molecule and as such requires facilitated diffusion via 

nucleoside-specific membrane transport carriers to enter cells [172, 173]. The human 

equilibrative nucleoside transporter (hENT1) is responsible for 80% of araC influx in human 

leukemic blast cells [173, 174]. Inside the cell, conversion of araC into its monophosphate 

derivative araCMP by deoxycytidine kinase (dCK) is believed to be the rate-limiting step in 

the metabolism of araC [175, 176]. Subsequently, araCMP is phosphorylated into its 

diphosphate derivative araCDP by nucleoside monophosphate kinases, which in turn finally is 

phosphorylated into araCTP by diphosphate kinases [177]. In addition to araC a variety of 

other deoxynucleoside derivatives are active in both hematological and solid malignancies. 

The purine analogs 2-chlorodeoxyadenosine and fludarabine are active against indolent 

lymphoid malignancies and are currently used for the treatment of hairy-cell leukemias and 

chronic and acute leukemias, respectively [178]. The pyrimidine analog gemcitabine has 

activity in various solid malignancies and some hematological disorders [179]. Gemcitabine-

monophosphate prodrug was also shown to be active against thyroid cancer cells in vitro 

[180]. The thymidine (3’-azido-2’,3’-dideoxythymidine, 2’,3’-didehydro-3’-deoxythymidine) 

and deoxycytidine (2’,3’-dideoxycytidine, 2’,2’-difluoro-2’-deoxycytidine) analogs were 

shown to be active against T-lymphoid H9 cells [168]. The cytidine analog 5-aza-2’-

deoxycytidine is a potent hypomethylating agent and has shown to be active in the treatment 

of AML, chronic myeloid leukemia (CML), and MDS [181]. These compounds are activated 

intracellularly via the same metabolic pathway as araC.  

 

1.13 Mechanisms of resistance to araC in transformed cells  

Prolonged, in vitro and in vivo, treatment with araC has resulted in the emergence of drug 

resistant cells with diminished sensitivity to the drug and ultimately contributing to treatment 

failures [166, 182, 183]. Mechanisms of resistance to araC that have been reported  include 

increased inactivation of araC by cytidine deaminase, decreased intracellular permeation, 
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decreased cellular activation by dCK, increased degradation of araC-nucleotides by 5’-

nucleotidase, imbalance of cellular deoxynucleotide pools, and increased capability of repair 

of damaged DNA [182-189]. 

 

1.14 Methods for measuring NK cell cytotoxicity  

Fast, sensitive and material-sparing methods to measure NK cytolytic activity, an important 

determinant of NK cell function, are critical for the analysis of physiological functions as well 

as pathological states of the immune system. The gold standard for measuring cell-mediated 

cytotoxicity has been the chromium (51Cr) [190, 191] or europium (Eu3+) release assays [191-

194]. However, measurement of target cell lysis by 51Cr or Eu3+ release assays is a time-

consuming method requiring labeling of target cells with toxic or radioactive substances that 

present also a drastic manipulation. Moreover, the large number of cells required by these 

methods results in high background values. Several other methods for measuring cell 

cytotoxicity are inconsistent and have numerous shortcomings (table 1.5) [195]. Corey et al 

[196] also extensively described the shortcomings of other assays for measuring cytotoxicity: 

Traditional enzyme release assay like lactate dehydrogenase (LDH) is slow and lack 

sensitivity.  Direct cell counting by dye invasion is tedious and relatively insensitive to small 

amounts of damage; it also suffers from operator error and subjective judgements. Terminal 

deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays are generally used for 

the study of apoptosis as they are specific for DNA fragmentation, but they are labor-intensive 

and are difficult to interprete. Metabolism-based assays generally involve the addition of a 

chemical which generates a chromophore when it is metabolically processed- this is effective 

for determining the remaining percentage of life cells, but is insensitive to small rates of cell 

death or membrane damage for statistical reasons that are inherent to the method. Due to these 

reasons, the search for other methods that are non-hazardous, easy to perform, and with high 

sensitivity are highly required. 
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Table 1.5: Categories of cytotoxicity assays reported in literaturea 

 

a The categories are defined by approach used to measure the results of an interaction between effector cells and 

target cells (adapted from reference 195) 

 

 

 

 

 

 1a: Target cell 
death by 
substance release  

1b: Target cell 
death by cell 
visualization 

2a: Target cell 
survival by 
substance 
uptake/retention  
 

2b: Target cell 
survival by cell 
visualization 

3a: Effector 
activity by 
substance 
release  

3b: Effector 
activity by cell 
visualization 

Parameters 51chromium, 
europium-DTPA, 
DNA-
fragmentation, 
LDH, KLUK, 
glyceraldehyde 3-
phosphate 
dehydrogenase, 
luciferase, beta-
galactosidase 

PI, 7AAD, 
annexin V, TO-
PRO-iodide, 
decrease in 
forward light 
scatter or 
antibody 
binding 
 
 
 

MTT, 4-Methyl-
umbelliferyl-
heptanoate, 
alamarBlue, 
gammaglutamyl, 
transpeptidase 

PI, 7AAD 
exclusion, 
scatter 

granzyme B conjugate 
formation 

Methods gamma camera, 
fluorimetry, 
ELISA, 
luminescence, 
photometry, 
Elispot 
 

flow cytometry, 
fluorimetry 

colorimetry, 
fluorimetry, 
photometry 

flow 
cytometry 

ELISA 
Elispot 

flow 
cytometry 

Advantage all target death 
detected unless 
substance 
reuptake by 
surviving targets 
and/or effectors 
 

easy handling, 
direct 
visualization, 
reduced cell 
manipulation 
unless stained 
before coculture 
 

reduced 
manipulation of 
cells unless marked 
before coculture 

easy handling, 
direct 
visualization 

detection of 
effector 
molecule of 
cytotoxic 
activity 

visualization 
of conjugate 
formation 

Disadvantage extensive cell 
manipulation, 
difficulty with 
labeling, some 
radioactivity, cell 
losses due to 
washing, in part 
transduction, 
target cell purity 
of >80% required 

escape from 
detection by 
disintegration of 
cells, gating 
difficulty due to 
change in 
properties of 
dead cells 

uptake of substance 
by effectors not 
easy to quantify, 
target cells in good 
condition with 
sufficient metabolic 
activity needed, 
target cell purity of 
>80% required 

dependent on 
precise sample 
preparation and 
measurement 

restricted to 
granule 
dependent 
activity 

conjugate 
formation not 
equal to killing 
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1.15 Aim of research 

Adequate measurement of cytolytic activity of NK cells is necessary to determine their 

functional status. This research focuses firstly on the establishment of a highly sensitive, safe, 

material saving, easy to perform, and reliable method for the measurement of NK cytolytic 

activity. Two research projects were then investigated using the established method.  

 

NK cells as components of the innate immunity substantially contribute to the elimination of 

virus-infected cells as well as antitumor immune response [60]. Modulation of immune 

responses which may be important for NK cell activity through epigenetic mechanisms such 

as acetylation and deacetylation has been studied by some groups. Most of these studies were 

based on the effects of HDACi on the expression of co-stimulatory/adhesion molecules (e.g. 

CD86 and ICAM-1), tumor death receptors like TRAIL-R2 (DR5) and ligands for the 

activating receptors of NK cells (e.g. MICA, MICB, ULBP 1-3) in leukemic and tumor cell 

lines respectively (see section 1.10) [145-148]. Other studies were based on the direct effect 

of HDACi on pro-inflammatory cytokine production in T cells, DCs, and PBMCs (section 

1.10) [149-156]. On the other hand, nothing has been reported in literature on the direct effect 

of HDACi on NK cell cytotoxic activity. The first research studied by using the established 

method for measuring NK cell cytotoxicity focuses on the direct effect of two HDACi, SAHA 

and VPA, on the cytolytic activity of NK cells. Since cytotoxic activity of NK cells is a 

complex process that requires adhesion to target cells, synapse formation, and signal 

transduction leading to granule polarization and exocytosis, it is imperative to determine the 

steps effected by HDACi. Towards this end, the effects of SAHA and VPA on (1) the surface 

expression pattern of adhesion molecule (LFA-1), IL-2 receptors (CD25, CD122, CD132), 

NK cell triggering receptors (NKp30, NKp44, NKp46, NKG2D, DNAM-1), NK cell 

inhibitory receptors (NKG2A, KIR) (2) intracellular perforin and Granzyme B expression (3) 
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activation of NFκB signaling and (4) granule exocytosis and IFN-γ production in NK cells 

were investigated. 

 

As mentioned in section 1.11, chemotherapy is insufficient in the clearance of hematological 

malignancies and solid tumors. Although the treatment of leukemia like AML has improved, 

patients that attained complete remission were shown to relapse from minimal residual 

disease cells that apparently survived chemotherapy [197], giving rise to a more resistant 

leukemia. Resistance to chemotherapy therefore remains a major obstacle in the treatment of 

leukemia and solid tumors. 

 

The second aspect of this research studied by using the established method for measuring NK 

cell cytotoxicity focuses on NK cell cytotoxicity of drug-resistant leukemic cell lines. For this 

purpose the expression of ligands of NK cell activating and inhibitory receptors on parental 

and araC-resistant H9 and Molt-4 cell lines as well as their function in NK cell-mediated 

cytolytic activity was investigated. The possible mechanism involved in the expression 

pattern of the ligands was also studied. 
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2.0 Materials and Methods 

2.1 Materials 

2.1.1 Chemicals 

Product Manufacturer 

Absolute Ethanol J.T. Baker, Stuttgart, Germany 

Acrylamide Gel 30 Roth, Karlsruhe, Germany 

Ammoniumpersulphate (APS) Sigma-Aldrich, St. Louis, USA 

Antipain Sigma-Aldrich, St. Louis, USA 

Aprotinin Sigma-Aldrich, St. Louis, USA 

Aqua ad injectabila Delta Select GmbH, Dreieich, Germany 

Aqua bidest. Milli-Q biocel, Millipore GmbH, Eschborn, 

Germany 

BAY11-7085 Calbiochem, Darmstadt, Germany 

β-Mercaptoethanol Sigma-Aldrich, St. Louis, USA 

Biocoll Separating Solution (Ficoll) Biochrom AG, Berlin, Germany 

Bovine Serum Albumin (BSA) Bovine Serum Albumin, Fraction V, PAA 

Laboratories, Pasching, Austria 

Chloroform Merck, Darmstadt, Germany 

Chymostatin Sigma-Aldrich, St. Louis, USA 

Cytofix/Cytoperm BD Biosciences, San Jose, USA 

Cytosine ß-D-Arabinofuranosylcytosine 

(Cytarabine; araC) 

Sigma-Aldrich, St. Louis, USA 

Diethylpyrocarbonate (DEPC) water, 

molecular biology grade 

Eppendorf, Hamburg, Germany 
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Dimethylformamide Fisher Scientific, Leicestershire, UK 

Dimethylsulphoxide (DMSO) Sigma-Aldrich, St. Louis, USA 

Ethylenediaminetetraacetic acid (EDTA) Merck, Darmstadt, Germany 

FACS Clean BD Biosciences, San Jose, USA 

FACS Flow BD Biosciences, San Jose, USA 

FACS Rinse BD Biosciences, San Jose, USA 

Fetal Bovine Serum (FBS) Sigma-Aldrich, St. Louis, USA 

Glycine Roth, Karlsruhe, Germany 

HCl AppliChem GmbH, Darmstadt, Germany 

Hepes J.T. Baker, Stuttgart, Germany 

Human Serum Blood Bank of the German Red Cross, 

Frankfurt, Germany 

Incidin Perfect Ecolab, Duesseldorf, Germany 

Incidin PLUS Ecolab, Duesseldorf, Germany 

Iscove’s Modified Dulbecco Medium 

(IMDM) 

Biochrom AG, Berlin, Germany 

Isopropanol Riedel-de Haeen, RdH, Laboratory 

Chemicals, Seelze, Germany 

Laemmli Bio-Rad Laboratories, Munich, germany 

Leupeptin Sigma-Aldrich, St. Louis, USA 

L-Glutamin Sigma Chemical Co., St. Louis, USA 

MgCl2 solution pack Applied Biosystems, Darmstadt, Germany 

MTT Serva Electrophoresis GmbH, Heidelberg, 

Germany 

NaCl Roth, Karlsruhe, Germany 
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Non-fat milk Roth, Karlsruhe, Germany 

Okadaic acid Sigma-Aldrich, St. Louis, USA 

Orthovanadate (sodium orthovanadate) Sigma-Aldrich, St. Louis, USA 

Paraformaldehyde Sigma Chemical Co., St. Louis, USA 

PD98059 Merck, Darmstadt, Germany 

Penicillin Gruenethal GmbH, Aachen, Germany 

Pepstatin A Sigma-Aldrich, St. Louis, USA 

PermWash BD Biosciences, San Jose, USA 

Phenylmethylsulfonylfluoride (PMSF) Sigma-Aldrich, St. Louis, USA 

Phosphate buffered saline (PBS) Sigma-Aldrich, St. Louis, USA 

Ponceau S solution Sigma-Aldrich, St. Louis, USA 

Prestained protein marker Biolabs, Ipswich, USA 

Propidium iodide (PI) stock solution Sigma-Aldrich, St. Louis, USA 

Reagent A Bio-Rad laboratories, Munich Gemany 

Reagent B Bio-Rad Laboratories, Munich Gemany 

Reagent S Bio-Rad Laboratories, Munich Gemany 

Sodium acetate Riedel-de Haeen, RdH, Laboratory 

Chemicals, Seelze, Germany 

Sodiumdodecylsulphate (SDS) AppliChem, Darmstadt, Germany 

Sodium hydrogen carbonate (NaHCO3) Merck, Darmstadt, Germany 

Sodium hydroxide (NaOH) Merck, Darmstadt, Germany 

Streptomycin sulphate Sigma-Aldrich, St. Louis, USA 

Suberoylanilide hydroxamic acid (SAHA) Alexis Biochemicals, Gruenberg, Germany 

TEMED (N,N,N’,N’-

Tetramethylethylenediamine) 

Roth, Karlsruhe, Germany 
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TRI® Reagent Sigma-Aldrich, St. Louis, USA 

Tris SAFC, Andover, UK 

Tris base Sigma-Aldrich, St. Louis, USA 

Triton X-100 Merck, Darmstadt, Germany 

Trypsin Difco, Hamburg, Germany 

Trypsin inhibitor Sigma-Aldrich, St. Louis, USA 

Tween 20 AppliChem, Darmstadt, Germany  

Valproic acid (VPA) (2-Propyl-Pentanoic 

acid sodium salt) 

Sigma-Aldrich, St. Louis, USA 

Vincristine (VCR) Sigma-Aldrich, St. Louis, USA 

 

2.1.2 Media, Buffer and Solution 

2.1.2.1 Media, buffer and cell culture solution 

PBS 10x concentrate: 

95.5 g dry medium was dissolved in 1000 ml Aqua bidest. The solution was then autoclaved. 

PBS 1x concentrate: 

50 ml PBS from 10x concentrate was diluted in 450 ml Aqua bidest. 

Trypsin solution: 

0.2% trypsin and 0.02% EDTA were dissolved in 1000 ml PBS. Aliquots were made and 

stored at -20°C. 

Sodium bicarbonate solution 7.5%: 

75 g NaHCO3 were dissolved in 1000 ml Aqua bidest. The resulting solution was sterile 

filtered and stored at 4°C. 
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L-Glutamine 0.2 M: 

29.2 g L-glutamine were dissolved in 1000 ml Aqua bidest. The resulting solution was sterile 

filtered and stored at -20°C. 

Penicillin/Streptomycin solution: 

106 IE penicillin and 10 g streptomycin sulphate were dissolved in 1000 ml Aqua bidest. The 

resulting solution was sterile filtered and stored at -20°C. 

IMDM basic medium: 

17.26 g IMDM dry medium were dissolved in 1000 ml Aqua bidest and sterile filtered using a 

0.22 µm filter. Medium was stored at 4-8°C for a maximum of 4 months. 

 

IMDM culture medium: 

1% from Penicillin/Streptomycin solution 

2% L-Glutamin 0.2 M 

4% from sodium bicarbonate solution 

10% FBS or 20% FBS, depending on cell to be cultured 

83% or 73% IMDM Basic Medium depending on cell to be cultured 

 

Cytotoxicity assay medium: 

1% from Penicillin/Streptomycin solution 

2% L-Glutamin 0.2 M 

4% from sodium bicarbonate solution 

1% heat inactivated FBS  

92% IMDM Basic Medium 
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2.1.2.2 Buffer and solution for fluorescent-activated cell sorting (FACS) 

FACS buffer (Wash buffer): 

2.5 g BSA were dissolved in 500 ml 1x PBS. The buffer was sterile filtered and stored at 

room temperature. 

Paraformaldehyde fixation solution 1%: 

10 g paraformaldehyde were dissolved in a mixture containing 400 ml Aqua bidest and 600 

ml 1x PBS. The resulting solution was sterile filtered, portioned and stored at -20°C. Thawed 

aliquots were stored at 4°C.   

 

2.1.2.3 Buffer for cell separation (MACS buffer): 

0.5% BSA and 2 mM EDTA were dissolved in 500 ml 1x PBS. The resulting solution was 

sterile filtered using a 0.22 µm filter and stored at 4-8°C. 

 

2.1.2.4 Buffer for cDNA (RTA buffer): 

4000 ml RTA buffer was prepared by mixing 800 µl MgCl2, 400 µl 10x PCR buffer II, 40 µl 

DNA polymerization mix (200 µM) and 2760 µl DEPC water together. This volume is 

enough for 25 cDNA dilutions. Storage 4-8°C.  

 

2.1.3 Antibodies and cytokines 

2.1.3.1 Monoclonal antibody  

Antiboby Clone Manufacturer 

AffiniPure F(ab’)2 fragment 

goat anti-mouse IgG, F(ab’)2 

fragment specific 

 Jackson ImmunoResearch 

Laboratories  West Grove, 

USA) 
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Allophycocyanin (APC)-

conjugated mouse anti-

human CD3 

SK7 BD Biosciences, San Jose, 

USA 

Anti-human MICA/MICB BAMO1 Immatics Biotechnologies, 

Tuebingen, Germany 

Anti-human ULBP-1 170818 R&D Systems, Wiesbaden, 

Germany 

Anti-human ULBP-2 165903 R&D Systems, Wiesbaden, 

Germany 

Anti-human ULBP-3 166510 R&D Systems, Wiesbaden, 

Germany 

Anti-mouse IgG peroxidase 

conjugated 

 Calbiochem, San Diego, 

USA 

Anti-rabbit IgG peroxidase 

conjugated 

 Calbiochem, San Diego, 

USA 

Fluorescein isothiocyanate 

(FITC)-conjugated mouse 

anti-human CD11a/LFA-1 

G43-25B BD  Biosciences, San Jose, 

USA 

FITC-conjugated mouse anti-

human HLA Class 1 

W6/32 Biosource, Camarillo, USA 

FITC-conjugated isotype 

specific goat anti mouse  

 BD Biosciences, San Jose, 

USA 

FITC-conjugated isotype 

specific isotype control 

 BD Biosciences, San Jose, 

USA 

Mouse monoclonal to polio D171 Abcam, Cambridge, UK 
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virus receptor (PVR) 

Phycoerythrin (PE)-

conjugated anti-human 

KIR/CD158 

180704 R&D Systems, Wiesbaden, 

Germany 

PE-conjugated anti-human 

CD 132/common γ chain 

31134 R&D Systems, Wiesbaden, 

Germany 

PE-conjugated anti-human 

IL-2 Rβ (CD122) 

27302 R&D Systems, Wiesbaden, 

Germany 

PE-conjugated anti-human 

NCAM/CD56 

301040 R&D Systems, Wiesbaden, 

Germany 

PE-conjugated anti-human 

IL-2 Rα (CD25) 

24212 R&D Systems, Wiesbaden, 

Germany 

PE-conjugated isotype 

specific goat F(ab’)2 anti-

mouse IgG 

 R&D Systems, Wiesbaden, 

Germany 

PE-conjugated isotype 

specific isotype control 

 R&D Systems, Wiesbaden, 

Germany 

PE-conjugated granzyme B GB11 Abcam, Cambridge, UK 

PE-conjugated Perforin δG9 BD Biosciences, San Jose, 

USA 

PE-conjugated anti-human 

NKp30 

Z25 Beckman Coulter, Marseille, 

France 

PE-conjugated anti-human 

NKp44 

Z231 Beckman Coulter, Marseille, 

France 

PE-conjugated anti-human BAB281 Beckman Coulter, Marseille, 
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NKp46 France 

PE-conjugated mouse anti-

human NKG2A 

Z199 Beckman Coulter, Marseille, 

France 

Purified human NKp30 Z25 Beckman Coulter, Marseille, 

France 

Purified human NKp44 Z231 Beckman Coulter, Marseille, 

France 

Purified human NKp46 BAB281 Beckman Coulter, Marseille, 

France 

Purified human NKG2D 1D11 BD Biosciences, San Jose, 

USA 

Purified mouse anti-human 

CD226 (DNAM-1) 

DX11 BD Biosciences, San Jose, 

USA 

 

2.1.3.2 Antibodies for Western Blot 

Akt antibody (rabbit polyclonal IgG) Cell Signaling, Beverly, USA 

Anti-β-actin, clone AC-15, mouse 

monoclonal IgG 

Sigma-Aldrich, St. Louis, USA 

Goat anti-mouse IgG, H & L chain specific 

(peroxidase conjugate) 

Merck, Darmstadt, Germany 

Goat anti-rabbit IgG, H & L chain specific 

(peroxidase conjugate) 

Merck, Darmstadt, Germany 

Phospho-Akt (Ser473) (193H12; rabbit 

monoclonal IgG) 

Cell Signaling, Beverly, USA 

Phospho-p44/42  (pERK1/2) MAP Kinase Cell Signaling, Beverly, USA 
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(Thr202/Tyr204) Antibody (rabbit polyclonal 

IgG)  

p44/42 MAP (ERK1/2) Kinase Antibody 

(rabbit polyclonal IgG) 

Cell Signaling, Beverly, USA 

 

2.1.3.3 Cytokines 

Recombinant human IL-2 Cell concept, Umkirch, Germany 

 

2.1.4 Reagents for SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

2.1.4.1 Resolving gel composition (for 2 gels) 

12 ml 10% 

H2O 3.5 ml 

30% Acrylamide 4.0 ml 

1 M Tris/HCl pH 8.8 4.5 ml 

10% SDS 120 µl 

10% APS 90 µl 

TEMED 15 µl 

 

2.1.4.2 Stacking gel composition (for 2 gels) 

3.5 ml 5% 

H2O 2.48 ml 

30% Acrylamide 0.55 ml 

1 M Tris/HCl pH 6.8 0.44 ml 

10% SDS 35 µl 

10% APS 24 µl 
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TEMED 4.5 µl 

 

2.1.4.3 Protease inhibitor mix (PIM) 

15 mM Antipain pH 7.4 1 mg Antipain dissolved in 1 ml Hepes 

15 mM Aprotinin pH 7.4 1 mg Aprotinin dissolved in 1 ml Hepes 

15 mM Chymostatin pH 7.4 1 mg Chymostatin dissolved in 200 µl 

DMSO + 800 µl Hepes 

15 mM Leupeptin pH 7.4 1 mg Leupeptin dissolved in 200 µl DMSO + 

800 µl Hepes 

15 mM Pepstatin A pH 7.4 1 mg Pepstatin A dissolved in 200 µl DMSO 

+ 800 µl Hepes 

15 mM Trypsin inhibitor pH 7.4 1 mg Trypsin inhibitor dissolved in 1 ml 

Hepes 

 

2.1.4.4 Electrophoresis and transfer buffers 

Electrophoresis Buffer (10x), pH 8.3 0.25 M Tris Base 

In 1000 ml aqua bidest., stored at 4°C 1.9 M Glycine 

 1% SDS 

  

Transfer Buffer (10x), pH 8.3 0.25 M Tris Base 

In 1000 ml aqua bidest., stored at 4°C 1.9 M Glycine 

 20% Methanol 

 

2.1.4.5 Wash and blocking buffers 

Wash Buffer (10x), pH 7.5 500 mM Tris/Cl 
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In 1000 ml aqua bidest., stored at Room 

temperature 

1.5 M NaCl 

 0.3% Tween 20 

  

Blocking Buffer (1x) 50 ml from 1 M Tris/Cl (pH 7.5) 

In 1000 ml aqua bidest., stored at Room 

temperature 

200 mM NaCl 

 0.05% Tween 20 

 3% BSA (or 5% non-fat milk) 

 

2.1.5 PCR 

2.1.5.1 Reagents for reverse transcription polymerase chain reaction (RT-PCR) 

MuLV Reverse Transcriptase N808-008 Applied Biosystems, Licoln, USA 

RNase Inhibitor N808-0119  Applied Biosystems, Licoln, USA 

Absolute TM QPCR SYBR Green ROX (500 

nM) Mix AB-1163/a (PCR) 

 

ABgene, Hamburg, Germany 

DNA-Polymerization Mix 20 mM/dNTP 

(RT-PCR) 

Pharmacia, Ratingen, Germany 

MgCl2 Solution 25 mM N808-0010 (RT-

PCR) 

Applied Biosystems, Licoln, USA 

Random Hexamers 50 µM N808-0127 (RT-

PCR) 

Applied Biosystems, Licoln, USA 

10x PCR Buffer II N808-0010 (RT-PCR) Applied Biosystems, Licoln, USA 

QuantiTect Probe PCR Kit (1000) 204345 QIAGEN, Hilden, Germany 
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(PCR) 

QuantiTect SYBR Green PCR Kit (1000) 

204145 (PCR) 

QIAGEN, Hilden, Germany 

All enzymes were stored at -20°C 

 

2.1.5.2 Primers 

Assay Name Primer design Forward Primer Reverse Primer 

β-actin In-house 5’-cgc gag aag atg acc 

cag  at-3’ 

5’-cag agg cgt aca 

ggg ata gca-3’ 

NKp30 Castriconi et al. 

2003 [198] 

5’-tga tca tgg tcc atc 

cag ga-3’ 

5’-aat ggc cag tct ccc 

ttg g-3’  

NKp46 Castriconi et al. 

2003 [198] 

5’-ggc aga atc tga gcg 

atg tct t-3’ 

5’-gct ttt cct ttg gaa 

cca tga a-3’ 

ULBP-2 Borchers et al. 

2006 [199] 

5’-ccc tgg gga aga aac 

taa atg tc-3’ 

5’-act gaa ctg cca aga 

tcc act gct-3’ 

ULBP-3 Borchers et al. 

2006 [199] 

5’-aga tgc ctg ggg aaa 

aca act g-3’ 

gta tcc atc ggc ttc aca 

ctc aca-3’ 

 

 

2.1.6 Commercial Kits 

Human IFN-γ ELISA R&D Systems, Wiesbaden, Germany 

Human Perforin ELISA Diaclone Research, Besancon Cedex, France 

Human Granzyme B ELISA Diaclone Research, Besancon Cedex, France 

TransAMTM NFκB (p50 and p65) Active Motif, Carlsbad, USA 

Nuclear extract kit Active Motif, Carlsbad, USA 
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aCella-ToxTM bioluminescence cytotoxicity 

assay kit 

Cell Technology, Mountain View, USA 

MACS human NK cell isolation kit II Miltenyi Biotec, Bergisch Gladbach, 

Germany 

 

 

2.1.7 Diverse materials 

Tip One Filter Tips, 0.1-10 µl, 1-100 µl, 1-

200 µl, 100-1000 µl 

Starlab GmbH, Ahrensburg, Germany 

5 ml Polystyrene Round Bottom Tube Becton Dickinson Bioscience Discovery 

Labware, Bredford, USA 

Costar Stripette 5 ml, 10 ml, 25 ml, 50 ml Corning incorporated Corning, New York, 

USA 

Microtubes 0.5 ml, 1.5 ml Sarstedt, Nuernbrecht, Germany 

Combitips plus 1 ml, 5 ml, 10 ml, 50 ml Eppendorf, Hamburg, Germany 

1.8 ml, 5 ml, Nunc CryotubeTMVials Nunc Brand Products Nalge Nunc 

International, Roskilde, Denmark 

2 ml Pipette Falcon BD Labware, NY, USA 

TipOne Extended Length, Natural Tips 1-10 

µl, 1-200 µl, 100-1000 µl 

Starlab GmbH, Ahrensburg, Germany 

Culture flasks, different sizes with filter Nunc Brand Products Nalge Nunc 

International, Roskilde, Denmark 

Culture flasks, different sizes without filter Greiner bio-one, Frickenhausen, Germany, 

Falcon BD Labware, NY, USA 

96-well plate transparent Greiner bio-one, Friekenhausen, Germany 
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96-well plate white bottom Greiner bio-one, Frickenhausen, Germany 

6-,12-, 24-well plate Falcon BD Labware, NY, USA 

Falcon Tubes, 15 ml, 50 ml Greiner bio-one, Frickenhausen, Germany 

Hand gloves, Peha-Soft Powder free Paul Hartmann AG, Heidenheim, Germany 

Nitrile hand gloves NOBA Glove®Nitril NOBA Verbandmittel GmbH u. CoKG, 

Wetter, Germany 

Safe Lock Tubes 1.5 ml Eppendorf, Hamburg, Germany 

Microamp 96-well Rention Plate, optical 

plate P7N 4306737 

Applied Biosystems, Foster City, USA 

Microamp Optical Adhesive Film Applied Biosystems, Foster City, USA 

Scalpel  Feather Safety Razor CO. LTD, Osaka, 

Japan 

Safeseal Tips Biozym Diagnostic GmbH, Hess.Oldenburg, 

Germany 

 

 

2.1.8 Laboratory equipments and software 

Adobe PhotoShop CS2 Adobe Systems incorporated, San Jose, USA 

Analysis scale Sartorius GmbH, Goettingen, Germany 

Autoclave Systec GmbH Labortechnik, Wettenberg, 

Germany 

Camera CC12 Soft Imaging Systems 

Centrifuges Hettich Zentrifugen, Tuttlingen, Germany; 

Eppendorf, Hamburg, Germany 

Cooling Chamber Viesmann, Germany 
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CO2 incubator Binder, Tuttlingen, Germany 

Counter Carl Roth GmbH & Co., Karlsruhe, Germany

Counting chamber W. Schreck, Hofheim, Germany 

Cell QuestPro Becton Dickinson, San Jose, USA 

Counter Carl Roth GmbH & Co., Karlsruhe, Germany

Cover slide Superior, Lauda-Koenigshofen, Germany 

FACSCaliburTM Becton Dickinson, San Jose, USA 

Glass Flasks- different sizes Schott, Mainz, Germany 

Glomax 96 Microplate Luminometer Turner BioSystems, California, USA 

Ice Machine Scotsman, Milan, Italy 

Incubator without CO2 Heraeus, Hanau, Germany 

Magnet Midi MACS Miltenyi Biotec, Bergisch-Gladbach, 

Germany 

Magnet stirer GLW Gesellschaft für Laborbedarf GmbH, 

Wuerzburg, Germany 

Microscope IX71/CKX41 Olympus, Hamburg, Germany; 

Carl Zeiss, Goettingen, Germany 

Microsoft Office 2007 Microsoft Corporation, Redmond, USA 

Millipore Millipore, Eschborn, Germany 

Mini-PROTEAN® II Electrophoresis Cell Bio-Rad Laboratories, Munich, Germany 

Multi Magnet Stand Miltenyi Biotec, Bergisch-Gladbach, 

Germany 

Multicanal pipette Eppendorf, Hamburg, Germany 

Multipipette Eppendorf, Hamburg, Germany 

Nitrocellulose membrane Schleicher & Schuell, Dassel, Germany 
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7900HT Fast Real-Time PCR System with 

standard 96-well block module 

Applied Biosystems, Licoln, USA 

pH-Meter WTW GmbH, Germany 

Photospectrometer GENios Plus TECAN Deutschland GmbH, Crailsheim, 

Germany 

Photospectrometer Gene Quant II Pharmacia Biotech, Amersham Biosciences, 

Freiburg, Germany 

Pipetteboy IBS Integra Bioscience Pipetboy acu, 

Fernbach, Germany 

Pipettes 0.5-10 µl, 2-20 µl, 10-100 µl, 50-

200 µl, 100-1000 µl 

Eppendorf, Hamburg, Germany ; BioHit 

Deutschland GmbH ; Gilson, Middleton, 

USA 

Reference Manager® 10 Thomson Research Soft., Carlsbad USA 

Refrigerators and Freezers Liebherr-Holding GmbH, Bieberach, 

Germany; 

Bosch, Stuttgart, Germany 

Scale Mettler GmbH, Giessen, Germany 

Sterile flow Heraeus, Hanau, Germany; Kendro, Vienna, 

Austria; NUAIRE, Plymouth, USA; 

Microflow Biological Safety Cabinett 

Thermomixer Eppendorf, Hamburg, Germany 

Vortexer Heidolph Instruments, Schabach, Germany 
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2.1.9 Target cell lines 

2.1.9.1 Cell lines purchased from cell bank 

Cell line Cell type Origin Cell number Culture 

medium 

P-815 Mouse 

mastocytoma 

Established from the 

mastocytoma tumor of a 

DBA/2 mouse treated with 

methylcolanthrene 

DSMZ: 

ACC 1 

IMDM with 

10% 

FBS+supple

ments 

Jurkat, clone 

E6-1 

Human acute T 

cell leukemia 

The line was cloned from 

Jurkat-FHCRC cells 

ATCC No. 

TIB-152 

IMDM with 

10% 

FBS+supple

ments 

HL-60 Human 

Promyelocytic 

leukemia 

Established from peripheral 

blood leucocytes by 

leukopheresis from a 36-

year-old Caucasian female 

with acute promyelocytic 

leukemia. 

ATCC No. 

CCL-240 

IMDM with 

10% 

FBS+supple

ments 

K562 Human 

erythroleukemia 

Established from the pleural 

effusion of a 53-year-old 

female with myelogenous 

leukemia in terminal blast 

crises. 

ATCC No. 

CCL-243 

IMDM with 

20% 

FBS+supple

ments 

H9 Human T-cell 

lymphoma 

H9 is a clonal derivative of 

HuT 78, a human T-cell 

ATCC No. 

HTB-176 

IMDM with 

10% 
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line derived from peripheral 

blood of a patient with 

sezary syndrome 

FBS+supple

ments 

Molt-4 Human acute 

lymphoblastic 

leukemia 

Molt-4 is a suspension 

culture derived from the 

peripheral blood of a 19-

year-old male with acute 

lymphoblastic leukemia in 

relapse. 

ATCC No. 

CRL 1582 

IMDM with 

10% 

FBS+supple

ments 

C8166 Human T-cell 

leukemia 

Derived by fusion of 

primary umbilical cord 

blood cells with HTLV-1 

producing line from adult T 

cell leukemia lymphoma 

patient. 

ECACC 

88051601 

IMDM with 

10% 

FBS+supple

ments 

PC-3  Human Prostate 

adenocarcinoma 

PC3 was initiated from a 

grade IV prostatic 

adenocarcinoma from a 62-

year-old male Caucasian 

ATCC No. 

CRL 1435 

IMDM with 

10% 

FBS+supple

ments 

LNCaP (clone 

FGC) 

Human metastatic 

prostate 

adenocarcinoma 

This strain was isolated 

from a needle aspiration 

biopsy of the left 

supraclavicular lymph node 

of a 50-year-old Caucasian 

male (blood type B+) with 

ATCC No. 

CRL-1740 

IMDM with 

10% 

FBS+supple

ments 
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confirmed diagnosis of 

metastatic prostate 

carcinoma  

DU145 Human prostate 

carcinoma, 

metastasis to brain 

DU145 was isolated from a 

lesion in the brain of a 

patient with widespread 

metastatic carcinoma of the 

prostate and a 3-year 

history of lymphocytic 

leukemia 

ATCC No. 

HTB-81 

IMDM with 

10% 

FBS+supple

ments 

 

 

Buffy coats from healthy volunteer donors were obtained from the blood bank of the German 

Red Cross Society.  

 

2.1.9.2 Established cell lines 

The human MYCN-amplified NB cell lines (UKF-NB-2, UKF-NB-3 and UKF-NB-4) and the 

alveolar rhabdomyosarcoma cell lines (UKF-Rhb-1 and KFR) were established respectively 

from bone marrow metastases of patients with diagnosis of NB (stage IV disease) and 

alveolar rhabdomyosarcoma at the interdisciplinary laboratory for tumor and virus research, 

institute for medical virology, Johann Wolgang-Goethe University, Frankfurt, Germany [200-

205]. The alveolar rhabdomyosarcoma cell line HA-OH1 was a kind gift provided by Dr. E. 

Koscielniak (Olga Hospital, Stuttgart, Germany). The human rhabdomyosarcoma cell lines 

(RH-1 and RH-36-embryonal subtypes; RH-28, RH-30, and RH41-alveolar subtypes) were 

kindly provided by Dr. Peter J. Houghton (St. Jude’s Children’s Research Hospital, Memphis, 

TN, USA) [206-208]. The VCR-resistant UKF-NB-2 subline (designated UKF-NB-2rVCR10) 
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and araC-resistant H9 and Molt-4 cell sublines (designated H9r100ARAC and Molt-4r100ARAC 

respectively) were established by exposing parental cells to increasing concentrations of the 

drug [202]. The resistant sublines were grown for more than 6 months in IMDM 

supplemented with 10% FBS and containing 10 ng/ml VCR or 100 µM araC. Cells were 

subcultured at 5-day intervals. All experiments were performed using VCR- or araC-resistant 

cells subcultured at 5-day intervals without further addition of drug for up to 10 passages. 

 

2.2 Methods 

2.2.1 Cultivation of adherent eukaryotic cells 

RH-1, RH-28, RH-30, RH-36, RH-41, UKF-Rhb-1, KFR, HA-OH1, PC-3, LNCaP, DU145, 

UKF-NB4, UKF-NB-3, UKF-NB-2 and UKF-NB-2rVCR10 cell lines were propagated in 

IMDM supplemented with 10% FBS at 37°C in a humidified 5% CO2 incubator. The cells 

grew into confluent cell race and were subsequently passaged according to the following 

protocol: 

• Old medium is discarded and the cells are washed 2x with sterile PBS. 

• 0.2 ml trypsin/EDTA is added to the cells to detach them from culture flask (50 ml, 

25cm2). 

• Cells are incubated at 37°C till they are completely detached (for about 5 min) from 

flask. 

• Detached cells are re-suspended in 10 ml culture medium and distributed into new 

flasks containing medium according to splitting rate like 1:5, 1:10, 1:20. 

  

2.2.2 Cultivation of eukaryotic suspension cells 

Parental and araC-resistant H9 and Molt-4, C8166, P-815, HL-60 and Jurkat cell lines were 

cultured in IMDM containing 10% FBS at 37°C in a humidified CO2 incubator. For K562 cell 
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line, IMDM containing 20% FBS was used for cultivation. Cells were split every 5 days at a 

splitting rate of 1:10 (2 ml cell suspension + 18 ml culture medium) or 1:20.  

  

2.2.3 Polyclonal NK cell preparation 

PBMCs were isolated from the blood of healthy volunteers by Ficoll (Biocoll)-Hypaque 

centrifugation: Fifteen ml Ficoll was pipetted into a 50 ml falcon tube. Blood was diluted 

1.5x, i.e. 15 ml blood was mixed with 10 ml PBS + 2% FBS. The diluted blood was layered 

on Ficoll without mixing blood with Ficoll. The sample was centrifuged at 4°C for 30 min at 

400 g with no brake. After centrifugation, the upper plasma was removed and discarded 

without disturbing the plasma-Ficoll interface (Fig 2.1). The PBMCs layer at the plasma-

Ficoll interface was carefully removed and retained without disturbing 

erythrocyte/granulocyte pellet.  

 

 

 

Figure 2.1: Buffy coat separation by density centrifugation using Ficoll 

 

The PBMCs were washed once with PBS + 2% FBS. Freshly isolated PBMCs were 

transferred into IMDM + 10% human serum and incubated for 2 h at 37°C to allow adherence 

Serum 

Leucocyte ring (PBMCs) 

Ficoll 

Erythrocyte/Granulocyte 
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of monocytes to the bottom of the 75 cm2 culture flasks. After incubation, the cell suspension 

was collected and NK cells were separated according to manufacturer’s protocol using the 

MACS NK cell isolation kit II (Miltenyi Biotec, Bergisch Gladbach, Germany). Separated 

NK cells were maintained in IMDM+10% FBS at 37°C in 5% humidified CO2 incubator. For 

experiments to determine the direct effect of VPA and SAHA on NK cell cytotoxicity, NK 

cells were stimulated with 100 U/ml IL-2 and simultaneously treated with VPA or SAHA for 

4 days. For other cytotoxic experiments, NK cells were stimulated with or without 100 U/ml 

IL-2 for 4 days.  

2.2.4 Cytotoxicity assay principle 

NK cells were tested for cytolytic activity against indicated target cells using the “aCella-

Tox” kit (Cell Technology, Mountain View, CA) that employs the coupled luminescent 

technology for the detection of cytotoxicity (Fig. 2.2) [209]. Target cells were plated in 

triplicate (5000 cells per well) in a 96 well white plate (Greiner Bio-One, Frickenhausen, 

Germany). Effector cells (NK cells) at indicated effector to target (E:T) ratios were added. 

Spontaneous effector- and target cell death was accomplished by including control wells of 

effector cells at numbers corresponding to those of their various E:T ratios and target cells 

according to the concentrations used for the assay. Twenty µl of lytic reagent (0.5% NP-

40/100 µl sample) was added to the target cells positive control (total glyceraldehyde-3-

phosphate dehydrogenase (G3PDH) release) 15 min to end of assay incubation. At the end of 

incubation, 100 µl of 2x enzyme assay reagent was added to each well. Fifty µl of 1x 

detection reagent was immediately added to each well. The plate was read at once in a 

luminometer (Glomax, Turner BioSystems, CA). For the mAb-mediated neutralization 

experiments, 10 µg/ml each of anti-PVR, anti-ULBP-2, and anti-ULBP-3 mAbs were used to 

block PVR, ULBP-2 and ULBP-3 expression on target cells. NKG2D was also blocked on 

NK cells with 10 µg/ml anti-NKG2D Ab. Isotype control IgG was used as negative control. 
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For redirected killing experiments, 1 µg/ml of purified NKp30 and NKp46 mAbs was used to 

block NKp30 and NKp46 receptors on NK cells. IMDM supplemented with 1% heat 

inactivated FBS was used as assay medium. The percent cytotoxicity was calculated as 

follows: [(experimental G3PDH release - spontaneous G3PDH release from effector cells 

alone - spontaneous G3PDH release from target cells alone)/(maximum G3PDH release from 

target cells - spontaneous G3PDH release from target cells)]x100. The spontaneous target cell 

release was always < 20% of maximum release. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: assay principle of the coupled luminescent method (adapted from reference 209) 

 

2.2.4.1 Redirected lysis 

Redirected lysis is an antibody-mediated lysis of Fc receptor bearing target cells. It is an assay 

used to determine the specific function of a receptor expressed by cytotoxic cells. To asses the 

direct effect of VPA and SAHA on the activity of NK cell triggering recptors, NK cells were 

first cultured for 4 day in IL-2 with or without VPA or SAHA. Five thousand effector cells 

(both HDACi-treated and control NK cells) were plated in triplicate in a 96 well white plate. 
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Purified NKp30 and NKp46 mAbs (1 µg/ml) were then used to block NKp30 and NKp46 

receptors on effector cells for 30 mins before addition of 5000 target cells. The FcγR+ P815 

cell line was used as target cell line. A 4 h cytotoxicity experiment was performed as 

described above in section 2.2.4. 

 

2.2.5 The flow cytometric principle 

Flow cytometry uses the principles of light scattering, light excitation, and emission of 

fluorochrome molecules to generate specific multi-parameter data from particles and cells in 

the size range of 0.5 µm to 40 µm diameter. It is used for the quantification of antigens that 

are expressed on the cell membrane as well as intracellular antigens. Cells are hydro-

dynamically focused in a sheath of PBS before intercepting an optimally focused light source. 

Lasers (argon laser in the case of FACScan) are most often used as a light source in flow 

cytometry. As cells or particles of interest intercept the light source they scatter and 

fluorochromes are excited to a higher energy state. As the molecules relax to a lower state, 

energy is released as a photon of light with specific spectral properties unique to different 

fluorochromes (Table 2.1) [210].  
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Table 2.1: Fluorescence spectra of commonly used fluorochromes. The bottom part of the table summarizes the 

emission wavelengths of various light sources used in flow cytometry. The 488 nm line of the argon ion laser is 

extended over the spectra. (adapted from reference 210, p245). 

Photo multiplier tubes (PMT's) are detectors which collect the photon emissions from each 

"event" and convert them to analog voltages. The electrical pulses originating from light 

detected by the PMTs are then processed by a series of linear and log amplifiers. Logarithmic 
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amplification is most often used to measure fluorescence in cells. This type of amplification 

expands the scale for weak signals and compresses the scale for strong or specific 

fluorescence signals. After the different signals or pulses are amplified they are processed by 

an Analog to Digital Converters (ADC's) and recorded as data files (one parameter, two 

parameter histograms). Optical filters are placed before the detectors so that only wavelengths 

of light corresponding to specific fluorochrome emissions are collected by each detector (e.g. 

FITC emits in the green region therefore a 30 nm bandpass filter centered at 525 nm could be 

used to collect light from this fluorochrome). Light scattered at the same wavelength and 

direction as the laser light, primarily from the surface of the cell, correlates with relative cell 

size (Forward Angle Light Scatter (FSC)) while light scattered 90 degrees to the laser (Side 

Scatter (SSC)) usually from internal structures, correlates with granularity. By correlating 

these two parameters, one can discriminate subpopulations of cells in peripheral blood 

samples, for example. Signals corresponding to cell debris or cell aggregates can also be 

detected and excluded from analysis on the basis of forward and side scatter. One unique 

feature of flow cytometry is that it measures fluorescence per cell or particle. This contrasts 

with spectrophotometry in which the percent absorption and transmission of specific 

wavelengths of light is measured for a bulk volume of sample. 

Staining cells with multiple fluorochromes conjugated to antibodies or fluorochromes directed 

at other specific targets such as DNA, cytokines, or other proteins distinguishes cell 

subpopulations which can be quantified. Data is displayed and analyzed using histograms or 

two-dimensional dot plots on a computer system. 

Histogram Files: Histogram files can be in the form of one-parameter or two-parameter files 

and consist of a list of events for a 1 parameter or 2 parameter histogram. 
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One-Parameter Histograms: A one parameter histogram is a graph of cell count on the y-axis 

and the measurement parameter on x-axis. All one-parameter histograms have 1,024 channels.  

These channels correspond to the original voltage generated by a specific light event detected 

by the PMT detector. In other words, the ADC assigns a channel number based on the pulse 

height for individual events. Therefore, brighter specific fluorescence events will yield a 

higher pulse height and thus a higher channel number when displayed as a histogram. 

 

Figure 2.3: one-parameter histogram 

Two-Parameter Histograms: A graph representing two measurement parameters, on the x- and 

y-axes, and cell count height on a density gradient. This is similar to a topographical map. 

One can select 64 or 256 channels on each axis of two-parameter histograms. Particle counts 

are shown by dot density or contour plots. 

 

Figure 2.4: two-parameter histogram dot plot displaying FL1-FITC on the x-axis and FL2-PE on the y-axis. 
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2.2.5.1 Determination of cell cycle using propidium iodide 

The cell cycle of a proliferating cell is made up of 4 phases. These phases are characterized by 

changes in the DNA-content of the cell. The G0/G1-phase (Gap 1) marks the time period after 

a mitotic division. During this phase, the DNA-content within the cell is diploid (2n). 

Depending on cell type, the cell may now differentiate or continue to proliferate. Proliferating 

cells enter into the DNA-synthesis phase (S-phase). At the end of the S-phase, the cells now 

have a double diploid DNA-content (4n).  In the following G2-phase, the DNA-content 

remains unchanged and the cell synthesizes mitotic active enzymes. Post-replicative repairs 

may also occur during the G2-phase. Mitosis (M) follows subsequently and the cell divides 

into two diploid daughter cells which then enter into the G0/G1-phase.  

DNA can be stained with DNA-intercalating fluorochrome propidium iodide (PI). Through 

this means and with the aid of a flow cytometer, the DNA-content as well as the cell cycle 

profile of a cell population can then be ascertained and graphically represented on a histogram 

[211].  

 

Figure 2.5: Cell cycle distribution- histogram showing sub G1 fraction 

 

The DNA-content of apoptotic cells (sub G1) is less than 2n. This hypodiploidity results from 

DNA fragmentation during the course of apoptosis and necrosis. However in order to be seen 
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in the sub G1 area, a cell must have lost enough DNA to appear there; so if cells enter 

apoptosis from the S- or G2/M-phase of the cell cycle, they may not appear in the sub G1 

peak. To detect early apoptotic cells, the cells are first fixed with 70% ethanol. This will 

permeabilize the membrane, allowing small molecular DNA fragments to be extracted from 

the cell. 

 

2.2.5.2 Effect of HDACi on NK cell viability 

PI staining was used to determine the apoptotic rate in IL-2-activated NK cells upon treatment 

with HDACi, SAHA and VPA. After 4 days HDACi treatment (1x106 cells were seeded in a 

12 well plate), 2 ml cell suspension was filled into the FACS tubes and centrifuged (5 min, 

400 g, 4°C). The supernatant was discarded while the cell pellet was washed with 2 ml PBS 

and centrifuged. The cells were fixed in 2 ml 70% ethanol for at least 2 h or overnight at -

20°C. After fixation, cells were centrifuged, supernatant discarded and cells were washed 

once with PBS and centrifuged again. The cell pellet was then resuspended in 500 µl PI 

working solution (100 µl 0.1% Triton X-100 + 200 µl 1 mg/ml PI Stock solution + 9.7 ml 

PBS). The samples were incubated in the dark for 30 min at room temperature. Afterwards, 

the cell cycle profile was determined using flow cytometer in FL2-channel (separated in FL2-

A and FL2-W, doublet discrimination module). Ten thousand cells were measured from each 

sample. Untreated IL-2-activated NK cells were used as control. Becton Dickinson 

FACSCalibur was used for all measurements. Results were evaluated using CellQuest Pro 

programme.  

 

2.2.5.3 Measurement of cell surface receptors 

For quantitative analysis of the expression of cell surface and intracellular receptors, a one 

color cytofluorometric analysis was carried out. Cells were stained with appropriate mAb as 

follows: 
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• Cells were harvested (adherent cells were first trypsinized while suspension cells were 

distributed directly into polystyrene round bottom 12x75 mm Falcon tubes), washed 

twice and cell suspension was then adjusted to a concentration of 1x106 cells/ml in 

FACS buffer.  

• Cells were stained with 10-20 µg/ml appropriate mAb according to manufacturer’s 

protocol.  

• After incubation, cells were washed twice by centrifugation at 400 g for 5 min and 

resuspended in 100 µl FACS buffer.  

• 20 µl of fluorochrome-labeled secondary Ab were added. 

• Cells were incubated at room temperature for at least 20 min in the dark.  

• Cells were washed twice, resuspended in 500 µl FACS buffer and analyzed by flow 

cytometry. 

• In case of conjugated mAbs, the secondary Ab step was left out. 

• For detection of intracellular antigens (perforin, granzyme B, IFN-β, IFN-γ) cell 

fixation and permeabilization steps were done prior to staining with mAbs. For this 

purpose, cells were fixed with 200 µl Cytofix/Cytoperm for 20 min at room 

temperature, washed and then permeabilized with 200 µl PermWash for 20 min at 

room temperature. 

 

2.2.6 Principle of RT-PCR 

RT-PCR is a laboratory technique for amplifying a defined piece of a ribonucleic acid (RNA) 

molecule. The RNA strand is first reverse transcribed into its DNA complement or 

complementary DNA (cDNA), followed by amplification of the resulting DNA using PCR. 

This can either be a 1 or 2 step process. PCR itself is the process used to amplify specific 

parts of a DNA molecule, via the temperature-mediated enzyme DNA polymerase. In the first 

step of RT-PCR, called the "first strand reaction," cDNA is made from a messenger RNA 

http://en.wikipedia.org/wiki/Laboratory_technique
http://en.wikipedia.org/wiki/Ribonucleic_acid
http://en.wikipedia.org/wiki/Reverse_transcriptase
http://en.wikipedia.org/wiki/DNA
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template using dNTPs and an RNA-dependent DNA polymerase (reverse transcriptase) 

through the process of reverse transcription. RT-PCR exploits a characteristic of mature 

mRNAs known as the 3' polyadenylated region, commonly called the poly(A) tail, as a 

common binding site for poly(T) DNA primers. In the case of bacterial mRNA, which lack a 

poly(A) tail sequence-specific primers can be generated to amplify the target mRNA 

sequence. These primers will anneal to the 3' end of every mRNA in the solution, allowing 5'-

>3' synthesis of cDNA by the reverse transcriptase enzyme. cDNA can also be prepared from 

mRNA by using gene specific primer or random hexamer primers. 

After the reverse transcriptase reaction is complete, and cDNA has been generated from the 

original single-stranded mRNA, standard PCR, termed the "second strand reaction," is 

initiated. If the initial mRNA templates were derived from the same tissue, subsequent PCR 

reactions can be used to probe the cDNA library that was created by reverse transcription. 

Primers can be designed to amplify target genes being expressed in the source tissue. 

Quantitative real-time PCR can then be used to compare levels of gene expression. 

1. A thermostable DNA polymerase and the upstream and downstream DNA primers are 

added. 

2. The reaction is heated to temperatures above 37°C to facilitate sequence specific 

binding of DNA primers to the cDNA. 

3. Further heating allow the thermostable DNA polymerase to make double-stranded 

DNA from the primer bound cDNA. 

4. The reaction is heated to approximately 95°C to separate the two DNA strands. 

5. The reaction is cooled enabling the primers to bind again and the cycle repeats. 

After approximately 30 cycles, millions of copies of the sequence of interest are generated. 

The original RNA template is degraded by RNase H, leaving pure cDNA (plus spare primers). 

http://en.wikipedia.org/wiki/Reverse_transcriptase
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The exponential amplification via RT-PCR provides for a highly sensitive technique, where a 

very low copy number of RNA molecules can be detected. RT-PCR is widely used in the 

diagnosis of genetic diseases and, quantitatively, in the determination of the abundance of 

specific different RNA molecules within a cell or tissue as a measure of gene expression. 

 

2.2.7 Real-time RT-PCR (SYBR Green Principle) 

SYBR Green provides the simplest and most economical format for detecting and quantitating 

PCR products in real-time reactions. SYBR Green binds double-stranded DNA, and upon 

excitation emits light. Thus, as a PCR product accumulates, fluorescence increases. The 

advantages of SYBR Green are that it is inexpensive, easy to use, and sensitive. The 

disadvantage is that SYBR Green will bind to any double-stranded DNA in the reaction, 

including primer-dimers and other non-specific reaction products, which results in an 

overestimation of the target concentration. For single PCR product reactions with well 

designed primers, SYBR Green can work extremely well, with spurious non-specific 

background only showing up in very late cycles. Since the dye binds to double-stranded 

DNA, there is no need to design a probe for any particular target being analyzed.  

 

2.2.7.1 Real-time RT-PCR 

Total RNA was extracted from IL-2-activated NK cells either untreated or treated with 0.5 

mM VPA or 0.5 µM SAHA and parental as well as araC-resistant H9 and Molt-4 cell lines 

using TRI reagent (Sigma-Aldrich, St. Louis, USA) according to the manufacturer’s protocol. 

The TRI reagent allows the simultaneous isolation of RNA, DNA and proteins. The reagent 

contains in addition to phenol, guanidine isothiocyanate solution which lyses the cells, 

denatures and inactivates the proteins. The DNA fragments later dissolve in the phenol [212, 

213]. Reverse transcription was carried out with reagents from Applied Biosystems (Foster 

http://en.wikipedia.org/wiki/Gene_expression
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City, USA) according to the manufacturer’s instructions. Relative quantification of gene 

expression was performed with the ABI PRISM 7900HT in real-time RT-PCR using SYBR 

Green reagents (Applied Biosystems, Darmstadt, Germany) according to a standard thermal 

profile: denaturation at 95°C for 15 seconds, annealing/extension at 60°C for 60 seconds with 

40 repeats. The β-actin housekeeping gene was used to internally standardize the levels of 

gene expression. Primers used are as indicated in section 2.1.5.2 of materials and methods. All 

the samples were performed at least in duplicates. Threshold levels and baseline were 

optimized. Relative quantification was determined with the SDS2.1 software (Applied 

Biosystems) provided with the ABI PRISM 7900HT (ΔΔCt method). Relative expression of 

each transcript was obtained by calculating the ΔCT as the difference between the PCR CT of 

the analyzed gene (NKp46, NKp30, ULBP-2 or ULBP-3) and β-actin used as reference. The 

difference in expression levels between untreated and treated NK cells was calculated by 

comparing the ΔCT of untreated NK cells (used as control) to that of samples from VPA or 

SAHA treated NK cells. The difference in expression levels between parental cell culture and 

araC-resistant cell cultures was calculated by comparing the ΔCT of parental H9 and Molt-4 

cells (used as control) to that of araC-resistant H9 and Molt-4 cells. The results are presented 

as fold decrease/increase. 

 

2.2.8 NK receptors cross-linking and perforin/granzyme B granule release 

NK cells were stimulated by mAb cross-linking as previously described [214]. After 4 days of 

culture in IL-2 with or without VPA or SAHA, cells were labeled with 1 µg/ml appropriate 

mAbs (NKp30, NKp46) for 30 mins at 4°C. After washing, cells were stimulated with 10 

µg/ml AffiniPure F(ab’)2 Fragment Goat Anti-Mouse IgG (Jackson ImmunoResearch, West 

Grove, USA) for 5 min at 37°C. The reaction was stopped with ice-cold PBS. After overnight 

incubation at 37°C, supernatants were collected for analysis and quantification of granule 
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release by ELISA assay (Perforin/Granzyme B-ELISA kit, Diaclone Research, Besancon 

Cedex, France) according to manufacturer’s instructions. 

 

2.2.9 Measurement of IFN-γ production 

Purified NK cells were treated with 100 U/ml IL-2, and either 0.5 µM SAHA or 0.5 mM VPA 

were added simultaneously for 72 h. NK cells treated with 100 U/ml IL-2 only were used as 

control. Supernatants were collected and tested for production of IFN-γ. The amounts of IFN-

γ were determined using the Quantikine Human IFN-γ ELISA kit (R&D Systems, Wiesbaden, 

Germany) according to manufacturer’s protocol. 

 

2.3.0 Measurement of NFκB activation 

NFκB p50 and NFκB p65 activation were determined using the TransAMTM NFκB Chemi kit 

(Active Motif, Carlsbad, USA). Purified NK cells were treated with 100 U/ml IL-2, and either 

0.5 µM SAHA, 0.5 mM VPA, or 1 µM BAY 11-7085 were added simultaneously for 4 days. 

NK cells treated with 100 U/ml IL-2 only were used as control. Nuclear extracts were then 

prepared using the nuclear extract kit (Active Motif, Carlsbad, USA). The extracts were used 

for the NFκB activation assay according to the manufacturer’s protocols. A mutated 

consensus oligonucleotide (should have no effect on NFκB binding) as well as a wild-type 

consensus oligonucleotide (a competitor for NFκB binding) was used to monitor the 

specificity of the assay. Twenty pmol/well of each oligonucleotide was used for the assay. 

 

2.3.1 MTT assay 

MTT assay is a laboratory test and a standard colorimetric assay (an assay which measures 

changes in color) for measuring cellular proliferation (cell growth). It can also be used to 

determine cytotoxicity of potential medicinal agents and other toxic materials. 
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Yellow MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole) is 

reduced to purple formazan in the mitochondria of living cells. A solubilization solution 

(usually either dimethyl sulfoxide (DMSO), an acidified ethanol solution, or a solution of the 

detergent sodium dodecyl sulfate (SDS) in dilute hydrochloric acid) is added to dissolve the 

insoluble purple formazan product into a colored solution. The absorbance of this colored 

solution can be quantified by measuring at a certain wavelength by a spectrophotometer. The 

absorption maximum is dependent on the solvent employed. 

 

Figure 2.6: MTT reductase scheme 

This reduction takes place only when mitochondrial reductase enzymes are active, and 

therefore conversion can be directly related to the number of viable (living) cells. When the 

amount of purple formazan produced by cells treated with an agent is compared with the 

amount of formazan produced by untreated control cells, the effectiveness of the agent in 

causing death of cells can be deduced, through the production of a dose-response curve.  

2.3.1.1 Cytotoxicity of araC on leukemic cell lines 

Cell viability of parental and araC-resistant H9 and Molt-4 cells upon araC treatment was 

investigated using MTT assay. The cells were grown in 96-well plates with and without 

Formazan (purple) MTT (yellow) 
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addition of drug. After the incubation period, MTT reagent was added for 4 h. Thereafter, 100 

μl of SDS solution (20% SDS in a 1:1 Dimethylformamide (DMF)/H2O solution) was added 

for further 4 h. Plates were read on a multi-well scanning spectrophotometer (Tecan, 

Crailsheim, Germany) at a wavelength of 620 nm and a reference wavelength of 690 nm. Cell 

viability was determined as the relative reduction of the amount of MTT reduced by cells to 

its purple formazan derivative, which correlates with the amount of viable cells in relation to 

cell control. The concentration inhibiting 50% of cell growth (IC50) was calculated by 

producing a dose-response curve.  

2.3.2 Western Blot Principle 

A western blot (alternately, immunoblot) is a method to detect a specific protein in a given 

sample of tissue homogenate or extract. It uses gel electrophoresis to separate native or 

denatured proteins by the length of the polypeptide (denaturing conditions) or by the 3-D 

structure of the protein (native/ non-denaturing conditions). The proteins are then transferred 

to a membrane (typically nitrocellulose or PVDF), where they are probed (detected) using 

antibodies specific to the target protein. The most common type of gel electrophoresis 

employs polyacrylamide gels and buffers loaded with SDS. SDS-PAGE (SDS polyacrylamide 

gel electrophoresis) maintains polypeptides in a denatured state once they have been treated 

with strong reducing agents to remove secondary and tertiary structure (e.g. S-S disulfide 

bonds to SH and SH) and thus allows separation of proteins by their molecular weight. 

Sampled proteins become covered in the negatively charged SDS and move to the positively 

charged electrode through the acrylamide mesh of the gel. Smaller proteins migrate faster 

through this mesh and the proteins are thus separated according to size (usually measured in 

kilo Daltons, kD). The concentration of acrylamide determines the resolution of the gel - the 

greater the acrylamide concentration the better the resolution of higher molecular weight 

proteins. Proteins travel only in one dimension along the gel for most blots. 
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Samples are loaded into wells in the gel. One lane is usually reserved for a marker or ladder, a 

commercially available mixture of proteins having defined molecular weights, typically 

stained so as to form visible, colored bands. When voltage is applied along the gel, proteins 

migrate into it at different speeds. These different rates of advancement (different 

electrophoretic mobilities) separate into bands within each lane. 

It is also possible to use a two-dimensional (2-D) gel which spreads the proteins from a single 

sample out in two dimensions. Proteins are separated according to isoelectric point (pH at 

which they have neutral net charge) in the first dimension, and according to their molecular 

weight in the second dimension. 

2.3.2.1 Western Blot analyses of leukemic cells 

Parental and araC-resistant H9 and Molt-4 cell lines were washed with ice cold PBS, after 

which 1 ml freshly prepared Triton X-100 lysis buffer containing 1% orthovanadate, 1% 

okadaic acid, 1.2% protease inhibitor mix (PIM) and 0.4% PMSF was added. Cells were 

incubated on ice for 10 min and centrifuged for 7 min at 7500 g. Supernatants containing the 

cell lysates were collected. Protein concentration of the cell lysates was determined according 

to BioRad protocols. The same concentration of protein from all samples was diluted 1:1 with 

Laemmli buffer (950 µl Laemmli + 50 µl β-Mercaptoethanol) and heated for 5 min at 95°C. 

Samples were stored at -80°C when not used immediately. Samples were subjected to SDS-

PAGE (using 10% acrylamide gels) before transfer to nitrocellulose membranes (Schleicher 

& Schuell, Dassel, Germany) using the Mini-Protean II system (Bio-Rad, Munich, Germany) 

according to manufacturer’s protocols. After transfer, blots were blocked in blocking buffer 

containing 3% BSA for 1 h at room temperature to saturate the non-specific protein-binding 

sites on the nitrocellulose membrane. The following primary antibodies were used: 

extracellular signal-regulated kinase (ERK), anti-phospho-ERK1/2, AKT, anti-phospho-AKT 
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(ser 473) (Cell Signaling, Beverly, USA). The blot was incubated overnight with the primary 

antibody diluted in TBS at 4°C with gentle agitation. Following a 1 h incubation period with 

peroxidase-conjugated secondary antibody at room temperature visualization was performed 

by enhanced chemiluminescence (ECL) using a commercially available kit (Amersham, 

Liverpool, UK).
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3.0 Results 

3.1 Purity of separated NK cells 

NK cells are primarily characterized as CD56 positive and CD3 negative cells. After NK cell 

separation from PBMCs, the purity of separated NK cells was determined using flow 

cytometry. The results show 98% of separated cells to be CD56+CD3- (Fig. 3.1). 

 

Figure 3.1: Dot- and histogram plots of PBMCs before and after separation with MACS NK cell isolation kit II. 

Cells were stained with APC-conjugated CD3 and PE-conjugated CD56 mAbs. About 98% of separated cells 

were CD56+CD3- 

 

3.2 Establishing the coupled luminescent method (CLM) for measuring NK cytotoxicity 

We first determined the linear response of “aCella-Tox” within K562 and NB cell lines. This 

was accomplished by titrating all target cells in the cytotoxicity assay medium from 30,000 to 

250 cells/well. Twenty µl of the lytic agent, NP-40, was added to each well. Lysed cells were 

further incubated for the length of the assay (4 h) before adding the enzyme assay reagent and 

detection reagent as described in materials and methods. The luminescence was then 

measured in a luminometer. Up to 20,000 cells/well were within the linear range of the assay 

(Fig 3.2a). The assay was then standardized using NK sensitive K562 cell line as target and 
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IL-2-activated NK cell as effector cell. Different E:T ratios, and different incubation times 

were used. As shown in Fig. 3.2b, K562 target cells were lysed at E:T ratio as low as 0.5:1 

(9% ± 2.4% lysis after 2 h). Optimal lysis of target cells was achieved after 4 h of 

coincubation with IL-2-activated NK cells at an E:T ratio of 4:1 (75% ± 3.13% lysis).  
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Figure 3.2: [a] Linear response of “aCella-Tox” within K562 and NB cell lines. The relative luminescent unit 

(RLU) of cells treated with lytic agent for 4 h is shown [b] Cytotoxicity of IL-2-activated NK cells against K562 

assessed by G3PDH release. Five thousand K562 target cells were coincubated with IL-2 activated NK cells at 

the indicated E:T ratios for 2 h and 4 h at 37°C. The results are mean ± standard deviation (SD) of 3 independent 

experiments.  
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3.3 Validating CLM using NB as target cells 

CLM needs to be validated in order for it to be used as a standard method for measuring 

cytotoxicity. For this purpose, the applicability of CLM was tested by measuring the cytolytic 

activity of IL-2-activated NK cells against solid tumors (NB cell lines UKF-NB-2, UKF-NB-3 

and UKF-NB-4), and  chemoresistant NB cell line (UKF-NB-2rVCR10). The results presented 

in Fig. 3.3 reveal that target cells were lysed in an E:T cell ratio dependent manner. 

Chemoresistant target cells were generally more sensitive to IL-2-activated NK cell lysis than 

their respective parental counterparts (45% ± 1% vs. 19% ± 3% respectively for UKF-NB-

2rVCR10 and UKF-NB-2 at E:T ratio of 4:1).  

 

Figure 3.3: IL-2-activated NK cell-mediated cytotoxicity against NB. Killing of parental NB cell lines and 

VCR-resistant NB cell line was assessed by G3PDH release. Five thousand target cells were coincubated with 

IL-2-activated NK cells at the indicated E:T ratios for 4 h at 37°C.  The results are mean ± SD of 3 independent 

experiments. 

 

Recently, it was shown that the susceptibility of a subset of NB cells to NK cell-mediated 

lysis was dependent on the expression level of PVR specifically recognized by DNAM-1 

[215-218]. To verify the role of PVR expression in the susceptibility of NB to NK cell lysis, 

the surface expression of PVR on UKF-NB-2, UKF-NB-3, UKF-NB-4 and UKF-NB-2rVCR10 

as well as its role in NK cell lysis of NB cell lines were analyzed. PVR was markedly 
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expressed in all cell lines tested (Fig. 3.4a). Contrasting these results, the expression of other 

NK activating receptor (NKG2D) ligands like MICA/B were not found on the surface of NB 

cells. The differential expression of PVR on NB cells seems to correlate with NK sensitivity. 

Blocking PVR with mAb inhibited NK cell lysis of NB cells (Fig. 3.4b), indicating that NK 

cell cytotoxicity of NB cells is dependent on the level of PVR expressed on tumor cells. 
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Figure 3.4: Role of PVR in NK cell-mediated cytotoxicity against NB cells. [a] Flow cytometric analysis for the 

expression of PVR in NB cells. Columns indicate relative expression of one representative of at least five 

separate experimens. [b] Five thousand NB cells were coincubated with IL-2-activated NK cells at the indicated 

E:T ratio for 4 h at 37°C either in  the absence or presence of 10 µg/ml anti PVR mAb. IgG isotype control was 

used as negative control. The results are mean ± SD of 3 independent experiments.   
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3.4 Validating CLM using other cell types as target 

CLM was further tested on several other target cell types including rhabdomyosarcoma cell 

lines (RH-1, RH-28, RH-30, RH-36, RH-41, UKF-Rhb-1, HA-OH1, and KFR), prostate 

cancer cell lines (LNCaP, DU145, and PC-3), and the human T-cell leukemia cell lines 

(C8166, H9, and Molt-4). IL-2-activated NK cells were used as effector cells. 

Rhabdomyosarcoma cell lines were generally resistant to NK cell lysis except for RH-28 and 

RH-30. The androgen-dependent LNCaP cell line was most sensitive to NK cell lysis while 

the androgen-independent DU145 and PC-3 cell lines were resistant to NK cell lysis. Of the 3 

leukemic cell lines, only H9 and Molt-4 cell lines were sensitive to NK cell lysis (Fig. 3.5).  
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Figure 3.5: IL-2-activated NK cell-mediated cytotoxicity against different cell types. Killing of indicated cell 

lines was assessed by G3PDH release. Five thousand target cells were coincubated with IL-2-activated NK cells 

at the indicated E:T ratios for 4 h at 37°C.  The results are mean ± SD of 3 independent experiments. 

 

CLM proved to be a highly sensitive method to measure NK cytolytic activity as NK cell lysis 

can be achieved even at low E:T ratios. The effects of HDACi on NK cell cytolytic activity 

and the sensitivity of parental and araC-resistant leukemic cell lines to NK cell lysis were thus 

investigated using CLM. 
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3.5 Effect of HDACi on viability of NK cells 

The effect of HDACi at clinically relevant concentrations [219, 126] (0.25 to 1 mM and 0.5 to 

2 µM for VPA and SAHA respectively) on viability of NK cells was first studied. For this 

purpose, NK cells were cultured simultaneously for 4 days with IL-2 and SAHA or VPA. 

Dead cells were identified by fractional DNA content (“sub G1 fraction”). NK cells treated 

with IL-2 alone were used as control. Results revealed SAHA to be clearly toxic to NK cells 

in the range of therapeutic concentrations [126]. About 48% of NK cells were found in the 

sub G1-phase (indicating induction of cell death) upon exposure to 2 µM SAHA compared to 

9% in control cells (Fig. 3.6). In contrast, 0.5 µM SAHA treatment resulted in no or at most 

minimal NK cell death, while ≤ 0.5 mM VPA was only slightly toxic to NK cells (1.6% cell 

death induction when compared to control). Both VPA and SAHA also blocked cell cycle 

progression into the S- and G2/M-phase in a dose dependent manner (Fig. 3.6). Based on 

these results, 0.5 mM VPA and 0.5 µM SAHA were selected to investigate the influence of 

non-toxic HDACi concentrations on NK cell activity.  
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Figure 3.6: Viabilty and proliferation of NK cells after exposure to HDACi. Primary NK cells from healthy 

donors were treated simultaneously with 100 U/ml IL-2 and either VPA or SAHA at indicated concentrations for 

4 days. The effect of HDACi on cell cycle was determined by staining cells with PI. M1, M2, M3 and M4 

indicate sub G1-, G0/G1-, S- and G2/M-phases respectively; empty histograms represent VPA treated cells; grey 

histograms represent SAHA treated cells; black histogram represents untreated (control) NK cells; numbers in 

parentheses indicate respective concentrations of HDACi used; values represent percentage of cells in the 

different phases. The percentages of cells in G0/G1, S and G2/M phases were deduced from the number of 

viable cells (set to 100%) after subtracting the dead cells (sub G1) from total gated cells. One representative of 3 

different experiments is shown. 

 

3.6 HDACi suppress IL-2-mediated NK cell cytotoxicity  

The role of HDACi on NK cell cytotoxicity was next investigated. IL-2-activated NK cells 

were treated with either SAHA or VPA for 4 days after which the cytotoxicity against K562 

cells was determined using a 4 h CLM assay. Interestingly, both SAHA and VPA 

dramatically suppressed IL-2-activated NK cell cytotoxicity in an E:T cell ratio-dependent 
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manner (Fig. 3.7a). Decreased NK lytic activity of HDACi treated NK cells was also observed 

in other leukemic cell lines including Jurkat T cells and HL-60 cells (Fig. 3.7b). A 24 h 

pretreatment of Jurkat T cells and HL-60 cells with SAHA resulted in almost 60% (54% vs. 

86%) and 14% (57% vs. 65%) increased NK cell-mediated lysis in SAHA treated Jurkat and 

HL-60 cells respectively. The increased NK cell lysis was however suppressed when SAHA 

treated NK cells were used as effector cells (Fig. 3.7b). Taken together, Jurkat T cells and 

HL-60 cells become more susceptible to NK cell-mediated lysis upon exposure to SAHA 

while NK cell activity gets repressed upon treatment with SAHA. In contrast, treatment of 

K562 for 24 h with 1 µM SAHA decreased its susceptibility to NK cell lysis by 50% [Fig. 

3.7b]. 
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Figure 3.7: HDACi suppress NK cell cytotoxicity. Primary NK cells from healthy donors were treated 

simultaneously with 100 U/ml IL-2 and either 0.5 mM VPA or 0.5 µM SAHA for 4 days. Primary NK cells 

treated only with 100 U/ml IL-2 were used as control. [a] A 4 h NK cell cytotoxicity assay against K562 target 

cells was performed at indicated E:T ratios. Columns represent means of triplicate of one representative 

experiment; error bars indicate ± SD. [b] A 4 h NK cell cytotoxicity assay against K562, Jurkat T cells and HL-

60 cells, pretreated with 1 µM SAHA for 24 h at an E:T ratio of 2:1 was carried out. [-] indicate without SAHA 

[+] indicate with SAHA. Columns represent means of triplicate of one representative experiment; error bars 

indicate ± SD.  

 

3.7 HDACi down-modulate NK cell activating receptors expression 

NK cell cytotoxicity is a complex process that requires adhesion to target cells, synapse 

formation and signal transduction leading to granule polarization and exocytosis. 

Accordingly, it is conceivable that HDACi might interfere with different steps in the process. 

To address these issues, the surface expression patterns of NKp30, NKp44, NKp46, NKG2D 

and DNAM-1, NKG2A and KIR in untreated as well as in SAHA and VPA treated NK cells 

were investigated. A correlation between NK cell cytotoxicity and NK cell receptor 

expression pattern was observed. The lytic capacity of NK cells treated with HDACi was 

associated with a high decreased surface expression of NKp30 and NKp46 while NKp44, 

NKG2D and DNAM-1 were not significantly changed. No changes were observed in the 

surface expression of KIR and NKG2A inhibitory receptors (Fig. 3.8a). To show whether the 

expressions of NKp46 and NKp30 are also influenced at the transcriptional level upon 

HDACi treatment, we examined the gene expression patterns of NKp46 and NKp30 in 

untreated and HDACi treated NK cells. Real-time RT-PCR results revealed a 5- and 9-fold 

decrease as well as a 9- and 12-fold decrease expression in NKp46 and NKp30 respectively 

for VPA and SAHA treated NK cells when compared to untreated NK cells (Fig. 3.8b).  
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Figure 3.8: HDACi down-modulate expression of NK cell activating receptors. Primary NK cells from healthy 

donors were treated simultaneously with 100 U/ml IL-2 and either 0.5 mM VPA or 0.5 µM SAHA for 4 days. 

Primary NK cells treated only with 100 U/ml IL-2 were used as control. [a] Flow cytometric analysis for the 

expression of indicated NK cell activating or inhibitory receptors. Columns indicate relative expression of one 

representative of at least five separate experiments. [b] Real-time RT-PCR for the mRNA expression levels of 

the different transcripts. Data are expressed as fold decrease of mRNA expression in VPA or SAHA treated NK 

cells relative to untreated (control) NK cells. Histograms are representative of results obtained with NK cells 

derived from 3 different donors. Each experiment was run in duplicate; error bars indicate ± SD. 

 

HDACi suppressed NK cell activity and NCR surface expression only when added 
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3.9). Basically NK cell activating/inhibitory receptor expression levels were 3- to 4-fold 

higher in IL-2 cultured NK cells than in NK cells cultured without IL-2.  

 

Figure 3.9: HDACi does not suppress cytotoxicity of NK cells not treated with IL-2. Primary NK cells from 

healthy donors were treated with either 0.5 mM VPA or 0.5 µM SAHA for 4 days. Primary NK cells treated 

without IL-2 were used as control. A 4 h NK cell cytotoxicity assay against K562 target cells was performed at 

indicated E:T ratios. Columns represent means of triplicate of one representative experiment; error bars indicate 

± SD. 

 

Since NK cell cytolysis also depends on binding mediated by adhesion molecules like LFA-1, 

effects of HDACi on LFA-1 surface expression were determined. It was also determined 

whether HDACi influence IL-2 receptor since only NK cells cultured with IL-2 showed 

impaired activity upon HDACi treatment. HDACi did not significantly modify the expression 

neither of LFA-1 nor of IL-2 receptors (CD25, CD122 and CD132) on NK cells (Table 3.1). 
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Table 3.1: Flow cytometric analysis for the expression of indicated receptors 

 relative expressiona   

Receptors NK+IL-2 NK + IL-2 + 0.5 mM 

VPA 

NK + IL-2 + 0.5 µM 

SAHA 

LFA-1 20 ± 2 23 ± 3 19 ± 2.5 

CD25 37 ± 3.3 34 ± 4 40 ± 1 

CD122 15 ± 4 17 ± 2 14 ± 3 

CD132 26 ± 2.5 22 ± 4.5 28 ± 2 

a Results are expressed as relative fluorescent unit ± SD of triplicates of one representative experiment.  

 

These results suggest that HDACi act directly on selected NK cell receptors rather than by 

interfering with the ability of NK cells to respond to IL-2 or NK cell binding to target cells. 

 

3.8 HDACi suppress NK cell function 

To assess whether HDACi-induced modulation of NKp46 and NKp30 receptors resulted in an 

alteration of NK cell activity, treated and untreated NK cells were compared in a redirected 

killing assay against FcγR+ P815 target cell line. The FcγR+ P815 cell line has been 

extensively used for mAb-mediated redirected killing assays using NK cells and mAbs 

capable of triggering their cytolytic functions [220-222]. This would allow the assessment in a 

cytolytic assay the direct effect of VPA and SAHA on the specific activity of the trigerring 

receptors NKp46 and NKp30. As shown in Fig. 3.10, treatment of NK cells with VPA and 

SAHA clearly reduced the ability of anti-NKp46 and anti-NKp30 mAbs to induce NK cell-

mediated lysis.  
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Figure 3.10: HDACi suppress NK cell function. A 4 h NK cell cytotoxicity was assessed in a redirected killing 

assay against the FcγR+ P815 target cell line either in the presence or absence of mAbs to the indicated receptors. 

Columns represent means of triplicate of one representative experiment; error bars indicate ± SD. 

 

These findings suggest that HDACi may affect NK cell function by interfering with the 

expression and the function of NKp46 and NKp30 triggering receptors.  

 

3.9 HDACi impair granule exocytosis and inhibit IFN-γ production  

To validate the effect of HDACi on NKp46 and NKp30 expression and function, perforin and 

granzyme B degranulation after cross-linking of NKp46 and NKp30 with mAbs was 

analyzed. As shown in Fig. 3.11a, an impaired granzyme B release was observed upon 

treatment of NK cells with VPA and SAHA. Cross-linking of NK cells with mAbs resulted in 

increased granzyme B release, further indicating the direct effect of HDACi on NKp46 and 

NKp30. Similar results were obtained for perforin degranulation (Fig. 3.11b). It is worthy to 

mention that intracellular perforin and granzyme B expressions using flow cytometry were 

not significantly affected by HDACi treatment (Fig. 3.11c). Furthermore, treatment of IL-2-

activated NK cells for 72 h with either VPA or SAHA also inhibited IFN-γ production (Fig. 

3.11d).  
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Figure 3.11: HDACi impair granule exocytosis and inhibit IFN-γ production. Cells were stimulated by cross-

linking the indicated NK receptors with appropriate mAbs. After overnight incubation at 37°C in IMDM + 10% 

FBS alone, supernatants were collected and analyzed in an ELISA assay specific for in vitro quantitative 

determination of [a] granzyme B and [b] perforin release. Columns indicate granzyme B or perforin granule 

release (pg/ml). [c] Flow cytometric analysis for intracellular granzyme B and perforin expression. [d] IL-2-

activated NK cells were treated for 72 h with or without VPA and SAHA, after which IFN-γ production was 

measured by ELISA. One representative of at least three separate experiments is shown; error bars indicate ± 

SD. 

 

3.10 SAHA and VPA suppress NFκB activation in IL-2-activated NK cells 

It was previously reported by Zhou et al [223] and Kim et al [224] that IL-2 increases NK cell 

cytotoxicity and proliferation through activation of NFκB signaling pathway. To verify a 

possible role of NFκB in this experiment, the effect of HDACi on NFκB binding was 

compared with that of a potent NFκB inhibitor BAY 11-7085. NK cells were cultured 

simultaneously for 4 days with 100 U/ml IL-2 and either HDACi or BAY 11-7085. NFκB 

activation was then measured. BAY 11-7085 as well as SAHA and VPA inhibited NFκB 

activity (Fig. 3.12a). BAY 11-7085 (not toxic to NK cells at concentration used- trypan blue 

exclusion counts) also abrogated NK cell lysis of K562 and suppressed surface expression of 

NK cell activating receptors NKp30, NKp44, NKp46 and inhibitory receptor NKG2A (Fig. 

d 
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3.12b). These results suggest that HDACi prevent IL-2-activated NK cell cytotoxicity by 

suppressing NK cell activating receptors in association with the inhibition of NFκB 

activation. 
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Figure 3.12: HDACi prevent NFκB activation. Primary NK cells from healthy donors were treated 

simultaneously with 100 U/ml IL-2 and either 0.5 mM VPA or 0.5 µM SAHA or 1 µM BAY 11-7085 for 4 days. 

Primary NK cells treated only with 100 U/ml IL-2 were used as control. [a] NFκB activation assay was 

performed as described in materials and methods. The relative luminescent values of IL-2 alone were set to 

100%, from which the percentage activation of other treated NK cells were deduced. [m] indicate mutated 

consensus oligonucleotide, [wt] indicate wild-type consensus oligonucleotide. Columns represent means of 

triplicate of one representative experiment; error bars indicate ± SD. [b] Flow cytometric analysis for the 
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expression of indicated NK cell activating or inhibitory receptors upon treatment with BAY 11-7085. Columns 

indicate relative expression of one representative of at least five separate experiments; error bars indicate ± SD. 

 

 

3.11 Viability of leukemic cells upon araC treatment 

MTT assay was performed to determine the viability of the leukemic cell lines used upon 

treatment with araC. Cytotoxic effects of araC, expressed as concetrations inhibiting 50% of 

cell growth (IC50) were decreased in araC-resistant cells when compared with parental cells. 

Resistance index (RI, ratio of IC50 in H9r100ARAC and H9 cells as well as in Molt-4r100ARAC 

and Molt-4 cells) of araC for H9 and Molt-4 cells were respectively 2.2 x 104 and 4.3 x 104 

(Table 3.2).   

 

Table 3.2: Cytotoxic effects of araC in Molt-4, Molt-4r100ARAC, H9 and H9r100ARAC cells 
________________________________________________________________________ 
Cell line      IC50 (µM)a 
    __________________________________________________ 

Parental  Resistant  RIb 
__________________________________________________________________________ 
 
Molt-4    0.029 ± 0.0018 1256 ± 234  4.3 x 104 
 
H9    0.034 ± 0.0047 756.8 ± 53.7  2.2 x 104 
__________________________________________________________________________ 
 a Results represent mean values ± SD of three different experiments. b RI (Ratio IC50 resistant, IC50 parental cell 
lines). 
 

3.12 Cytotoxic activity of IL-2-activated NK cells against leukemic cell lines 

The cytolytic activity of IL-2-activated NK cells against parental and araC-resistant H9 and 

Molt-4 cell lines was determined. The results show that NK cells effectively kill parental H9 

and Molt-4 cell lines. Both araC-resistant cell lines showed higher sensitivity to NK cell lysis 

than parental cell lines (at E:T 4:1, 55% vs. 38% respectively for araC-resistant H9 and H9 

cells; 70% vs. 31% respectively for araC-resistant Molt-4 and Molt-4 cells; Fig. 3.13). The 

increased sensitivity of araC-resistant leukemic cells than parental cells was neither due to the 
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direct cytotoxic effect of araC on the cells nor the direct effects of araC on cell metabolism 

since araC-resistant cells used for the experiment were cultured for up to 10 subcultures 

without the drug. NK cell lysis of K562 cell line was used as positive control and it resulted in 

about 90% lysis at E:T 4:1.  
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Figure 3.13: NK cell cytotoxicity of parental and araC-resistant leukemic cells. Killing of H9 and Molt-4 cell 

lines and their araC-resistant counterparts was assessed by G3PDH release. Five thousand target cells were 

coincubated with IL-2-activated NK cells at the indicated E:T ratios for 4 h at 37°C. The results are mean ± SD 

of 3 independent experiments. 

 

3.13 Expression of NK cell activating and inhibitory ligands in leukemic cells 

The expression pattern of ligands for the NK cell activating/inhibitory receptor in both 

parental and araC-resistant cell lines was investigated to show whether it correlates with the 

lysis of leukemic cells by NK cells.  The observed increased lysis was associated with a 

corresponding increase in the cell surface expression of ULBP-2 and ULBP-3 in araC-

resistant H9 cells (relative expression: 380 vs. 217 for ULBP-2, 122 vs. 50 for ULBP-3) and 

Molt-4 cells (82 vs. 29 for ULBP-2, 31 vs. 6 for ULBP-3; Fig. 3.14a and b). There was no 

significant change in MHC-I expression level in both parental and araC-resistant H9 and 

Molt-4 cell lines. The mRNA expression of araC-resistant and parental cell lines used for this 

study was also evaluated using real time RT-PCR. As shown in Fig. 3.14c, an increased 
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ULBP-2 and ULBP-3 mRNA expression was observed in araC-resistant cell lines (1.57-fold 

ULBP-2, 5.93-fold ULBP-3 increase for araC-resistant H9 and 5.98-fold ULBP-2, 2.13-fold 

ULBP-3 for araC-resistant Molt-4) in comparison to their respective parental cell lines. This 

indicates that araC modifies NK cell activating receptor ligand expression at the 

transcriptional level. The effect of this modification appears to be maintained since several 

passaging of leukemic cell (at least 10 passages without araC treatment) continued to display 

this effect. 
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Figure 3.14: Expression of ligands for NK cell receptors in leukemic cells. [a] Flow cytometric analysis for the 

expression of ligands in [a] parental and araC-resistant H9 cells, and [b] parental and araC-resistant Molt-4 cells. 

Columns indicate relative expression of one representative of at least 3 separate experiments; error bars indicate 

± SD. [c] Real-time RT-PCR for the mRNA expression levels of ULBP-2 and ULBP-3 transcripts. Data are 

expressed as mRNA fold increase in araC-resistant H9 and Molt-4 cells relative to parental H9 and Molt-4 cells. 

Histograms are representative of three different experiments. Each experiment was run in duplicate; error bars 

indicate ± SD. 

 

3.14 NK cell recognition of leukemic cell lines via NKG2D 

In an attempt to understand a possible mechanism of the increased NK cell lysis of resistant 

leukemic cells as well as the functionality of NKG2D ligands, mAb masking experiments 

were performed. For this purpose, parental as well as araC-resistant H9 cell lines were 

selected for a 4 h cytotoxicity assay, since they displayed increased sensitivity to NK cell-

mediated cytotoxicity as well as increased NKG2D ligand densities on their cell surfaces 

(80% increase in ULBP-2 surface expression in all araC-resistant cell lines used). As shown 

in Fig. 3.15, blocking PVR on parental and araC-resistant H9 cells did not show significant 

decrease in NK cell lysis (36% vs. 33%, 58% vs. 50% respectively for H9 and araC-resistant 

H9 cells). However blocking ULBP-2 or ULBP-3 alone showed a strong inhibition of NK cell 

c 



   
  Results 

 90

lysis (36% vs. 3% ULBP-2 and 4% ULBP-3, 58% vs. 4% ULBP-2 and 15% ULBP-3 

respectively for H9 and araC-resistant H9 cells). It is worthy of note that in parental H9 cell 

line, the expression level of ULBP-2 and ULBP-3 was 8-fold and 1.9-fold respectively higher 

than that of PVR, while in araC-resistant H9 cell line the expression level of ULBP-2 and 

ULBP-3 was approximately 8.8 and 2.8-fold respectively higher than that of PVR. Combined 

blocking of ULBP-2 and ULBP-3 on araC-resistant H9 cells resulted in total abrogation of 

NK cell lysis. A 100% inhibition of NK cell lysis was also observed upon blocking NKG2D 

on NK cells (Fig. 3.15). The results suggest that NK cell activation via NKG2D receptor-

ligand binding is the possible mechanism involved in the increased lysis of araC-resistant H9 

cell line. 

 

 

 

 

 

 

 

Figure 3.15: NK cells recognize leukemic cells via NKG2D receptor. Five thousand H9 and araC-resistant H9 

cells were coincubated with IL-2-activated NK cells at E:T ratio 4:1 for 4 h at 37°C either in  the absence or 

presence of 10 µg/ml mAb. IgG isotype control was used as negative control. The results are mean ± SD of 3 

independent experiments.   

 

3.15 Possible mechanism of increased ligand expression in araC-resistant leukemic cells  

ERK and AKT may influence sensitivity of leukemic cells to araC [225-227]. Moreover, both 

ERK and AKT were shown to be involved in the regulation of expression of NKG2D ligands 

[199, 228]. For these reasons, both ERK and AKT signaling pathways were studied for their 
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constitutive activation status in both parental and araC-resistant cells. Western blot analyses 

using parental H9 as well as araC-resistant H9 cells showed a stronger constitutive 

phosphorylated ERK but not AKT in araC-resistant H9 cells. Constitutive activation of ERK1 

(p44) was particularly diminished in parental H9 cells (Fig. 3.16a). The enhanced constitutive 

phosphorylated ERK in araC-resistant H9 cells was confirmed by FACS analysis (relative 

expression: 229 ± 12 vs. 186 ± 14 for araC-resistant H9 and parental H9 cells respectively; 

Fig 3.16b).  
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Figure 3.16: Mechanism of increased ligand expression in araC-resistant cells. [a] The same amount of cell 

extracts prepared from the same passage of H9 and araC-resistant H9 cell cultures was used for western blot 

analyses. Constitutive AKT and ERK activation was assessed using antibodies that recognize AKT 

phosphorylated at ser-473 and ERK1/2 phosphorylated at Thr202/Tyr204. [b] Flow cytometric analysis for 
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constitutive phosphorylated ERK expression. Data are representative of at least three experiments, error bars 

indicate ± SD. 

 

3.16 Role of ERK signaling in NKG2D ligand expression 

To verify the role of ERK signaling pathway in NKG2D ligand expression, FACS analysis 

and cytotoxicity assay were performed upon ERK inhibition of parental and araC-resistant H9 

cells using 20 µM of the ERK activation inhibitor PD98059. Treatment of parental H9 and 

araC-resistant H9 cells with PD98059 impaired NK cell lysis (from 50% to 39% and 68% to 

43% for H9 and araC-resistant H9 respectively; Fig. 3.17a) and decreased ULBP-2 (relative 

expression from 182 to 152 and 266 to 102 for H9 and araC-resistant H9 respectively) and 

ULBP-3 (relative expression from 24 to 14 and 60 to 49 for H9 and araC-resistant H9 

respectively) expression (Fig. 3.17b). Taken together, these results demonstrate that increased 

sensitivity of araC-resistant leukemic cells to NK cell lysis is due to higher NKG2D ligand 

expression, resulting from more active ERK but not AKT signaling pathway.  
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Figure 3.17: ERK signaling in NKG2D ligand expression. Parental and resistant cells were treated for 48 h with 

the ERK activation inhibitor PD98059. [a] IL-2-activated NK cell cytotoxicty and [b] flow cytometric analysis 

for ULBP-2 and ULBP-3 expression were determined. Results are representative of 3 different experimens. 

Error bars indicate ± SD.
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4.0 Discussion 

4.1 Luminescent assay 

Properly designed coupled luminescent assays are able to combine the advantages of specific 

assays for enzyme function with the very great sensitivity of luminescent detection methods. 

In coupled luminescent assays, the inherent sensitivity of luciferase detection is enhanced by 

the amplification effect of enzyme turnover, which produces thousands, millions, or billions 

of high-energy molecules for each molecule of enzyme. The luminescent signal is produced 

by firefly luciferase acting on adenosine triphosphate (ATP), which in turn is produced by the 

coupled reactions of G3PDH and phosphoglycerokinase (PGK), two consecutive enzymes of 

the glycolytic pathway. G3PDH, a very abundant enzyme in all known cells, is measured to 

quantify release (and therefore cell death and/or membrane damage). The fact that G3PDH is 

a natural component of cells, and does not need to be introduced into the cells in any manner, 

distinguishes this assay from all methods which require prelabeling of the cells, or 

transfection, transformation, or other methods of introducing proteins or other molecules into 

the target cells in order to generate a signal in a later step [196].  

 

The G3PDH /PGK/luciferase (GPL) coupled luminescent assay introduced by Corey et al 

[196] addressed several problems of the methods mentioned above. Nevertheless, the GPL 

assay is cumbersome to execute in that it involves four transfer steps (cocktail to reaction 

vessel, sample to reaction vessel, luciferase to luminance vessel, aliquot of reaction to 

luciferase) and two incubations prior to actual read. Moreover, since the assay is not 

compatible with live cells, live cells need to be separated from the supernatant by 

centrifugation prior to the assay.  
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4.2 Establishing CLM to measure NK cell cytotoxicity 

CLM enjoys the features of GPL assay. In contrast to the GPL assay, CLM is a one-step 

homogeneous system in which the sample being tested is mixed with the reagent cocktail and 

neither separation of live cells from supernatant nor further transfers are required prior to 

readout.  

 

CLM was established by measuring the cytolytic activity of IL-2-activated NK cells against 

K562. To validate CLM, a NB model was used. Most NB cells are generally resistant to NK 

cell lysis [144] when compared to K562 that are readily lysed even with NK cells that have 

not been activated with lymphokine such as IL-2. All NB cell lines tested were resistant to 

non-activated NK lysis, but were readily lysed by IL-2-activated NK cells. This may be due at 

least in part to the failure of NB cells to express NKG2D ligands, as were observed for 

MICA/B in the present study. This is consistent with previous report which showed that 

NKG2D-activating receptor ligands on the surface of primary neuroblasts and NB cell lines 

are down-regulated [229, 230].  On the other hand, PVR was readily expressed by NB cells. 

PVR, a ligand recognized by DNAM-1 receptor [215, 217], was used in mAb blocking 

experiments to further validate CLM. DNAM-1 (CD226) which is expressed in virtually all 

human NK cells, T cells, monocytes, platelets and a subset of B-lymphocytes, is another 

surface molecule that has been shown to participate in the induction phase of NK cell 

activation. DNAM-1 is known to be involved not only in NK cell activation but also in cell-

cell adhesion [231-233].  This suggests that the adhesion of NK cells to NB cells could be 

mediated by DNAM-1-PVR interaction. The present results support previous observations 

[215] demonstrating that the assessment of PVR expression could be used as an 

immunological marker for the susceptibility of NB cells to NK cell-mediated attack.  
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Interestingly, the higher susceptibility of drug resistant NB cells to NK lysis than non-

resistant cells is shown in this report with CLM. UKF-NB-4, which possesses the intrinsic 

multidrug resistant (MDR) phenotype [234], and the drug-induced resistant UKF-NB-

2rVCR10 [202] cell line were more susceptible to NK cell-mediated lysis than the parental 

UKF-NB-2 and UKF-NB-3 cell lines. Also, araC-resistant leukemic cell lines were also more 

sensitive to NK cell lysis than their parental cell lines. This is of interest since induction of 

drug resistance in tumor cells as shown seems to be associated with changes in their 

sensitivity to NK cell-mediated lysis. Some studies demonstrated that multidrug resistant 

leukemic cells develop decreased sensitivity to NK cell-mediated lysis mainly at the level of 

killer/target recognition [235, 236]. On the other hand, multidrug resistant cells derived from 

some solid tumors may exert increased sensitivity to NK cell-mediated lysis by different 

mechanisms [237, 238]. The increased sensitivity of multidrug resistant NB cells and 

leukemic cells might suggest a role for drug resistance in NK cell-mediated cytotoxicity.    

 

CLM is a highly sensitive, safe and fast method to determine NK cell cytotoxicity. The 

features of CLM may be of particular importance in cases with small blood samples including 

pediatric patients with solid tumors or viral infections. 

 

4.3 SAHA and VPA suppress IL-2-mediated NK cell cytotoxicity  

Several reports have described the direct inhibition of NK cell function by several substances 

including cortisol, methylprednisolone, adiponectin, L-kynurenine, and All-trans retinoic acid 

(ATRA) [214, 220, 221, 224, 239, 240]. The glucocorticoid cortisol at concentrations up to 2 

µM was shown to repress the synthesis of both perforin mRNA and granzyme A in NK3.3 

cell line [239]. Cortisol also down-regulated LFA-1 and inhibited conjugate formation of 

NK3.3 cells with their target K562 cells, thereby completely abrogating cytotoxic function of 

NK3.3 cell line [239]. The corticosteroid methylprednisolone impaired the expression of 
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NKp30, NKp44 and NKp46 both in NK cells from patients undergoing allogenic bone 

marrow transplantation and in IL-2-activated NK cells from healthy individuals [220]. In the 

report by Chiossone et al [214] methylprednisolone was shown to inhibit NKp30 and NKp44 

surface expression in IL-2 and IL-15-cultured NK cells. Tyr phosphorylation of STAT1, 

STAT3 and STAT5 was also inhibited. Impairment of NK cell cytotoxicity was observed to 

strictly correlate with the inhibition of ERK1/2 phosphorylation and perforin release in IL-2 

and IL-15-cultured NK cells [214]. On the other hand, adiponectin suppressed IL-2-induced 

NK cell cytotoxicity by inhibiting NFκB signaling pathway and down-regulating IFN-γ, Fas 

Ligand (FasL) and TRAIL expression in NK cells [224]. The inhibition of surface expression 

of NKp46 and NKG2D as well as impairment of NK cell ability to kill target cells recognized 

via NKp46 and NKG2D was reported for the tryptophan catabolite L-kynurenine [221]. The 

cytotoxic activity of the NK cell line NK92 was also shown to be inhibited by ATRA. The 

researchers reported that ATRA suppressed NFκB activity and prevented the degradation of 

IκB, inhibited IFN-γ production and gene expression of granzyme B, NKp46 and NKp30 

[240]. Reports of the direct effect of HDACi on NK cell cytotoxicity however do not exist. 

 

The results shown in this study provide for the first time evidence that treatment of NK cells 

with HDACi can suppress their lytic activity against leukemic cells. NK cell inhibitory effects 

were associated with the suppression of surface expression and function of specific triggering 

receptors (NKp46 and NKp30) responsible for the induction of NK cell-mediated 

cytotoxicity. This inhibitory effect was also effective at the transcriptional level. Moreover, 

inhibition of IFN-γ production and impaired granule release were observed upon treatment of 

NK cells with VPA and SAHA. After cross-linking of NK cells with NKp46 and NKp30 

granzyme B and perforin granule release were increased, further indicating the direct effect of 

HDACi on NKp46 and NKp30. HDACi acted directly on selected NK cell receptors rather 

than by interfering with the ability of NK cells to respond to IL-2 since IL-2R expression 
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were not affected. On the other hand, surface expression levels of inhibitory receptors 

including KIR and NKG2A were not influenced by HDACi treatment, indicating a specific 

effect of HDACi on NK cell triggering receptors. 

 

4.4 HDACi-treated NK cells repress HDACi-induced enhanced NK cell sensitivity of 

leukemic cells   

Independent reports by Cinatl et al [144], Skov et al [146], and Armeanu et al [147] described 

an increased NK cell-mediated lysis of certain tumors upon treatment with VPA and SAHA. 

Although the present study found in concert with these reports [144, 146, 147] that treatment 

of leukemic cells with HDACi increases their sensitivity to NK cell lysis, the increased 

sensitivity was however reversed when NK cells were pretreated with SAHA. These findings 

suggest that direct inhibitory effect of HDACi on lytic NK cells may overweigh the HDACi-

induced increased sensitivity of leukemic cells to NK cell lysis. 

 

4.5 Mechanism of HDACi inhibition of NK cell cytolytic activity 

Optimal NK cell development and activation as well as cytolytic activity involve IL-2Rβ 

signals that also up-regulate expression of the pore-forming effector molecules 

perforin/granzyme [241-243]. The activation of NFκB by IL-2R signaling and its role in 

perforin regulation in NK cells was investigated by Zhou et al [223]. They demonstrated that 

IL-2-induced up-regulation of perforin in primary NK cells and in a model cell line (NK3.3) 

was blocked by two pharmacological inhibitors of NFκB activation. Direct evidence for the 

activation of the NFκB pathway by IL-2R signals in NK cells was shown to involve activation 

of IKKα kinase, IκB degradation, nuclear translocation of p50/65 complexes, and ultimately, 

transcriptional activation of the perforin gene via an NFκB binding element in its upstream 

enhancer [223]. Furthermore, NFκB proteins were shown to regulate the expression of genes 

involved in immune and inflammatory responses including IFN-γ and granzyme B [244, 245]. 
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Blanchard and Chipoy [97] reviewed several reports demonstrating the inhibition of NFκB 

transcriptional activity after treatment with HDACi. Here, mechanisms of NFκB 

transcriptional inhibition by HDACi including inhibition of nuclear translocation and DNA 

binding of NFκB were illustrated [97]. Since HDACi did not modify IL-2R in this research, it 

is conceivable that HDACi might not interfere with IL-2 signaling in NK cells but rather 

directly modulate NFκB activity. In fact, some studies revealed that prevention of NFκB 

activity by pharmacological treatments [224] or a defective NFκB activation in patients with 

the genetic disorder hypohidrotic ectodermal dysplasia [246] leads to a deficient NK cell 

cytotoxicity. In concordance, the present findings strongly indicate that inhibition of NFκB 

activation by SAHA and VPA is an important molecular mechanism by which HDACi 

suppress NK cell cytotoxicity.  

 

4.6 AraC-induced resistance of leukemic cells increases their sensitivity to NK cell lysis  

Numerous experimental studies demonstrated that drug exposure may induce not only 

resistance but also change other properties of tumor cells which may be related to tumor 

growth, invasiveness and immunogenicity [203, 247, 248, 169, 210]. Acquired drug resistance 

of leukemic cells due to pretreatment with cytostatic drugs influences the sensitivity of 

leukemic cells towards cytotoxic lymphocytes [249-254]. While some reports show decreased 

sensitivity of drug-resistant leukemic cells to cellular cytotoxicity [235, 236, 252, 253], 

Posovszky et al [254] reported that chemotherapeutic drugs including araC sensitize pre-B 

acute lymphoblastic leukemia (ALL) cells for CD95- and cytotoxic T-lymphocyte- mediated 

apoptosis. The present study shows that resistance of T-leukemic cells to araC is associated 

with increased sensitivity to NK cell-mediated lysis. These effects were not due to direct 

activity of araC on cell metabolism but rather to selection of cell population with altered 

susceptibility to NK cells since the resistant cells cultured for up to ten passages (about fifty 
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days) in a medium without the drug were lysed by NK cells to a greater extent than the 

parental cell population. 

 

4.7 Mechanism of increased sensitivity of araC-resistant leukemic cells 

Recent studies have shown that NK cells display cytolytic activities by engagement of 

receptors involved in NK cell activation and inhibition [60]. Although NK cells can kill target 

cells spontaneously without prior stimulation, a delicate balance between signaling through 

inhibitory (KIR, CD94-NKG2A) and activating receptors (NCRs-NKp30, NKp44, NKp46, 

NKG2D and DNAM-1) tightly regulates their activation [60]. Moreover, the relevance of the 

NKG2D/NKG2D ligand system for the immune surveillance in patient leukemia cells has 

been described [255]. Salih and co-workers [255] reported that leukemia cells from patients 

variously express MICA/B and ULBP. They also showed that patient leukemia cells were 

lysed by NK cells in an NKG2D-dependent fashion. The proposed role of the NKG2D 

receptor in innate and adaptive immune responses to cellular and tissue stress is based on the 

ability of the receptor to stimulate cytotoxic effects of NK cells and T cells against virally 

infected cells and tumor cells in vitro and in vivo [1]. Specifically, NKG2D receptor 

activation can induce target cell lysis and trigger the production of cytokines [42, 256] and 

chemokines [42, 257, 258], as well as perforin and granzyme involved in cellular lysis [259]. 

Based on these reports the role of specific ligands for NK cell activating receptors in the 

susceptibility of parental and araC-resistant leukemic cells to NK cell lysis was investigated. 

H9 and Molt-4 cells express some NKG2D ligands (particularly ULBP-2 and ULBP-3) in 

addition to PVR while they do not express other NKG2D ligands including MICA and MICB. 

This is in concordance with the hypothesis by Pende and coworkers [260] stating that most T-

cell leukemia cell lines are characterized by a MICA-ULBP+ phenotype. The results in this 

study, with particular reference to the blocking experiments, show that increased expression 

of ULBP-2 and ULBP-3 rendered araC-resistant leukemic cell lines to become more sensitive 
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to NK cell lysis. Blocking PVR with mAb could not inhibit NK cell lysis, suggesting that 

DNAM-1 is not involved in NK cell lysis of H9 and Molt-4 cell lines. The increased NK cell 

lysis of araC-resistant leukemic cells was observed despite expression of MHC-I molecules 

on their surface. These findings suggest that ULBP-NKG2D interaction is a major 

determinant for susceptibility of H9 and Molt-4 cell lines to NK cell lysis. Recent experiments 

demonstrated that NKG2D/NKG2D ligand system stimulates immune surveillance of tumors 

[48, 261, 262]. The capacity of the NKG2D ligand-expressing tumor cell lines to stimulate 

tumor immunity in vivo was critically dependent on the expression levels of NKG2D ligands 

on the tumor cell surface. In another study NKG2D ligand surface expression led to increased 

susceptibility of malignant or virus-infected cells to NK cell-or T cell-mediated lysis [42, 

256]. Since NK cell activity is guided by a balance of activating and inhibitory signals, and an 

enhanced NKG2D ligand expression is able to trigger NK cells overcoming inhibitory signals 

by MHC-I molecules [38, 42], even modest changes in NKG2D ligand expression may 

critically influence NK cell cytotoxic potential. 

 

4.8 Mechanism of increased expression of NKG2D ligands in araC-resistant leukemic 

cells 

Cell regulatory pathways such as ERK or AKT may influence the sensitivity of leukemic cells 

to araC [225-227]. Treatment of leukemic cells with inhibitors of AKT or ERK pathways was 

shown to increase their sensitivity to araC treatment [225-227]. Experiments performed in this 

study show both AKT and ERK to be constitutively activated in H9 cells, with increased 

activation of ERK1 (p44) but not AKT in resistant cells relative to their parental counterparts. 

Treatment of H9 cells with pharmacological inhibitors of ERK or AKT showed no toxicity to 

the cells and did not significantly influence activity of araC in resistant cells.  
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Gasser and co-workers [263] showed an induction of NKG2D ligand up-regulation by DNA 

damaging conditions such as ultraviolet light and the chemotherapy agents- cisplatin and 

araC- in fibroblasts and transformed ovarian epithelial cells from mice. NKG2D ligand 

expression was induced at the transcriptional level by mechanisms involving ataxia-

telangiectasia-mutated (ATM) and ATM-and Rad-3-related (ATR) protein kinases [263]. 

Both AKT and ERK were also shown to increase the expression of NKG2D ligands and the 

sensitivity to NK cell-mediated lysis of transformed cells derived from solid tumors and 

leukemia [199, 228]. In fact, while Borchers et al [199] reported the involvement of ERK 

signaling in the induction of surface expression of NKG2D ligands in human tumor cells 

following H2O2-induced oxidative stress, Boissel et al [228] demonstrated that NKG2D ligand 

expression in chronic myeloid cells is regulated posttranscriptionally by BCR/ABL kinase 

through activation of PI3K and mammalian target of rapamycin (mTOR). The results 

presented in this study demonstrate that ERK but not AKT activation is associated with 

increased ULBP-2 and ULBP-3 expression resulting in enhanced sensitivity of araC-resistant 

leukemic cells to NK cell lysis.
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5.0 Conclusion 

In the course of this research, a highly sensitive coupled luminescent method (CLM) based on 

glyceraldehyde-3-phosphate dehydrogenase (G3PDH) release from injured target cells for the 

measurement of NK cell cytotoxicity was first established. In contrast to common methods 

like 51Cr or Eu3+ release, CLM does not require the pre-treatment of target cells with labeling 

substances which could be toxic or radioactive. CLM provides a highly sensitive, safe, 

material saving (low E:T ratio is needed) and fast procedure for measurement of NK cell 

activity. CLM was then used to investigate the effect of HDACi including SAHA and VPA on 

the cytolytic activity of IL-2-activated NK cells and on the sensitivity of parental and araC-

resistant leukemic cells to NK cell lysis.  

 

SAHA and VPA at therapeutic relevant concentrations inhibited the cytotoxicity of NK cells 

against human leukemic cells. This inhibition was associated with decreased surface 

expression and function of NK cell activating receptors NKp30 and NKp46 as well as 

impaired granule exocytosis and inhibition of IFN-γ production. NFκB activation in IL-2-

activated NK cells was inhibited by both HDACi.  Pharmacologic inhibition of NFκB activity 

resulted in similar effects on NK cell activity like those observed for HDACi. These results 

demonstrate for the first time that HDACi prevent NK cytotoxicity by down-regulation of NK 

cell activating receptors probably through the inhibition of NFκB activation. VPA and other 

HDACi are being studied as potential treatment for leukemia and MDS and early reports 

suggest that they may have therapeutic effects in some forms of leukemia [87, 140, 141]. 

Moreover, vorinostat (SAHA) has recently been approved by the Food and Drug 

Administration for the treatment of CTCL [78]. On the other hand, VPA therapy was shown 

to be associated with the development of myelodysplastic changes in the marrow and acute 
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leukemia [264]. It has been proposed that VPA therapy may lead to secondary leukemia by 

increased DNA damage through chronic inhibition of HDAC [264]. It has also been 

demonstrated that in AML, NK cells express low levels of NCRs. The insufficiency of NCR-

ligand interactions has been hypothesized as the underlying cause of the low susceptibility of 

leukemic blasts to lysis by autologous NK cells [265]. It may be speculated that VPA-induced 

down-regulation of NCRs may lead to deficient immune control by NK cells and thus 

contribute to leukemogenesis associated with VPA therapy. It should be noted that SAHA 

which is a more potent inhibitor of HDAC than VPA [87] was also more potent inhibitor of 

IFN-γ production, granule release, NFκB activation, NCR expression, and NK cell lytic 

activity against leukemic cells. More studies are required especially with treated patients to 

further elucidate the multifaceted roles of HDACi on NK cell activity.  

 

Furthermore, it was demonstrated in this research, again for the first time, that T-cell leukemic 

cell lines that received araC treatment and became resistant to the drug are more sensitive to 

NK cell attack than their parental counterparts. This increased sensitivity was associated with 

a higher surface expression of ligands for the NK cell activating receptor NKG2D, notably 

ULBP-2 and ULBP-3 in araC-resistant H9 and Molt-4 cell lines. Blocking ULBP-2 and 

ULBP-3 or NKG2D with mAbs inhibited NK cell lysis. Constitutive activation of ERK but 

not AKT was higher in araC-resistant cell lines than in parental cell lines. Inhibition of ERK 

using ERK inhibitor PD98059 decreased both ULBP-2 and ULBP-3 expression and NK cell 

cytotoxicity. These results demonstrate that increased sensitivity of araC-resistant leukemic 

cells to NK cell lysis is due to higher NKG2D ligand expression, resulting from more active 

ERK signaling pathway.  

 

It is possible that part of the efficacy of some chemotherapies and radiotherapies, most of 

which activate the DNA damage response [266, 267], is due to the induction of NKG2D 
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ligands which consequently enhances sensitivity of the cell to the immune system. This favors 

the insertion of an early autologous NK cell immunotherapy following therapeutic 

chemotherapy in patients suffering from hematological malignancies. Furthermore, the data 

presented for araC-resistant leukemic cells suggest that development of resistance to 

chemotherapeutic drugs may be associated with increased immunogenicity of tumor cells. 

Since such changes persist after cessation of treatment, it is of interest to show whether 

emergence of chemotherapy-resistant tumor clones with increased sensitivity to NK cell lysis 

also appear in patients who become refractory to common treatments with araC or other 

chemotherapeutic agents. The pathway leading to the up-regulation of NKG2D ligands looks 

promising in the search of targets for design of therapeutic agents to enhance the 

immunogenicity of transformed cells while reducing overall toxicity. 
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5.0.1 Zusammenfassung  

Schnelle, empfindliche und material-sparende Methoden zur Messung der zytolytischen 

Aktivität natürlicher Killerzellen (NK), eine wichtige Determinante der NK Zell Funktion, 

sind entscheidend für die Analyse der physiologischen Funktion, als auch für die pathologisch 

veränderten Zustände des Immunsystems. Den Goldstandard für die Messung zellvermittelter 

Zytotoxizität stellt das Chromium (51Cr) oder Europium (Eu3+) release assay dar. Allerdings 

stellt die Messung der Zielzelllyse mittels dem 51Cr oder Eu3+ release assay eine 

zeitaufwendige Methode dar und die notwendige Markierung der Zielzellen mit radioaktiven 

Substanzen bedeutet eine drastische Manipulation. Darüber hinaus kommt es aufgrund der 

vielen Zellen, die für den Test benötigt werden, zu hohen Hintergrundwerten. Verschiedene 

andere Methoden zur Messung von Zell Zytotoxizität sind widersprüchlich und weisen 

zahlreiche Mängel auf. Im Verlauf dieser Forschungsarbeit wurde zur Messung der 

zytolytischen Aktivität von Interleukin (IL)-2-aktivierten NK Zellen gegen die NK Zell 

sensitive erythroleukämische Zelllinie K562 erstmals die hoch empfindliche gekoppelte 

Lumineszenz Methode (coupled luminescent method (CLM)) etabliert. Diese Methode basiert 

auf der Messung der Glyceraldehyd-3-phosphat-dehydrogenasefreisetzung (G3PDH) aus 

lysierten Zielzellen. Zur Validierung der CLM wurden NK-resistente Neuroblastom (NB) 

Zellen verwendet. Alle getesteten NB Zelllinien (UKF-NB-2, UKF-NB-3, UKF-NB-4 and 

UKF-NB-2rVCR10) wurden durch IL-2 aktivierte NK Zellen lysiert. Im Gegensatz zu 

herkömmlichen Methoden wie 51Cr oder Eu3+, ist es bei der CLM nicht nötig eine 

Vorbehandlung der Zielzellen mit radioaktiven oder toxischen Substanzen vorzunehmen. 

CLM stellt daher eine hochsensible, sichere und materialsparende Methode zur Messung von 

NK Zellen dar. 

 



   
  Zusammenfassung 

 107

Zunächst wurde CLM eingesetzt, um den Effekt von Histon-Deacetylase Inhibitoren 

(HDACi), Suberoylanilid Hydroxam Säure (SAHA) und Valproin Säure auf die zytolytische 

Aktivität IL-2-stimulierter NK Zellen und die Empfindlichkeit parentaler und Cytarabin 

(araC)-resistenter leukämischer Zellen auf NK Zelllyse zu untersuchen.  

 

Die Verwendung von HDACi als Zytostatika zur Krebsbehandlung hat in letzter Zeit große 

Aufmerksamkeit errungen. Klinische Studien haben gezeigt, dass pharmakologisch relevante 

Mengen von HDACi wie SAHA oder VPA  den Patienten sicher verabreicht werden können, 

und dass somit eine Behandlung von Krebs möglich ist. Die antitumorale Aktivität von 

HDACi liegt dabei in der direkten Wirkung auf Tumorzellen, indem diese die Hemmung der 

unkontrollierten Zellteilung bewirken, sowie Apoptose induzieren. Außerdem können HDACi 

das Tumorwachstum durch Inhibierung der Angiogenese und Zunahme der Immunogenität 

der Tumorzellen beeinflussen. Jedoch wurde noch nichts über den direkten Effekt von 

HDACi  auf NK Zell Aktivierung beschrieben.   

 

Im Rahmen dieser Forschungsarbeit wurde festgestellt, dass SAHA und VPA in therapeutisch 

relevanten Konzentrationen die Zytotoxizität von NK Zellen gegen Tumorzellen inhibieren. 

Diese Inhibierung war sowohl assoziiert mit einer Abnahme der Oberflächenexpression und 

Funktion der NK Zell aktivierenden Rezeptoren NKp30 und NKp46 (natürliche zytotoxische 

Rezeptoren, NCR) als auch mit einer beeinträchtigten granulären Exozytose und Inhibierung 

der Interferon Gamma (IFN-γ) Produktion. Die Nuclear factor kappa B (NFκB) Aktivierung 

in IL-2-aktivierten NK Zellen wurde durch beide HDACi inhibiert.  Die pharmakologische 

Inhibierung der NFκB Aktivität zeigte ähnliche Effekte in der NK Zellaktivität wie mit 

HDACi. Diese Ergebnisse demonstrieren zum ersten Mal, dass HDACi über eine 

Herabregulierung von NK Zell aktivierenden Rezeptoren, vermutlich durch Inhibierung der 

NFĸB Aktivierung, die NK Zytotoxizität erniedrigen.  
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VPA und andere HDACi werden als Behandlungsmöglichkeiten für Leukämien und 

Myelodysplastische Syndrome in Betracht gezogen und neueste Untersuchungen zeigen erste 

therapeutische Effekte bei bestimmten Leukämieformen. Darüber hinaus wurde kürzlich 

Vorinostat (SAHA) zur Therapie des kutanen T-Zelllymphoms (CTCL) zugelassen. 

Andererseits wurden unter VPA-Therapie myelodysplastische Veränderungen im 

Knochenmark und akute Leukämien beobachtet. Es wird vermutet, dass eine VPA-Therapie 

durch zunehmenden DNA Schaden aufgrund einer chronischen Inhibierung durch HDAC, zu 

einer sekundären Leukämie führen kann. Weiterhin wurde bewiesen, dass bei akuter 

myeloischer Leukämie (AML) NK Zellen eine geringe Expression von NCR zeigen. Die 

Insuffizienz der NCR-Liganden Interaktionen wird als Ursache für die erniedrigte 

Empfindlichkeit der leukämischen Blasten gegenüber der autologen NK Zell induzierten Lyse 

angenommen. Es kann angenommen werden, dass die VPA induzierte Herabregulierung von 

NCR zu einer defizienten Immunkontrolle durch NK Zellen führt und so zur Entstehung von 

Leukämien durch die VPA Therapie beitragen könnte. Von Interesse ist weiterhin die 

Tatsache, dass SAHA, ein weit potenterer Inhibitor von HDAC ist als VPA. SAHA ist ein 

stärkerer Inhibitor der INF-γ Produktion, der granulären Freisetzung, der NFĸB Aktivierung, 

der NCR Expression und unterdrückt die lytische NK Zellaktivität gegen leukämische Zellen 

stärker. Es wird also erforderlich sein, besonders mit behandelten Patienten weitere Studien 

durchzuführen, um die vielfältigen Einflüsse der HDACi auf die NK Zellaktivität zu 

verstehen.  

 

Zahlreiche experimentelle Studien haben belegt, dass die Medikamentengaben nicht nur 

Resistenzen induzieren, sondern auch andere Eigenschaften der Tumorzellen im Bezug auf 

Wachstum, invasives Verhalten und die Immunogenität verändern. Erworbene Resistenzen 

gegen Medikamente bei leukämischen Zellen, aufgrund einer Vorbehandlung mit Zytostatika, 

beeinflussen die Sensitivität der leukämischen Zellen  gegenüber der zytotoxischen Aktivität 
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der NK Zellen. Während einige Veröffentlichungen eine Abnahme der Sensitivität von 

chemoresistenten Leukämie Zellen gegenüber der zellulären Zytotoxizität vorweisen,  

konnten Posovszky et al. (1999) zeigen, dass Chemotherapeutika wie araC, pre-B akute 

lymphoblastische Leukämie (ALL) - Zellen für CD95 - und zytotoxische  T Lymphozyten 

vermittelte Apoptose sensibilisieren. Neuere Studien konnten zeigen, dass NK Zellen durch 

die Bindung von Rezeptoren zytolytische Aktivität entfalten, die in NK Zellaktivierung und 

Inhibierung involviert sind. NK Zellen sind in der Lage Zielzellen spontan und ohne 

vorausgegangenen Stimulus abzutöten. Darüber hinaus ist eine Aktivierung der NK Zellen 

über eine empfindliche Balance zwischen den transduzierten Signalen durch inhibitorische 

Rezeptoren (KIR, CD94-NKG2A) und aktivierende Rezeptoren (NCRs - NKp30, NKp44, 

NKp46, NKG2D und DNAM-1) reguliert. Zudem wurde die Bedeutung des NKG2D/NKG2D 

Liganden Systems als Überwachungsmarker für die Immunität von leukämischen Zellen 

beschrieben. Salih et al. (2003) berichteten, dass Leukämiezellen von Patienten 

verschiedenartiger Haupthistokompatibilitätskomplexe der Klasse I (MHC-I) verwandte A/B-

Ketten (MICA/B) und UL16 Binding Protein (ULBP) exprimieren. Sie zeigten außerdem eine 

NKG2D abhängige NK-induzierte Zelllyse leukämischer Zellen. 

 

In dieser Forschungsarbeit wurde wiederum erstmals gezeigt, das T Zell Leukämie Zelllinien, 

die zuvor mit araC behandelt wurden und eine Chemoresistenz erlangten, weitaus sensibler 

gegenüber den NK Zellen - Attacken waren, als parentale, unbehandelte Zellen. Diese Effekte 

sind nicht direkt der Wirkung von araC auf den Zellmetabolismus zuzuschreiben, sondern 

eher einer Selektion der Zellen, deren Empfänglichkeit für NK Zellen verändert ist. Die 

resistenten Zellkulturen, die bis zu zehn mal in medikamentenfreien Medium passagiert 

wurden, konnten durch die NK Zellen in einem größeren Ausmaß lysiert werden, als die 

parentale Zellpopulation.  



   
  Zusammenfassung 

 110

Die erhöhte Sensitivität war assoziiert mit einer gesteigerten Oberflächenexpression der 

Liganden für die NK Zell aktivierenden Rezeptoren NKG2D, besonders ULBP-2 und ULBP-

3  in araC-resistenten H9 und Molt-4 Zelllinien. Die Blockade von ULBP-2 und ULBP-3 oder 

NKG2D  durch monoklonale Antikörper  inhibierte die NK Zell-vermittelte Lyse. Die 

konstitutive Aktivierung der extrazellulären Signal-regulierten Kinase (ERK), aber nicht 

AKT, war höher in araC-resistenten Zelllinien als in parentalen Zelllinien. Eine Inhibierung 

von ERK durch den ERK Inhibitor PD98059 führte zu einer Abnahme der Expression von 

ULBP-2 und ULBP-3 und der NK Zell Zytotoxizität. Diese Ergebnisse deuten darauf hin, 

dass eine erhöhte Sensitivität von araC-resistenten leukämischen Zellen gegenüber einer NK 

Zell-vermittelten Lyse darauf zurückzuführen ist, dass die durch einen aktivierten ERK 

Signaltransduktionsweg ausgelöste Expression von NKG2D Liganden hochreguliert wird. 

 

Möglicherweise ist die Induktion der NKG2D Liganden, die die Empfindlichkeit  der Zellen 

gegenüber dem Immunsystem erhöht, Teil der Wirksamkeit von Chemo - und Radiotherapien. 

Dies favorisiert den Einsatz einer frühen autologen NK Zellimmunotherapie, anschließend an 

eine therapeutische Chemotherapie bei Patienten die an einer hämatologischen 

Krebserkrankung leiden. Weiterhin zeigen die Daten für araC-resistente leukämische Zellen, 

dass eine Resistenzentwicklung von Krebszellen gegenüber Chemotherapeutika, mit einer 

erhöhten Immunogenität der malignen Zellen einhergehen kann. Da diese Veränderungen 

nach Beendigung der Behandlung bestehen bleiben, ist es von Interesse aufzuzeigen, ob das 

Auftreten von chemotherapieresistenten Tumor Klonen mit erhöhter Sensitivität für NK Zell-

vermittelte Lyse ebenfalls bei Patienten auftritt, die unempfindlich gegenüber bekannten 

Therapien mit araC oder anderen Chemotherapeutika geworden sind. Der Pathway, der zu 

einer Hochregulierung der NKG2D Liganden führt, ist viel versprechend für die Suche nach 

Zielen für das Design von therapeutischen Mitteln, um die Immunogenität von 

transformierten Zellen zu verstärken und die  Toxizität zu reduzieren.      
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Abbreviations 
ADC Analog to digital converters 
ADCC Antibody-dependent cellular cytotoxicity 
ADP Adenosine diphosphate 
AML Acute myeloid leukemia 
APC Allophycocyanin 
APS Ammoniumpersulphate 
AraC Cytosine arabinoside, cytarabine, 1-β-D-arabinofuranosylcytosine 
AraCDP araC diphosphate 
AraCMP araC monophosphate 
AraCTP araC triphosphate 
ATCC American type culture collection 
ATM Ataxia-telangiectasia-mutated 
ATP Adenosine triphosphate 
ATR ATM-and  Rad-3-related 
ATRA All-trans retinoic acid 
BCL-6 B cell lymphoma-6 
BMT Bone marrow transplantation 
BSA Bovine serum albumin 
cAMP Cyclic adenosine monophosphate 
CD Cluster of differentiation 
cDNA Complementary DNA 
CML Chronic myeloid leukemia 
CO2 Carbondioxide 
51Cr Chromium 
Ct Cycle-threshold 
CTCL Cutaneous T cell lymphoma 
dCK Deoxycytidine kinase 
DC Dendritic cells 
DCSign DC-specific intercellular molecule 3-grabbing nonintegrin 
DEPC Diethylpyrocarbonate 
DMF Dimethylformamide 
DMSO Dimethylsulfoxide 
DNA Deoxyribonucleic acid 
DNAM-1 DNAX accesorry molecule-1 
DPG Diphosphoglycerate 
DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen 
dUTP Deoxyuridine triphosphate 
ECL  Enhanced chemiluminescence 
EDTA Ethylenediaminetetraacetic acid 
ELISA Enzyme linked immunosorbent assay 
eNOS Endothelial nitric-oxide synthase 
ERK Extracellular signal-regulated kinase 
Eu3+ Europium 
FACS Fluorescent activated cell sorter 
FBS Fetal bovine serum 
FITC Fluorescein isothiocyanate 
FSC Forward angle light scatter 
g Gram 
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g Relative centrifugal  force (RCF) 
G3P Glyceraldehyde-3-phosphate 
G3PDH Glyceraldehyde-3-phosphate dehydrogenase 
GPI Glycosylphosphatidylinositol 
GPL G3PDH/Phosphoglycerokinase/luciferase 
GVL Graft versus leukemia 
h Hour 
H2O Water 
H2O2 Hydrogen peroxide 
HAT Histone acetyltransferase 
HCl Hydrochloric acid 
HDAC Histone deacetylase 
HDACi Histone deacetylase inhibitors 
hENT1 Human equilibrative nucleoside transporter 
HIF1 Hypoxia inducible factor 1 
HLA Human leucocyte antigen 
IC Inhibitory concentration 
ICAM-1 Intercellular cell adhesion molecule-1 
IFN Interferon 
IgG Immunoglobulin 
IL-2 Interleukin-2 
IMDM Iscove’s modified dulbecco’s medium 
IRF IFN regulatory factor 
ITAM Immunoreceptor tyrosine-based activating motif 
ITIM Immunoreceptor tyrosine-based inhibitory motif 
kD Kilo dalton 
KIR Killer inhibitory receptor 
LDH Lactate dehydrogenase 
LFA-1 Leucocyte function antigen-1 
LPS  Lipopolysaccharide 
M Molar 
mAb Monoclonal antibody 
MACS Magnetic associated cell sorting 
MAPK  Mitogen activated protein kinase 
MDR Multidrug resistant 
MDS Myelodysplastic syndrome 
MgCl2 Magnesium chloride 
MHC Major histocompatibility complex 
MICA MHC class I chain-related molecule A 
MICB MHC class I chain-related molecule B 
Min  Minute 
ml Milliliter 
mM Millimolar 
mRNA Messenger RNA 
mTOR Mammalian target of rapamycin 
NaCl Sodium chloride 
NAD+ Nicotinamide adenine dinucleotide oxidized form 
NADH Nicotinamide adenine dinucleotide reduced form 
NaHCO3 Sodium hydrogen carbonate 
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NB Neuroblastoma 
NCAM Neural cell adhesion molecule 
NCR Natural cytotoxicity receptor 
NFκB Nuclear factor kappa B 
NK Natural killer 
NKG2A Natural killer group 2A 
NKG2D Natural killer group 2D 
NKp Natural killer protein 
nm Nanometer 
NO Nitric oxide 
NP-40 Nonidet 40 
NT Nucleoside transporter 
PAGE Polyacrylamide gel electrophoresis 
PBMC Polyclonal blood mononuclear cell 
PBS Phosphate buffered saline 
PCR Polymerase chain reaction 
PE Phycoerythrin 
PG Phosphoglycerate kinase 
PI Propidium iodide 
PI3K Phosphatidylinositol-3-kinase 
PIM Protease inhibitor mix 
PMT Photo multiplier tube 
PVR Polio virus receptor 
RNA Ribonucleic acid 
ROS Reactive oxygen species 
RT-PCR Reverse transcriptase polymerase chain reaction  
SAHA Suberoylanilide hydroxamic acid 
SAP Signaling lymphocyte activation molecule-associated protein 
SB Sodium butyrate 
SD Standard deviation 
SDS Sodium dodecyl sulphate 
SSC Sideward scatter 
STAT Signal transducers and activator of transcription 
TAP Transporter associated with antigen processing 
TBP2 Thioredoxin protein 2 
TEMED N,N,N’,N’-Tetramethylethylenediamine 
TNF Tumor necrosis factor 
TRAIL Tumor necrosis factor related apoptosis inducing ligand 
TSA Trichostatin A 
TUNEL Terminal deoxynucleotidyl transferase dUTP nick-end labeling 
U Unit 
ULBP UL16 binding protein 
VCR Vincristine 
VEGF Vascular endothelial growth factor 
VPA Valproic acid 
vs Versus 
XLP X-linked lymphoproliferative  
°C Degree celcius 
µg Microgram 
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µl  Microliter 
µm Micrometer 
µM Micromolar  
% Percent 
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