MECHANISMS OF EUKARYOTIC DNA RECOMBINATION

Edited by

MAX E. GOTTESMAN HENRY J. VOGEL

College of Physicians and Surgeons Columbia University New York, New York

Contents

PART I TARGETED DNA INTEGRATION IN MAMMALIAN CELLS

1 Chromatid Interactions during Intrachromosomal Recombination in Mammalian Cells

RONI J. BOLLAG AND R. MICHAEL LISKAY

Introduction	3
Results and Discussion	5
Conclusion	12
References	13

2 Studies on Extrachromosomal Homologous Recombination in Mammalian Cells: Implications for Chromosomal Recombination and Gene Targeting

MICHAEL LIN, KAREN SPERLE, AND NAT STERNBERG

Introduction	15
Results	17
Discussion	25
References	27

3 Homologous Recombination in Embryonic Stem Cells as a Means to Generate Mice with Defined Mutations

ANDREAS ZIMMER, ZHAO-QI WANG, ERWIN F. WAGNER, AND PETER GRUSS

Introduc	tion
General	Strategy

29 30

.

xi

CONTENTS

Microinjection of Mutated Hox-1.1 Fragments into Embryonic Stem Cells	32
Cloning of Homologous Recombined Cell Lines	34
Generation of Chimeric Animals with Homologously Recombined Cells	36
Discussion	37
References	39

1

4 Identification and Targeted Mutation of Developmental Genes in Mouse Embryonic Stem Cells

J. ROSSANT, A. COSSLER, C. MOENS, W. C. SKARNES, AND A. JOYNER

Introduction	41
Embryonic Stem Cell Technology	43
Identification of New Domains of Gene Action in Developing Embryos	43
Targeted Mutation of Cloned Genes	46
Problems and Prospects	49
References	50

PART II DNA INSERTION PHENOMENA

5 Developmental Mutations Generated by Retroviral Insertional Mutagenesis

DOUGLAS A. GRAY, HANS WEIHER, THOMAS GRIDLEY, TETSUO NODA, ARLENE SHARPE, AND RUDOLF JAENISCH

Introduction	55
Results and Discussion	56
Summary and Conclusion	57
References	58

6 Transfer of Yeast Artificial Chromosomes into Cultured Cells: A New Method for Manipulating the Mammalian Genome

VASSILIS PACHNIS, LARYSA PEVNY, RODNEY ROTHSTEIN, AND FRANK COSTANTINI

Introduction	61
Results	62
Conclusions and Future Prospects	66
References	67

7 Sex-Dependent *de Novo* Methylation of the Transgene and Its Insertional Locus on Mouse Chromosome 13

X. WU, M. HADCHOUEL, H. FARZA, L. AMAR, AND C. POURCEL

Introduction	69
Results	70
References	73

8 A Role for Transcription in Antibody Switch Recombination

JOHANNA A. CRIFFIN AND MARY E. REABAN

Introduction	75
Results and Discussion	77
Model for the Mechanism of Switch Recombination	81
References	82

PART III GENETIC RECOMBINATION IN DROSOPHILA AND CAENORHABDITIS

9 Genetic and Molecular Studies of a Simple Meiotic System

R. SCOTT HAWLEY AND ANNE E. ZITRON

Introduction	87
Partner Choice and the Nature of Distributive Pairing	88
The Segregation of Nonexchange Chromosomes	94
Summary	96
References	97

10 Diversity among *Drosophila* Transposable Elements and in Their Effects on Gene Expression

STEPHEN M. MOUNT

Introduction	99
Classes of Transposable Elements	100
Regulation of Element Activity	105
Alteration of Gene Expression	106
Summary	109
References	109

11 Meiotic Recombination in Caenorhabditis elegans

A. M. ROSE AND K. S. McKIM

Introduction	113
Homolog Recognition	/ 113
Pairing and Recombination	115
Frequency of Recombination	117
Distribution of Recombination Events along the Chromosome	118
Disjunction	122
Summary	123
References	124

PART IV GENETIC RECOMBINATION IN YEASTS AND USTILAGO

12 Saccharomyces cerevisiae Proteins That Promote Hybrid DNA Formation in Vitro

RICHARD D. KOLODNER, ERIC ALANI, WOLF D. HEYER, ARLEN W. JOHNSON, ~ DAVID N. NORRIS, AND DAN TISHKOFF

Introduction	128
The Strand-Exchange Protein, SEP1, from Saccharomyces cerevisiae	130
Additional Factors Involved in Hybrid DNA Formation in Vitro	133
Mr 34,000 Single-Stranded DNA-Binding Protein	
[Fragment of yRPA (yRFA)]	133
Stimulatory Factor 1	136
Discussion	137
References	140

13 Gap Repair *in Vitro* Catalyzed by Cell-Free Extracts from Yeast -

LORRAINE S. SYMINGTON

Introduction	143
Results and Discussion	145
References	153

14 Meiotic Recombination in Schizosaccharomyces pombe: Genes, Enzymes, and Sites

GERALD R. SMITH AND ALFRED S. PONTICELLI

Introduction	155
Genes	156

Enzymes		160
Sites		161
Summary	1	165
References		165

15 Genetics and Molecular Biology of Recombination

ROBIN HOLLIDAY

Introduction	167
Recombination and Heteroduplex DNA	168
Mutants Defective in Recombination	172
Recombination Proteins	173
Molecular Analysis	174
References	175

PART V GENETIC RECOMBINATION IN TRYPANOSOMES AND PLASMODIUM

16 Chromosome and Telomere Structure in Trypanosoma brucei

LEX H. T. VAN DER PLOEG, KEITH GOTTESDIENER, DORIS B. TSE, HUI-MIN CHUNG, AND MICHAEL WEIDEN	
Introduction	1 79
Organization of the Trypanosoma brucei Genome; Presence of Chromosome	
Homologs	180
Minichromosome Structure	183
Concluding Remarks	186
References	186

17 Use of DNA Sequence Homology and Pseudogenes for the Construction of Active Variable Surface Antigen Genes in *Trypanosoma equiperdum:* How Ordered Expression Is Established

HARVEY EISEN

Introduction	189
Early- and Late-Appearing Variable Surface Clycoproteins	190
Early Genes Have Complete Silent Copies, whereas Late Silent Copy	
Genes Are Defective	190

CONTENTS

The Use of DNA Sequence Homology to Generate Ordered Expression	
of the Late-Appearing Variable Cell Surface Glycoprotein Genes	191
5-3 Joining	193
A Possible Molecular Mechanism for Late-Variable Surface Clycoprotein	
Expression-Linked Copy Formation	194
Why Pseudogenes?	194
References	195

18 Chromosomal Size Variations in *Plasmodium* falciparum

ALAN F. COWMAN AND DAVID J. KEMP

Introduction	197
Intragenic Recombination in a Major Antigen of Plasmodium falciparum	199
Size Polymorphisms in Plasmodium falciparum Chromosomes	199
Chromosome Size Polymorphisms Generated by Deletion of	
Subtelomeric Repeats	201
Deletions Involving Coding Sequences	203
The Multidrug Resistance Gene of <i>Plasmodium falciparum</i> and Chromosome	
Size Polymorphisms	204
Conclusion	206
References	207

Index

.

~

209