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Abstract 

 
In the wake of climate change, the release of CO2 into the atmosphere caused by deforestation and 

destruction of natural ecosystems is predominantly in the focus of research. In particular, the 

determination of the carbon content and its monitoring by remote sensing and Geographic Information 

Systems (GIS) has been pushed forward in recent years, mainly in tropical areas, and on a small scale. 

For floodplains and wetlands, which have a very high content of carbon in soil and vegetation, also in 

temperate climates, the methods for large-scale mapping of carbon have yet been scarce. The main 

goal of this thesis was to determine the carbon content of a Central European floodplain, using very 

high resolution satellite data and additional spatial information (digital elevation model, topographic 

and historic maps, ground water model). Parameters were derived from the different datasets, and used 

for spatial modeling and compared in their significance. In particular, the remote sensing parameters, 

but also the additional data were to be analyzed for their importance to the modeling process. Three 

different approaches were used for modeling and mapping. In a first approach, vegetation types were 

classified with object-based image analysis, using varying classification rules. To each class, a specific 

value in vegetation and soil carbon content was assigned; hence, the carbon content of the study area 

was calculated. In a second approach, quantile classes with high, medium and low carbon content in 

vegetation, soil and in total were defined. A combined method of object-based image processing and 

machine learning techniques were used to generate rule sets; the individual parameters were compared 

and assessed in their importance for the carbon estimation. In a third approach, the performance of two 

machine-learning approaches (self-organising maps, and k-nearest-neighbor algorithm) with two 

different data combinations was evaluated. The various approaches differ in their methods, but they 

are all feasible for carbon assessment in a Central European floodplain. The use of additional spatial 

information improved the results compared to a pure remote sensing analysis. The methods are 

applicable for other areas on a comparable data basis and have potential for future applications. The 

work represents a contribution to the evaluation of floodplain systems and wetland systems in general. 





iii 

 

Zusammenfassung 

 

Im Zuge des Klimawandels ist die Freisetzung von CO2 in die Atmosphäre durch Abholzung und 

Zerstörung natürlicher Ökosysteme verstärkt in den Fokus der Forschung geraten. Insbesondere die 

Bestimmung des Kohlenstoffgehalts und dessen Überwachung mittels Geoinformationssystemen 

(GIS) und Fernerkundung wurde in den letzten Jahren verstärkt vorangetrieben, jedoch meist für 

tropische Ökosysteme, und im kleinen Maßstab. Für Augebiete und Feuchtgebiete generell, die auch 

in gemäßigten Klimazonen einen sehr hohen Kohlenstoffgehalt in Boden und Vegetation aufweisen, 

fehlten bisher die Methoden für großmaßstäbige Bestimmungen und Kartierungen des Kohlenstoffs. 

Ziel dieser Dissertation war die Bestimmung des Kohlenstoffgehalts eines mitteleuropäischen 

Augebietes mit Hilfe von sehr hochauflösenden Satellitendaten und zusätzlichen Geodaten (Digitales 

Geländemodell, topographische und historische Karten, Grundwassermodell). Aus den verschiedenen 

Datensätzen wurden Parameter abgeleitet, zur räumlichen Modellbildung verwendet und in ihrer 

Bedeutung verglichen. Besonders die Parameter der Fernerkundung, aber auch der 

Zusatzinformationen sollten dabei auf ihre Wichtigkeit für den Modellbildungsprozess analysiert 

werden. Dabei wurden drei verschiedene Ansätze zur Modellierung und Kartierung verwendet. Im 

ersten Ansatz wurden mittels objektbasierter Bildanalyse Vegetationstypen mit variierenden 

Klassifikationsregeln klassifiziert. Den Klassen wurden bestimmte Kohlenstoffwerte in Vegetation 

und Boden zugewiesen, und der entsprechende Kohlenstoffgehalt des Gebietes errechnet. Im zweiten 

Ansatz wurden Quantilsklassen mit hohem, mittlerem und niedrigem Kohlenstoffgehalt in Vegetation, 

Boden und in der Gesamtmenge gebildet. Ein kombiniertes Verfahren aus objektbasierter 

Bildverarbeitung und maschinellen Lernen wurde verwendet; anschließend wurden die einzelnen 

Parameter in ihrer Bedeutung miteinander verglichen. Im dritten Ansatz wurde die Leistung von zwei 

Ansätzen maschinellen Lernens (Self-Organising-Maps und k-Nearest-Neighbour), mit zwei 

verschiedenen Datensatzkombinationen evaluiert. Die einzelnen Ansätze unterscheiden sich in ihrem 

Vorgehen, jedoch eignen sie sich alle für die Kohlenstoffabschätzung in einem mitteleuropäischen 

Augebiet. Die Verwendung zusätzlicher Geodaten hat die Ergebnisse im Vergleich zu einer reinen 

Fernerkundungsanalyse verbessert. Die Methoden sind übertragbar bei einer vergleichbaren 

Datengrundlage und haben Potential für zukünftige Anwendungen. Die Arbeit stellt einen Beitrag zur 

Bewertung von Ausystemen dar. 
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1  The role of carbon in the context of climate change 

 

In the 20th century, especially in the last 50 years, global temperatures are rising, due to the 

massive setoffs of carbon into the atmosphere in the form of CO2 and other greenhouse gases 

(GHG), such as H2O, CH4, N2O and O3. The rising temperatures have manifold of 

consequences, the majority of them negative. Even though there may be positive side effects, 

for instance areas formerly too cold and forbidding for agriculture will in the future be usable 

for crop plantations and specialized crops of higher value, and agricultural use may shift 

towards higher latitude and altitude. However, there will be a plethora of negative side effects. 

The change of regional and local precipitation and temperature regimes causes droughts, 

flooding, thunderstorms, heat-waves but also locally extended periods of extended frost and 

winter. All of these events have a high impact on global and local ecosystems,  such as the 

reduction of biodiversity through the extinction of species, but also on primary sector 

economy such as fishing, farming, forestry but also the entire economy, health sector and 

human livelihood (IPCC 2000). 

Among the contributors of CO2 we have to mention human activities including the 

combustion of fossil fuels (such as coal, wood, petrol, and gases) to generate energy (for 

instance through traffic, heating or generation of electricity), but especially the deforestation 

and destruction of other natural habitats. The reasons of deforestation and degradation of 

ecosystems can be manifold and polycausal. 

Deforestation may result from intended lumbering such as traditional transhumance or 

shifting cultivation in small scale in tropical and subtropical countries, which has been 

practiced by traditional indigenous societies since millennia. It may even be a sustainable way 

of agriculture without long-term impacts, if population numbers are not exceeding and the 

recreation period for forests is long enough. In contrast, modern agriculture uses intensive 

cultivation methods, e.g. soy plantations in Southern America, or palm oil plantations in 

South-East-Asia (Gibbs et al. 2010), have severe impacts onto primary rain forests. Also the 

conversion to crop forest or timber wood plantations with invasive species such as eucalyptus 

(Liao et al. 2010), or Monterey pines pinus radiata; (Wharton and Kriticos 2004; Farley et al. 

2004) may cause a intense damage for water balances, soils and natural biodiversity, in 

tropical and non-tropical environments. While some practices are done with official license 
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and a certain degree of control, deforestation resulting from wrong harvest techniques and 

exceeding demands of timber- and firewood, such as clear felling, additionally the collection 

of dead wood, and especially illegal logging practice is a further menace to primary forests. 

Besides voluntary damages, also unintended damages through pollution may lead to forest 

decline. Besides human impacts, deforestation (with smoldering long-term reforestation) may 

also be the outcome of natural disasters such as volcano eruptions, sceletonizing by animals 

and natural forest fires. 

Besides the emissions of GHG, especially CO2, and the thus triggered climate change,  

deforestation and degradation processes have severe impacts on ecosystem services such as 

biodiversity, soil and water balances, and thus the loss of forests can expedite erosion, 

landslides, droughts, desertification, reduced fertility and the more. Among the most 

destructive ones are inundations (Opperman et al. 2009). Therefore, the protection of natural 

forest habitats and the afforestation of cleared areas are strongly envisaged by the 

international community. 

The issue of climate change is focused by a variety of conventions, programs and initiatives, 

among many others the United Nations Framework Convention on Climate Change 

(UNFCCC) in 1992, the Kyoto Protocol in 1997. Developed countries that have ratified the 

Kyoto Protocol commit to limit net GHG and to report their annual greenhouse gas balance 

according to the rules as elaborated in the IPCC Good Practice Guidance for Land Use, Land-

use Change and Forestry (IPCC 2003). 

For the sector of carbon sequestration in forestry, the programme REDD (Reducing emissions 

from deforestation and forest degradation) was established in 2007 at the UN conference in 

Bali. It shall serve as an instrument of climate protection in order to create attractive 

compensations for the protection of large-scale forests. Besides tropical rain forests, REDD 

aims at the protection of e.g. boreal taiga forests in the Northern hemisphere, as they provide 

the largest continuous forest zones on earth. While the basic idea of REDD is to pay 

compensations to national states or local organizations for forest protection measures, the 

overhauled concept "REDD+" additionally includes sustainable forestry management 

practices as well as the improvement of living conditions and the inclusion of so far 

unprotected forest areas into the REDD mechanisms. On a political base, REDD and REDD+ 

are seen as a model in the wake of the UNFCCC. However, sensitive issues and concepts of 
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REDD and REDD+ are still not defined, e.g. as to which degree a secondary forest or even a 

forest plantation can be regarded equal as a primary or protected forest. The missing 

definition in the REDD mechanism implies the high risk that non-sustainable plantations may 

not be regarded as a deforestation, but as a conventional forest, thus making the agreement 

futile.  

While some non-government organizations (NGOs) support the implementation of REDD as 

a contribution to the mitigation of deforestation of primary forests, other NGOs criticize 

REDD and REDD+. In addition to unclear definitions, deforestation is only slowed down but 

not prevented, and the commercialization of forests inspires a knotty international carbon 

market with companies benefiting from cheap certificates and restrictions and bypasses for 

traditional indigenous societies that have traditional sustainable management practices and 

spiritual attachments to their forests.  There is also a debate whether REDD strategies might 

increase pressure on areas with high biodiversity (Strassburg et al. 2010; Asner et al. 2010). 

The successful implementation of policies (such as REDD or REDD+) to reduce GHG 

emissions caused by deforestation especially in developing countries requires effective and 

reproducible forest monitoring systems. They should provide consistent results, meet 

standards for mapping accuracy and shall be implementable from national inventories to pan-

tropical levels (Achard et al. 2007).  

In developed countries, the need for carbon inventories has been recognized. Yet there are no 

obligatory regulations on a national level or legal frameworks on Corg inventories in forests 

and specific habitats such as wetlands and floodplain forests. The issue of carbon 

sequestration is at stake in national forest inventories, e.g. in Germany (BVEL 

(Bundesministerium für Verbraucherschutz 2005), or in Austria (Federal Ministry of 

Agriculture 2008) or Canada (Kurz and Apps 2006). Within landscape planning, it is the aim 

to protect of climate (Schutzgut Klima) within the German environmental planning laws to 

reduce CO2 emissions, yet there is no specification on the monitoring or mapping of Corg 

stocks (Haaren 2004).  
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2 Global research on carbon stocks in floodplains 

 

Carbon stocks in forests, especially in tropical rain forests and boreal taiga forests, are of 

undeniable global importance. Nevertheless, also small-area ecosystems in temperate climates 

make an important contribution (on a local or regional base) to the sequestration of carbon. 

Comparing different ecosystems, floodplains (especially including riparian forests and their 

soils) exhibit a particularly high storage capacity for Corg (up to 474 Mg C ha
-1

; Cierjacks et 

al. 2010, 2011) 

In a comparison on a hectare base, storage capacities of other ecosystems (tropical rainforests 

in general: 243 Mg C ha
-1

; temperate forests in general 147 Mg C ha
-1

; boreal forests: 408 Mg 

C ha
-1

; IPCC 2000) are even of minor importance in comparison to floodplains. As a 

consequence, floodplains, especially with the combination of riparian forests, can be regarded 

to have a crucial function in the global carbon cycle and climate change.  

Besides focusing on Corg stocks in vegetation, it is essential to pay attention towards the 

sequestration in soils, which in many cases dominate Corg pools, as shown globally (Kooch et 

al. 2012; Lal 2005) and within Europe (Baritz et al. 2010; Harrison et al. 1995; Hofmann and 

Anders 1996). Soil sequestration is higher in terms of quantity, but also longer in terms of 

time, and crucial for the global climate (Stockmann et al. 2013). Comparing the global storage 

in vegetation, soil, and deadwood, there is a shift of the importance of organic matter and thus 

organic carbon in soils increasing from tropical climates to boreal climates, while the 

importance of organic matter and especially carbon in vegetation decreases from tropical 

forests to boreal forests. 

In general, floodplains are among the most important providers of eco-system services in 

general, second only to estuaries in terms of value per hectare (Costanza et al. 1997). Natural 

floodplains are among the most biologically productive and diverse ecosystems on earth. 

Globally, there are about 2,000,000km² of floodplains, however they are highly threatened 

(Tockner and Stanford 2002; Ward et al. 2002). 

In particular, floodplains are famous for their high biodiversity. They often form a habitat for 

rare and endangered species, regarding fauna (Bonn et al. 2002; Rothenbücher and Schaefer 

2005; Adis and Junk 2002), and flora (Rotach 2004; Vogt et al. 2006). As riparian areas have 
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the natural function to balance inundations after snow melts in spring or heavy rain falls, the 

landscape was shaped over millennia into old river arms, oxbow lakes, ponds and a high 

variety of biotopes and habitats. Shiel et al. (1998) investigated the biodiversity in floodplains 

in Australia, Agostinho et al. (2005) in Brazil and Schindler et al. (2013) in general. 

Besides riverine floodplains, there also other wetland ecosystems are well-known for their 

high rank in ecosystem services (Costanza et al. 1997); the Ramsar convention differentiates 

between marine wetlands (including coastal lagoons, rocky shores and coral reefs), estuarine 

(including deltas, tidal marshes and mangrove swamps), lacustrine (i.e. wetlands associated 

with lakes), and palustrine wetlands (marshes, swamps and peat bogs). There are many 

studies of these semi-aquatic - semi-terrestrial ecosystems indicating a high sequestration 

potential for Corg (Mitra et al. 2005; Mitsch et al. 2012; Hoffmann et al. 2009). Values range 

up to 1023 Mg C ha
-1

 in mangrove areas (Donato et al. 2011) and even up to 1450 Mg C ha
-1

 

in peat land areas (Parish et al. 2008).  

Unfortunately, few floodplain habitats are left in their original state within temperate zones, 

especially in Central Europe (Krause et al. 2011). They have been (and still are) transformed 

by human activities since centuries, e.g. through the construction of settlements, conversion to 

farmland, exaggerated river regulation and stream straitening. The reasons are to be found in 

the high fertility of riparian soils, a location near the river favorable for human activities such 

as traffic, industry, commerce and settlements.  

Consequently, the conversion of floodplains exposes settlements, infrastructure and 

agricultural areas at a high menace. There are many historic and current examples, where 

measures of imprudent site planning and floodplain conversion into other land uses have lead 

in the case of extreme rainfalls to natural flooding disasters, including human losses and 

considerable impacts onto local infrastructure and large-scale economies (Mitchell 2003). 

Additionally to the loss of the protector function from inundations, and the obvious loss of 

biodiversity, the alteration of floodplains also leads to high releases of carbon (Mitra et al. 

2005; Jaramillo et al. 2003).  

Floodplains are not only at risk through direct anthropogenic impacts such as land 

transformations; also the indirect effects of climate change may impose a threat to riparian 

zones. River discharge quantities may alter with declining precipitations and increasing 
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temperatures; this may modify soil conditions and vegetation growth and cause a decline in 

the carbon storage capacity of floodplains. 

Fortunately, there are endeavours to remediate the negative impacts (Zedler 2003; Kreibich 

and Thieken 2009; Petrow et al. 2006),  first examples of successful dismantling measures to 

free the river bed again and to provide sufficient space for inundations and to expand natural 

inundation zones. as well as the planned management of floodplains (Baptist et al. 2004; 

Stammel et al. 2011; Tockner et al. 1998).  

There are highly detailed studies that investigate the function of wetlands as carbon sinks, 

both on the Corg sequestration in specific floodplain habitats, and wetland ecosystems in 

general. Research has been performed based on the hydrological context with the soil carbon 

in coastal floodplains in South Carolina (Giese et al. 2000), or as comparison of N and C 

contents between riparian and upland forests in Ontario (Hazlett et al. 2005). In subtropical 

and tropical wetlands, there has been for instance research on increased carbon stocks in 

rehabilitated mangroves at shrimp farms in Thailand (Matsui et al. 2009), while Mitsch et al. 

(2010) compared carbon dynamics and regional hydrology in Botswana and Costa Rica. 

Grimm et al. 2008 used a random forest analysis to map the Corg potential in soils. Cierjacks et 

al. (2011) rendered statistical models for  the spatial distribution of Corg stocks in vegetation 

and soils of the Danubian floodplain. Rheinhardt et al. (2012) used indicators based on the 

distance to the river to estimate biomass and Corg in a fluvial system in North Carolina.  

Yet, these studies rely on data gathered by cost- and labor-intensive terrestrial surveys. 

Wetland and floodplain areas can be wide-ranging. In most cases they provide only a very 

limited road and path network, due to the periodic inundations, as well as an increased 

protection status. Therefore they may be difficult to access for comprehensive terrestrial 

surveys. To enhance and facilitate the monitoring, particularly for large and/or or less 

accessible wetland and riparian areas, especially with the aim to estimate Corg stocks, 

combined methods of remote sensing, geographic information systems (GIS) and approaches 

of machine learning are promising techniques.  

There is already a number of studies using various types of remote sensing for the analysis of 

wetland and floodplain ecosystems, but not in the context of Corg monitoring. Lidar (light 

detection and ranging) data were used to classify the Mackenzie river delta (Mertes 2002), or 
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riparian cottonwoods in Arizona (Farid et al. 2008). HyMap imaging (spectrometry data) was 

used to assess and predict biodiversity (Kooistra et al. 2008). Landsat data have been used to 

classify Kafue floodplains in Zambia (Munyati 2000) and poplars along the Tarim river in 

Xinjiang, NW China (Thevs et al. 2008).  

Object-based image analysis (OBIA) has been applied to map coastal marshes in Georgian 

Bay (Rokitnicki-Wojcik et al. 2011; Midwood and Chow-Fraser 2010), or the James Bay 

project (Dissanska et al. 2009) in Canada, the Danube floodplain in Austria (Wagner-Lücker 

et al. 2013), or mangrove forests in Senegal (Conchedda et al. 2008). The Amazon basin and 

its adjacent wetlands has been in the special focus, as it represents a huge tropical river 

system; there are examples from Brazil (Evans et al. 2010; Silva et al. 2010) and Peru (Asner 

et al. 2010). Several studies give an overall review for analysis methods of floodplains and 

wetlands based on remote sensing (Adam et al. 2010; Ozesmi and Bauer 2002). 

 

Even though the importance of floodplains for carbon sequestration has been acknowledged 

and proved in terrestrial studies, and various studies about floodplain ecosystems applied 

remote sensing, yet there has been few research on Corg distributions in floodplains using 

remote sensing data, especially for large-scale mapping in smaller ecosystems, especially in 

non-tropical environments. The application of remote sensing, GIS, modelling and data 

mining techniques for the determination of Corg stocks has already a wide range of 

instruments and experiences. 

 

3 Remote sensing and the estimation of carbon stocks 

 

In order to analyze the carbon storage in forests and ecosystems in general, and trace changes 

in carbon storage, the MRV (monitoring, reporting, and verification) system is to ensure that 

guidelines such as REDD are implemented (Obersteiner et al. 2009; Böttcher et al. 2009). 

MRV systems are based on remotes sensing data and forest inventories. 

As mentioned earlier, methods of conventional measurements by terrestrial surveying are 

limited due to time and financial restrictions, especially for large ecosystems such as tropical 

rain forests or taiga forests. In order to get information for large areas, terrestrial 
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measurements have to be interpolated and reinforced by advanced measurements of remote 

sensing, statistics and geoinformation sciences. There have been various research studies, and 

results have already been applied for publications for a broader public such as atlases, policy 

papers etc. Patenaude et al. (2005) give a broad overview.  

Gibbs et al. (2007) describe several data types to delineate carbon stocks: 

-Biome averages (estimating average forest carbon stocks for broad forest categories based on 

a variety of input data sources),  

-Forest inventory (relating ground-based measurements of tree diameters or volume to forest 

carbon stocks using allometric relationships), 

-Optical remote sensors (using visible and infrared wavelengths to measure spectral indices 

and correlate to ground-based forest carbon measurements) 

-Very high spatial resolution (VHSR) airborne optical remote sensors (using aerial photos or 

3D digital aerial imagery  images) to measure tree height, crown area and allometry to 

estimate carbon stocks) 

-Radar (radio detection and ranging) data to measure forest vertically 

-Laser remote sensors (using Lidar to estimate forest height/vertical structure) 

 

Based on these data, Goetz et al. (2009) discern three approaches for the use of remote 

sensing data (and ancillary geodata), to represent spatial distributions of Corg stocks in maps: 

In the simplest method, the 'stratify and multiply' (SM) approach, a single value or a range 

of values is assigned to each class of vegetation type, land cover, or other site characteristics. 

This approach has constraints, owing to the fact that within a given thematic class, there is a 

wide range of biomass and organic carbon and the uncertainties concerning the recognition of 

given classes such as vegetation or land cover types.  

The 'combine and assign' (CA) approach expands the SM approach to a wider range of 

geodata to improve classifications. It has the benefits of using finer spatial units of 

aggregation and applying weighted data layers, as well as the possibility to aggregate values 

and provide them for specific political jurisdictions. But the approach is limited by the same 
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restrictions as the SM approach, especially due to the debatable representativeness of class 

values and challenges of obtaining consistent information as the research area size enlarges.  

The 'direct remote sensing' (DR) approach applies techniques of statistics or machine 

learning and extends satellite measurements directly to maps. It uses the field measurements 

to train a classification algorithm through iterative repeated data analysis in order to develop 

an optimal rule set defining an apt combination of satellite observations for the estimation of 

biomass and carbon and the generation of large-scale maps. Once the rules are optimized for 

training data, they are applied for the entire satellite image. This approach results in 

continuous values for biomass based on easily understandable rules, that can be adapted and 

used for a monitoring framework. 

Carbon distribution is mainly mapped at a national or global level (Groombridge and Jenkins 

2002; UNEP-WCMC 2008), while regional validation is usually not available. Yet there are 

examples of how Corg in local or regional ecosystems have been estimated successfully, such 

as applications for the Amazonian rain forests by a radar approach (Neeff et al. 2005), 

Japanese spruce stands by high-spatial resolution imagery (Awaya et al. 2004), Scandinavian 

forests (Olofsson et al. 2008; Cao et al. 2010; Backéus et al. 2005) or in the UK using Lidar 

data (Patenaude et al. 2004) and several areas across North America (Turner et al. 2004). In 

particular, the use of high spectral resolution data indices such as the Normalized Differenced 

Vegetation Index (NDVI) or the Leaf Area Index (LAI) have proven to be useful tools to 

calculate the gross primary production of Corg (Hilker et al. 2008). 

The detection of Corg stocks in soils by remote sensing methods has been described by 

McBratney et al. (2003) and applied for farming purposes (Wendroth et al. 2003), but the 

focus lay on bare soils or agricultural lands, not forested soils. 

The well-introduced studies (e.g. Baccini et al. 2008, Conchedda et al. 2008, Goetz et al. 

2009) of remote sensing of Corg stocks have their focus mainly on tropical and subtropical 

ecosystems or traditional timber forests. In accordance with the concept of carbon monitoring 

and frameworks such as REDD and MRV and local implementations, it is necessary to 

conceptualize and implement also methods to model Corg stocks in floodplains and riparian 

forest by means of remote sensing and using additional geodata.  
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Although the importance of floodplains for carbon sequestration has been acknowledged and 

proved in field-based studies (Cierjacks et al. 2011, 2012; Mitsch et al. 2012), and there are 

various remote sensing applications for floodplain ecosystems, several academic voids 

prevail; there has been few research on modelling Corg distributions in floodplains using 

remote sensing data. In particular, there has been very little research on large scale-maps, for 

smaller ecosystems in a non-tropical environment. Regarding the specific importance of Corg 

in soils described above, it is necessary to include soils in a comprehensive model along with 

floodplain vegetation at large scale.  

 

4 Research area  

 

4.1 The Danube Floodplains 

Having a length of 2,860 km and a total watershed area of 817,000 km², the Danube river is 

the second largest river in Europe; it is the river with most adjacent countries in the world. 

The mean annual discharge into the Black Sea is about 6,500 m³ s
-1

. Our research has been 

performed in the Danube Floodplain National Park (German: Nationalpark Donau-Auen). 

This national park is situated in the Austrian states/provinces of Vienna and Lower Austria 

(political districts of Gänserndorf, Bruck an der Leitha and Wien-Umgebung); nearest cities 

are the Austrian capital of Vienna, and the Slovak capital Bratislava, both located at the 

shores of the Danube river (fig. I-1). The park stretches along the river for about 35 km and 

has a width of about 3 km, with the river width of about 350m.  

The national park was established in 1996, after a planned hydropower plant in the Hainburg 

floodplain could be avoided by environmental NGOs and a growing public in the early 

1980ies, including the occupation of the Hainburger Au in 1984, forcing the Austrian 

government to withdraw their plans. Previous human impacts were the use as an imperial 

hunting grounds before the 20th century, the construction of a levee or dike in the 19th 

century in order to protect the agriculturally important Marchfeld area north of the floodplain 

from inundations (locally known as Marchfeld- or Hubertusdamm), and the plantation of 

hybrid poplars (Populus x canadensis) in the 1960ies. In the past centuries, the Danube 



Chapter I 

 

13 

 

floodplains have been extending more northwards to the actual city of Vienna; there is a long 

intertwined history of the city and the river (Winiwarter et al. 2013).  

For the Lobau (the Viennese section) there have been also several plans to build a bypass road 

for the city, either in form of a dam (in Napoleonic times) or a tunnel in a current version. 

After the implementation as National park, the area is mainly used for recreational purposes, 

while commercial enterprise inside the territory is banned and leaves the area in a natural 

state. 

Haplic Fluvisols and Gleysols, both calcaric, are the main soil types in the area. The climate is 

continental, with a mean temperature of 9.8° C and mean precipitation of 533 mm [Schwechat 

climate station, 48°07'N, 16°34'E, 184 m above sea level (ZAMG 2002)]. The flow velocity 

of the Danube River ranges between 2 and 2.5 m/s with a mean discharge of 1,950 m
3
/s.  

 

The national park is characterized by wide range of environmental conditions such as the 

Danube's water body, various side channels and oxbow lakes, gravel banks on shores and 

islands, riparian forests, meadows and even xeric habitats (locally known as Heißlände). Its 

mixture of vegetation types includes hardwood forest, softwood forest, cottonwood forest 

(consisting of the hybrid poplars planted in the 1960ies), reed beds, and meadows. Among the 

tree species, we can find Acer pseudoplatanus, Acer negundo, Acer campestre, fraxinus 

excelsior, Alnus incana, Alianthus altissima, Populus x canadensis, Populus nigra, Populus 

alba, Aesculus hippocastanum, Prunus padus subsp. Padus, Ulmus minor, Salix fragilis, Salix 

alba, and Malus sylvestris.  

In the fauna we can find prominent exponents of increasing biodiversity such as Aquila 

heliaca or Haliaeetus albicilla, Merops apiaster and Alcedo atthis among the birds, Cricetus 

cricetus, Castor fiber, Sus scofra, Cervus elaphus, Barbastella barbastellus and Myotis 

daubentoni among mamals,  Pelobates fuscus fuscus, Bufo calamita, Triturus dobrogicus, and 

Bufo viridis among amphibians. Among reptiles, there are Lacerta viridis viridis, Emys 

orbicularis, Zamenis longissimus and Natrix tessellata tessellata, among fish species there are 

Umbra krameri, Acipenser ruthenus, Cyprinus carpio carpio and Zingel zingel.  

The national park is one of the last large pristine floodplain areas in Central Europe (Krause et 

al. 2011; Wenger et al. 1990), despite the human interventions in the past. It has been 

recognized by the IUCN as a Riverine Wetlands National Park, complying with the category 
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II of the IUCN, meaning that the protected area has similar characteristics to wilderness areas 

(category I) in terms of size and the main objective of protection, but category II areas are 

more indulgent towards human visitation and supporting infrastructure. National parks 

promote moderate recreational and educational tourism, having barriers towards surrounding 

areas in order to protect native species and communities and their sustainable survival. 

The Danube Floodplain National Park already has seen a whole range of research studies, 

among them studies about vegetation characteristics (Ellenberg 1986; Wagner 2009; Wagner-

Lücker et al. 2013), soil characteristics (Lair et al. 2009; Sali-Bazze 1981; Zehetner et al. 

2009),  carbon stocks (Cierjacks et al. 2010; 2011; Rieger et al. 2013) and other (Tockner et 

al. 1998; Ward et al. 1999). 

 

4.2 Study area  

The study area is located in the center of the Danube Floodplain National Park, close to the 

town of Orth (16.66° E, 48.4° N). It contains all landscape features of the National park, 

comprised in a small area. The study site was chosen due to the previous collection of 

terrestrial data in this area, and has the advantage of being easily accessible in comparison to 

other areas of the national park. The research area is confined between the Hubertusdamm 

dike in the North, the river Danube in the south, and the towns of Eckartsau in the east and 

Schönau in the west (Fig. I-1). The detailed size was adapted during the application of the 

methods. 
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Fig. I-1: Overview map of the study area (orange) inside the floodplain national park (dark green) 

 

Mean carbon storage in the area was estimated as 359.1 Mg C ha
-1

 (472,186 Mg in an area of 

13.1 km²) by Cierjacks et al. (2010). Depending on the applied method, the area size is 

slightly adapted in the single methods. 

 

5 Data framework 

 

In order to estimate carbon stocks in a small research area, it is necessary to make use of 

large-scale geodata of the research area. We can distinguish between remote sensing data, 

additional geodata, and ground survey data on Corg stocks. 

 

5.1 Remote Sensing data 

In order to cover analyze the comparatively small research area, the use of very high spatial 

resolution (VHSR) satellite imagery is appropriate. The launch of new generations of earth 

observation satellites provides cheap and reliable imagery. Table I-1 shows the available 

remote sensing data for the area and time.  
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Table I-1: Available Satellite data and derived parameters 

Data Derived parameters Usage 

Ikonos  

(April 22 -2009) 

 

 

Blue channel (445 -516 nm) 

Green channel (506-595 nm) 

Red channel (632-698 nm) 

Near infra red channel (757-853 nm) 

NDVI (Normalized Difference Vegetation Index) 

Chapter II*, Chapter II**I 

RapidEye  

(August 1-2009) 

Blue channel (440 -510 nm) 

Green channel (520-590 nm) 

Red channel (630-685 nm) 

Red edge channel (690-730 nm) -RE 

Near infra red channel (760-850 nm) -NIR 

NDVI (Normalized Difference Vegetation Index) 

Transformed NDVI [((NIR+red)+0.5)
0.5

]  

modNDVI [(NIR - RE)/ (NIR+RE -2*blue)]  

b4NDVI [(NIR-RE)/(NIR+RE)]  

Solar Reflectance Index [NIR/red]   

[Green - blue]  

[Red - blue]  

[Red - green]  

[NIR -RE]  

[Red/ blue]  

[RE/ green] 

[NIR/ green] 

 

Texture parameters :  

Gray-level co-occurrence matrix (GLCM) 

homogeneity 

GLCM mean 

GLCM correlation 

GLCM contrast  

Gray-level difference vector (GLDV) entropy 

Chapter III**, Chapter IV*** 

 

Through the RapidEye Science Archive (RESA) project (contract 454), free satellite imagery 

from the sensor RapidEye was provided. It was launched in 2008, financed with public and 

private support. Due to a bankruptcy in 2011 the ownership shifted to the Canadian company 
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Iunctus Geomatics, but the cooperation with DLR in the RESA project was secured. The 

image  was recorded on August 1, 2009 in level 3A with a spatial resolution of 5.0 m. 

Additionally, commercial imagery was acquired from the satellite systems Ikonos-2. The 

image consists of a single-band panchromatic band (450 to 900 nm) with a spatial resolution 

of 1 x 1 m, and four spectral bands with a spatial resolution of 4 x 4 m covering the following 

intervals: blue, green, red, and near-infrared (Table I-1). The data have been geo-referenced 

by the provider to the World Geodetic System 1984 (WGS 84) datum, zone 33 N, with 

Universal Transversal Mercator (UTM) projection with an accuracy of 8 m RMS according to 

the data service provider (GeoEye 2009). 

 

5.2 Auxiliary geodata 

As Austria offers high-quality public data we have a good database for the study (table I-2).  

The following data was provided by the National Park Administration and other official 

authorities: 

 -A digital elevation model (DEM) derived from Lidar data with a spatial resolution of 2.4 x 

2.4 m and a vertical resolution of 1 m was provided by the Danube Floodplain National Park 

administration and has been created by the Institute of Photogrammetry & Remote Sensing of 

the Vienna University of Technology. The model can be used to indicate height above sea 

level, river level or groundwater level. Additionally, slopes can be calculated. Increased slope 

values can be considered evidence of former riverbeds. 

 

-A groundwater model indicating median ground water level was provided by via donau - 

Österreichische Wasserstraßen-Gesellschaft mbH through Prof. Paul Blaschke from Vienna 

University of Technology. 

 

-Historical and current topographic maps from military mapping surveys in the 18th and 19th 

century were provided by the Austrian Federal Office for Metrology and Survey 

(Österreichisches Bundesamt für Eich- und Vermessungswesen, BEV). The historical maps 

are derived from three topographic land surveys, the First (1764–1806), the Second (1806–

1869) and the Third Military Mapping Survey (1868-1880). They provide valuable 
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information about historic riverbeds and extents of the Danube. The topographic map 

(Österreichische Karte 1:50.000, ÖK 50) is updated every seven years. The riverbeds, side 

channels and oxbow lakes  of each map have been digitized. 

We used the provided maps were in the original MGI 34 reference system (based on Bessel 

1841 ellipsoid and Gauss-Krüger projection), in the wake of the accession of Austria  to the 

NATO partnership for peace in 1995 all topographic maps are being updated to the WGS 

1984 reference system with UTM projection. 

 

-Forest inventory data from 1999 and 2009 were provided by the Austrian Forest agency 

(Österreichische Bundesforste, ÖBf). Forest inventory points are arranged in a grid of 100 x 

400m; at each point, all trees within a radius of 8 m (total area of 201m²) are measured and 

tree species categorized. 

 

Table I-2: Additional geodata and derived parameters 

Data Derived parameters Usage 

Digital elevation model Elevation 

Slope 

Chapter II*, Chapter III**, 

Chapter IV*** 

Historical and current topographic 

maps 

Existence of historic riverbed during: 

First Military Mapping Survey (1773 -

1781) 

Second Military Mapping Survey (1806 

-1869) 

Third Military Mapping Survey (1868 -

1880) 

 

Chapter III** 

 

Actual topographic map (ÖK 50) 

(1993) 

Current distance to river based on 

current topographic map ÖK50 

Chapter II*, Chapter III**,  

Ground water model (provided in 

2010) 

Ground water level Chapter III**, Chapter IV*** 

Forest inventory (2009) by ÖBf Vegetation type Chapter II* 

 

5.3 Ground survey data 

In a project by students of Landscape Architecture and Environmental Planning of the 

Technical University of Berlin, data on carbon stocks in the Danube Floodplain were 

collected. In order to cover all relevant vegetation types in the study area, polygons with more 
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or less homogeneous vegetation were classified with visual interpretation of aerial color-

infrared (CIR) photographs; of the polygons 76 were selected by random, and within each 

plot, a 10 x 10 m² study plot established. Within each plot, vegetation was classified 

according to dominant tree species and categorized into softwood forest, hardwood forest, 

reforestations with hardwood species, meadows and reeds. Data were collected in Summer 

2008 and confirmed in 2009. Soil samples ranging from 0 to 100cm in depth were extracted 

from the centre of each plot using an auger. Horizon thickness and texture was determined, 

and for each horizon of each sample, carbonate concentration and organic carbon 

concentration was measured. For vegetation, organic carbon was calculated according to tree 

parameters such as circumference, tree height and leaf coverage. Dead biomass was 

calculated accordingly as 50% of living biomass. All biomass was extrapolated to hectare 

values. The design of the data sampling and the calculations are described in detail by 

Cierjacks et al. (2010). 

Table I-3: Corg ground survey data 

Available geodata Derived parameters Usage 

Ground survey data (2008)  Above ground Corg stocks 

Below ground Corg stocks 

Total Corg stocks 

68 points:  

Chapter II*, Chapter III**, 

Chapter IV*** 

Ground survey data (2010) 

 

Above ground Corg stocks 

Below ground Corg stocks 

Total Corg stocks 

36 points: 

Chapter III**, Chapter IV*** 

 

In 2010, additional data were collected (Rieger et al. 2013). Even though the collection 

approach slightly differed from the study project, as 48 tree samples were gathered within six 

zones in the floodplains, forming the basis for the analysis of carbon stocks. Apart from his 

data on fine root carbon stocks and vegetation carbon stocks, data on carbon stocks in the soil 

were collected and calculated. These soil samples enlarged our terrestrial survey data base and 

were used in the second and third approach.  

Of both datasets combined, we could use 104 points for our analyses. We could not use all 

data, as some points had been sampled outside our research area, e.g. north of the 

Hubertusdamm dike. 
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6  Research objectives and structure of this thesis 

 

The first overall objective of this thesis is to develop and evaluate methods to integrate 

existing very high resolution satellite imagery and additional geodata to a classification 

process with the aim to model and map the spatial distribution of carbon stocks in floodplain 

vegetation, soil, and in total on a local scale. This objective is approached by applying 

different techniques to estimate the carbon stocks ranging from indirect methods to more 

direct methods (based on the description of 'stratify and multiply', 'combine and assign' and 

'direct remote sensing') and to assess the quality of the resulting classifications. 

The second overall objective is the analysis of the significance of additional geo-data and 

knowledge of the classification success. In remote sensing digital image processing the 

preparation of an accuracy assessment based on validation samples is frequently utilized. 

Unfortunately, the derived values give no direct information about the contribution of single 

parts of the original data-set (e.g. spectral bands). Therefore, this objective is addressed by 

developing and adapting techniques using different classifications sets with different extents 

of applied data. 

Based on these objectives the following major research questions are posed: 

Research question 1:  Which remote-sensing based methods can be sufficiently applied to 

model Corg stocks in soil and vegetation in floodplains by remote sensing and additional 

geodata? 

Research question 2:  How can additional geodata be included and their significance for the 

model be measured? 

Research question 3:  What are the advantages of automated Corg mapping on local scale for 

operational monitoring purposes? 

Answers to these questions can be found in the following chapters of this thesis. Most of the 

research undertaken to answer specific research questions has been published or submitted to 

peer-reviewed scientific journals as listed in Appendix A. The respective chapters are kept in 

their original form.  
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The following provides brief chapter introduction. The headlines give a brief understanding of 

the essential finding with respect to the research objectives of this thesis. The publication 

information is given subsequently; the research is related to the overall context and specific 

research objectives are presented. 

Chapters II to IV were written as stand-alone manuscripts to be published in international 

peer-reviewed journals. Each chapter is therefore structured into the subsections background, 

study area, methods, results, discussion, and conclusions, thereby resulting in a limited 

amount of recurring material throughout the thesis.  

 

Chapter II: Knowledge-based classification of remote sensing data for the estimation of 

below- and above-ground organic carbon stocks in riparian forests 

Wetlands Ecology and Management 20 (2012): 151-163 

Leonhard Suchenwirth, Michael Förster, Arne Cierjacks, Friederike Lang, and Birgit Kleinschmit 

This approach aims to map the Corg stocks based on a classification of vegetation type classes, 

by using an OBIA approach combined with a Monte Carlo simulation. It compares and 

discusses the results of several classification sets with varying data quantities. The research 

aims are: 

2.1 To classify Central European floodplain habitats by OBIA. 

2.2 To evaluate the use of OBIA to improve the classification accuracy of vegetation cover 

mapping in Central European floodplain habitats. 

2.3 to generate reliable, integrated above- and below-ground carbon stock estimates in 

floodplains with OBIA by using VHSR remote sensing data and auxiliary data in a SM 

approach. 

 

Chapter III: Estimation and mapping of carbon stocks in riparian forests by using a 

machine learning approach with multiple geodata 

Photogrammetrie, Fernerkundung und Geoinformation 4 (2012): 333-349 

Leonhard Suchenwirth,  Michael Förster, Friederike Lang, and Birgit Kleinschmit 
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This approach aims to map the Corg stocks determined in quantile classes for above, below 

ground and total Corg stocks by using an OBIA-based classification and regression tree 

(CART) approach. Results are analyzed and discussed. The research aims are: 

3.1 to evaluate a machine learning algorithm (CART) for estimating and mapping Corg stocks 

in vegetation (Corg_veg), soil (Corg_soil) and total biomass (vegetation, soil and deadwood; 

Corg_tot) in riparian forests based on classification accuracies.  

3.2 to rank the parameters in terms of their ability to predict Corg. 

 

Chapter IV: Large-scale mapping of carbon stocks in riparian forests with self-

organizing maps and the k-nearest-neighbor algorithm 

submitted to iForest- Biogeosciences and Forestry on 28 May 2013; under review 

Leonhard Suchenwirth,  Wolfgang Stümer, Michael Förster, and Birgit Kleinschmit 

This approach uses two machine learning approaches, self-organizing maps, and k-nearest-

neighbor. The approach retrieves direct estimations without image segments and classes. It 

works on the following research aims: 

4.1 to create distribution maps of vegetation, soil and total Corg stocks in a riparian forest, 

based on SOM and kNN algorithms and compare the results. 

4.2 to compare and evaluate results with previous estimation techniques. 

4.3 to evaluate the influence of additional geodata on estimation quality. 

 

Chapter V synthesizes the outcomes of the preceding chapters and provides recommendations 

for upcoming research in the future. 
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Chapter II: Knowledge-based classification of remote sensing data 

for the estimation of below-and above-ground organic carbon 

stocks in riparian forests  
 

Wetlands Ecology and Management 20 (2012): 151-163 

Leonhard Suchenwirth, Michael Förster, Arne Cierjacks, Friederike Lang, and Birgit Kleinschmit 
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Abstract  

 

Floodplain forests play a crucial role in the storage of organic carbon (Corg). However, 

modeling of carbon stocks in these dynamic ecosystems remains inherently difficult. Here, we 

present the spatial estimation of Corg stocks in riparian woody vegetation and soils (to a depth 

of 1 m) in a Central European floodplain using very high spatial resolution remote sensing 

data and auxiliary geodata. The research area is the Danube Floodplain National Park in 

Austria, one of the last remaining wetlands with near-natural vegetation in Central Europe. 

Different vegetation types within the floodplain show distinct capacities to store Corg. We 

used remote sensing to distinguish the following vegetation types: meadow, reed bed and 

hardwood, softwood, and cottonwood forests. Spectral and knowledge-based classification 

was performed with object-based image analysis. Additional knowledge rules included 

distances to the river, object area, and slope information. Five different classification schemes 

based on spectral values and additional knowledge rules were compared and validated. 

Validation data for the classification accuracy were derived from forest inventories and 

topographical maps. Overall accuracy for vegetation types was higher for a combination of 

spectral- and knowledge-based classification than for spectral values alone. 

While water, reed beds and meadows were clearly detectable, it remained challenging to 

distinguish the different forest types. The total carbon storage of soils and vegetation was 

quantified using a Monte Carlo simulation for all classified vegetation types, and the spatial 

distribution was mapped. The average storage of the study site is 428.9 Mg C ha-1. Despite 

certain difficulties in vegetation classification this method allows an indirect estimation of 

Corg stocks in Central European floodplains 

. 
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1 Introduction 

 

In the context of climate change, the sequestration of organic carbon (Corg) in ecosystems is 

an increasingly urgent issue (IPCC 2000; Mitra et al. 2005). Soils and vegetation are essential 

for the storage of Corg; although carbon storage capacity and mean residence time are higher 

for soils, forests in particular can sequester and store significant amounts of Corg as woody 

biomass (Harrison et al. 1995; Köhl et al. 2008). Comparing different terrestrial ecosystems, 

riparian forests in floodplains exhibit a particularly high storage capacity for Corg. Values up 

to 474 Mg C ha
-1

 of total above- and below-ground Corg have been reported from Central 

European hardwood (HW) forests (Cierjacks et al. 2010, 2011), exceeded only by estuarine 

mangroves with values up to 1,000 Mg C ha
-1 

(Donato et al. 2011), and substantially higher 

than other ecosystems such as tropical rainforests (243 Mg C ha
-1

), boreal forests (408 Mg C 

ha
-1

) and temperate forests in general (147 Mg C ha
-1

) (IPCC 2000). Consequently, 

floodplains may be expected to have an important function in the global carbon cycle and 

climate change. On the other hand, floodplains are highly vulnerable to climatic change or 

anthropogenic impacts. River discharges can change with rising temperatures and decreasing 

precipitations, which may alter soil conditions and vegetation growth and cause a decline in 

the carbon storage capacity of floodplains. Moreover, floodplain areas have long been 

converted to other land uses, such as agriculture, due to their higher fertility, which may have 

led to relevant historic carbon releases (Mitra et al. 2005; Jaramillo et al. 2003). 

Given the theoretical importance of riparian zones in the carbon cycle, methods for 

production of large scale maps showing the spatial distribution of Corg in floodplains are 

necessary. Various studies have focused on carbon stocks in floodplain soils (Busse and 

Gunkel 2002; Giese et al. 2000; Hazlett et al. 2005) and (sub-) tropical wetlands (Matsui et al. 

2009; Mitsch et al. 2010). More recently Cierjacks et al. (2011) provided statistical models to 

describe the spatial distribution of Corg in floodplain soils and vegetation. However, these 

methods were field-based, where data had to be collected by cost-intensive terrestrial surveys. 

To facilitate the assessment of Corg stocks, for larger or less accessible wetland and floodplain 

areas, methods of remote sensing should be developed. There are several studies using remote 

sensing for the general analysis of wetland and floodplain ecosystems, e.g. the application of 

Lidar to classify cottonwoods (CW) in Arizona (Farid et al. 2008) or the Mackenzie delta in 

Canada (Mertes 2002), or the analysis of orthophotos in the Danube floodplains (Wagner 
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2009). Spectrometer data have been analyzed for dynamic vegetation systems in the 

Netherlands (Kooistra et al. 2008), and Landsat data have been used to classify Zambian 

Kafue floodplains (Munyati 2000) and riparian forests in Xinjiang, NW China (Thevs et al. 

2008). Object-based image analysis (OBIA) has been applied to map coastal marshes in 

Georgian Bay in Canada (Rokitnicki-Wojcik et al. 2011; Midwood and Chow-Fraser 2010), 

Canadian peatlands (Dissanska et al. 2009), wetlands in Brazil (Evans et al. 2010; Silva et al. 

2010), and mangrove forests in Senegal (Conchedda et al. 2008). Other studies have 

compared different approaches for the remote sensing based analysis of wetlands and 

floodplains (Adam et al. 2010; Ozesmi and Bauer 2002). 

Additionally, in the context of carbon budgeting, remote sensing has been successfully 

applied to riparian ecosystems such as Amazonian rain forests (Neeff et al. 2005), Japanese 

spruce stands (Awaya et al. 2004), Scandinavian forests (Olofsson et al. 2008)  and areas in 

North America (Turner et al. 2004). 

In particular, the use of high spectral resolution data indices such as the Normalized 

Differenced Vegetation Index (NDVI) or the Leaf Area Index (LAI) have proven to be useful 

tools to calculate the gross primary production of Corg (Hilker et al. 2008). As well, the 

application of remote sensing for the detection of soil characteristics has successfully been 

applied (McBratney et al. 2003; Behrens and Scholten 2006), but these methods were 

predominantly applied to bare soils such as agricultural lands, and not to riparian soils. In 

addition, most of these studies have considered Corg either stored in (riparian) vegetation or in 

soil; a comprehensive quantification of both above- and below-ground carbon storage 

capacity is yet missing. 

Different vegetation types of floodplains show distinct capacities to store total Corg. Cierjacks 

et al. (2010) have shown, for Danubian floodplains, that above- and below-ground carbon 

stocks were different and increasingly higher in young plantations, softwood (SW) forests, 

and CW and mature HW forests.  

In addition, spatial information and forest structure data were closely related to soil and 

vegetation carbon stocks (Cierjacks et al. 2011). These biological and spatial relationships 

may be used to map total carbon stocks based on vegetation classification using remote 

sensing. 
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This study aims to provide a spatial estimation of Corg stocks in floodplain vegetation and 

soils in a Central European floodplain ecosystem, with the use of very high spatial resolution 

(VHSR) remote sensing data and auxiliary data. In Central Europe, only a few floodplain 

areas have been preserved in their natural state. Among these, the Danube Floodplain (Donau- 

Auen) National Park in Austria offers a good research area due to its high conservation status. 

Our study focuses on the classification of VHSR remote sensing data with OBIA to 

distinguish the following vegetation types: SW, HW, and CW forest, meadows, reed beds and 

water areas. Each vegetation type has a known carbon storage capacity that may be used for 

large-scale mapping of Corg stocks in floodplains. 

Existing knowledge from soil science can be made regionally applicable; there is great 

demand for such information in the field of landscape and environmental mapping, and in 

particular for use in estimating the role of soils in climate change. 

In particular, in this paper the following research objectives will be addressed: 

1) Central European floodplain habitats will be classified by OBIA. 

2) The use of OBIA to improve the classification accuracy of vegetation cover mapping in 

Central European floodplain habitats will be evaluated. 

3) Reliable, integrated above- and below-ground carbon stock estimates in floodplains will be 

made with OBIA by using VHSR remote sensing data and auxiliary data. 

 

2 Materials and Methods 

 

2.1 Study Area 

The study area has a size of 11.3 km2 and is located in the center of the Danube Floodplain 

National Park, close to the village of Orth (16.66° E, 48.4° N) in Lower Austria, between the 

Austrian capital Vienna and the Slovak capital Bratislava. The Danube River flows through 

the National Park for a distance of about 36 km with an average width of 350 m, without any 

restraints caused by barrage. Apart from the construction of the Marchfeld dike in the 19th 

century to protect the areas north of the river from flooding and to improve navigation on the 

Danube, the area has hardly been touched by human impact. Throughout its history, its only 

use has been as an imperial hunting ground. However, plantings of hybrid poplars (CW, 

Populus x canadensis) in the 1960s altered the forest structure, in particular on the southern 
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riverbank. In 1996 the area was declared a national park, banning any commercial enterprise 

in its territory. Despite previous human interventions the area remains one of the last major 

wetland areas in Central Europe, recognized by the IUCN as a Riverine Wetlands National 

Park, category II. 

The habitat types within the National Park comprise a wide range of environmental conditions 

(Danube River water body, various side channels and oxbow lakes, gravel banks on shores 

and islands, riparian forests, meadows and xeric habitats). Haplic Fluvisols (calcaric) and 

Gleysols (calcaric) are the main soil types in the area. The climate is continental with a mean 

temperature of 9.8°C and a mean precipitation of 533 mm [Schwechat climate station, 48° 07' 

N, 16° 34' E, 184 m above sea level (ZAMG 2002)]. The flow velocity of the Danube River 

ranges between 2 and 2.5 m/s; the mean discharge is 1,950 m3/s (Zehetner et al. 2009). 

The area was selected due to its high conservation status and the spatial contiguity of the 

territory, the existence of a high quality geographical database for the region as well as the 

large number of previous studies that have been done on the soils and vegetation of the area 

(Cierjacks et al. 2010; Cierjacks et al. 2011; Ellenberg 1986; Lair et al. 2009; Wagner 2009; 

Zehetner et al. 2009). 

 

2.2 Data 

For this study, we used cloudless Ikonos-2 imagery recorded on 22nd of April 2009. By that 

time vegetation had sprouted completely. The Ikonos-2 image consists of a single-band 

panchromatic band (450 to 900 nm) with a spatial resolution of 1 x 1 m, and four spectral 

bands with a spatial resolution of 4 x 4 m covering the following intervals: blue (445 to 516 

nm), green (506 to 595 nm), red (632 to 698 nm), and near-infrared (757 to 853 nm). The data 

have been geo-referenced by the provider to the World Geodetic System 1984 (WGS 84) 

datum, zone 33 N, with Universal Transversal Mercator (UTM) projection with an accuracy 

of 8 m RMS according to the data service provider (GeoEye 2009). 

A digital elevation model (DEM) derived from Lidar data with a spatial resolution of 2.4 9 2.4 

m and a vertical resolution of 1 m was used to create a slope model that informed some of the 

knowledge-based rules. The Lidar model was provided by the Danube Floodplain National 

Park administration and has been created by the Institute of Photogrammetry & Remote 

Sensing of the Vienna University of Technology. Increased slope values can be considered 

evidence of former riverbeds (an indicator of SW stands away from actual riverbeds) that 
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cannot be detected directly through spectral values. Additionally, the height above ground 

was included in the knowledge-based approach. 

Training data were derived from Cierjacks et al. (2010) using data from 2008. The data were 

collected in a stratified randomized sampling design throughout the research area in 10 9 10 m 

plots. For each sample plot, detailed information, collected on the ground, includes data on 

the Corg stored in the soil and in the trees. These data were used to select classification 

samples of the riparian vegetation types in the OBIA. 

 

Table  II-1: List of remote sensing and ground data used for the classification of floodplain vegetation cover, 

classification accuracy assessment and Corg stock estimation for the Danube Floodplain National Park, Austria 

Type of geo-data Date 
Relevant and derived 

information 
Use of data 

Ikonos-2 imagery 2009/04/22 Vegetation type  Object-based classification 

Digital elevation model 

(DEM) 
2008 Height, slope  

Knowledge-based classification; 

indicators of old riverbeds and 

softwood vegetation 

Field survey data (76 points; 

Cierjacks et al. 2010a) 
2008 Vegetation type, soil parameters Training data 

Forest inventory data (72 

points) 
2009 Tree species, vegetation type Validation data 

Austrian topographic map 

(ÖK 50, 1:50,000) 
1993 

Topographic features, meadows, 

reeds, water bodies 
Validation data 

 

To validate the classification, a validation mask was created from an up-to-date topographic 

map and forest inventory data from 2009 provided by the Austrian Federal Forest (ÖBf) 

agency. The topographic map was used to generate a water mask as well as masks for the 

classes reed bed and meadow for validation. The forest inventory points were arranged in a 

grid of 100 9 400 m. At each point, all trees within a radius of 8 m (total area of 201 m2) were 

measured and categorized. Tree species were grouped into the classes HW, SW and CW 

forest, as these are the main vegetation types of the area (Cierjacks et al. 2010). If a forest 

inventory point contained tree species of all three classes, the point was not used as a 
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reference because it was located in a transition zone. In total, the validation dataset consisted 

of 80 validation areas, of which 7 were CW, 20 HW, 24 SW, 9 meadow, 7 reed bed and 13 

water. Each validation area had a size of about 201 m2 and about 201 pixels, that were used 

for the calculation of classification accuracy. An overview of the data is given in Table II-1. 

 

2.3 Segmentation and classification of vegetation types 

In the classification of remote sensing data with VHSR data, such as Ikonos-2 data, OBIA has 

become an important and powerful tool. In comparison to traditional remote sensing 

classification techniques, which work with single pixels, the approach of OBIA is different. 

First, the image is split up into homogenous and spatially contiguous image objects. This 

process is known as image segmentation. The image objects are built by an algorithm based 

on their shape, colour, compactness, and smoothness (Baatz and Schäpe 2000). In this study, 

we used the commercial software package eCognition Developer 8.64. The complete 

description for the region growing algorithm can be found in Baatz and Schäpe (2000) and 

Benz et al. (2004). The most important formulas for image segmentation are as follows: 

 

The an d-dimensional feature space the degree of fitting h can be calculated as Baatz and 

Schäpe (2000): 

 

The form heterogeneity h is defined as Baatz and Schäpe (2000):   

 where l is the factual edge length of an object, and n is the object size in pixels. 

 

The technique has been successfully applied to the detection of forests as well as other 

vegetation types (Chubey et al. 2006; Förster et al. 2008; Förster and Kleinschmit 2008; 

Wagner 2009). In this study, several segmentation scales were tested for their suitability to 

delineate vegetation types. We chose a scale parameter (SP) i.e., the maximum allowed 

heterogeneity within an object, of 100, a shape factor of 0.3, and a compactness factor of 0.8 
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as they represent best the regional forest conditions. The average image object size was 0.21 

ha. 

After the creation of image objects (segmentation), about 15 training samples based on 

spectral values were visually collected for each class. In a series of nearest neighbor 

classifications, water, meadow and reed bed objects were classified; impervious surfaces were 

classified as well, and then masked out. Afterwards, we classified the vegetation types CW, 

SW and HW forest. 

All classes were described by fuzzy logic membership functions of their spectral values; for 

the more exact discrimination of different forest vegetation types, we used additional 

knowledge and information (Fig. II-1). 

According to the theory of fuzzy logic, sets, or in this case, vegetation types, can often better 

be described by fuzzy boundaries determined by a membership function than by crisp 

boundaries. Fuzzy logic is used to implement linguistic, verbal descriptions (Zadeh 1989). 

The occurrence of different forest types depends on specific ecological, but also 

anthropogenic influences. These conditions allow or prevent species and habitats from 

existing and can be related to geo-factors. For the classification of riparian vegetation, the 

spatial distance to the water and slope were taken into account. 

The following knowledge-based rules for the classes CW, HW and SW were implemented 

with the help of fuzzy logic (Fig. II-1): 

(1) CW forest: according to personal communication with the National Park administration, at 

that time the CW plantings were carried out, they were only considered cost-effective when a 

minimum size of *0.2 ha could be cultivated. Therefore, homogeneous areas under 0.2 ha 

were unlikely to be CW. For this classification the size was defined as 2,000–4,000 m2. 

(2) SW forest: a threshold of 48 m for the mean distance to the class water was introduced 

(Cierjacks et al. 2010, 2011). As SW forests can also be found along previous riverbeds, the 

slope derived from the digital elevation model was used to derive the course of former 

streams. 

(3) CW, SW and HW forest: the first-order classification was further refined with a 

reclassification step. This step was necessary, as the multiresolution segmentation process 

tends to subdivide large patches of equal vegetation type up to a maximum object size. This 

causes structures with smaller image objects especially in homogeneous classes, which 

sometimes tend to be misclassified. In order to straighten the boundaries between the 
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vegetation types, single image objects of a certain class surrounded by other classes were 

classified according to their surrounding classes. 

 

 

Fig. II-1:Schematic overview of the developed approach for combining high resolution remote sensing data with 

additional geodata (DEM digital elevation model, CW cottonwood forest, SW softwood forest, HW hardwood 

forest, UA user’s accuracy, PA producer’s accuracy, OA overall accuracy, K overall kappa statistic, KIA kappa 

per class, Corg organic carbon, ÖK Austrian topographic map) 

 

The influence of the implemented rules was determined by running five classification 

iterations (classification sets) with different rule combinations. The accuracy assessment was 

conducted for classification based on (1) spectral and knowledge-based classification 

including all rules, (2) spectral and knowledge based classification without features for CW 

class, (3) spectral and object-feature classification without distance features for SW class, (4) 

spectral and object feature classification without slope features for SW class, and (5) spectral 

classification without any knowledge-based rules. 

 

To evaluate the classification accuracy, the user’s accuracy (UA; also known as commission 

errors), producer’s accuracy (PA; also known as omission errors), and the overall accuracy 

(OA) were calculated as well as the kappa (K) and the kappa per class (KIA) statistics. The 
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kappa coefficient serves as an additional measure of agreement between the classes 

represented in the satellite image and on the ground. The measure describes what level of 

agreement is due to chance; a kappa value of 1 describes a very high classification accuracy, a 

kappa value of 0 a very low accuracy (Congalton 1991; Fitzgerald and Lees 1994; Landis and 

Koch 1977; Lillesand et al. 2004). 

 

2.4 Estimation of Corg stocks 

After the different vegetation types were classified, the information obtained was used to 

estimate the carbon stocks. The following above- and below-ground amounts of Corg (mean 

and standard error, SE) were used from the studies of Cierjacks et al. (2010, 2011):SW 356 

Mg C ha
-1

 (SE 35), CW 403 Mg C ha
-1

 (SE 29), HW 474 Mg C ha
-1

 (SE 61), meadows 212 

Mg C ha
-1

 (SE 21) and reed beds 212 Mg C ha
-1

 (SE 21). The data of these studies are in line 

with other publications (Fierke and Kauffman 2005; Hofmann and Anders 1996). There were 

no data on Corg stocks underneath the water bodies, therefore these classes were not taken into 

consideration. 

A Monte Carlo simulation was performed with the statistics software package R for the stock 

estimates for the classes HW, SW and CW. Reed beds and meadows were not considered for 

the simulation for several reasons: their clear-cut delineation from forest classes, their similar 

values of Corg stocks, and their lack of any above-ground woody Corg (Cierjacks et al. 2010). 

The calculation steps of the Monte Carlo simulation were as follows: 

(1) The probabilities for the vegetation types classified through the OBIA process were 

computed for the classes CW, SW and HW. 

(2) The meadow and reed bed areas were subtracted from the entire study area, leaving the 

remaining areas as CW, SW or HW. 

(3) The standard deviation (σ) for each class (including meadow and reed bed) was 

determined based on the published mean (l) carbon stock estimates and the standard errors 

(Cierjacks et al. 2010), where σ = standard error x √(number of study plots). 

(4) The total areas of CW, SW, and HW were determined based on their probabilities. 

(5) Carbon stocks for each pixel in a class (meadow, reed bed, CW, SW and HW) were 

created at random based on the l and r values. 

(6) The total carbon stock for each class was calculated by summing all pixels of that class. 

(7) Steps 1–6 were repeated 1,000 times. 
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(8) The mean value, median value, 95% confidence interval (CI), standard deviation, and 

standard error were calculated for the generated carbon stocks. 

 

3 Results 

 

3.1 Segmentation and classification of vegetation types 

The five classification sets showed pronounced differences in the different accuracy measures  

(Table II-2). Overall accuracies for the different knowledge and spectral-based classifications 

ranged from 0.70 (classification sets 1 and 3) to 0.69 (classification set 4) to 0.60 

(classification sets 2 and 5). The confusion matrix for classification set 1 highlights the high 

accuracy values for this set (Table II-3). 

Kappa values ranged from 0.64 (classification set 1: knowledge-based including all rules) to 

0.52 (classification set 2: spectral and knowledge-based without features for CW class). For 

quality control, there are considered to be five categories of agreement (Congalton 1991; 

Landis and Koch 1977): almost perfect (0.81–1.00), substantial (0.61–0.80), moderate (0.41–

0.60), fair (0.21–0.40) and slight (0.00–0.20). Consequently, our overall accuracies were 

moderate to substantial. 

Classification accuracy for water was very high in all classification sets and accuracy 

measures. While the user’s accuracy for the class meadow was also very high, the producer’s 

accuracy was lower (0.71 for all sets) as was the KIA (0.69 for all sets). Also for the class 

reed bed, the accuracy measures ranged from 0.71 to 0.86 for user’s accuracy, 0.86–0.88 for 

producer’s accuracy, and 0.84–0.87 for KIA values. 

The OA and KIA values were the same for classification sets 2, 3, 4, and 5, which only 

implemented knowledge-based classification rules in part and differed from classification set 

1 which implemented all rules. 

The classification sets exhibited clear differences in their delineation of the forest classes. 

Comparing the classification that used only spectral values (classification set 5) with the one 

that used both spectral values and additional knowledge (classification set 1), the knowledge-

based classification led to a much higher percentage of SW forests and a more pronounced 

agglomeration of HW patches (Fig. II-2). 

 



Knowledge-based classification of remote-sensing data for the estimation of below- and above-

ground organic carbon stocks in riparian forests 

36 

 

 

Fig. II-2: Classification based on spectral values only (left) and classification based on spectral values and 

additional knowledge (right) 

 

Table II-2: Accuracy Assessment for classification based (1) spectral and knowledge-based classification 

including all rules, (2) spectral and knowledge-based classification without features for cottonwood class, (3) 

spectral and object-feature classification without distance features for softwood class, (4) spectral and object-

feature classification without slope features for softwood class, and (5) spectral classification without any rules 

 Classification 

set   1    2     3    4     5    

OA  0.70   0.60   0.70   0.69   0.60  

K  0.64   0.52   0.63   0.61   0.53  

Accuracy/ 

Reference 

class 

UA 

 

PA 

 

KIA 

 

UA 

 

PA 

 

KIA 

 

UA 

 

PA 

 

KIA 

 

UA 

 

PA 

 

KIA 

 

UA 

 

PA 

 

KIA 

 

Water 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Meadow 1 0.71 0.69 1 0.71 0.69 1 0.71 0.69 1 0.71 0.69 1 0.71 0.69 

Reed 0.86 0.88 0.87 0.71 0.86 0.84 0.71 0.86 0.84 0.71 0.86 0.84 0.71 0.86 0.84 

Cottonwood 0.47 0.75 0.71 0.23 0.87 0.82 0.47 0.75 0.71 0.47 0.75 0.71 0.23 0.87 0.82 

Softwood 0.76 0.51 0.39 0.83 0.29 0.21 0.76 0.5 0.39 0.58 0.87 0.78 0.64 0.52 0.38 

Hardwood 0.51 0.63 0.47 0.53 0.41 0.27 0.53 0.64 0.48 0.66 0.17 0.11 0.66 0.17 0.11 

OA= overall accuracy, K= overall kappa statistic, UA= user's accuracy, PA= producer's accuracy, KIA= kappa per class  
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Incorporating the CW rule (classification sets 1, 3, and 4) increased the user’s accuracy (0.47 

vs. 0.23 for classification sets 2 and 5) but lowered the producer’s accuracy (0.75 for 

classification sets 1, 3 and 4 vs. 0.87 for classification sets 2 and 5) and KIA (0.71 vs. 0.82). 

Classification accuracy for SW forest differed widely among the different classification sets, 

with user’s accuracy ranging from 0.58 (classification set 4) to 0.83 (classification set 2), 

producer’s accuracy ranging from 0.29 (classification set 2) to 0.87 (classification set 4) and 

KIA ranging from 0.21 (classification set 2) to 0.78 (classification set 4). 

For HW forests, user’s accuracy ranged from 0.51 (classification set 1) to 0.66 (classification 

sets 4 and 5), producer’s accuracy from 0.17 (classification set 5) to 0.64 (classification set 3) 

and KIA from 0.11 (classification sets 4 and 5) to 0.48 (classification set 3). 

 

Table II-3: Confusion matrix for spectral and knowledge-based classification that includes all rules 

(classification set 1) based on pixels 

User \  

Reference Class Water Meadow Reed Cottonwood Softwood Hardwood Sum 

Water 2612 0 0 0 0 0 2612 

Meadow 0 1277 0 0 0 1 1278 

Reed 0 199 1244 0 0 0 1443 

Cottonwood 0 0 1 931 310 737 1979 

Softwood 0 0 0 18 2102 629 2749 

Hardwood  0 115 167 297 1743 2375 4697 

Unclassified 0 199 0 0 0 0 199 

Sum 2612 1790 1412 1246 4155 3742  

        

Producer 1 0.71 0.88 0.75 0.51 0.63  

User 1 1 0.86 0.47 0.76 0.51  

KIA Per Class 1 0.69 0.87 0.71 0.39 0.47  

Overall Accuracy 0.70       

KIA 0.64       
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The confusion matrix for classification set 1 shows the number of pixels that were correctly 

classified or misclassified; meadow tended to be misclassified as reed bed or HW forest; reed  

bed was misclassified as HW forest (Table II-3). Moreover, there was confusion within the  

three forest classes HW, SW and CW. As this classification set produced the best OA and  

kappa values, it was used for the estimation of carbon stocks. 

 

3.2 Estimation of Corg stocks  

The Monte-Carlo simulation revealed the following overall carbon stocks for the study area: 

mean and median carbon stocks were similarly at 483.6 Gg (standard deviation: 0.074 Gg and 

standard error: 0.002 Gg; Fig. II-3). The 95% CI ranged less than 10-2 Gg from the mean for 

the total amount of Corg as well as for each vegetation type class. 

 

 

Fig. II-3: Corg stocks for all vegetation classes and total amount in the study area 

 

The spatial distribution of Corg stocks corresponds to the distribution of the single vegetation 

types (Fig. II-4). In patches of reed beds or meadows, the amount of Corg was clearly lower 

than in the patches of HW or CW vegetation. Almost 62% of the terrestrial research area (not 

including the water bodies) has carbon stocks higher than 400 Mg C ha
-1

 (CW and HW), and 
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about 26% of the area has carbon stocks of 356 Mg C ha
-1

 (SW). Over the whole study area, 

the average value of stored above- and below-ground Corg is 428.9 Mg ha
-1

. 

 

Fig. II-4: Classification of vegetation types and estimation of total (above- and below-ground) Corg stocks 

 

4 Discussion 

 

4.1 Segmentation and classification of vegetation types 

Our results clearly show that the classification accuracy for all classes can be described as 

substantial (Congalton 1991; Landis and Koch 1977). In a study in the same research area 

based on OBIA of orthophotos (Wagner 2009), the overall kappa value reached 0.87; it can be 

argued that their accuracy was higher due to the higher spatial resolution of the orthophotos 

(0.2 m) in comparison to Ikonos data (1 m). 

Concerning the accuracy of the particular classes of the classification (Table II-2), it is 

obvious that the correct classification of water bodies does not raise any problems, shown by 
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an accuracy of 100% in each of the sets. The distinction of vegetation classes was more 

difficult. Meadows and reed beds were spectrally similar and tended to be confused with each 

other (and to a lesser extent with forest classes), therefore the producer’s accuracy and kappa 

values did not reach 100%, whereas the class meadow showed a user’s accuracy of 100%. In 

a study on coastal marshlands in Canada (Rokitnicki-Wojcik et al. 2011), the class 

meadow/shrub had one of the highest accuracies, but the neighboring classes were 

distinguished by their age in Rokitnicki-Wojcik’s study, not by their vegetation type. It is 

possible that a more refined analysis of the texture could create better results. 

The classification accuracy for the classes SW, HW, and CW forest varied with the inclusion 

of additional knowledge. Our results provide evidence that a knowledge-based approach can 

improve classification results in comparison to a classification based only on spectral values, 

although this was not true for every class. In general, the more knowledge rules applied, the 

better the classification accuracy becomes, and potential errors through over- or 

underestimation are omitted. 

In particular, the rule for the minimum size of a CW patch (classification set 2) improved the 

classification. This could be easily related to the fact that an economic silvicultural use of CW 

in this region required that forests stands had a certain minimum area. Therefore, for the 

purpose of our study, this knowledge-based classification rule was very valuable. 

 

Distance to water (classification set 3) had been assumed to be a very important factor as 

proximity to the river is related to the presence of SW (Cierjacks et al. 2010; 2011; Ellenberg 

1986). However, the inclusion of this information only slightly increased the overall 

classification accuracy. A convincing reason for this fact may be the application of the slope 

feature, which even without further rules provided a sufficient indicator of riparian 

ecosystems. 

Consequently, when omitting the slope derived from a digital elevation model (classification 

set 4), the overall classification accuracy was slightly impaired. However, SW forest itself 

was overestimated. It appears that the two knowledge rules regarding distance to water and 

slope for the SW class were interchangeable and can be substituted. Overall, the changes in 

overall classification accuracy were rather low when the distance or surface slope rules were 

included. But they remained important for the individual accuracy of the SW class as 

illustrated in Fig. II-2. 
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In general, the detection of different forest vegetation types, especially in a mixed deciduous 

area, remains a challenging task, as shown by other studies classifying deciduous forests 

(Förster et al. 2008). It may be possible to use additional knowledge-based rules derived from 

other data to avoid severe overestimations. One possibly would be the use of a digital surface 

model (DSM) derived from Lidar for the determination of the vegetation age (Farid et al. 

2008). 

 

4.2 Carbon stocks 

The estimation of above- and below-ground carbon stocks in the study area revealed a total 

amount of 483.6 Gg Corg. The value is comparable to the estimation of Cierjacks et al. (2010) 

of 472.2 Gg Corg. This is not within the range of our standard deviation, but the values are 

comparatively close. 

The Monte Carlo approach to estimate the total amount of Corg is not very common, yet there 

are examples for its use (Maeda et al. 2010). We used a Monte Carlo simulation because of 

two major uncertainty factors. One was the accuracy of the classification, the other one refers 

to the standard error rates for each vegetation type, based on the values by Cierjacks et al. 

(2010) for the carbon stocks. The results had low standard deviation and standard error rates, 

so the result seems to be adequate. 

There are several methods for mapping of carbon stocks (Goetz et al. 2009): the stratify and 

multiply approach (the area of a certain land cover class is multiplied by the C stock value for 

the landcover class), the combine and assign approaches (a wider range of geodata apart from 

remote sensing imagery are used for the calculation) and the direct remote sensing approaches 

(repeated machine learning algorithms train an algorithm to develop rule sets). 

For our approach, we used a synthesis of the first two, as there was a multiplication of class 

area sizes (as in the stratify and multiply approach) for the classes of reed bed and meadow. 

For the classes CW, HW and SW forest, we integrated further geodata (combine and assign 

approach). The direct remote sensing approach for the estimation of carbon stocks has not yet 

been implemented. 

Overall, the method for estimating overall carbon stock using VHSR remote sensing and 

additional geodata proved to be applicable. Still, this method does not allow for the Corg 

estimation of different ecosystem compartments (soil, vegetation) independently. 
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Moreover, the critical role of riparian ecosystems in the global carbon cycle is expected to 

reflect carbon dynamics more than just the carbon stocks present in the ecosystem. Here, 

additional information such as spatial and vegetation structure data will be important for more 

realistic estimations. 

 

5 Conclusions and outlook 

 

This study represents an approach to estimate the amount of Corg in soil and vegetation of 

riparian ecosystems by using remote sensing and additional geodata for an OBIA. The 

calculation of carbon stocks based on the values for forest classes (Cierjacks et al. 2010) 

revealed similar results as the on-the-ground assessment. Therefore, our study may contribute 

to the development of methods to automate the creation of large-scale carbon maps for 

floodplains. 

Future steps to improve the model may include the application of additional geographic data, 

such as biotope type or geomorphologic maps or historic topographic maps from the 18th and 

19th centuries to identify former river courses and to incorporate data on various river stages. 

Also a fusion with Lidar should be considered as a Lidar-derived DSM can be helpful to 

determine vegetation age (Farid et al. 2008). 

For the implementation of these additional knowledge factors, further research will be 

necessary. Here, machine learning algorithms, described by Goetz et al. (2009) can be useful. 

In summary, the application of remote sensing methods for the quantification of Corg stocks in 

floodplains and other ecosystems may be helpful for the specification of the spatial estimation 

of global carbon stock inventories, which may be important for global carbon and climate 

change monitoring schemes. 
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Summary  

 

Floodplain ecosystems offer valuable carbon sequestration potential. In comparison to other 

terrestrial ecosystems, riparian forests have a considerably higher storage capacity for organic 

carbon (Corg). However, a scientific foundation for the creation of large-scale maps that show 

the spatial distribution of Corg is still lacking. In this paper we explore a machine learning 

approach using remote sensing and additional geographic data for an area-wide high-

resolution estimation of Corg stock distribution and evaluate the relevance of individual 

geofactors. The research area is the Danube Floodplain National Park in Austria, one of the 

very few pristine riparian habitats left in Central Europe. Two satellite images (Ikonos and 

Rapid-Eye), historical and current topographic maps, a digital elevation model (DEM), and 

mean groundwater level (MGW) were included. We compared classifications of Corg stocks in 

vegetation, soils and total biomass based on two, three, four and five classes. The results 

showed that a spatial model of Corg in riparian forests can be generated by using a 

combination of object-based image analysis (OBIA) and classification and regression trees 

(CART) algorithm. The complexity of floodplains, where patterns of Corg distribution are 

inherently difficult to define, clearly exacerbated the challenge of achieving high 

classification accuracy. In assessing the relevance of individual geofactors, we found that 

remote sensing parameters are more important for the classification of Corg in vegetation, 

whereas parameters from auxiliary geodata, e.g. elevation or historical riverbeds, have more 

influence for the classification of soil Corg stocks. This was also confirmed by a comparative 

linear multiple regression analysis. 
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1 Introduction 

 

Floodplain ecosystems offer valuable carbon sequestration potential. Riparian forests have a 

considerably higher storage capacity for organic carbon (Corg) than other terrestrial 

ecosystems (Cierjacks et al. 2010; Hoffmann et al. 2009; Mitra et al. 2005). Among the 

different floodplain compartments, it is essential to pay special attention to riparian forest 

vegetation, but also to soils, which often dominate Corg pools (Baritz et al. 2010; Harrison et 

al. 1995; Hofmann and Anders 1996; Kooch et al. 2012; Lal 2005). 

Despite the importance of floodplains for carbon sequestration, a scientific foundation for 

creating large-scale maps showing the spatial distribution of Corg is still lacking. Carbon 

distribution can be mapped at a global or national level, but regional validation is usually not 

available (Gibbs et al. 2007; Groombridge and Jenkins 2002; UNEP-WCMC 2008). In 

particular, there are no maps showing the actual allocation of the Corg storage within riparian 

soils and vegetation at the local or regional level. Various studies have focused on Corg stocks 

in ecosystems, such as in alder fens (Busse and Gunkel 2002), coastal plain floodplains (Giese 

et al. 2000), boreal lakes in Ontario (Hazlett et al. 2005) or timber plantations in Scandinavia 

(Backéus et al. 2005; Cao et al. 2010). In tropical and subtropical wetlands there has been 

research on mangroves and shrimp farms in Thailand (Matsui et al. 2009), seasonal 

sequestration in the Okavango delta (Mitsch et al. 2010) and Panama (Grimm et al. 2008). 

Cierjacks et al. (2011) provided statistical models on the spatial distribution of Corg stocks in 

Danubian floodplain vegetation and soils. Rheinhardt et al. (2012) used indicators based on 

the distance to river for biomass estimations in a river system in North Carolina. However, 

these studies rely on data collected by cost-intensive field surveys. For improving the 

estimation of Corg, including larger or less accessible wetland and riparian areas, combined 

methods of remote sensing, geographic information systems (GIS) and machine learning are 

promising techniques. 

A wide range of remote sensing methods (Farid et al. 2008; Munyati 2000; Ozesmi and Bauer 

2002) and in particular object-based image analysis (OBIA) (Kollár et al. 2011; Rokitnicki-

Wojcik et al. 2011; Wagner 2009) have been used for mapping of wetland habitats. However, 

these studies related to the differentiation of vegetation classes and did not focus on the 

assessment of biomass or Corg. 
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In addition, various remote sensing analyses of Corg stocks have been done for non-floodplain 

habitats, but most of these studies have focused either on Corg stocks in soil (Behrens and 

Scholten 2006; McBratney et al. 2003) or in vegetation (Awaya et al. 2004; Hilker et al. 2008; 

Olofsson et al. 2008). So far, no studies on the estimation of total Corg stocks in riparian 

forests have been done. And despite advances in remote sensing and geodata analysis, these 

techniques have not yet been applied to the analysis and estimation of area-wide Corg stocks in 

floodplains. 

Goetz et al. (2009) distinguished three approaches for using remote sensing data to map 

carbon stocks. In the simplest method, the stratify and multiply (SM) approach, e.g. as used 

by Mayaux et al. (2004) or Suchenwirth et al. (2012), a single value or a range of values is 

assigned to each class of land cover, vegetation type, or other site characteristic. This 

approach is limited due to the range of biomass within any given thematic class and the 

ambiguities concerning the identification of given types. The second approach, combine and 

assign (CA), extends the SM approach to a wider range of spatial data to improve 

classifications (Gibbs et al. 2007). It has the advantage of using finer spatial units of 

aggregation and weighted data layers, but is limited due to the moot representativeness of 

class values and difficulties in acquiring consistent information as the study area size 

increases. The third approach, direct remote sensing (DR), uses machine learning techniques 

and extends satellite measurements directly to maps, i.e., a classification algorithm is trained 

to develop an optimized set of rules through iterative repeated data analysis (Breiman 2001) 

for the estimation of biomass and carbon (Baccini et al. 2012). This approach results in 

continuous values for biomass based on easily understandable rules, such as those described 

for the Amazon basin (Saatchi et al. 2007), Russian forests (Houghton et al. 2007), or the 

African continent (Williams et al. 2007). 

Suchenwirth et al. (2012) used remote sensing data and a digital elevation model to map 

carbon densities in a floodplain. They used an OBIA approach to classify vegetation types. 

The total carbon storage of soils and vegetation was quantified using a Monte-Carlo 

simulation for all classified vegetation types, and spatial distribution was mapped. 

We want to improve this method by including additional data and using a machine learning 

technique. Due to the complexity of the spatial distribution of Corg in the Danube floodplains 

(Cierjacks et al. 2010; 2011; Suchenwirth et al. 2012), and the amount, variety, and variable 

consistency of available data, our goal is to establish a machine learning approach for an area-
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wide modeling of Corg stocks. To include remote sensing data and several additional geodata, 

we chose a classification and regression tree (CART) approach (Breiman et al. 1984; Loh 

2011). 

The specific aims of this paper are as follows: 

(1) to evaluate a machine learning algorithm (CART) for estimating and mapping Corg stocks 

in vegetation (Corg _veg), soil (Corg_soil) and total biomass (vegetation, soil and deadwood; 

Corg_tot) in riparian forests based on classification accuracies, and (2) to rank the parameters in 

terms of their ability to predict Corg. 

 

2 Materials and Methods 

 

2.1 Research Area 

The research area has a size of 11.3 km2 and is situated within the Danube Floodplain 

National Park (Nationalpark Donau-Auen) in Austria (16.66° E, 48.14° N). The national park 

is located between the Austrian capital Vienna and the Slovak capital Bratislava and stretches 

along the river Danube for about 

36 km (Fig. 1). The river has an average width of about 350m, and the banks are generally 

fixed by riprap. Only a few human impacts on the area happened apart from the construction 

of the Hubertusdamm dike in the 19th century to protect areas on the northern riverbank from 

inundation. In the 1960s, natural forest structures were altered by widespread planting of 

hybrid poplars (Populus x canadensis), especially on the southern riverbank. In 1996, the area 

was declared a national park, and thus commercial enterprises were banned within its 

precincts. Despite of the mentioned human interventions, the area remains one of the last 

large pristine riparian habitats in Central Europe and has been recognized by the International 

Union for Conservation of Nature (IUCN) as a Riverine Wetlands National Park, Category II. 

The national park’s environmental features include the secondary streams (the Danube river 

itself is an international waterway), side channels and oxbow lakes, gravel banks, riparian 

forests and meadows, reed beds and xeric habitats. Within the forests, we can differentiate 

between hardwood forest (dominated by quercus robur, fraxinus excelsior and acer 

campestre), softwood forest (dominated by salix alba and acer negundo) and cottonwood 

forest (consisting of hybrid poplar plantations of the 1960ies) (Cierjacks et al. 2010). 
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Fig. III-1: Research Area, green: Danube Floodplain National Park, red cross: locations of the terrestrial sample 

points training data, blue dot: test data. The red line represents the Hubertusdamm dike. The grey box represents 

the outline of the subsets in Fig. 2 

 

The main soil type is haplic fluvisol (calcaric). Calcaric gleysols are less important. The 

climate is continental with a mean annual temperature of 9.8 °C and a mean annual 

precipitation of 533 mm [Schwechat climate station, 48°07’ N, 16°34’ E, 184 m above sea 

level (ZAMG 2002)]. 

The mean carbon storage in the area was estimated as 359.1 Mg C ha-1 (472,186 Mg in an 

area of 13.1 km2) by Cierjacks et al. (2010)   

 

2.2 Data 

 

The following available comprehensive data from the research area were included in the 

analysis: two very high spatial resolution (VHSR) satellite images from Ikonos and RapidEye 

sensor, historical and current topographic maps, a digital elevation model (DEM), and data on 

the mean groundwater level (MGW). 

We purchased a preprocessed cloudfree Ikonos 2 image, recorded on April 22, 2009 with a 

spatial resolution of 1.0 m (panchromatic) and 4 m (multispectral), as well as a satellite image 

from RapidEye recorded on August 1, 2009 and processed at L3A with a spatial resolution of 

5.0 m (multispectral), provided by the German Aerospace Centre. Both images were provided 

in the UTM WGS 1984 projected coordinate system and were reprojected into the Austrian 

MGI M34 projected coordinate system. We used this local system as the majority of local 

data was also projected in this way. 
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Tab. III-1: Available geodata and derived parameters. 

Available geodata Derived parameters Abbreviation 

Ikonos image   

(April 22 -2009) 

 

 

 

 

 

 

 

RapidEye  image  

(August 1-2009) 

Blue channel 

Green channel 

Red channel 

Near infrared channel 

NDVI (Normalized Difference Vegetation Index) 

(Tucker 1979; Rouse et al. 1973) 

Vegetation classification derived by OBIA (Suchenwirth 

et al. 2012) 

 

Blue channel 

Green channel 

Red channel 

Red edge channel 

Near infra red channel 

NDVI  

Transformed NDVI [((b5+b3)+0.5)
0.5

] (Deering et al. 

1975) 

modNDVI [(b5-b4)/(b5+b4-2*b1)] (Datt 1999) 

b4NDVI [(b5-b4)/(b5+b4)] (Gitelson and Merzlyak 1994) 

Solar Reflectance Index [b5/b3] (Rouse et al. 1973) 

[b2 -b1]  

[b3 -b1]  

[b3 -b2]  

[b5 -b4]  

[b3/b1]  

[b4/b2] 

[b5/b2] 

 

Texture parameters (Haralick et al. 1973) 

Gray-level co-occurrence matrix (GLCM) homogeneity 

GLCM mean 

GLCM correlation 

GLCM contrast  

Gray-level difference vector (GLDV) entropy 

Ikonblu  

Ikongrn  

Ikonred  

Ikonnir  

Ikonndvi  

 

 

Classification 

 

b1 -REblue 

b2 -REgreen 

b3 -REred 

b4 -RErededge 

b5 -REnir 

RE_NDVI 

tNDVI  

 

modNDVI 

b4NDVI 

SRI 

b2mb1 

b3mb1  

b3mb2  

b5mb4  

b3db1  

b4db2  

b5db2 

 

 

GLCM homogeneity 

GLCM mean 

GLCM correlation 

GLCM contrast  

GLDV entropy 

Digital elevation 

model 

Elevation 

Slope 

DEM 

slope 

Historical and 

current topographic 

maps 

Existence of historic riverbed during: 

First Military Mapping Survey (1773 -1781) 

Second Military Mapping Survey (1806 -1869) 

Third Military Mapping Survey (1868 -1880) 

Current distance to river based on current topographic 

map ÖK50 

 

hist1 

hist 2 

hist 3  

 

dist 

Ground water model Ground water level MGW 

Corg ground survey 

data from 2008 and 

2010 

Above ground carbon stocks 

Below ground carbon stocks 

Total carbon stocks 

Corg_veg 

Corg_soil 

Corg_tot 



  Chapter III 

 

53 

 

In addition to the spectral values, several ratios and texture parameters (Haralick et al. 1973) 

were calculated (Tab.1). A digital elevation model derived from Lidar data was used to 

compute height and slope. Increased slope values can suggest former riverbeds of the main 

stream or overgrown side channels, which can serve as an indicator of softwood (Suchenwirth 

et al. 2012), which cannot be detected directly through spectral values. 

Also the height above ground has been included in the knowledge-base. Following vegetation 

types were determined by OBIA from the Ikonos image and the DEM: meadow, reed bed, 

cottonwood, softwood and hardwood forests (Suchenwirth et al. 2012). 

Historical and current topographic maps were provided by the Austrian Federal Office for 

Metrology and Survey (Österreichisches Bundesamt für Eich- und Vermessungswesen, BEV). 

The historical maps are derived from three topographic land surveys, the First (1764–1806), 

the Second (1806–1869) and the Third Military Mapping Survey (1868–1880). We digitized 

the riverbeds and channels as well as oxbows and coded them, either if there was a historic 

water body or not. A groundwater model indicating median ground water depth was provided 

by the Vienna University of Technology. 

During two terrestrial surveys in 2008 and 2010, a total of 104 samples from vegetation and 

soil were taken [69 samples in 2008 (Cierjacks et al. 2010) and 35 samples in 2010 (Rieger et 

al. 2013), Fig.III-1]. All data were collected in a stratified randomized sampling design 

throughout the research area in 10 x 10m plots. In each sample plot, forest stand structure was 

measured and soil samples were taken. A detailed description of the Corg calculation is given 

by Cierjacks et al. (2010) and Rieger et al. (2013). These data were randomly separated in 

training data (70%) and test data (30 %) for the classification. 

 

2.3 Methods 

We developed a spatial model for the estimation and mapping of Corg stocks in soils and 

vegetation based on a machine learning algorithm. For this, we chose a classification and 

regression tree (CART) approach. CART creates classification rules in the shape of a decision 

tree. Decision trees show hierarchical rules according to which a dataset is classified. At the 

beginning of a decision tree is the basic population of the data. During the classification 

process, the dataset is divided according to binary rules (Breiman et al. 1984; Loh 2011; 

Quinlan 1986). The advantages of CART include the flexibility to handle a broad range of 
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response types, such as numeric and categorical data, the ease and robustness of construction, 

and the ease of interpretation (De'ath and Fabricius 2000). 

For our work, we used the software package eCognition 8.7.1. It allowed us to combine 

CART and OBIA and thus make use of the vast amount of data including remote sensing and 

other spatially continuous geodata. OBIA has been successfully applied to classifications of 

diverse habitats from wetlands (Kollár et al. 2011; Rokitnicki-Wojcik et al. 2011) and 

floodplains (Wagner 2009) to forests (Chubey et al. 2006) and drylands (Laliberte et al. 

2007).  

The CART approach in eCognition is based on the original algorithms described by Breiman 

et al. (1984) and has been implemented by the OpenCV-Wiki (2010) and eCognition 

(eCognition 2012). 

The ground survey data set containing total carbon stocks was grouped into classes (Tab.2) as 

were the separate stocks for vegetation and soil. We compared classifications of above ground 

biomass (Corg_veg), below ground biomass for soil depth up to 1 m (Corg_soil) and total carbon 

stocks (Corg_tot) using classifications based on two, three, four and five quantile classes. We 

used quantiles in order to have equal numbers of samples for each class. We applied this 

approach for different numbers of classes to define an optimum number of classes with 

acceptable classification accuracy. 

 

Tab. III-2: Corg ranges (Mg Corg ha
-1

) for Corg_veg, Corg_soil, and Corg_tot stocks for different numbers of classes. 

class Five quantile classes Four quantile classes Three quantile classes Two quantile classes 

Corg_veg Corg_soil Corg_tot Corg_veg Corg_soil Corg_tot Corg_veg Corg_soil Corg_tot Corg_veg Corg_soil Corg_tot 

1 < 55.0  <132.8  <231.0  < 75.0  <140.0  <255.5 < 86.5  <161.0  <281.0  <134.9  <186.4  <325.9  

2 55.0 -  

99.9  

132.8 - 

173.9  

231.0 - 

300.0  

75.0 -

135.0  

140.0 - 

186.5  

255.5 - 

326.9  

86.5 - 

180.0  

161.0 - 

203.2  

281.0 - 

373.0  

>135.0   >186.5  >326.0  

3 100.0 -

134.0 

174.0 - 

197.3  

300.1 - 

360.9  

135.1 - 

200.0  

186.5 - 

227.0  

327.0 - 

407.0  

>180.0  >203.2  >373.0     

4 134.1 - 

193.0  

197.4 - 

240.0  

361.0 - 

445.0  

>200.0   >227.0  >407.0       

5 >193.0 >240.0 >445.0          

 

The OBIA was performed on a multiresolution segmentation with a scale parameter of 200 

and the homogeneity criterion including a shape of 0.1 and a compactness of 0.5. Each 
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spectral band of the RapidEye and Ikonos satellite imagery, as well as each additional geodata 

layer was weighted equally. However, calculated indices or ratios were not further weighted. 

Equal segmentation settings were used for all classifications in order to facilitate the 

comparability of area units among the classifications. 

The internal CART algorithm was trained with the respective quantile classes and applied 

onto the parameters using the “classifier” tool in the software package eCognition 8.7.1, with 

a classifier depth of 10, a minimum sample count of 6 and 9 cross validation folds. 

To evaluate the accuracy of the individual classifications, we calculated the overall accuracy 

(OA). We additionally decided to follow the suggestions of Pontius and Millones (2011) who 

recommend the use of allocation and quantity disagreement for accuracy assessment rather 

than the use of kappa. The two measures are described as follows: 

a) Allocation disagreement (AD) is the number of pixels that have a less than optimal spatial 

allocation in the comparison map with respect to the reference map. Allocation disagreement 

is the distance above the quantity disagreement line. 

b) Quantity disagreement (QD) is the absolute difference between the number of pixels of a 

certain class in the reference map and the number of pixels of the same class in the 

comparison map. 

 

The lower the values of allocation and quantity disagreement, the better is the accuracy. Both 

disagreement values are calculated as percentages.  

Furthermore, we calculated for each classification the root-mean-square error (RMSE), 

frequently used to check the internal model quality with the advantage of being independent 

of the number of used classes (Kanevski et al. 2009; Richter et al. 2012). For our application, 

we used the arithmetic mean of each class (of the training plots) as the estimated value, and 

used the terrestrial value of each test plot as the measured value. 

To calculate the relevance of the individual datasets, we summarized the use frequency of the 

individual parameters, normalized by the overall sum of all use frequencies. Additionally, we 

considered how many parameters derived from a specific dataset were applied, normalized by 

the total number of the available parameters of a certain dataset. Erasmi et al. (2013) 

described the concept as “normalized importance”. 
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3 Results 

 

3.1 Modelled Corg Distribution and Accuracies 

Fig. III-2 shows the classification results in the form of maps for a part of the research area. 

The subset comprises all classes and all environmental features inside the research area. We 

can see that Corg_veg stocks are equally scattered across the area, while Corg_soil stocks increase 

as the distance to the river increases. The influence is less visible for Corg_tot but can still be 

seen for a classification with four classes.  

 

 

Fig. III-2: Modelled distribution of Corg_veg, Corg_soil, and Corg_tot stocks for different numbers of classes. The 

increasing amount of stored Corg is represented by colour graduations increases from pink to red to brown. 

 

We compared the derived accuracies (OA, AD, QD) for Corg_veg, Corg_soil, and Corg_tot stocks for 

all numbers of classes (Fig. III-3), as well as RMSE. The comparison of classification 
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accuracies for Corg_veg, Corg_soil, and Corg_tot stocks revealed that the accuracy is highest for two 

classes and lowest for five classes (Fig. III-3). Models with three or four classes range in 

between and represent a good compromise between complexity and acceptable accuracy. 

With regard to the model quality, we can examine Fig. III-4. Classifications with fewer 

classes show higher RMSE values, e.g. more than 90 for Corg_tot two quantile classes, than 

classifications with more classes. The lowest RMSE values are below 25 for Corg_soil with four 

classes and Corg_tot with four classes. 

 

3.2 Parameter Relevance 

In the following we analyze the use frequency of the individual datasets and parameters. Tab. 

3 shows the results for classifications with all quantile classes for Corg_veg, Corg_soil, and Corg_tot. 

For RapidEye parameters, the relevance ranged from 3.6 % (Corg_soil two classes) to 25.6 % 

(Corg_tot five classes). As the number of classes grows, the parameter relevance rises. For 

texture parameters, the relevance ranged from 4.6 % (Corg_soil 5 classes) to 29.5 % (Corg_veg 

four classes) with no clear indication of which number of classes provided the best results. 

The overall parameter relevance for Ikonos was lower. It ranged from 0 % (Corg_soil two or 

three classes) to 9.6 % (Corg_veg two classes) which could be explained by the acquisition date 

of April, when full leaf-out had not occurred yet. 

 

 

Fig. III-3: Overall accuracy, allocation, and quantity disagreement in percent for classifications of Corg_veg, 

Corg_soil, Corg_tot based on five, four, three, and two classes. 

 



Estimation and Mapping of Carbon Stocks in Riparian Forests by using a Machine Learning Approach 

with Multiple Geodata 

58 

 

For DEM parameters relevance ranged from 0 % (Corg_veg three classes; Corg_soil five classes) to 

the highest overall share of 52.1 % (Corg_soil two classes). The MGW reached the highest 

parameter relevance for all classification runs (32.7 % / 18.3 % / 26.2 %), with the relevance 

ranging from 0 % (Corg_soil two and four classes; Corg_tot five classes) to 43.2 % (Corg_tot two 

classes). For the “distance to river” parameter, the relevance ranged from 0 % (Corg_soil two 

and four classes) to 50.4 % (Corg_soil five classes), with this parameter achieving greater 

relevance when greater numbers of classes are used. For the parameters based on the 

existence of historical riverbeds, the relevance ranged from 0 % (Corg_veg two, three and four 

classes; Corg_soil five classes; Corg_tot two, four and five classes) to 36.0 % (Corg_soil two classes), 

and was important only when classifying Corg_soil classes. 

 

 

Fig. III-4: Root-mean-square error for classifications of Corg_veg, Corg_soil, Corg_tot based on five, four, three, and 

two classes. 

 

To illustrate the importance of single parameters, Figs III-5a–c give an exemplary insight of 

the parameter relevance of classifications with four classes for Corg_veg, Corg_soil, and Corg_tot. 

For Corg_veg, there are 16 parameters (RapidEye: 6; texture: 4; Ikonos: 2; DEM: 2; MGW and 

distance: 1 each), where the index b4db2 (i.e. RapidEye’s RedEdge divided by green channel) 

is the most important with more than 23 %. For Corg_soil, there are eleven parameters 

(RapidEye: 4; texture: 2; Ikonos: 2; historical maps: 2; DEM: 1), of which hist3 (existence of 

riverbed between 1868 to 1880) is the most relevant with almost 20 %. For Corg_tot, there are 

in total nine parameters (Rapid-Eye: 2; texture: 3; Ikonos: 1; MGW, DEM and distance: 1 
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each), of which b2mb1 (RapidEye’s green channel minus blue channel) is the most important 

one with more than 22 %. 

 

Tab. III-3: Dataset relevance for classifications of Corg_veg, Corg_soil, and Corg_tot stocks. 

  RapidEye Texture Ikonos DEM MGW 

Distance  

to river 

Historic 

 maps 

Corg_veg 5cl 14.5 22.5 5.5 6.3 16.5 31.7 3.0 

 4cl 12.0 12.9 5.0 25.3 37.0 7.8 0.0 

 3cl 21.8 20.6 3.0 0.0 34.3 20.2 0.0 

 2cl 5.9 23.8 9.6 7.3 42.8 10.7 0.0 

 Average  13.5 20.0 5.8 9.8 32.7 17.6 0.7 

Corg_soil 5cl 4.1 4.6 1.7 0.0 39.2 50.4 0.0 

 4cl 13.1 29.5 8.4 13.0 0.0 0.0 36.0 

 3cl 5.2 18.4 0.0 6.6 33.9 16.6 19.3 

 2cl 3.6 8.4 0.0 52.1 0.0 0.0 35.8 

 Average 6.5 15.2 2.5 17.9 18.3 16.7 22.8 

Corg_tot 5cl 25.6 9.8 5.0 11.6 0.0 48.0 0.0 

 4cl 4.3 20.8 5.1 13.5 34.5 21.8 0.0 

 3cl 9.8 7.6 8.2 8.4 27.0 35.9 3.0 

 2cl 9.4 19.7 5.5 22.2 43.2 0.0 0.0 

 Average 12.3 14.5 6.0 13.9 26.2 26.4 0.7 
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Fig. III-5a: Parameter relevance for Corg_vet classifications based on 4 quantile classes (all abbreviations are 

explained in Tab. III-1). 

 

 

Fig. III-5b: Parameter relevance for Corg_soil classifications based on 4 quantile classes (all abbreviations are 

explained in Tab. III-1). 
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Fig. III-5c: Parameter relevance for Corg_tot classifications based on 4 quantile classes (all abbreviations are 

explained in Tab.III- 1). 

 

4 Discussion 

 

4.1 Classification Results and Accuracies 

Our study provides a novel technique for the estimation and mapping of Corg stocks in 

floodplains based on remote sensing and additional geodata. It could be used to generate Corg 

inventories in other temperate wetlands, especially forested floodplains where ground 

assessment is difficult or impossible. The visualization of the individual classes shows 

complex distribution patterns of Corg stocks. Despite of the cluttered structure and the 

heterogeneous distribution within the different classes, the majority of classifications show 

that higher Corg_soil stocks have developed at a certain distance to the main riverbed of the 

Danube and its side arms. This is best illustrated by classifications with two but also four 

classes of Corg_soil. These lateral gradients were also described by Cierjacks et al. (2010, 2011). 

In comparison, the patterns of Corg_veg and Corg_tot were less predictable. Classifications are 

very speckled for every model and a fully consistent classification is difficult due to the type 

of the terrain. This reflects the complexity of floodplain habitats in general, and the detailed 

intricacy of riparian Corg stocks in particular and also has been shown by Samaritani et al. 

(2011) and Suchenwirth et al. (2012). For the particular case of the Danube floodplain, this 

may also be related to the widespread planting of hybrid poplars in the 1960s, which altered 

the natural vegetation structure of hardwood and softwood forests. 
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Surprisingly, the accuracy of the Corg_soil stock models was similar to the accuracy of the 

Corg_veg stock models. Predictive variables derived from remote sensing and other geodata 

serve as proxies for recent environmental conditions that control vegetation properties. 

Soil organic matter, in contrast, can accumulate over hundreds of years. Thus relations of 

Corg_soil stocks to recent environmental conditions might not be expected. It is likely that the 

variations in Corg_soil stocks found in our study are mainly due to variations in the Corg stocks 

of the upper soil horizons, which in turn are affected by recent environmental conditions. 

Furthermore, the position of historic riverbeds, a parameter with strong and long-lasting 

influence on soil organic matter content, was considered (Figs. III-3 and III-5b). 

Predictably, an increase in the number of classes goes along with a more speckled appearance 

of the classification and overall accuracy decreases. Here, we have to keep in mind that a 

classification with fewer classes will automatically result in higher accuracy, and therefore the 

differences simply reflect the higher chance of misclassifications. 

Similarly to the overall accuracy, allocation disagreement as well as quantity disagreement 

values decreased, i.e., the accuracy improved, with fewer classes. An exception is the very 

high quantity disagreement value for Corg_veg based on two classes. 

The RMSEs (Fig. III-4) provides a measure independent of the number of used classes. The 

RMSEs “mirror” the results of accuracy assessment, with lower RMSEs for classifications 

with higher class numbers, especially for Corg_soil accuracies. 

For assessing the performance of the CART approach we also compared our results with a 

linear multiple regression analysis for estimating Corg_soil, Corg_veg, and Corg_tot. Results showed 

that for Corg_soil regression (model intercept p = 0.0069; F = 3.3789) groundwater level was the 

most important parameter (p = 0.0177; y = -11.275x + 1833.4; R2 = 0.8657). 

For Corg_tot regression (model intercept p = 2.3833-9; F = 6.5114), the green RapidEye 

channel (p = 0.0145; y = -0.0756x + 584.28; R2 = 0.5619) and the red Ikonos channel (p = 

0.0188; y = -0.4198x + 426.33; R2 = 0.5244) were the most important parameters. 

For Corg_veg regression (model intercept p = 1.7728-6; F= 7.7927), the green RapidEye 

channel (p = 0.0099; y = -0.0482x + 335.83; R2 = 0.5301) and red Ikonos channel (p = 

0.0081; y = -0.3752x + 208.54; R2 = 0.5562) have the highest importance among the 

parameters. 

The regression confirms our findings that remote sensing parameters are more important for 

the classification of Corg_veg, whereas parameters from auxiliary geodata have more influence 

on the classification of Corg_soil stocks. 
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It is worth discussing whether and which other additional parameters should be taken into 

consideration for the detection and modelling of Corg distributions in floodplains. Data on 

forest management practices or local sinks may be considered but were not available on a 

spatially inclusive and comprehensive level. 

In general, Rocchini et al. (2013) argue that the classification of remotely sensed images for 

the derivation of ecosystem-related maps which also includes the estimation of Corg is 

commonly based on clustering of spatial entities within a spectral space with the implication 

that it is possible to divide the gradual variability of the Earth’s surface into a finite number of 

discrete non-overlapping classes, which are exhaustively defined and mutually exclusive. 

Given the continuous nature of many ecosystem properties this approach is often 

inappropriate; especially as standard data processing and image classification methods 

involve the loss of information as continuous quantitative spectral information is being 

degraded into a set of discrete classes. For wetlands, Ozesmi & Bauer (2002) pointed out the 

limitations of remote sensing for classification and suggest the use of multi-temporal data for 

an improvement of classification accuracy. For remote sensing in wetlands, Adam et al.  

(2010) attribute the frequently observed limitations to the low spatial and spectral resolution 

in comparison to narrow vegetation units that characterize wetland ecosystems. 

There may also be concerns about the reliability of terrestrial data. Error propagation may 

always be a source of uncertainty for the mapping of ecosystems (Rocchini et al. 2013). Our 

basic survey data have been collected very densely and thoroughly, but transferability to other 

terrains may become challenging. 

Overall, we can conclude that the detection of floodplain characteristics is a challenging task. 

As for the appropriate number of classes, we consider three or four to be optimal. The 

accuracy is higher in comparison to a model with five classes, but the complexity is better 

represented than in a plain dichotomy of data and space created by merely two classes. 

Dillabaugh and King (2008) found an optimal number of three classes for their classifications 

of biomass in riparian marshes in Ontario. 

Regarding our first research aim, a model approach with four classes seems to perform best. 

However, the concept of applying segregative classes remains to a certain extent debatable. 

Therefore, an approach with classes based on fuzzy logic (Zadeh 1989) should be considered 

in future works to improve the predictive capability of the Corg model. 
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A general point of criticism might apply to the question of why to classify a continuous 

variable with separate classes. Even though a continuous regression may seem more 

appropriate, we wanted to create statistically set classes and to follow the concept of different 

Corg concentrations in different compartments of the floodplains. For further planning 

applications, the regional managers would always apply an ordinal scale, e.g. high, medium, 

low. The provision of an estimate about the optimal class size for Corg might be valuable in 

terms of its practical application. 

A further point of debate remains the sampling design. The random division of terrestrial 

survey data into 70 % training data and 30 % test data and repeated analysis would probably 

provide a better estimate about the uncertainties within the calibration and validation data. 

Repeated measurements could give an insight into the quality of the cal/val information and, 

in consequence, provide knowledge about the optimal sampling size and spatial distribution of 

these data. In further analysing steps a repeated calculation with varying samples is envisaged. 

 

4.2 Use of Parameters 

Regarding the application of parameters and their use frequency, classification of Corg_veg 

relied to a higher percentage on remotely sensed parameters like RapidEye, Texture, and 

Ikonos than did the classification of Corg_soil or Corg_tot stocks. 

The fact that remotely sensed parameters, especially RapidEye parameters, are the most 

important factors for the classification of Corg_veg provides further evidence of the relevance of 

satellite imagery for the estimation of biomass, including Corg (Gibbs et al. 2007; Neeff et al. 

2005; Rheinhardt et al. 2012). Schuster et al. (2012) in particular proved the special relevance 

of the RedEdge channel for vegetation classification. It is nevertheless remarkable that MGW 

and the distance to the river played a more dominant role in the classification of Corg_veg and 

Corg_tot stocks than Corg_soil stocks, although one could assume that median groundwater would 

be a comparatively less decisive factor for vegetation than for soil biomass and resulting Corg. 

Still, similar findings for fine-root and above-ground biomass which also clearly reflected 

groundwater depths in the same study area support our results (Rieger et al. 2013). For the 

case of distance to river, the differences within the parameter relevance (Fig. III-5b) for 

Corg_soil is a specific characteristic and shows the variability of classification models. While 

remotely sensed parameters play the dominant role in all classifications, it is striking that the 
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most important parameter for the Corg_soil classification are the historical riverbeds (Figs. III-

5a–c). 

The case is different for the classification of Corg_soil stocks, where remote sensing based rules 

had in some cases less than 50 % influence towards the classification. In contrast, the 

application frequency of DEM and historical riverbeds – parameters not derived from remote 

sensing – was more common for the classifications of Corg_soil compared to Corg_veg. 

These parameters have already been used successfully in other studies (Cierjacks et al. 2011; 

Samaritani et al. 2011) to determine Corg stocks. Concerning the use of historical maps, it 

should be kept in mind that our maps only provide information on roughly the last 250 years, 

whereas Corg stocks in soil are the consequence of geomorphologic and pedogenetic processes 

that have taken place over centuries and millennia. 

In general, the assessment of the relevance of individual parameters for the Corg model 

showed that spectral information from remote sensing provides direct information about 

above ground biomass, while information on soil characteristics can only be explained 

indirectly through vegetation. This is due to the fact that Corg_soil reflects not only recent 

vegetation, but accumulations over centuries. This is reflected in the high relevance of 

historical maps for this factor (Fig. III-5b) which emphasizes the potential of soils to serve as 

a memory of previous site conditions, such as historical inundations and changes in riverbeds 

that often occurred prior to present-day land management practices. 

 

5  Conclusion and Outlook 

 

Our study provides a machine learning approach to model Corg stock distributions in riparian 

forests. We aimed to evaluate a machine learning algorithm (CART) and determine the 

relevance of individual variables derived from the geodata for the estimation. 

Overall, a spatial model of Corg in riparian forests could be generated using CART. With the 

use of geographic datasets, it was possible to show the spatial distribution in terms of a 

cartographic representation generated by classification. Yet, classification accuracy remains a 

challenge due to the high complexity of floodplains where patterns of Corg distribution are 

inherently difficult to define. 

The evaluation of the relevance of the individual parameters derived from the geodata 

revealed that remote sensing parameters are more important for the classification of Corg_veg, 
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than for the classification of Corg_soil. This is also the case for MGW and the distance to the 

river. In contrast, parameters derived from auxiliary geodata such as DEM and historical maps 

were more decisive for the classification of Corg_soil than Corg_veg. Corg_tot stocks fell in between 

in terms of application frequency of remote sensing and other parameters. Therefore, 

depending on the target (Corg_soil or Corg_veg), different parameters should be considered when 

analyzing the spatial distribution of carbon storage. 

The application of data-mining approaches to remote sensing and other geodata is helping to 

automate and facilitate estimations of Corg in riparian forests. In addition, information on 

vegetation structure might improve the Corg_soil model. Each classification model highlights 

the complex interrelations between Corg stocks and the external geofactors. In particular, 

vegetation cover and resulting Corg_veg seems to reflect recent site conditions while Corg_soil 

reflects both recent conditions and past processes. In this way, our model contributes to a 

better understanding of the importance and relationships of Corg cycling in floodplain 

ecosystems. Consequently, this work may serve as a local case study for a well and densely-

surveyed area and contribute to improve methods of Corg estimation and monitoring in other 

floodplain areas with similar conditions in temperate climates. It might help to improve 

formal frameworks such as European biomass inventory (Gallaun et al. 2010), REDD, and 

Kyoto protocols (Böttcher et al. 2009; IPCC 2000; Obersteiner et al. 2009; Paoli et al. 2010; 

UNEP-WCMC 2008).  
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Abstract  

 

Among the machine learning tools being used in recent years for environmental applications 

such as forestry, self-organizing maps (SOM) classifications and the k-nearest neighbor 

(kNN) algorithm have been used with success. We applied the two methods for the mapping 

of organic carbon (Corg) in riparian forests as they have a considerably high carbon storage 

capacity. Despite the importance of floodplains for carbon sequestration, a sufficient scientific 

foundation for creating large-scale maps showing the spatial distribution of Corg is still 

missing. We estimated organic carbon in a test site in the Danube Floodplain based on 

RapidEye remote sensing data and additional geodata. As a result, carbon distribution maps of 

vegetation, soil and total Corg stocks were derived. The results were compared and statistically 

evaluated with terrestrial survey data for outcomes with pure remote sensing data as well as 

for the combination with additional geodata using bias and the Root Mean Square Error 

(RMSE). Results show that SOM and kNN approaches enable us to reproduce spatial patterns 

of riparian forest Corg stocks. While Corg from vegetation has very high RMSEs, outcomes for 

soil Corg and total Corg stocks are less biased with a lower RMSE, especially when remote 

sensing and additional geodata are conjointly applied. SOMs show similar percentages of 

RMSE to the kNN classifications. 
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1 Introduction  

 

In recent decades, machine learning approaches have been introduced to manage the vast 

amount of data produced by various scientific disciplines, including environmental sciences 

such as forestry. One of the most intricate neural networks techniques are self-organizing 

maps (SOM), first described by Kohonen (1982). This unsupervised learning technology 

combines a high level of biological plausibility with applicability to numerous information 

processing and optimization problems. It allows one to reduce high dimensional information. 

The term 'maps' refers to the low dimensionality and does not necessarily imply a spatial or 

geographical application; in fact the technique emerged from neurosciences and there are a 

many examples from biosciences and engineering applications (Breijo et al. 2013; Wang et al. 

2013; Xuan et al. 2013). 

A different approach to the spatial classification of data is the k-nearest neighbor (kNN) 

technique; this so-called instance-based, 'lazy' learning algorithm often serves as a benchmark 

for other methods (Kanevski et al. 2009).  It has frequent applications in forestry; the kNN 

method has been applied in a number of forest inventories, e.g. in Finland (Tomppo 1991; 

Tomppo and Halme 2004), New Zealand (Tomppo et al. 1999), Austria (Koukal et al. 2007) 

or Ireland (McInerney and Nieuwenhuis 2009). Some studies explicitly used kNN to estimate 

Corg (Fuchs et al. 2009; Magnussen et al. 2009; Stümer et al. 2010). The majority of studies 

are based on the use of Landsat data, few of them used VHSR (very high spatial resolution) 

satellite data.  

Lek and Guégan (Lek and Guégan 1999) give a broad overview of applications in ecological 

and environmental sciences; recent applications include monitoring of river quality (Astel et 

al. 2007; Shanmuganathan et al. 2006), urban modelling (Arribas-Bel et al. 2011)  and 

forestry applications (Adamczyk et al. 2013; Giraudel and Lek 2001). For the estimation of 

Corg, Stümer et al. (2010) successfully applied SOM and compared it with the k-nearest 

neighbor (kNN) algorithm for the assessment of biomass (and thus Corg) in Thuringian forests.  

In the wake of the climate change discussion, it has become an essential task not only to 

decrease carbon emissions but also to identify natural carbon sinks in ecosystems all over the 

globe. Among terrestrial ecosystems, mangroves, peat lands and wetlands have especially 
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shown an increased potential to sequester organic carbon in addition to other ecosystem 

services. For the case of riparian wetlands, several studies have underlined the high storage 

capacity (Hoffmann et al. 2009; IPCC 2000; Mitra et al. 2005).  

The sequestration potential of floodplains is dependent both on vegetation (including forests, 

reed beds, and meadows), and soils. The important link between Corg stocks of forests and 

underlying soils has been demonstrated by a whole range of studies inside (Baritz et al. 2010; 

Harrison et al. 1995; Hofmann and Anders 1996) and outside Europe (Kooch et al. 2012; Lal 

2005).  

Even though the value of riparian ecosystems has been recognized, the scientific underpinning 

for mapping large-scale carbon stocks is yet to be established. On a global scale, as well as on 

the national level, Corg maps have been produced and validated; however a regional or local 

validation of results is typically not obtainable. Various remote sensing analyses of Corg stocks 

have been utilized for non-floodplain habitats, especially forests (Olofsson et al. 2008; 

Patenaude et al. 2005), but most of these studies have focused either on Corg stocks in soil or 

vegetation. Detailed Corg maps of floodplain areas have seldom been produced, apart from 

Suchenwirth et al. (2012). 

In the presented study, we estimate organic carbon above and below ground in a test site in 

the Danube Floodplain based on a SOM and kNN classification of VHSR RapidEye data and 

ancillary geodata. Both results are compared to field survey data. In contrast to Stümer's 

application of SOM and kNN for Thuringian forests (2010), we consider the vegetation 

(above ground), soil (below ground) and total Corg in a floodplain area. Moreover, we 

introduce additional auxiliary geodata as input source data for both algorithms. In this way we 

compare the outcomes for remote sensing (RS) input information with the results for RS and 

additional information. We decided to apply SOM and kNN for the Corg models, as previous 

methods such as the derivation of Corg stocks from classified vegetation types (Suchenwirth et 

al. 2012) or the derivation via quantiles in a classification and regression tree (CART) 

approach (Suchenwirth et al. 2013) had only limited success. 

The specific aims of this paper are as follows: 
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(1) to create distribution maps of vegetation, soil and total Corg stocks in a riparian forest, 

based on SOM and kNN algorithms and compare the results, 

(2) to compare and evaluate results with previous estimation techniques, 

(3) to evaluate the influence of additional geodata on estimation quality. 

 

2 Material and methods  

 

2.1 Study area 

The research area is located inside the Danube Floodplain National Park (Nationalpark 

Donauauen) in Austria (16.66° E, 48.14°N). The area is a pristine floodplain area with few 

human impacts. Human activities included hunting in previous centuries, the construction of 

the Marchfeld dike in the 19th century, and the plantings of hybrid poplars (Populus x 

canadensis). Apart from these cottonwood plantations, the area is characterized by softwood 

forests (dominated by salix alba, acer negundo), hardwood forests (dominated by quercus 

robur, fraxinus excelsior and acer campestre), as well as meadows and reed beds. Our study 

area (11.7 km²) is limited by the Marchfeld dike (locally named Hubertusdamm dike) in the 

north, and the main river course towards the south. Geographic coordinates are given in 

Figure IV-1. 

The area was chosen for our study due to its high protection status, a good base of geographic 

data, and previous research in the area (Lair et al. 2009; Wagner-Lücker et al. 2013; Zehetner 

et al. 2009). Mean Corg storage in the area was estimated at 359.1 Mg Corg ha
-1

 by Cierjacks et 

al. (2010), and as 428.9 Mg Corg ha
-1

 by Suchenwirth et al. (2012). Figure 1 presents a 

RapidEye scene of the Danube Floodplain Area. Red color indicates pixels with high content 

of active biomass.  

 



Large-scale mapping of carbon stocks in riparian forests with self-organizing maps and the k-nearest-

neighbor algorithm 

 

72 

 

 

Fig. IV-1: Research area depicted as RapidEye RGB composite with terrestrial survey data (green dots; above) 

and vegetation classification (derived from Suchenwirth et al. 2012; below) 

 

2.2 Data  

We obtained a cloudless satellite image from RapidEye (recorded on August 1, 2009 in level 

3A with a spatial resolution of 5.0 m (Sandau 2010)). The image was provided by the German 

Aerospace Center, in the UTM WGS 1984 reference system. We reprojected the image into 

the Austrian MGI M34 projected coordinate system, as local data were mainly available in the 

local reference system. Atmospheric correction was not performed as we did not work with 

time series. RapidEye data were used as they reflect spatial heterogeneity of carbon 

distribution in floodplains. Notably the RedEdge channel has already been successfully 

applied to improve classifications of vegetation (Schuster et al. 2012).  

A digital elevation model (DEM) derived from Lidar data was used to compute altitude above 

river level; a groundwater model indicating median ground water depth was provided by the 

Vienna University of Technology. Distance to river (main stream) was derived from a 

topographic map. The topographic map is issued and updated every seven years by the 

Austrian Federal Office of Metrology and Surveying (Bundesamt für Eich- und 

Vermessungswesen). 
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In two terrestrial surveys in 2008 and 2010, a total of 104 samples from vegetation and soil 

were taken. Corg content of soil and vegetation was measured and calculated for each sample 

point (Cierjacks et al. 2010; Rieger et al. 2013). Total Corg consists of Corg in soil, vegetation, 

and dead wood on the ground. 

 

Table IV-1 Available geodata and derived parameters 

Available geodata Derived parameters Abbreviations 

RapidEye  image  

(August 1-2009) 

Blue channel (440 -510 nm) 

Green channel (520-590 nm) 

Red channel (630-685 nm) 

Red edge channel (690-730 nm) 

Near infra red channel (760-850 nm) 

B 

G 

R 

RE 

NIR 

Digital elevation model Elevation above river level altitude 

Ground water model Ground water level MGW 

Topographic map 1:50.000 (ÖK 50) Distance to river distance 

Corg ground survey data from 2008 and 

2010 

Above ground carbon stocks  

Below ground carbon stocks  

Total carbon stocks  

Corg_veg 

Corg_soil 

Corg_tot 

 

2.3 Self-organizing maps (SOM) 

The SOM approach is used to produce maps of Corg stocks in riparian forests of the Danube 

Floodplain. The method has been described in detail by Kohonen (1982, 2001), and has 

frequently been explained by other authors (Giraudel and Lek 2001; Kanevski et al. 2009; 

Stümer et al. 2010).  

The application of SOMs is generally divided into two modes or phases: a learning (or 

training) phase and a classification or mapping phase. SOMs structure the neurons in the form 

of rectangular or hexagonal arrays or grids of nodes with n dimensions, with an associated 

weight vector attached to each node. The procedure of placing a vector from the high-

dimensional data space into the two dimensional map space is performed by identifying the 

node with the closest associated distance to the presented data space vector, i.e. the winner 

pixel or best matching unit (BMU) is selected; its position within the grid is the excitation 

centre. Subsequently, differences between the weight vector and the data space vector are 

reduced. Afterwards, vectors in the neighborhood are adapted. The distance of the feature 

space is defined as the Euclidean distance. The learning process of the winner selection and 
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adaption process is iteratively repeated until no further adaption is necessary, as the initial 

learning rate is much smaller than in the first stage and a stable state is reached. At this 

moment the learning phase is completed. 

In the mapping phase, the input vector for which the prediction is necessary is presented to the 

map; distances from this location to all neurons are calculated. As a result, the BMU of the 

map is selected, providing a representative group of data samples to which the predicted input 

is most similar. 

In our approach, we applied the algorithm programmed by Stümer et al. (2010). We use the 

RapidEye scene with additional geodata (see data section) for our classification as the initial 

layer. For the analysis, we used the following standard parameters: A feature space distance 

of five or eight (depending on the number of used channels/parameters), a start distance δstart 

of 100,000 and an end distance δend of 100, and five iterations (tmax) were applied. It is 

necessary to set the start distance high in order to sufficiently consider the terrestrial samples, 

while at the end only the necessary neighbors shall be regarded.  

 

2.4 k-nearest neighbor (kNN) 

To compare the operational applicability of SOM we use the kNN method to provide spatially 

explicit results. It is described as the simplest, intuitively understandable und purely data-

driven algorithm and is applied frequently for classification or regression tasks, or to provide 

a quick visualization or benchmark. It classifies a point by calculating the distances between 

the point and the points in the training data set. Then the point is assigned to the class which is 

most common among its k-nearest neighbors (with k being an integer number). There is no 

learning phase, since all training examples are simply stored in the memory for further 

predictions. The method was described by (Hall et al. 2008; Kanevski and Maignan 2004; 

Kanevski et al. 2009). We follow the method applied by Stümer et al. (2010). 

For our kNN classification, we used standard settings to compare classifications: k = 5 

neighbors; Euclidean distance d(x1,x2), of 2, and a distance weight w(i),p of 2. These parameter 

settings were often described as a compromise between a limited number of neighbors and a 

sufficient accuracy in other studies (Fuchs et al. 2009; McInerney and Nieuwenhuis 2009).   
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2.5 Validation  

The reliability of Corg estimates obtained by the SOM- and kNN- approach is quantified by the 

bias and the root mean square error (RMSE). The bias is calculated as the difference between 

measured and estimated Corg stock; the RMSE includes variance of estimated Corg stock and 

the bias. The % RMSE facilitates comparisons between Corg measurements. In order to use 

terrestrial samples for both calibration and validation we used the Leave-one-out (L1o) cross–

validation (Richter et al. 2012).  

 

3 Results 

 

The SOM and the kNN approach were used in the Danube Floodplain National Park. We 

produced two types of results: (1) spatially explicit maps of the vegetation, soil and total Corg 

stocks per unit (Mg Corg ha
-1

), and (2) statistical estimates for vegetation, soil and total Corg 

stocks. The maps obtained by the SOM-approach were compared to alternative maps based on 

the kNN-approach. Terrestrial data were used as a basis for comparison of the statistical 

estimates obtained by the SOM-and kNN-approaches.  

 

3.1 Corg stock estimations  

Corg stock maps of vegetation, soil and total carbon, -based on the SOM method are displayed 

in Fig. IV-2.a and IV-2b. Corg maps based on the kNN method are presented in Fig. IV-3.a 

and IV-3.b. Corg stocks in the maps are displayed in a color range from yellow to red where 

lower stocks are indicated in light yellow, higher stocks in dark red, and for total Corg stocks 

color tones with higher values are in brown tones. All figures show the same detail of the 

area. The Corg stocks is given in tons per ha (Mg Corg ha
-1

).  

We can see from the satellite image (Fig. IV-1) that the wooded area has a dispersed 

distribution, with a high variation of vegetation within a small scale. This results in 

fragmented Corg stock maps. It is apparent that Corg stocks in soils are generally classified 

higher and with less divisions than those in vegetation. A comparison of the maps shows that 



Large-scale mapping of carbon stocks in riparian forests with self-organizing maps and the k-nearest-

neighbor algorithm 

 

76 

 

forest areas are indirectly classified by both approaches due to higher concentrations of 

vegetation Corg. Stocks over 100 Mg Corg ha
-1

 are found mainly in areas recognizable as 

forests in the satellite imagery.  

Comparing outcomes from SOM and kNN, we can identify a more distinct spatial pattern in 

SOM classifications. This is evident in the classification of soil Corg, where, while kNN 

classifications show a highly homogeneous surface with tiny differences, SOM classifications 

exhibit clear differences between forested areas and meadows and reed beds.  

Comparing the maps generated by pure remote sensing data and the combination of remote 

sensing and auxiliary data, we can observe greater details for classifications with combined 

data, which is especially visible for classifications of total Corg stocks, where the range of 

possible values is much more highlighted. 

 

 

 

 

Fig.IV-2a: Corg stocks in Vegetation, Soil and total, calculated by SOM method based on RapidEye 
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Fig. IV-2b: Corg stocks in Vegetation, Soil and total, calculated by SOM method based on RapidEye and 

additional data (legend: see Fig. IV-2a) 

 

 

Fig. IV-1a: Corg stocks in Vegetation, Soil and total, calculated by kNN method based on RapidEye (legend: see 

Fig. IV-2a) 
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Fig. IV-3b: Corg stocks in Vegetation, Soil and total, calculated by kNN method based on RapidEye and 

additional data (legend: see Fig. IV-2a) 

 

The review of the SOM- and kNN approach was complemented by a comparison of statistical 

estimates for the test area. Table 2 shows the results of Corg stock provided by the SOM- and 

kNN- approaches. The results presented are based on the entire set of point estimates used for 

producing the test area maps. The differences between SOM- and kNN-based estimates range 

between 3.87 Mg ha
-1 

(for soil and total Corg stocks) and 46.14 Mg ha
-1

 (for total Corg stocks).  

The kNN approach with the RapidEye dataset provides generally higher values in comparison 

to the SOM approach. The differences between the two approaches including additional data 

do not indicate a one-sided bias structure. Estimations of vegetation, soil and total Corg stocks 

are independent from each other, so vegetation and soil Corg stocks do not necessarily add up 

to total Corg stocks. In order to analyze the accuracy in comparison with the field data, we 

have to consider the error estimates. In general, values are slightly lower than the results of 

Cierjacks et al. (2010), and Suchenwirth et al. (2012). 
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Table IV-2. SOM- and kNN-based estimates for vegetation, soil and total Corg stocks in the Danube Floodplain 

Dataset Approach Vegetation Corg: 

Mg Corg in total study area  

(Mg C ha
-1

) 

Soil Corg: 

Mg Corg in total study area  

(Mg C ha
-1

) 

Total Corg: 

Mg Corg in total study area  

(Mg C ha
-1

) 

RapidEye SOM 144043.49  

(127.47) 

198390.17 

(175.57) 

393735.41  

(348.44) 

kNN 158791.28 

(140.52) 

238362.66 

(210.94) 

398114.52 

(352.31) 

RapidEye  

+altitude  

+MGW  

+ distance  

SOM 168056.05 

(148.72) 

198635.46 

(175.78) 

389228.63 

(344.45) 

kNN 122856.37 

(108.72) 

203001.62 

(179.65) 

337092.95 

(298.31) 

 

3.2 Error estimates 

In order to evaluate their performance, SOM and kNN point estimates that coincided with 

terrestrial survey plots were each used to carry out an error analysis for the estimation of the 

average growing stock per unit area (Table 3). The values assessed on the field plots served as 

control values. In the research area, in total 104 terrestrial plots were available for calculating 

the bias and RMSE, with normalized values for bias, RMSE and % RMSE.  

For vegetation Corg measurements, the approaches had positive and negative biases (SOM: -

4.26; 11.41; kNN: 39.52; -0.94).  

In soil Corg assessments, SOM approaches yielded positive biases (3.01; 0.28), while kNN 

yielded positive bias for RapidEye- classification only (18.22; -4.28).  

Both approaches had a positive and a negative bias for classifications of total Corg stocks 

(SOM: -19.90; 3.15), kNN was positive and negative (73.92; -8.23). The positive biases are 

higher than the negative biases. In most cases, apart from vegetation Corg with additional data, 

the kNN approach is more biased than the SOM results. 
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Discerning between SOM and kNN, the RMSE does not show a clear tendency. In some 

classifications, SOM has lower RMSE, in other cases kNN classification is more accurate. 

The %RMSE of the SOM-approach ranged between 56.42% and 146.99% and had a smaller 

range than for the kNN approach (40.79-158.32%). Biases are smaller for SOM 

classifications.  

 

Table IV-3. Error estimates from SOM and kNN for vegetation, soil and total Corg stocks in the Danube 

Floodplain (SOM: start distance δstart of 100000 and an end distance δend of 100, and have five iterations (tmax).; 

kNN k: 5; Euclidean distance d(x1,x2):2; distance weight w(i),p: 2)  

Dataset Approach Vegetation Corg stocks  

(average 149.65 Mg C ha
-

1
) 

Soil Corg stocks  

(average 192.1 Mg C ha
-1

) 

Total Corg stocks 

(average 361.52 Mg C ha
-1

) 

  Bias RMSE % 

RMSE 

Bias RMSE % 

RMSE 

Bias RMSE  % 

RMSE 

RapidEye SOM -4.26 229.12 146.99 3.01 113.26 58.99 -19.90 267.33 69.61 

kNN 39.52 177.45 158.32 18.22 85.34 48.27 73.92 210.45 72.52 

RapidEye 

+altitude 

+MGW 

+distance 

SOM 11.41 198.85 143.29 0.28 108.22 56.42 3.15 226.18 63.11 

kNN -0.94 182.15 118.46 -4.28 81.26 40.79 -8.23 196.66 52.67 

 

Regarding the use of additional geodata, there is a lower RMSE for the classifications based 

on additional geodata, than for classifications based on pure RapidEye datasets. Especially for 

kNN classifications, the error is notably lower (8- 40%), whereas for SOM classifications, 

errors are only slightly lower (2-6%). Apart from the SOM approach on vegetation Corg, the 

bias is smaller for classifications using additional geodata. 
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4 Discussion and Conclusion 

 

SOM and kNN have been applied for spatially explicit estimates of Corg stocks above and 

below ground in riparian forest zones. Terrestrial measurements and satellite data as well as 

additional geodata served as input data to carry out the learning and training process of a 

neural network. Results show that both methods, SOM and kNN, are able to mimic spatial 

patterns of vegetation, soil and total Corg stocks. Both provide spatially detailed estimates, 

only limited by the spatial resolution of the used imagery. However, the SOM approach 

supplies a far more distinct spatial pattern of the Corg distribution, while the kNN method 

results in rather averaged, homogeneous patterns. 

In comparison with existing estimations, values for total Corg stocks are comparable to the 

results of Cierjacks et al. (2010), but are considerably lower than results classified by 

Suchenwirth et al. (2012). This would support the assumption that the SOM and kNN 

methods can substitute a field-based calculation (such as Cierjacks et al. 2010) better than a 

mere classification of vegetation types to estimate Corg stocks (such as Suchenwirth et al. 

2012). 

In detail, classifications of vegetation Corg stocks (both kNN and SOM, based on satellite 

sensors and additional data) have an apparently higher RMSE than classifications of soil Corg 

stocks and total Corg stocks. This is not the case for bias, which is in several cases higher for 

the classification of total Corg stocks. The RMSE of our estimations of soil (ranging from 

40.79 to 58.99%) and total Corg (ranging between 52.67 and 72.52%) are in line with results of 

other studies using SOM (Fuchs et al. 2009; Stümer et al. 2010; Tuominen and Pekkarinen 

2005) or kNN (McInerney and Nieuwenhuis 2009) to classify Corg, where values range 

between 44.85 and 70.49%. RMSE for vegetation Corg is higher (118.46 to 158.32%) in our 

classification.  

The reason for the higher RMSE within the vegetation classification can be explained by the 

more complex natural structure and the resulting diversity inside riparian forest vegetation 

and the national park area in comparison to the structure of conventional working forests and 

timberland monocultures. 



Large-scale mapping of carbon stocks in riparian forests with self-organizing maps and the k-nearest-

neighbor algorithm 

 

82 

 

Comparing the results of kNN and SOM-based classifications, we can find that both provide 

similar results. kNN has smaller RSME estimates for soil Corg and for classifications of 

vegetation and total Corg stocks based on RapidEye and additional data, yet has higher RMSE 

estimates for classifications of vegetation and total Corg based solely on RapidEye. In general, 

we can state that kNN have a better performance regarding RMSE than SOM estimates, 

which is also coincident with Stümer et al. (2010). Contrarily, the kNN results are much more 

biased than the results of the SOM. Moreover, the visual impressions of the SOM-generated 

maps are more distinct; this differs our results from Stümer's results in 2010 who found a 

smaller bias and a higher level of detail of structures such as roads, planting rows and stand 

boundaries for kNN results. In conclusion, we can state that in our study kNN provides on 

average better estimates for Corg, but just within the restricted range of values within the test 

area. For a possible transfer of the method to other regions the less biased SOM approach 

might be the preferable algorithm.  

Both presented approaches provide greater spatial detail than comparable classifications based 

on object-based image analysis (OBIA) of the area (Suchenwirth et al. 2013; Wagner-Lücker 

et al. 2013). Even though OBIAs have the advantage of working with distinct image objects, 

the process of segmentation can be challenging and even misleading for continuous objects, 

such as natural vegetation or ecosystems in an intricate floodplain area, and may thus be a 

source of error, as stated by Rocchini et al (2013). In comparison to other remote sensing 

techniques such as Principal Component Analysis (PCA), SOM has shown demonstrably 

better performance (Astel et al. 2007; Klobucar and Subasic 2012). 

However, some issues may yet occur when using SOMs, as they are not self-explanatory and 

are generally treated as a “black box” due to unknown weights and the non-linearity of the 

activation functions. While Hsu and Halgamuge (2003) mention the obliqueness of 

rectangular lattices as major sources of topographic errors, Klobucar and Subasic (2012) 

count among the problems of SOM the repeatability of the method. The time needed to 

calibrate and validate neural networks should not be underrated and the decision about the 

termination of the learning process may be difficult.  

The application of kNN did not impose greater issues, and their applicability to forest and 

biomass/Corg inventions has often been proven, even though the majority of studies have 
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worked with Landsat data which have a lower spatial resolution and thus provide coarser 

imagery; the application of VHSR data is not so common yet, while the combination with 

auxiliary geodata has barely been used. Among the commonly mentioned disadvantages of 

kNN are excessive validations of each distance, the sensitiveness towards irrelevant or noisy 

attributes as well as towards unbalanced datasets. For our application however, it has served 

as a valuable alternative to the application of SOMs. 

The use of additional geodata improved the performance of both algorithms, in that all RMSE 

values improved, as well as the bias (with the exception of SOM classification on vegetation 

Corg). Especially for kNN, the notable improvement of RMSE underlines the importance of 

combined data approaches. This also confirms previous findings of Suchenwirth et al. (2012). 

Comparing the study's method with previous methods to quantify Corg in the Danube 

floodplain, our study uses a 'direct remote sensing' approach including machine learning 

(Goetz et al. 2009), while Suchenwirth et al. (2012) used a 'stratify and multiply' approach, 

and Suchenwirth et al. (accepted) used a 'combine and assign' approach (Goetz et al. 2009). 

In general, we see our study as a contribution to high-detailed Corg analyses and large scale 

maps of intricate ecosystems such as riparian forests or similar wetland areas with interfering 

aquatic and terrestrial environments, as they impede ground survey measurements through 

their restricted accessibility and require advanced methods to estimate biomass and organic 

carbon, such as remote sensing or machine learning.  

For prospective applications, we envisage comparable studies with extensions of start 

distances and numbers of iterations, as the focus of this study lays on the comparative 

estimations of Corg stocks in vegetation, soil, and total, with varying parameters and with two 

methods, and not with different settings of SOM and kNN.  

Another improvement for future research on the estimation of Corg with remote sensing data 

may be to include imagery with an even higher spatial resolution, as e.g. provided by the 

commercial sensors Ikonos (1 m), QuickBird 2 (0.64 m), or Worldview (0.5 m). The inclusion 

of further datasets such as surface models including tree height, e.g. based on Lidar, and other 

auxiliary data are able to additionally improve the performance. 
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Chapter V: Synthesis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The synthesis contains citations from the already published papers or submitted manuscripts 

in chapter II (Suchenwirth et al. 2012)*, chapter III (Suchenwirth et al. 2013)**, and chapter 

IV (Suchenwirth et al. submitted)**. Respective sections are marked in grey with subsequent 

asterisks. 
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The overarching objective of this thesis was the assessment of the capability of very high 

spatial resolution imagery and auxiliary geodata with the aim to model organic carbon (Corg) 

stocks in floodplains. Based on the research questions posed at the introduction of the thesis, 

this chapter discusses research results and gives recommendations for future investigations. 

 

1 Main Conclusions 

 

The first overall research objective of this thesis was to develop and evaluate methods to 

integrate existing very high resolution satellite imagery and additional geodata to either a 

knowledge-based or machine-learning based classification process with the aim to model and 

map the spatial distribution of carbon stocks in vegetation and soil. The applicability of 

datasets could be reached, however some limitations of the approaches became visible. 

This objective was approached by applying different techniques to estimate the carbon stocks 

ranging from indirect to more direct methods and to estimate the quality of the resulting 

classifications. 

Research question 1:  Which methods can be sufficiently applied to model Corg stocks in soil 

and vegetation in floodplains by remote sensing and additional geodata? 

The question aims at the feasibility of the applied methods. In a nutshell, all of the used 

approaches have their benefits and disadvantages when being applied for large-scale maps of 

floodplain Corg. Based on the methods used, the approaches applied in the chapters can be 

defined and compared to the ones described by Goetz et al. 2009 including their specific 

features. 

The estimation of Corg stocks based on vegetation types classified with object-based image 

analysis (OBIA) as presented in chapter II can be regarded as a stratify and multiply 

approach, as a certain amount of Corg is assigned to every vegetation type class gained from 

the classification. In order to mitigate the described hitch of wide range of biomass/ Corg 

stock, the results were calculated by a Monte Carlo simulation with a 1000fold repetition. It is 

one of the disadvantages that the accuracy of the Corg map depends on the accuracy of the 

classification of the specific vegetation types. Inherent problems of vegetation classification 
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have already been described by Rocchini et al (2013). Yet, this approach is easy to understand 

and can be transferred to other research areas, as long as there are data on Corg stocks in 

specific vegetation types available and an accuracy assessment on vegetation types is feasible. 

Accuracy assessment is perceived by the often applied measures of overall accuracy, kappa 

value and producer's / user's accuracy. 

The estimation of Corg stocks based on quantile classes generated by a CART approach using 

OBIA, as presented in chapter III is comparable to the combine and assign approach, but also 

shows signs of a direct remote sensing approach (Goetz et al. 2009). It uses a wider variety of 

data including all sensor channels, indices, texture parameters and information derived from 

the additional datasets, along with finer spatial aggregation units. It is one of the main 

achievements of this approach to use this wide variety of data along with the open generation 

of rule sets by CART; a point of critique may be that this approach applied quantile classes 

instead of clustered classes; the representativeness of these quantile classes remains a subject 

to debates. Yet, the application of quantiles enables an easily reproducible data schema. The 

provision of spatially consistent datasets was no problem for the research area but may 

become a challenge for larger research areas, not only for remote sensing data, but aso for 

auxiliary datasets. Accuracy assessment is perceived by overall accuracy, location and quality 

disagreement, as suggested by Pontius and Millones (2011). 

Chapter IV can be described as a direct remote sensing approach, as it applies machine 

learning, in this case SOM and kNN,  with a direct extension of satellite measurements (and 

additional geodata) to the map. The field measurements are used directly through iterative 

repeated data analysis and accordingly develops an optimal rule set for the classification. As 

soon as rules are optimized for training data, they are applied for the entire dataset (satellite 

imagery and additional geodata). Results are issued as direct values, there are no class 

boundaries, which helps to give a very clear result for each spatial unit. This is one of the 

main benefits of this method over the previous ones. Even the area size does not provide 

difficulties. Yet, the application of SOM has the disadvantage of being a black box with 

unknown weights and the non-linearity of activation functions. Classification accuracy is 

slightly trickier to measure and to define in comparison to the previous approaches that used 

overall accuracy measures besides Kappa which are based on classes, such as vegetation types 
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(*) or quantile classes (**). RMSE and bias values however provide a good alternative to 

calculate the quality of results. 

 

Table V-1: Strengths and weaknesses of applied techniques 

Applied technique Strengths Weaknesses 

Estimation of Corg vegetation type 

classified with OBIA 

(Methods: OBIA +  expansion of 

results using a Monte Carlo 

simulation ) * 

-simple applicability 

-simple to understand 

-Rules are modifiable 

-Dependency on vegetation type 

classification 

-Preliminary data on Corg in 

vegetation types needed 

Classification of quantile classes of 

Corg  in vegetation, soil and total  

 

(Methods: OBIA + CART)** 

-Enables the use of various datasets 

-Searches the datasets for viable 

rules 

-Provides rule sets (decision trees) 

-higher accuracy for vegetation Corg 

-Difficult repeatability 

-Single CART models may be 

unstable  

-CART interpretation may become 

confusing with increasing number 

of branches 

-the use of quantile classes does not 

automatically represent clusters 

-lower accuracy for soil Corg 

Estimation  of Corg in vegetation, 

soil and total  

 

(Method: SOM)*** 

-high repeatability 

-clear, unambiguous results for each 

spatial unit 

 

-SOM is a black-box algorithm, 

rules are not presented 

-High calculation times 

-Accuracy assessment based on 

RMSE errors differs from error 

matrix used for classifications 

Estimation  of Corg in vegetation, 

soil and total  

(Method: kNN)*** 

-simple applicability 

-frequent usage  

-higher  accuracy for soil Corg 

-lazy learning algorithm 

-reduction on spatial relations 

 

The findings of this thesis suggest that there is a potential for remote sensing based estimation 

of Corg stocks in floodplains. The capabilities of the applied methods can generally be 

regarded as sufficient for the purpose of mapping and modeling Corg stocks in riparian 
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vegetation and soils. Based on the presented methods, an extension of Corg monitoring 

concepts based on remote sensing and additional geodata to other floodplain areas seems 

practicable. The applied approaches present a methodological step towards the remote sensing 

based monitoring of Corg stocks and contributes to establishment of conceptual frameworks. 

Yet, the floodplain environment still causes difficulties for remote sensing applications, due to 

their heterogeneous nature, resulting in decreased classification accuracy. Further research 

needs to evaluate the operational relevance of differential strategies in greater detail. In 

general, the advantages and disadvantages are compared in table V-1. 

 

 

Research question 2:  How can additional geodata be included and their significance for the 

model be measured? 

The implementation of multiple data with different background for the models of Corg is one 

of the core ideas of this thesis. It is a challenge to combine geographic datasets (with different 

spatial reference systems, acquisition dates, contents, formats and data source reliability). The 

integration of data requires a high volume of preliminary work, among the different work 

steps are the definition and unification of a spatial reference system including geographic 

datum and projection, resulting in the reprojection of  datasets with different spatial reference. 

The majority of the used software packages are able to process both raster and vector formats. 

For those cases when a software package in use is not able to work on raster or vector data, 

conversion tools provided by ESRI ArcGIS are used. The chapters show that the inclusion of 

multiple data in the classification process is possible and provide enhanced results. 

In chapter II, Ikonos satellite data formed the basic layer for the OBIA. Additional data were 

added as thematic layers, and were weighted equally in the applied eCognition software. It 

shows a comparison of different classification sets; on the one hand the application of pure 

Ikonos data, on the other hand the use of Ikonos data combined with knowledge-based 

classification rules, derived from the digital elevation model, distance to river and specific 

rules regarding area size. The classification set including all knowledge-based rules resulted 

in the highest overall accuracy and Kappa value, albeit values for producer's and user's 

accuracy and kappa per class are partly higher for differing classification sets. The 
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classification based on modeling the total Corg stocks without a differentiation for soil and 

vegetation. 

In chapter III, the same eCognition software was used, however including a  second satellite 

dataset (RapidEye) and more additional data**. Like in chapter II, an equal weighting of 

layers was applied. The chapter shows a different approach to chapter II, as it compares 

classifications based on different class numbers, while using the same set of parameters for all 

classifications; yet, the usage of parameters is analyzed in detail. It turns out that for the 

classifications the importance of parameters is volatile, as parameters have been used for all 

classifications. Differences become visible for the classifications of Corg stocks in soil, 

vegetation and total Corg stocks. While for the classification of Corg in vegetation remote 

sensing parameters were most important. 

In chapter IV, the comparison of raster-based SOM- and kNN approaches, all data were 

resampled to a same cell size of 5 meters, in order to provide comparable results between the 

approaches. The paper compares approaches of SOM and kNN, for datasets based on pure 

remote sensing parameters, and combined datasets of remote sensing and additional geodata 

(DEM, medium ground water level and distance to river). Like in chapter II and III, the use of 

additional data improved the model, resulting on lower RMSEs and biases for both SOM and 

kNN. 

In order to examine the impact of individual datasets and geofactors for the estimation of Corg 

stocks, the importance of the additional datasets was to be assessed. Chapter II and IV 

compared results generated by classification sets with pure remote sensing data and 

classification sets with combined datasets of remote sensing and additional geodata; however, 

the comparison did not give quantitative results on the specific significance of included 

individual parameters from each individual applied dataset.  

The importance of the use of additional datasets can therefore only be derived indirectly, by 

the comparison of classification results and their accuracies and error values. The overall 

accuracy of vegetation type classification* improved by 0.1 from 0.6 to 0.7 when using 

additional geodata, while based on individual classes the producer accuracy was able to 

improve by 0.46, and the kappa per class value by 0.36 respectively. 
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In comparison, for the applications on SOM and kNN***, the RMSE values decreased when 

using additional geodata (SOM: 6%; kNN: 40%). It indicates an improved classification 

accuracy, and confirms the assumption that the additional datasets support the modeling of 

Corg.  

Chapter III** shows an application of data mining; while all classifications were based on the 

same datasets. The input of every dataset was numerically specified. The method to exposit 

parameter relevance has hardly been described in literature, except by Erasmi et al. (2013). 

Differences become visible for the classifications of Corg stocks in soil, vegetation and total 

Corg stocks. While for the classification of Corg in vegetation, remote sensing parameters were 

most important along with groundwater features, the use of historical, groundwater and digital 

elevation model were specific for the classification of Corg in soil. Even though parameter 

importance is varying, all additional parameters contribute to the classification success of the 

applied methods. The analysis of individual parameter and/or dataset importance or relevance 

remains difficult. An increased repetition of analyses might give an enhanced insight into the 

parameter relevance.  

 

Research question 3: What are the specific advantages of automated Corg mapping on local 

scale for operational monitoring purposes? 

Approaches of automated Corg mapping on local scale has benefits, compared to estimations at 

small scale, for instance on national base, which tend to be coarse and dissatisfying for local 

needs. Corg stocks modeled on a local base feature not only a higher spatial resolution and 

specific details, but offer also more information on the connections between attributes of soil, 

vegetation, morphology, hydrology, historical background, and the specific Corg content. 

But there are also advantages towards terrestrial measurements. Data measured directly in a 

field-based campaign may be more accurate and provide more detailed information. Yet, the 

acquisition efforts, regarding precious resources such as time, equipment, human labor and 

consequently financial means, are certainly higher and more demanding, compared to an 

automated model. The use spectral information from satellite sensors as well as auxiliary 

geodata is able to show up new up existing interrelations that may not be visible in the field. 
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Furthermore, once the model is well-trained, it provides a more objective way to generate 

information Corg stocks. 

Conclusively, the applied methods can be seen as a auspicious novelty to bridge the gap 

between small-scale approaches on national or international base, such as coarse national or 

continental estimations, and exceedingly detailed terrestrial studies. While local terrestrial 

studies provide a micro-level, national or international models provide a macro-level. This 

thesis shows up solutions at a medium level, i.e. for planning and monitoring purposes of 

protected areas such as national parks, FH areas, within national and international legislations. 

 

2 Future research 

 

In this thesis the application of various methods to model carbon stocks in floodplains was 

demonstrated. Several issues interesting for follow-up research beyond the scope of this 

research evolved during the course of this thesis. Amongst them, the integration of further 

datasets, the transferability of methods to other areas, and the link to ecosystem services 

including biodiversity, and the question of floodplain/wetland protection shall be discussed. 

 

2.1 Technical issues and integration of further datasets 

In order to transfer the method, several issues shall be kept in mind. One central issue is the 

availability of data, hardware and software:  

Data:  

-Besides the provision of satellite imagery with appropriate spatial resolution, the availability 

and spatial contiguity of additional data is crucial as it can e.g. give important hints for the 

existence of historic riverbeds and resulting differences in Corg stocks.  

-A good geodatabase requires specific conditions from the area/ state in which the carbon 

model is to be established. For countries with good public geodata, especially regarding the 

availability of historical maps, the pursuit for additional geodata is probably easier to handle 
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and organize than for countries or regions with a restricted availability and public data policy. 

The establishment of Corg modeling systems developing countries or countries in transition 

may impose problems of data availability.  

-A fundamental base for our study were the terrestrial survey data collected in 2008 and the 

extension of data in 2010. As they have been carefully sampled and collected over the whole 

area covering all habitat types, their quality is invaluable. They provided the ground truth for 

the calibration and validation of classifications and models. For similar studies a comparable 

database is necessary. 

A further question of transferability is the provision of hardware and software infrastructure. 

As the demand of disk space by datasets can increase with spatial resolution of satellite 

imagery, the size of research area, but also the general amount of datasets can be very 

demanding. The computer system at use has the following specifications: 12 GB RAM, Intel 

Xeon CPU 2.53 GHz, 64 Bit Operating system, and a 931 GB hard disk. As operating system, 

a windows 7 professional system was used. Software components consist of ESRI ArcGIS 

10.0, ERDAS Imagine 2011, eCognition developer 64 8.7.1, and various additional software 

packages.  

For additional datasets, it might be arguable to include the following datasets into a carbon 

model of floodplains:  

-Digital surface model including tree heights: There are plenty of studies showing the 

successful modeling of carbon stocks using detailed surface models. They are used to derive 

information on tree height (Omasa et al. 2003; Balzter et al. 2007). As these data were not 

available for this study, the estimation of tree age and thus resulting more specific information 

on Corg stocks was impeded. According to Patenaude et al. 2005 (2005), radar data are most 

appropriate to estimate forest Corg stocks. 

-Satellite imagery of flooding: The available satellite imagery was taken during non-flooding 

conditions, i.e. while river had a mean water (MW) level . It could be interesting to analyze 

imagery taken during floods, such as the floods in Central Europe in 2002 or 2013, and to 

investigate flooding effects and possible correlations with Corg distribution. 
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-Use of hyperspectral data: Sensor systems being able to receive a wide spectrum of many, 

closely attached wavelengths are used to calculate vegetation indices in order to derive 

information on plant health; they may as well contain information on biomass and Corg; there 

are studies using hyperspectral data for Corg  monitoring in soils (Gomez et al. 2008; Jaber et 

al. 2011; Yang and Li 2013), while Adam et al (2010) show the use of hyperspectral data for 

wetlands in general. 

 

2.2 Transferability to other floodplain/ wetland areas 

As floodplain and wetland areas and riparian forests are to be found not only in Central 

Europe and other temperate climate zones, but all over the world, and have high relevance due 

to their Corg stocks, the creation of large-scale floodplain maps in different environments is 

worthwhile from a scientific point of view. Even for a general public, detailed maps of 

floodplains and their specific hotspots may be of interest e.g. for touristic purposes. 

Regarding the environment, our research area reflects a floodplain area in comparatively 

pristine state, within a Central European environment, i.e. a moderate climate zone, temperate 

forests. Therefore, the specific and singular classification rules developed by knowledge -base 

(chapter II) or the use of CART (chapter III) may be challenging to transfer to areas with 

different habitats; the SOM and kNN approaches develop rules, yet they are a black box, and 

the user has no insight. Even though specific rules cannot be transferred to other datasets 

research areas or habitats, the methods in general can be transferred, if accordant or 

comparable datasets are available. 

Along the Danube river and its feeder rivers, there is an entire network of protected areas such 

as national parks (NP) and other reserved and protected areas, in the various adjacent 

countries along the river and within the Danube's catchment basin. The network starts with 

the re-established riparian forest close to the German cities of Neuburg and Ingolstadt, and 

continues with the Danube Floodplain NP in Austria. It is followed in Slovakia by the Záhorie 

as well as the Dunajské Luhy Protected Landscape Area, while in Hungary, the Duna-Ipoly 

NP, the Fertö-Hansag NP and the Duna-Dráva NP are part of the river system's natural 

resources. Further downstream, the Lonjsko Polje Nature Park, Kopački rit Nature Park in 

Croatia, the Gorne Poduavlje Nature Reserve and Đerdap National Park (both Serbia), the 



Synthesis 

 

96 

 

nature parks of Persina and Rusenski Lom as well as the Kalimok Brushlen Site in Bulgaria, 

and at the estuary into the Black Sea, the Danube Delta Biosphere Reserve in Romania 

completes the system of the Danube's protected areas.  

In Germany, besides the Danube river's basin and floodplain systems, the riparian areas of the 

Elbe, Weser, Rhine, and Oder river are of major importance. However most floodplain 

systems have been subject to major losses, according to BfN (2009). For instance, the 

straightening of the Upper Rhine was initiated by Gottfried Tulla in the 19th century; other 

floodplain ecosystems were changed in the 20th century. Few natural floodplains have 

remained intact. Among the protected wetland areas in Central Europe, the biosphere reserves 

of Spreewald, and along the Elbe river, or the Müritz NP, the Lower Oder Valley NP in 

Germany and the Thayatal NP in Austria, to name a few, may be worth for comparative 

research, also for their carbon sequestration potential.  

 

2.3 Integration of further ecosystem services 

As mentioned in the chapter I, floodplains have a high importance not only for Corg 

sequestration, but also for other ecosystem services, the concepts can be expanded and other 

ecosystem services can be integrated. The concept of ecosystem services has been frequently 

discussed in recent years. The Millennium Ecosystem Assessment (2005) differentiates 

between 4 service categories (-provisioning, e.g. food, water, fiber, fuel; -regulating, e.g. 

climate regulation, water, disease; -cultural, e.g. spiritual, aesthetic, recreation, education; - 

and supporting, e.g. primary production, soil formation), while Constanza et al. (1997) 

itemize 17 ecosystem services and goods (gas regulation, climate regulation, disturbance 

regulation, water regulation, water supply, erosion control and sediment retention, soil 

formation, nutrient cycling, waste treatment, pollination, biological control, refugia, food 

production, raw materials, genetic resources, recreation, cultural). The associated 

monetization, i.e. conversion of ecosystems services and goods into monetary categories is a 

constant subject of research but also internal and external critics.  

 

According to the data of Constanza et al. (1997), floodplains rank second among ecosystem 

services only after estuaries; gas regulation by floodplains (apparently including carbon 

sequestration) is however financially estimated much lower than the importance of riparian 
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wetlands for habitat/refugia, disturbance regulation, water supply, or waste treatment or 

cultural purposes. The effect on climate regulation is not even taken into account. Yet, one 

might assume that during the study the crucial significance of floodplains for carbon 

sequestration and thus climate regulation was not honored sufficiently in the given time 1997. 

Even so the ecosystem service habitat/refugia is mentioned in the text, a link towards 

biodiversity is missing.  

 

Biodiversity as a concept can be defined as the degree of variation of life forms inside a 

certain species, ecosystem, biome or even planet. There are traditionally three sources of 

biodiversity, which are species biodiversity, ecosystem biodiversity and genetic biodiversity; 

molecular biodiversity as a fourth level is being discussed (Campbell 2003). Biodiversity can 

be defined by statistical values, such as alpha, beta, gamma etc. biodiversity (Whittaker 1972; 

Diamond 1988); Stoms and Estes (1993) transferred this knowledge already to remote sensing 

applications for biodiversity. 

There is a linkage between high biodiversity and high Corg stocks in many ecosystems and 

efforts to maintain areas with high biodiversity and at the same time high Corg stocks may be 

combined (Huston and Marland 2003; Strassburg et al. 2010) there are even map compilations 

atlases on global and international scale by (Groombridge and Jenkins 2002; UNEP-WCMC 

2008). 

Biodiversity in floodplains has been described in detail and in its importance in several 

studies (Junk et al. 2006). Local studies have shown the tight connection of biodiversity in 

floodplains and increased carbon stocks, e.g. for Australia (Shiel et al. 1998; Horner et al. 

2010), Brazil (Agostinho et al. 2005; Ferretti and de Britez 2006), or globally (Schindler et al. 

2013; Mitra et al. 2005); for the Danube floodplain in Austria, the studies of Tockner et al. 

(1998) and Ward et al. (1999) have already shown the high biodiversity. 

As the database for this project, especially the field survey data, contains information on plant 

biodiversity, especially tree species, it can provide information of spatial and statistical 

models for the distribution Corg stocks and biodiversity.  
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2.4 Extension to wetland protection and floodplain restoration projects 

While the extension of research questions towards biodiversity seems clear and feasible, there 

will be new research areas and material for the upcoming future. Planned extensions and or 

restorations of floodplains providing a protection function as inundation zones can be 

researched and integrated into carbon modeling processes.   

A number of flood events, some of them in recent years (e.g. August 2002, April 2006, June 

2013) in this area demonstrated again the imperative necessities and the need for sustainable 

flood protection concepts in Central Europe (Petrow et al. 2006) and thus to maintain and 

restore floodplain systems,  that have been straightened during the 19
th

 and 20
th

 century, 

particularly in Germany, but also other European countries (BfN 2009). 

In the recent years there have been various studies describing tasks and targets for the 

restoration of floodplains (Pedroli et al. 2002; Hale and Adams 2007; Schindler et al. 2013) 

Recently, a promising project has been launched by the Bavarian Water Authority in 2010 in 

the Upper Danube between the Bavarian cities of Neuburg and Ingolstadt in a former riparian 

forest area that had been drained by a fluvial power plant several decades ago. In order to re-

establish a floodplain habitat and to bring back water and sediment dynamics into the area, a 

new river side channel was dug up, partly along existing old oxbow lakes, partly through 

erosion. Additional controlled ecological floodings help tom establish a new floodplain 

environment. The area is subject to intensive monitoring such as geomorphology (Stammel et 

al. 2011) and biodiversity. It might be a promising approach to combine the research on Corg 

sequestration potential in the re-established floodplain system with the monitoring of 

floodplain restoration projects, and to assess the naturalness of the river floodplain systems. 

In general, the need for an integrated floodplain management has been recognized, as they 

form one of the most diverse, dynamic and productive, but also one of the most threatened 

global ecosystems. This thesis contribute to a better understanding of floodplains and their 

Corg storage capacities and properties. 
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