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Abstract

Efficient Simulation of Magnetic Resonance Imaging
Simulation of Magnetic Resonance Imaging (MRI) is based on the Bloch equation. Solv-
ing the Bloch equation numerically is not difficult, but realistic imaging experiments
bear a high computational burden. The prevalent approach requires highly resolved
sampling of the object and an individual calculation of each sample’s behavior for the
duration of the imaging sequence. The intrinsic complexity of this approach can be
remedied through more computational resources or by application-specific approxi-
mations, which both restrict the usefulness and versatility of MRI simulation.

This work presents methods that simplify the problem by exploiting hardware re-
strictions and the structure of common MRI sequences while not enforcing any approx-
imations. The presented simulation strategies use the reoccurrence of radiofrequency
pulses, partial availability of analytical solutions, a reformulation of the problem in
Fourier space and finally an inclusion of the reconstruction process to perform MRI
simulation in image space, titled Sequence Response Kernel approach.

The algorithmic efficiencies of the methods are investigated and applied to realistic
imaging experiments. The particular properties and potential of the algorithms are
exemplified, with an emphasis on the Sequence Response Kernel approach and its
applications. Depending on the simulation problem, choosing the optimal strategy can
greatly decrease computational effort. The Sequence Response Kernel approach opens
a new perspective of MRI simulation that can be understood intuitively, even without
knowledge of MR physics, and augment image processing techniques.
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1 Introduction

1.0 Introduction

Since its beginning in the 1970s, Magnetic Resonance Imaging (MRI) has been a
very active research topic and is now a decisive part of clinical routine. It is a
medical imaging technique which is based on manipulating strong magnetic

fields and radio frequency fields to influence the collective magnetization of hydrogen
nuclei.

MRI is arguably the best tool for clinical tomography. It methodologically bears no
risks for the patient; most notably it does not require ionizing radiation as X-ray based
imaging methods do. It can be used to reliably acquire anatomical images of high qual-
ity, and even properties of the object that are beyond anatomy. Many techniques can
be developed and tested using the same hardware and without harming the imaged
person.

MRI simulation is a helpful tool for the understanding and the development of
MRI-related methods. It can be used to test hypotheses before initiating lengthy ex-
periments, to optimize certain method parameters or to post-process acquired image
data without the imperfections of a physical experiment.

The general theory of the relevant MRI effects can be grasped quickly and the
underlying mathematical model, the Bloch Equation, formulates well-posed problems,
can be solved accurately, and be implemented easily. The problem is however, that the
simulation needs to be performed at a high resolution, employing elaborate numerical
integrations that in general cannot be accelerated.

This complication is usually approached in one of two ways—either with computa-
tional power or with model simplifications. The computational power approach pre-
serves the general applicability of the method but is infeasible for realistically scaled
experiments with contemporary hardware. Simplifications are often valid and legiti-
mate, and sometimes even enable analytical investigation—but they are usually highly
specialized, hard to extend and may ignore even basic effects.

This work aspires to find a good compromise, and to build a bridge between the
general but computationally exhaustive methods and drastic simplifications. It uses
simplifications that are valid for almost all clinically relevant MR sequences, carefully
investigates the requirements, consequences, and limits of the used simplifications and
thereby provides algorithms for optimally efficient simulation.

The introduction chapter (Chapter 1) briefly establishes the Magnetic Resonance
effects that are necessary to understand MRI. It then describes MRI itself and MRI
pulse sequences that are used in this work. The next section provides the mathematical
fundamentals of the MRI simulation methods. The introduction chapter concludes by
defining the goals of efficient MRI simulation.

The methods chapter (Chapter 2) elaborates the simulation techniques, which are
the focus of this work. More specifically, the techniques are investigated in the context
of performing full virtual MR imaging experiments with high accuracy and efficiency.
The final technique produces byproducts that are of great value to simulation-related
tasks which are defined in the last section of that chapter.
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The results chapter (Chapter 3) mostly follows the method chapter’s structure and
supports the aspects of the individual techniques. It also provides examples and
comparisons with physical measurements where applicable. Effort estimations are
an additional focus, in which the techniques are considered with respect to realistic
settings.

The discussion chapter (Chapter 4) illustrates the technical details of the methods in
a more general scope. The chapter then commences by presenting its impact, feasible
extension and possible application areas.
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1 Introduction

1.1 Magnetic Resonance Imaging fundamentals

Even though MRI is directly enabled by quantum mechanical properties, an under-
standing of quantum mechanics is virtually irrelevant for almost all MRI techniques.
The abundance of nuclei in any MRI experiment permits a classical description. A com-
prehensive explanation of the nuclear magnetic resonance phenomena can be found
in [26], and their relations to MRI are emphasized in [41].

Further quantum mechanical interpretations of MRI experiments have led to many
myths and misunderstandings [17]. In the context of this work, the Bloch Equations
can be considered as axioms, ignoring the quantum mechanical motivation completely.

1.1.1 Bloch equation
The Bloch equation [4] describes the behavior of macroscopic nuclear magnetization
−→
M = (Mx, My, Mz) of an object:

∂

∂t
−→
M =γ

−→
M ×−→

B (t)−
Mx

−→ex + My
−→ey

T2
+

(M0 − Mz)
−→ez

T1
(1.1)

The gyromagnetic ratio γ is a physical constant of the nucleus. This work exclusively
considers hydrogen nuclei, for which γ ≈ 42.58 (2π)MHz T−1.

The z-component of the magnetic field contains a term B0 which is constant in time
and influences the equilibrium magnetization M0, which is aligned with B0.

The relaxation times T1 and T2 depend on the chemical properties of the object and
will be explained in the following paragraphs.

Objects are assumed to not interact directly. An object that has inhomogeneous
relaxation times or experiences a different magnetic field can be split into sub-objects
that are treated by the Bloch equation independently. A very small object, such as a
small volume element that can be considered homogeneous, is called a spin packet.

1.1.1.1 Larmor equation
For T1, T2 → ∞ and B = (0, 0, B0), the Bloch equation produces the Larmor equation:

ω0 = γB0. (1.2)

The Larmor equation defines a frequency ω0, the Larmor frequency, at which the
magnetization vector rotates around the z-axis. This process is called precession. The
x and y components of the magnetization are called the transverse components, and
often times more conveniently expressed using one complex value M⊥ = Mx + iMy.
The z-component is called the longitudinal magnetization and is unaffected by the
Larmor equation.

1.1.1.2 Relaxation
If a spin system is perturbed from its thermal equilibrium, then it returns to this state
over time. This process can be separated into two independent sub-processes: The
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1.1 Magnetic Resonance Imaging fundamentals

recovery of longitudinal magnetization—T1 relaxation, and the decay of transverse
magnetization—T2 relaxation.

T1 Relaxation
The longitudinal relaxation is dominated by the deposition of energy into the envi-
ronment, and it is thus also called spin-lattice-relaxation. It mainly depends on the
external magnetic field and the inner motion of the molecules. It can be phenomeno-
logically modeled as an exponential decay towards the equilibrium with decay rate
T1−1.

T2 Relaxation
The transverse magnetization decays due to interactions of the individual spins. This
process does not transfer energy to the environment, and is thus called spin-spin-
relaxation. It is largely independent of the external magnetic field and can be phe-
nomenologically modeled as an exponential decay with decay rate T2−1.

1.1.1.3 T2’ and T2*
Microscopic magnetic field inhomogeneities, denoted ∆B0, are usually assumed to be
Cauchy-Lorentz distributed. This directly translates to a Cauchy-Lorentz distribution
of the Larmor frequencies, which causes a dephasing of the individual spin packets
that is observable as a further exponential decay of the net signal. The total decay rate
of the net transverse signal is called T2*, which can be separated into the contribution
of temporally static magnetic field inhomogeneities and the other effects by using the
following formula:

1
T2*

=
1

T2
+

1
T2’

=
1

T2
+ γ∆B0 (1.3)

The main reason why this distinction is relevant, is that the decay caused by T2’ can
be reversed. If the magnetization of all spin packets is rotated around a transverse axis
by 180◦, then the phase of each spin packet is inverted. The phase accumulation that
happened before the rotation reverses, until the spin packets are refocused when the
dephasing and rephasing times are equal, at which time they create a so called spin
echo [15]. The experiment will be outlined later (see Section 1.2.2.1).

1.1.1.4 Biological tissues
Biological tissues have distinct T1 and T2 constants. In theory, T2 ≤ 2 T1, but T2 ≤ T1
is never violated under clinical conditions [37]. Within this work however, this relation
is sometimes ignored to emphasize the mathematical properties of the underlying
methods. Some of the most important MRI parameters for some clinically relevant
tissues are illustrated in Table 1.1.

1.1.2 MRI

A Magnetic Resonance Imaging setup can manipulate the magnetic field in specific
ways, thereby specializing the Bloch equation.

5



1 Introduction

Tissue type proton density T1 T2 T2*

CSF 1 2569 329 58
Grey matter 0.86 833 83 69
White matter 0.77 500 70 61
Fat 1 350 70 58
Muscle / Skin 1 900 47 30
MS Lesion 0.76 752 237 204

Table 1.1: Relaxation times of some brain tissues at 1.5 T [6]. Further information about typical
relaxation times can be found in [38] and [12].

Larmor precession of spin packets can be measured with a suitable coil. To enable
Larmor precession, spin packets need to be driven out of their equilibrium state. This
can be achieved by applying a magnetic field with transverse components. If this
magnetic field oscillates with Larmor frequency, then this perturbation can manipulate
the magnetization effectively due to resonance. Such electromagnetic pulses are called
radio frequency (RF) pulses.

Spin packets need to be encoded spatially to yield information that can be used to
produce images with spatial correspondence. A spatially varying longitudinal com-
ponent of the magnetic field equally varies the Larmor frequency. By applying linear
slopes of longitudinal magnetic field in different directions, a spin packet obtains phase
and frequency information that depends on its location. Such electromagnetic pulses
are called gradient pulses.

1.1.2.1 MRI Bloch equation
The MRI setup specializes the Bloch equation:

∂

∂t
−→
M(−→r , t) =γ

−→
M(−→r , t)×−→

B (−→r , t) (1.4)

−
Mx(

−→r , t)−→ex + My(
−→r , t)−→ey

T2

+
(M0(

−→r , t)− Mz(
−→r , t))−→ez

T1
−→
B (−→r , t) :=(B0 + Binhom(−→r ) + BG(

−→r , t))−→ez (1.5)
+ B1,x(

−→r , t)−→ex + B1,y(
−→r , t)−→ey

BG(
−→r , t) :=⟨−→G (t),−→r ⟩ (1.6)

B1,x(
−→r , t) :=TRF(

−→r )BRF,x(t) (1.7)
B1,y(

−→r , t) :=TRF(
−→r )BRF,y(t) (1.8)

where:

B0 = Main magnetic field
−→
G (t) = (Gx(t), Gy(t), Gz(t)) = Gradient pulses

BRF,x(
−→r , t), BRF,y(

−→r , t) = RF pulses
Binhom(−→r ) = Bz inhomogeneities

TRF(
−→r ) = RF send coil transmissivity
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1.1 Magnetic Resonance Imaging fundamentals

Within the hardware capabilities, the time-dependent real-valued gradient and RF
pulse functions can be arbitrarily controlled. The main magnetic field, B0 inhomo-
geneities and coil transmissivity are static during the measurement.

The signal acquisition process can be formulated as follows:

S(t) =
∫

Ω
SRF(

−→r )(Mx(
−→r , t) + iMy(

−→r , t))d−→r (1.9)

where:

S(t) = Signal that is measured by one coil
Ω = Domain of the experiment

SRF(
−→r ) = RF receive coil sensitivity

This formulation is simplified. Firstly, it does not consider the sampling that is
needed to capture the signal. In reality, the signal is sampled—one time point actually
corresponds to a time span during which the signal accumulates. However the sample
distances are usually small enough to justify this simplification and treat the sample
length separately. Choosing a higher sample length influences the measured noise,
and proportionally scales the measured signal intensity. Both effects can be applied
after calculating the perfect signal. Many further phenomena that are not of main
interest for MRI are also ignored, such as concomitant gradient terms and spectroscopic
effects [41] [26].

MRI sequence definition
An MRI sequence is the combination of gradient pulse descriptions, RF pulse descrip-
tions and sampling settings—essentially every aspect of the MRI system that can be
controlled. An MR sequence usually depends on a collection of parameters, e.g. spa-
tial resolution, slice position, echo time, repetition time. The term protocol is used to
describe the combination of an MR sequence blueprint and associated sets of defining
parameters.

There is no consistent definition of the term MRI sequence. Within this work, an
MRI sequence is defined as an actual description of the waveforms and timing. In
contrast to other interpretations of this term, a sequence is different from a sequence
type. A sequence type is a more abstract description of the sequence which requires
further parameters to be completely defined, such as timing or resolution.

1.1.2.2 MRI setup
The most important hardware components of the MRI setup will be described in the
following paragraphs. Components that are not mentioned here are usually not of
interest for MR simulation experiments and are thus ignored in this work. There are
many other parts essential to a MR scanner, but most of them assume a supporting
role that corrects the imperfections of actual physical experiments, such as shim coils.
More details about MRI system hardware can be found in [3].

7



1 Introduction

Main coil
The B0 field strength is proportional to the equilibrium magnetization, which is in
turn proportional to the maximum achievable signal. This magnetic field is usually
created using a superconducting electromagnet. It needs to be large enough to create a
sufficiently homogeneous field within sections of a human body—which is the reason
why most systems are designed to fit a patient inside the bore of a cylindrical coil.

Contemporarily used field strengths are 1.5 T, 3 T and 7 T. The field created by the
main coil is always active, always constant and regularly serviced to stay homogeneous.

Gradients
An additional set of coils is used to manipulate the magnetic field spatially. They are
supposed to exclusively create a linear slope of Bz in any chosen spatial direction,
which in turn results in a slope in Larmor frequency in that direction. It is essential
for all MR imaging techniques that these coils have a strong maximum amplitude and
can be controlled very fast, because spatial encoding of the signal is governed by the
gradient field as will be explained in Section 1.2.1. The point, at which the influence of
the gradient field is always zero, is called the isocenter and is usually located near the
center of the bore. Within this work, gradient fields are assumed to be perfectly linear.
The impact of gradient imperfections is discussed in Section 4.1.1.3.

A contemporary maximum amplitude is 0.043 T m−1 with a slew rate (maximum
possible change) of 180 T m−1 s−1 [32].

RF send coil
Electromagnetic pulses with a frequency, that is close to the Larmor frequency of spin
packets of interest, are used to perturb the spin packets out of their equilibrium state.
Unlike former two components, the magnetic field of the RF coils is not supposed to
be aligned with the z-axis and is called the B1 field. Such a perturbation is usually on
the order of 5 ms.

Most applications rely on a homogeneous B1 field. The spatial transmissivity dis-
tribution and the resulting local B1 field inhomogeneity can be an error source and
image artifact in some applications.

Throughout this work, pulses that are sent via the RF coils are either called RF
pulses or pulses for brevity. If the gradient coils are used to apply gradient pulses,
then this will be stated explicitly to avoid confusion.

RF receive coil
Precessing spin packets can induce a current which is picked up by the receive coil
and then sampled to yield the data of the measurement.

The current that is induced in a coil by a spin packet is weighted by the spatial coil
sensitivity profile. Coil arrays are often used to achieve a more homogeneous collective
coil sensitivity profile and reduce noise or to use the individual coil signals for more
intricate reconstruction purposes.

8



1.2 MRI pulse sequences

MRI pulse sequences 1.2
Based on the physical details of MRI sequences that were established in the previous
section, actual pulse sequence schemes can be introduced. The k-space concept can
help understand sequences and is introduced first. Almost all sequences are created
by combining the same basic components, which are described in the second part of
this section. Finally, the four common sequence types that are used throughout this
work will be defined and explained.

1.2.1 k-space
Many effects in MRI can be explained more easily with the help of k-space, which is
introduced in the following paragraphs. Further information can be found in [3].

Let M⊥ be a relaxation-free distribution of transverse magnetization. When a gradi-
ent pulse is applied, the slope in magnetic field induces a slope in precession frequency
in the same direction, thus M⊥ accumulates a corresponding phase over time:

M⊥(
−→r , t) = M⊥(

−→r , 0)eiφ(−→r ,t) (1.10)

φ(−→r , t) : = γ

t∫
0

−→r · −→G (t′)dt′. (1.11)

The signal S(t) that can be read by an idealized readout coil is proportional to the
accumulated transverse magnetization within its volume of sensitivity Ω:

S(t) =
∫
Ω

M⊥(
−→r , t)d−→r . (1.12)

This can be expressed more clearly by introducing
−→
k (t):

S(t) =
∫
Ω

M⊥(
−→r , 0)ei

−→
k (t)·−→r d−→r (1.13)

−→
k (t) : = γ

t∫
0

−→
G (t′)dt′. (1.14)

Alternatively, this can be expressed by utilizing the Fourier transform (Equation 1.20):

S(t) = F (M⊥)(
−→
k (t), 0). (1.15)

In conclusion: The Fourier transformed transverse magnetization can be read directly
by means of the RF receive coil. The integral of the gradient pulse, also referred to as
the 0th moment, determines the position at which it is evaluated.

When the gradient amplitude is kept constant over a certain time span at which
signal is acquired, then

−→
k (t) sweeps over a line segment. This process is referred to

as acquiring a line in k-space.
This basic idea is augmented to yield the k-space based simulation method in the

next chapter (see Section 2.3).
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1 Introduction

1.2.2 RF pulses

RF pulses generate a magnetic field that is perpendicular to the main magnetic field.
As such, it causes a transformation of a spin packet’s transverse and longitudinal
components.

Details about RF pulse design can be found in [3]. For the scope of this work, it
suffices to examine the sinc pulse (Figure 1.2), which is the classic and most common
pulse shape.

RF pulses are often interpreted as rotations around a transverse axis, determined
by the so called phase of the RF pulse. The angle of rotation is commonly referred
to as the flip angle of the RF pulse. If this effect is supposed to occur only within a
certain Larmor frequency band, then the sinc pulse (Figure 1.2) is the classical choice,
motivated by its Fourier transform.

Sinc pulse
When the overall effect of an RF pulse on a magnetization vector results in a small
flip angle, then the Fourier transform of the pulse shape approximates the resonance
offset frequency dependency of the pulse effect, also called pulse profile [3].

0 0.5 1 1.5 2

0

10

20

t in ms

B1
in

µT

Pulse shapes

Sinc pulse
Hann-windowed sinc pulse

−5 −2.5 0 2.5 5
0

π/4

π/2

∆ω in kHz
fli

p
an

gl
e

in
ra

d

Pulse profiles

Figure 1.2: Pulse shapes and pulse profiles of a sinc pulse and a Hann-windowed [18] sinc
pulse. Both pulses perform well at low-pass excitation. The Hann-windowed pulse
produces a smoother profile, but has a wider transition band.

The pulse can be fully characterized by its maximum amplitude, duration, number
of side lobes and phase, even though it is often more convenient to define it through
flip angle, bandwidth and bandwidth-time-product.

RF pulses can be modulated with a certain frequency, which shifts the pass-band of
the pulse from zero to e.g. the Larmor frequency in this case.

Windowed sinc pulse
An RF pulse cannot have infinite duration. Direct truncation of the pulse results in
ripples of passband and stopband. One way to improve this profile is to apply a

10



1.2 MRI pulse sequences

window function to the pulse shape, for example the Hann window [18]. This results
in a smoother pulse profile at the cost of a wider transition band.

1.2.2.1 RF pulse usage

RF pulses are often applied with a single specific intention, most commonly excitation,
refocusing or preparation. However, in reality, these goals cannot be achieved isolatedly.
Therefore, these three terms do not have a clear definition, but ease the comprehension
of a sequence.

Excitation

One common intention is to convert longitudinal magnetization into transverse mag-
netization, so it can be sensed by the acquisition coil. Pulses of this type often involve a
very small flip angle, but pulses of up to 90◦ are also common for certain applications.

Refocusing

A refocusing pulse is employed to invert phases. This can be useful for reversing the
T2’ decay, thereby creating a spin-echo, as motivated in Section 1.1.1.3, or to traverse
quickly in k-space, which will be explained in the next chapter (see Section 2.3). An
ideal refocusing pulse has a 180◦ flip angle.

Preparation

A preparation pulse is used to modify the magnetization prior to an excitation pulse to
emphasize certain properties of the spin packets. One common preparation is inversion
recovery—a 180◦ pulse that inverts longitudinal magnetization. The magnetization
then partially decays according to T1, and the magnetization that is then excited
carries a T1 weighting. A preparation can also be used to separate or suppress parts of
the magnetization. Common applications of this kind of preparation are background
suppression and fat saturation [3].

Spin echo

The spin echo pulse configuration (Figure 1.3) is a technique that is used to recover
the reversible part of the T2* decay (see Section 1.1.1.3).

After excitation pulse (90◦), the spin packets decay according to T2*. After a chosen
time TE/2, a second pulse is applied (180◦) which reverses the phases of all spin packets,
such that they reach coherence again at the echo time TE. Using former terminology,
the first pulse is used for excitation, and the second pulse is used for refocusing.

1.2.3 Gradient pulses

The gradient coils can be controlled to produce arbitrary pulse shapes within the
hardware limitations, but since a complicated gradient waveform yields a complicated
behavior of the individual spin packets, they are mostly applied as trapezoidal pulses.
They are thus characterized through amplitude, ramp up time, flat top time, ramp
down time.

11
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Figure 1.3: The spin echo scheme. The T2’ contribution of the T2* decay can be recovered by
employing a refocusing pulse. The T2 contribution of the T2* decay is irreversible.

1.2.3.1 Gradient pulse usage

Gradient pulses are applied with specific intentions. Intentions that are common or
particularly relevant for this work are presented in the next paragraphs, followed by a
diagram that showcases the most important gradient pulse types in a pulse sequence
diagram (Figure 1.4).

Slice selection

Excitation RF pulses are usually designed to excite a specific frequency band. When a
gradient pulse is switched on while an RF pulse is applied, the frequency selectivity
of the pulse causes only those spin packets to be manipulated that have a Larmor
frequency, for which the pulse is selective. Since Larmor frequencies are equal along a
plane perpendicular to the gradient pulse’s direction, a slice is selected, giving those
gradient pulse their functional name—slice selective pulses.

Rewinder

The transverse magnetization after a slice-selective pulse does not possess homoge-
neous phase. The linear part of this phase inhomogeneity can be corrected for by
applying a gradient in the direction opposite to the slice encoding gradient direction.
That gradient pulse is called rewinder.

Frequency encoding

As explained in Section 1.2.1, a k-space line is acquired when signal is read while a
gradient pulse is active. This is called frequency encoding because each frequency that
is present ideally corresponds to spin packets that are on a plane perpendicular to
the gradient direction. If the direction of the frequency encoding gradients is constant
throughout the sequence, then this direction is called frequency encoding direction.

12
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Prephaser
A frequency encoding gradient is often supported by a prephaser gradient which is
applied beforehand to allow the k-vector to pass through zero in that direction during
readout.

Phase encoding
Gradient pulses that are applied perpendicular to the frequency encoding direction
and slice direction with the intention of spatial encoding are commonly referred to as
phase encoding gradients. They are applied before signal is measured.

As explained in Section 1.2.1, such a gradient pulse induces a phase slope, which
shifts the k-space line which is later acquired during frequency encoding. The direction
that corresponds to the phase encoding gradient pulse is commonly referred to as
phase encoding direction.

However, each gradient pulse causes a linear phase slope, thus the literal term has
no distinctive properties and does not possess a mutually accepted definition.

Spoiler
After signal is acquired, a gradient pulse with a high 0th moment can be applied to
remove the influence of the residual transverse magnetization. The spoiling gradient
creates a phase dispersion of at least 4π per voxel. The dispersed magnetization will
then ideally produce no signal in further measurements. When spoiling techniques
are used, the RF pulse phase is usually varied at each acquisition to further deteriorate
the unwanted signal.

Crusher
If an imperfect refocusing RF pulses are used, newly excited magnetization and refo-
cused magnetization can be separated by introducing crushers. Crusher gradients are
a pair of two equal gradients placed directly around the RF pulse. The first gradient
induces the same effect as a spoiling gradient but the second gradient compensates this
effect for refocused spin packets. This effectively suppresses newly created and non-
refocused magnetization for the following readout, but potentially reintroduces them
in later readouts. Many advanced crushing schemes can be used to select desirable
signal contributions [13].

1.2.3.2 Basic line acquisition
An MRI sequence is often visualized by a pulse sequence diagram (Figure 1.4) to
reveal the relationship between the individual pulses.

The five time axes correspond to the RF channel, the three gradient channels and
one channel that indicates when the analog-to-digital converter (ADC) is configured
to read signal.

1.2.3.3 Signal Acquisition
In most cases, signal is acquired at a fixed sampling rate. The analog-to-digital con-
verter then returns a complex number for each sample. The sampling rate can be
controlled through the acquisition bandwidth.
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Figure 1.4: Pulse sequence diagram of a simple single-line gradient echo acquisition to show-
case basic sequence components.

Basic encoding strategy
The most common image acquisition strategy is to select the slices of interest individ-
ually and acquire lines with equal frequency encoding pulse patterns but differing
phase encoding gradient pulses. After sufficient k-space lines are acquired, Fourier
transforms along phase and frequency direction reconstruct the selected slice.

Reconstruction
The acquired signal needs to be processed to represent information spatially. If the
k-space samples are acquired according to a regular grid, then the discrete Fourier
transform (Equation 1.20) along the grid dimensions yields data with spatial corre-
spondence, holding intensities proportional to spin packet magnetizations, weighted
depending on the sequence type and sequence parameters. Sophisticated reconstruc-
tions that are beyond Fourier transform are not immediately relevant for this work
and are thus omitted here.

Reordering scheme
In practice, the order in which the lines are acquired often determines image quality.
Center lines in k-space determine the contrast of the image while the lines on the
boundaries of k-space determine the high-frequency components. It can be expected
that the first lines that are acquired, are measured with overall stronger intensity. The
fluctuation of line intensities can result in image artifacts. This can be partially avoided
by introducing dummy acquisition cycles that are not used for image reconstruction,
but this is not always a reasonable strategy.

14



1.2 MRI pulse sequences

1.2.4 Common MRI pulse sequences
The sequence building blocks that were introduced in the previous part can be com-
bined in many ways to produce meaningful results. A pulse sequence that acquires
k-space lines that are then reconstructed together is called an imaging sequence.

A different imaging sequence that acquires the same k-space lines can produce
a substantially different image because timing and used building blocks emphasize
particular information about the measured object, such as proton density or relaxation
times.

The following examples describe the imaging sequences that are used in this work.

1.2.4.1 Spoiled gradient echo (SPGR)
The spoiled gradient echo sequence acquires one line per excitation pulse. There is
only one RF pulse shape used in the sequence. In order to acquire lines fast, the flip
angle of this pulse is usually chosen low, because more magnetization is available for
the next excitation this way.

At the beginning of each RF pulse, there is no transverse magnetization expected to
be present. The RF pulse then excites the magnetization, followed by a line readout
centered at TE. After that, the spoiler removes the residual transverse magnetization
and the process is repeated for the next line after the repetition time TR has passed.
Different image contrasts can be generated using this sequence by controlling the
sequence parameters—T1 contrast can be achieved by adjusting TR and flip angle, TE
controls the T2* weighting.

next line...
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ADC

TR

TE

Excitation pulse
Prephaser
Readout gradient
Spoiler

Phase encoding
Slice selection
Slice rephaser

Figure 1.5: Pulse sequence diagram of an SPGR sequence
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1.2.4.2 Echo planar imaging (EPI)
The EPI sequence uses only one pulse to acquire the image of a selected slice. It is
often used for fast acquisition.

After the excitation pulse, the first line is read as a gradient echo, similar to the SPGR
sequence. But instead of spoiling, a short second phase encoding gradient pulse, called
blip is applied to read the second line in reverse direction. This scheme continues until
a whole image is acquired. In this sequence type, the echo time TE is defined as the
temporal distance from excitation to the acquisition of the sample corresponding to
k = 0.

The echo train length is long in comparison to other sequences. This results in a
strong T2* weighting in the image.
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Excitation pulse
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Readout gradient
Readout gradient

Blip
Slice selection
Slice rephaser

Figure 1.6: Pulse sequence diagram of an EPI sequence
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1.2.4.3 Balanced steady state free precession (bSSFP)
The bSSFP sequence acquires one line per excitation pulse, but in between each two
pulses, the 0th gradient moment is nulled. The gradients employed for this purpose are
called rewinders. This effectively removes all gradient-induced phase accumulation
of static tissue, and the residual magnetization is reused in the next acquisition. The
readout is placed exactly between two subsequent RF pulses.

Over time, a steady-state will develop, determined by the T1 recovery and the T2
signal loss between the pulses, which in turn determines the contrast behavior. This
steady state is determined by the pulse’s flip angle and TR.

next line...
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Slice rephaser

Figure 1.7: Pulse sequence diagram of a bSSFP sequence
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1.2.4.4 Turbo spin echo (TSE)
After an excitation pulse, the signal is refocused several times—dictated by the turbo
factor—followed by a line readout each time. Crusher gradients around the refocusing
pulses are employed to reduce unwanted signal.

TE is often defined in an alternative way. For a fixed reordering scheme, the time
between the excitation and the acquisition of the center point in k-space determines
the main contrast, and is therefore also called TE. This parameter will be referred to
in an unambiguous way in later sections.

In addition to TR, TE and the flip angle of the refocusing pulse, the reordering
scheme and turbo factor largely define the contrast behavior, because of the potentially
long acquisition trains. If a turbo factor of one is chosen, the sequence is called spin
echo sequence.
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Gy

Gz

ADC

TE TE TE

TR

Excitation pulse
Refocusing pulse
Crusher
Prephaser/Rewinder

Readout gradient
Phase encoding/Rewinder
Slice selection
Slice rephaser

Figure 1.8: Pulse sequence diagram of a TSE sequence
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1.2.5 Images
After the signal is acquired and reconstructed, it needs to be displayed to allow for
interpretation. To display the reconstructed data, the color of each pixel is determined
by the according entry in the matrix through a lookup table (LUT). A good LUT em-
phasizes the important variations within the matrix and therefore, a certain pixel color
has a meaning that depends on the data and the LUT simultaneously. In computed
tomography and MRI, the term windowing is commonly employed to express where
intensity values are cut off, with a linear interpolation of levels of gray in between.

In MRI, choosing a different set of acquisition parameters also changes the signal in-
tensity of the objects that are measured. The difference of two objects’ signal intensity
in relation to the image noise is called the contrast to noise ratio (CNR) and describes
how well-suited the image is to distinguish the two tissues. Similarly, the signal of a
tissue in relation to the noise is called the signal to noise ratio (SNR). Consequently,
MRI sequences may produce more signal at the cost of contrast, thereby not providing
additional information in comparison to an image that has low signal but a very strong
contrast.

As a general rule of this work, images that are displayed in a gray scale correspond
to data that can be interpreted as medical images, simulated medical images, or are
strongly linked to the LUT of a medical image. The usage of color indicates a more
abstract dataset, mostly either by representing a derived parameter, by having axes
that do not correspond to spatial dimensions, or by depicting a magnitude that is not
easily relatable to pixels of a medical image.
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1.3 Mathematical fundamentals

MRI simulation is supported by several mathematical disciplines that are mostly part
of the basic university physics knowledge base. This section introduces the most
important concepts and notations, supplemented by elaborations of the details that
are especially relevant to MRI.

1.3.1 Algorithmic efficiency

Efficiency is a major topic in this work. It will become evident in the later sections, that
certain approaches do not scale well or cannot be translated outside of their specialty
application onto other relevant scenarios. The basic concepts of algorithmic efficiency
and its notation are explained in this section.

The two main resources that are to be considered for a numerical method are the
number of basic operations that can be performed in a fixed time span and the amount
of data that can be stored and retrieved instantly. But even when the according tech-
nological limits of suitable devices are reached, there may be hope for the possible
allocation of more resources through parallelization. But a distribution of workload is
only possible if the algorithm allows it. An algorithm that requires random access to
all previous calculations and needs strictly sequential processing of each data object
cannot be distributed.

A slightly more complex input to an algorithm might require an over-proportional
increase in computational effort. This is mostly due to the limiting behavior of the
algorithm. This means that no matter how the algorithm is implemented, the required
computational effort will grow according to a rough estimate that is based purely on
the method.

1.3.1.1 Benchmarking

The obvious way to compare two similar, competing algorithms, is to measure the time
that each algorithm takes to create the same results under equal circumstances. This
direct comparison gives a tangible and validatable result, but it hides the underlying
reasons for this time effort. Some special cases or organized input data may singularly
be treated better by one version, and the link between the nature of the input data
and the required time can only be probed opposed to explained. This method of
comparison is also biased by the implementation efficiency of the developer.

Run time comparison can be meaningful when the circumstances, results and input
data of algorithms are equal. However, the algorithms in this work utilize further
assumptions or simplifications, and thus limit the applicable circumstances or the
quality of the results. Furthermore, a different approach may be well-exploitable in
some special use cases, but obstructive in others.
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1.3.1.2 Time complexity
When a universal Turing machine is considered as the basis of an algorithm—as it is the
case for all contemporary computing—then the number of required basic algorithmic
operations can be considered a measure of runtime. When an algorithm is theoretically
investigated, then this measure can often be estimated in an asymptotic sense as a
function of input data size. This concentrates the essential complexity of an algorithm
and removes algorithmic steps that are not significant from the theoretical analysis.

The notation used for this analysis is the big O notation, which is part of the Landau
notation.

Definition 1. Let f , g : R → R. One writes:

f (x) = O(g(x)) or f (x) ∈ O(g(x)) (1.16)

if and only if

lim sup
x→∞

⏐⏐⏐⏐ f (x)
g(x)

⏐⏐⏐⏐ < ∞. (1.17)

This implicitly removes lower order terms and eases comparison. Some examples
of relevant complexity classes are illustrated in Table 1.9. Within this work, x → ∞ is
always implied when big O notation is used.

The big O notation implies arithmetic operations, for instance:

O(n) · O(n) = O(n2), O(n) + O(n) = 2O(n) = O(n). (1.18)

It is also worth noting that the equality symbol is not symmetric in this notation, such
that:

O(n) = O(n2), O(n2) ̸= O(n), (1.19)

because for any f (x) ∈ O(n2) : f (x) ∈ O(n), but the reverse does not hold. This
notation may appear abusive, but it is a very valuable tool to estimate and express the
complexity of an algorithm.

Class Description Examples

O(1) constant lookup in a static table, fixed number of operations
O(log(n)) logarithmic search in a balanced tree
O(n) linear search in an unsorted list, sum of n elements
O(n log(n)) loglinear optimal sorting algorithms, FFT
O(n2) quadratic direct convolution, discrete Fourier transform
O(cn) exponential Creating a balanced tree of depth n

Table 1.9: Common computational complexities that are relevant to this work

In comparison to benchmarking, time complexity analysis reveals the actual reasons
for an input-data dependent run time behavior, and is thus especially interesting when
the input data has multiple dimensions of unpredictable size. This work exclusively
contains time complexity arguments.

Further operations within this work that are reduced to O(1):
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• One step of the Cash-Karp method (see Section 1.3.3.1), applied to the Bloch
equation (Equation 1.1) (neglecting adaptive step size adjustments)

• Matrix multiplication of 4 × 4 matrices

• Evaluation of basic functions, in particular the complex-valued exponential func-
tion

Constants that are relevant either in scale or due to direct comparability properties
are not reduced to O(1). This special case applies to operations that are be performed
orders of magnitude more often, and to algorithmically expensive operations that have
to be performed a fixed, known number of times.

1.3.2 Fourier transform

Fourier analysis assumes an important role in functional analysis and signal process-
ing. This section should not serve as an entry point to Fourier analysis, but instead
establish basic notation and reveal insight into advanced aspects that are required for
the justification of later techniques (see Sections 2.3.3.3, 2.4.1.2), thereby reducing the
Fourier transform basics of this section to a minimum. This section is based on the
definitions and theorems of [10], supplemented by their relevance in MRI theory.

For notational purposes and the sake of completeness, the Fourier transform is
defined as follows:

Definition 2. Let f : R → C be integrable. The Fourier transform is defined as:

F ( f )(ξ) := f̃ (ξ) :=
∞∫

−∞

f (x)e−2πixξ dx, ξ ∈ R (1.20)

If f̃ is also integrable, then f can by recovered by the inverse Fourier transform accord-
ing to the Fourier inversion theorem:

F−1( f̃ )(x) :=
∞∫

−∞

f̃ (x)e2πixξ dξ = f (x), x ∈ R (1.21)

The elaboration of basic Fourier transform properties, such as linearity and multiplication-
convolution duality, is omitted in this work. The discrete Fourier transform will be
introduced later in this section (see Section 1.3.2.2) as a special case of the continuous
Fourier transform. The only pair of analytical function and its Fourier transform that
is relevant to this work are top-hat function χ[−1/2,1/2] and sinc function,

sinc(x) =
{

1 for x = 0
sin x

x else
, (1.22)

which will be used later to define the voxel basis (see Section 2.4).
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1.3.2.1 Spaces
The integrability of f alone merely guarantees that the Fourier transform is well-
defined, not that it is itself integrable (only ∈ L∞(R)). The actual space that a physical
f resides in has impact on the Fourier transform, which is important for the justifi-
cation of algorithms and approximations—especially in the k-space formalism (see
Section 2.3) and Sequence Response Kernel (see Section 2.4) sections.

Square integrability
Any signal that can be encountered physically is square integrable because a violation
of square integrability means that the instantaneous power of the signal is not limited.
Since L2([a, b]) ⊂ L1([a, b]), the Fourier transform is defined for any function that can
correspond to a physical signal.

Periodicity
The special case of periodicity is of great consequence: An f ∈ L2[a, b] that continues
periodically now possesses a Fourier series decomposition, which means that a full
representation of f in terms of countable Fourier coefficients is possible, and the
asymptotic behavior of the series (alongside with it’s resulting approximation error)
can be estimated if more information about f is available.

Bounded domain
The special case of a bounded f ∈ L2[a, b] is similarly convenient: f can be continued
by 0 outside its domain—corresponding to multiplication with a top-hat-function, or
a convolution with a sinc-function of its Fourier representation. The sinc-interpolation
yields no extra information content, thus the Fourier series representation suffices to
regenerate f .

Without a bounded domain or periodicity argument the Fourier series representation
does not apply, and the Fourier transform is not easily approachable with means of
numerical analysis.

It is important to keep in mind that a violation of this continuation is a common
occurrence in MRI. This violation results in artifacts that originate in Fourier anal-
ysis. The most prominent example of this difficulty is the wrap-around artifact, but
advanced reconstruction methods also need to consider this violation.

Bounded variation, continuity and differentiability
For an f ∈ L2([a, b]), the total variation is defined as:

V( f ) = sup
P∈P

nP−1

∑
i=0

| f (xi+1)− f (xi)| (1.23)

where

P = {P = {x0, ..., xnP} |P is a partition of [a, b], nP ∈ N} . (1.24)

A function that has bounded total variation, i.e. V( f ) < ∞, also has Fourier coef-
ficients that eventually converge to zero ( f ∈ BV([a, b]) ⇒ f̃ (n) = O(1/n)). Such
functions are often used as a theoretical input for MRI related algorithms, for instance
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in simulation experiments that assume a perfect sphere that is filled with protons ho-
mogeneously. If the total variation of the function can be estimated, then this estimate
can be used to express the limiting behavior of the Fourier coefficients for n → ∞.

If the function is furthermore absolutely continuous, then the convergence of the
Fourier coefficients for n → ∞ is accelerated ( f ∈ AC([a, b]) ⇒ f̃ (n) = o (1/n)), and
even more so if the function is continuously differentiable ( f ∈ Cr([a, b]) ⇒ f̃ (n) =
o (1/nr)).

Schwartz space and tempered distributions
The Schwartz space is defined as:

S(R) :=
{

f ∈ C∞(R)| f (n)(t) = O (1/|t|k) , ∀n, k = 0, 1, ...
}

. (1.25)

It is of particular importance for Fourier analysis because the Fourier transform is an
automorphism on this space. The dual space of S(R), denoted by S′(R) is called the
space of all tempered distributions on R.

The space of tempered distribution enables the natural definition of the Fourier
transform for distributions that are compatible, most importantly the Dirac distribution
δ, which is defined through δ[ f ] := f (0) ∀ f ∈ S(R), or the Dirac comb, which is the
infinite sum of equally spaced shifted Dirac distributions.

Tempered distributions and the transition to the discrete Fourier transform
The Dirac comb is the central theoretical building block of digital signal processing,
which is why the space of tempered distributions plays such an important role in
Fourier analysis. The Dirac comb is the bridge between the discrete Fourier transform
and continuous signals, and is used to prove the Nyquist–Shannon sampling theorem.

Interpreting discrete data as a function multiplied with a Dirac comb is always valid
and can greatly help to explain phenomena and artifacts that are present when the
conditions of Fourier analysis are stretched in theoretical processing of data.

2D Fourier transform
The Fourier transform can be extended to multiple dimensions directly by treating
each extra dimension analogously.

1.3.2.2 Discrete Fourier transform

For a sequence f ∈ CN, f = ( f0, f1, ..., fN−1), the Fourier transform F : CN → CN is
defined as:

f̃k :=
N−1

∑
n=0

fne−i2π n
N k (1.26)

And the inverse Fourier transform is thus:

fk :=
1
N

N−1

∑
n=0

f̃nei2π n
N k (1.27)

The discrete Fourier transform is connected to the continuous Fourier transform: If
f is the result of the sampling (multiplication with an adequate Dirac comb) of a
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periodic function, then f̃ corresponds to the dually sampled Fourier transform of f .
The rules that hold for the discrete Fourier transform can be proven in an elegant way
by attributing them to their continuous counterparts.

Fast Fourier transform (FFT)
If N is a power of two, then the discrete Fourier transform can be calculated in
N log2(N) multiplications, which is substantially superior to the naive N2 multiplica-
tions that are required if the transform is performed directly. If the samples are not
acquired in a compatible way, then they are often gridded onto a compatible sampling
to make use of this numerical efficiency.

1.3.3 Numerical analysis

Part of the simulation is of course actual computation of the simulated behavior. This
section addresses the most relevant topics of numerical analysis for the scope of this
work.

1.3.3.1 Initial value problems
The Bloch equation (Equation 1.1) is the mathematical foundation of MRI. In general,
it is an ordinary differential equation—or an initial value problem when applied to a
spin packet with a defined initial state.

Definition 3. An initial value problem is a differential equation y′(t) = f (t, y(t)) with
f : Ω → Rn, where Ω ⊂ R × Rn is open, together with a point (t0, y(t0)) = (t0, y0) ∈ Ω.

Existence and uniqueness of a solution can be affirmed directly for any circum-
stance that can be created by physical tools in the context of this work through the
Picard–Lindelöf [11] theorem which merely requires continuity of f in t and Lipschitz
continuity of f in y.

Since there exists no general solution to the Bloch equation [33], an approximation
strategy needs to be pursued for the general case. A great choice is the Runge-Kutta
method [25], which basically integrates the equation stepwise in temporal direction
until the desired time is reached. Such a step is defined by a Butcher tableau, which
approximates the solution within this step up to a certain order. In this work, the
Cash-Karp method [5] is employed. This method generates two approximations: one
of fourth order and one of fifth order. The local approximation error that is estimated
based on those two solutions is then used to adapt the step size to a desired accuracy
level.

1.3.3.2 Properties of numerical algorithms
The algorithm that is employed to solve the Bloch equation is guaranteed to provide
a local approximation to the real solution for each step. But there are errors present
at each step, which may cause significant deviations from the final/global solution.
These errors can be estimated and are either intrinsic to the algorithm that is employed
or to the problem itself.
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Stability
Stability is a property that can be applied to the process of solving a differential
equation. Basically, a problem is considered numerically stable if small errors in the
initial conditions lead to small errors in the result. A non-stable problem would be
one for which small discretization or approximation errors cause the final solution to
show significantly different behavior. Luckily, this is not a major problem for the Bloch
equation because deviations from the equilibrium configuration decay over time. This
means that the problem is asymptotically stable for errors in the magnetization state,
and stable for errors in the equilibrium magnetization.

Stability often is a problem when dynamics are present on multiple time scales at
the same time, which would be the case when the laboratory reference frame is used to
solve the Bloch equation because of the Larmor precession. The numerical properties
of the specialized Bloch equation (Equation 1.4) will be discussed in the next chapter
(see Section 2.1.1).

Condition
Condition is a measure of output variance under input perturbance. The Bloch equa-
tion is well-conditioned since the solution constantly decays towards the equilibrium
configuration.

Conclusion
The problems encountered in this work are stable, possess unique solutions and do
not evoke significant challenges to reach good approximation quality. Therefore they
are not inspected further.
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Simulation objectives 1.4
MRI is a field at which people from many different expertises come together. The
formulas and models that form the MRI knowledge-base are the main tool of commu-
nication among specialists, and an application or simulation of those models can be
seen as a necessary widening of this foundation.

A universally applicable and efficient simulation can help the understanding of MRI
through all expertises, most importantly in research, education and clinical application.
This topic will be revisited in the last chapter (see Section 4.2), considering the results
of this work.

1.4.1 Research

Research is the area at which a simulation has the strongest impact. Each new method
needs to be designed, implemented and evaluated. A well-performing simulation is
able to test novel methods in an adequate and thorough way.

The most common practice to test a new idea is to first use a simulation that is
specialized to the effects relevant to this new method, estimate the results, and then
compare those results to physical measurements. The problem with this path is that
the validation is only carried out at the very end of this process. Intermediate results
cannot be compared because the scanner is bound to physical limitations and the new
method needs to be fully implemented prior to the validation.

The simulation that is employed in this scenario is built in a rigid way and most
likely reinvented completely due to the lack of simulation standards or optimized
approaches. This hinders further development and the investigation of the simulation
results in the absence of physical measurements.

1.4.1.1 Common simulation tasks
A simulation that attempts to answer a question motivated by research is usually
aimed at a very specific context and initial configuration of the system. It then requires
a comparison or trend of competing methods, including error measures and sensitivity
analysis.

The actual computation of full realistic images is usually not the focus of the simula-
tion task. The performance of a single module within the sequence is the main interest.
This could be the individual pulses, sequence timing or gradient pulse strategy.

A simulation for research purposes needs to be adaptable to a high range of scenar-
ios since research is usually performed for extreme special cases. A high simulation
speed or a quick response to a change of the experiment’s setting is desirable, but
usually not required.

Example questions
The following questions are examples of typical questions that are posed towards a
simulation tool.
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• How does an idealized spin distribution behave in the presence of a single (RF
or gradient) pulse?

– What is the slice profile of an RF pulse?

– What are the deviations from the ideal case in the presence of offset frequen-
cies, flow or diffusion?

– How does B1 inhomogeneity deteriorate the pulse performance?

• What effect does one specific sequence design parameter have on spin packets?

– How robust is the RF pulse slice profile?

– How good is the background suppression?

– How do competing gradient pulse strategies compare?

• How do pulse patterns perform?

– What are the optimal parameters for the individual pulses?

– Which timing yields optimal signal quality?

– What is the influence of Flow or Diffusion?

– What side-effects are ignored by a competing mathematical simplification?

– What side-effects can be expected in the final image?

1.4.1.2 Impact of an efficient simulation
Efficient simulation tools are essential for further development of simulation based
methods. An efficient and applicable simulation reduces the need for simplified models
and can partially replace them with accurate calculations. Simulation based research
such as MR Fingerprinting [27] can only be practiced if a proper simulation tool is
available.

Implementing and testing a new technique on the MR scanner is time-consuming
and lacks debugging means. An approximation of low accuracy or exhaustive simula-
tion time is often seen as an overhead that is of low value to research and development.
An efficient simulation can best support the development of new techniques and the-
ories if it is accurate and fast. The simulation can thereby also provide insight into
the state of the system, opposed to having to interpret the final result of the measure-
ment process. This added insight and reduced implementation effort can shorten the
development cycle and aid the investigation of phenomena that might arise for a new
technique.

1.4.2 Education

Concepts and ideas need to be communicated in all scientific fields. Abstract models
and formulas can often be grasped more easily if they are supported by examples,
applications or metaphors. The MRI learning curve is generally considered to be steep,
and much effort is put into explaining it for each knowledge level and educational
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background. MR effects are often explained in an illustrative way, supported by ges-
tures and 3D hand-waving. The correct medium for this explanatory style is a 3D
animation, and there are various attempts to establish a tool of this kind [16] [29].
However, their performance and further applicability is limited and the gap to current
research is still wide. Thus the education stops directly after the basic level.

Education as a simulation task should not only be understood as the transfer of basic
knowledge. Each new idea that is carried to a person even in the same and advanced
scientific field needs a form of education.

1.4.2.1 Common simulation tasks
An educational tool usually does not need to be quantitatively accurate. It needs to
show the general behavior and be highly responsive. It should be easy to perform
experiments, allow for various different views on the system, and be easy to adapt to
a different special case.

Example questions
The following example questions are typical educational tasks:

• How does a small set of spin packets behave as it is exposed to the sequence?

• How can the spin configuration be interpreted, how should it be read?

• Which effects cause the system to behave undesirably?

• Why does a change in the sequence produce the desired result?

1.4.2.2 Impact of an efficient simulation
An efficient MRI simulation that is used as an educational tool serves as an entrance
point to research and a communication medium. Ideas should be easy to illustrate and
thus educate after development. Ideas are also more trustworthy and testable if they
are supported by a transparent, customizable simulation. The transition to research
scenarios should be smooth.

1.4.3 Clinical Application

A simulation of the MR-effect in the context of MRI is especially relevant for clinical
diagnostics, clinical studies, and the definition of measurement protocols. At all these
stages, MRI simulation is rarely used.

The device that is responsible for controlling the MRI system needs to be highly
quality compliant. As such, for the image acquisition stage, the application developer
needs to work with limited freedom, increased implementation obstacles and confined
computational resources. Fully featured simulation is infeasible in this environment.
Thusly, specializations, simplified models, or precalculated approximations are neces-
sary.

After the measurement, the data is post-processed to enable a diagnosis. This step
has potentially all required liberties and resources, but the patient can be assumed
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to be not measurable under equal conditions after the post-processing. But even the
post-processing step is rarely supported by a simulation due to the high computational
effort, required quality compliance, and limited infrastructure at clinical sites.

1.4.3.1 Common simulation tasks
Clinical applications need to be highly reliable and their results need to have a known
and high quality. They also have to be fast for post-processing applications and very
fast for tasks directly relevant to the acquisition process.

Example questions
The following example questions are related to clinical applications:

• How should the sequence be configured to achieve the best contrast?

• How can differently acquired images be interpreted together?

• How can artifacts be avoided?

• How reliable is the measurement?

1.4.3.2 Impact of an efficient simulation
Simulation within the clinical environment can simplify the measurement process.
The sequence can be tuned algorithmically instead of by experience—removing the
strain of finding suitable parameters. A simulation tool could also anticipate problems
that are likely to occur and provide an option to control those problems directly—in
contrast to indirect tweaking of raw sequence parameters.

The post-processing steps could be enhanced by adding knowledge, gained by a
virtual simulation of a patient-specific experiment. Image sets acquired with differ-
ent sequences are commonly interpreted individually, because they are not directly
comparable. A simulation can connect the information and derive more robust and
physiological parameters from the compound data. It is also feasible to conjoin im-
ages acquired with differing sequence, differing hardware specifications, and differing
vendors.

universally
applicable

highly
responsive accurate

education

clinical
application

research

Figure 1.10: Venn-Diagram of MRI simulation requirements and application areas.
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2 Methods

2.0 Introduction

Presented in this chapter are the simulation methods. These methods are the
main focus of this work. Each method is investigated and optimized with full
and accurate imaging experiment conditions in mind—opposed to the task of

simulating only parts of a pulse sequence or neglecting the imaged object completely.
Each of the four approaches’ sections concludes by presenting the workflow that is
needed for a full simulation experiment.

Direct Bloch simulation (see Section 2.1) is the most common and also most gen-
eral way to perform a simulation experiment. By exploiting MRI sequence properties,
the Smart Bloch solver (see Section 2.2) improves the common approach to achieve
increased efficiency without sacrificing accuracy. The k-space simulation method (see
Section 2.3) is based on the extended phase graphs [19] idea, refined to enable accurate
results and to become applicable to a larger scope of problems. The Sequence Re-
sponse Kernel method (see Section 2.4) further extends the k-space based simulation
to simulate directly in image space by strongly decoupling the tissue-dependent and
geometry-dependent contributions of the simulation process. The last section of this
chapter (see Section 2.5) showcases applications that can be handled through the final
approach.

The results chapter (Chapter 3) provides simulation results for each method, fur-
ther inspects efficiency and illustrates the intrinsic potential and imperfections of the
approaches.
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2.1 Direct Bloch simulation

Direct Bloch simulation 2.1
The Bloch equation is a simple ODE which can easily and accurately be solved numer-
ically using a Runge–Kutta method.

This section briefly establishes the state of the art. The techniques and numerical
details are not of high interest for the following approaches and further development
of these approaches is not part of this work, which is why this section is kept short.

2.1.1 Numerical properties

From a numerical point of view, the Bloch equation is very well behaved (also see
Section 1.3.3). The magnetization decays exponentially towards its equilibrium state
M = (0, 0, M0).

The Bloch equation describes the behavior of a spin packet. While doing so, it implies
that the individual spin packets evolve independently, which is true at the abstraction
level at which the Bloch equation holds.

2.1.1.1 MRI-specific properties of the Bloch equation
There are multiple relevant timescales in a common simulation experiment. The main
magnetic field of the MRI device induces a Larmor precession which is on a timescale
at which no other process is important. This numerical complexity can easily be re-
moved by using a rotating frame of reference with a frequency equaling the Larmor
frequency for the main magnetic field. In that frame of reference, spin packets do
not experience the B0 field, transverse fields are modulated with negative Larmor fre-
quency, and all other fields are unaffected. Within this work, all magnetic fields are
assumed to be in terms of this rotating frame of reference.

The automatic step size adaptation of the Cash-Karp method can lead to improper
results if dynamics are present that occur on a time scale that is orders of magnitude
below the current step size—as it is often the case for MRI pulse sequences. Many MRI
sequences consist of short time spans during which RF pulses are applied, followed by
prolonged silence on all channels, and gradient waveforms with sudden changes. An
adaptive step size solver is likely to miss those changes if used directly. It is necessary
to choose an adequate minimum step size or alternatively to define time points at
which the solver reconfigures its step size.

2.1.1.2 Phantom sampling
Spin packets have to be simulated individually, and choosing a set of spin packets that
produces accurate results is no trivial task. Systematic sampling according to a grid is
likely to introduce aliasing errors in the signal. Sampling only few spin packets per
imaging voxel fails to resolve sub-voxel effects that are common for MRI sequences,
and the T2’ effect (see Section 1.1.1.3) requires even more samples according to the
offset frequency distribution.

The sampling of spin packets should in general be randomized and highly resolved.
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2.1.1.3 Nonexistence of a general analytical solution

Even though the Bloch equation is numerically well behaved, there is no feasible ana-
lytical solution for the general problem.. Only special cases with particularly organized
patterns can be solved analytically.

In fact, it is possible to find a B-field that produces any spatial/frequency distribution
in any finite time span. The approaches to do so are well-known and investigated, for
instance concerning the design of volume-selective pulses.

More information about the nonexistence of analytical solutions can be found in [33].

2.1.2 State of the art

The simplicity of the Bloch equation has lead to many implementations of a gen-
eral simulation. The equation is easy to extend by further physical effects or system
imperfections and can be applied to any problem. Many sophisticated solutions em-
brace this simplicity and concentrate on the framework, extensibility, applications, or
parallelization of the simulation code [22] [35] [2] [14] [40].

But this flexibility comes at the price of computational effort. The experiments can
only be performed at low resolutions given reasonable time and resource constraints.
This limits the significance of the tool to basic verification of sequences and a prepara-
tion for non-virtual experiments.

The algorithmic optimization of the mentioned implementations is limited to basic
numerical improvements such as the mandatory rotating reference frame or step size
awareness. Attempts of numerical optimization are limited to special cases [1]. The
most sophisticated improvement is a first-order approximation of the magnetization
dispersion within a voxel, which can be found in [21]. The main focus of established
software is the inclusion of physical phenomena such as magnetic susceptibility, chemi-
cal shift, or customizable virtual coils. The inevitable computational effort is exclusively
answered by parallelization.

2.1.3 Algorithmic potential

The great potential that makes it possible to handle the Bloch equation conveniently,
is parallelization. The spins do not interact, and the signal accumulation is performed
globally. If there is a great number of spin packets that are to be simulated, then the
workload can be separated in an arbitrary way.

But this does not remove the need for efficient simulation. While it may be tempting
that implementing the Bloch equation alone does not depend on further numerical
tweaks to provide accurate results, it is often not possible to choose a number of spin
packets that produce sufficiently realistic results.

However, the Bloch equation is easy to extend by further effects such as complicated
magnetic fields or spin packet behavior, which makes the direct Bloch simulation
a reasonable choice when such features are relevant and need to be investigated
transparently.
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2.1.4 Full simulation workflow
First, the phantom needs to be prepared because the Bloch equation requires suffi-
ciently many spin packets. It is not only necessary to choose a sufficiently fine sam-
pling of the spin packets, but also to avoid regularity.

The sequence description needs to be translated to the right hand side of the Bloch
equation and the times at which signal is acquired need to be extracted. It may also be
necessary to deduce hints about discontinuities and sudden changes in the magnetic
field that the ODE solver is likely to require, depending on the implementation.

Now the state of a spin packet for a given point in time can be calculated by in-
tegrating the ODE. This has to be done for each acquisition time, at which the total
signal needs to be weighted and accumulated for each coil.

The signal is then complete, in the form of one complex-valued sample per acqui-
sition time, per coil. It can then be reconstructed using the same algorithms that are
employed on the MRI system.

For each sampling time point

For each spin packet

Calculate
magnetization

Accumulate net
magnetization

Append to full
signal

Calculate sampling
times

Create spin packets
Calculate magnetic

fields

Phantom
description

Sequence
description

Complete signal

Figure 2.1: Direct Bloch simulation workflow
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2.2 Smart Bloch simulation

The hardware setup of an MRI system specializes the Bloch equation, as described in
Equation 1.4. Furthermore, the RF pulses that are part of a pulse sequence are often
repeated or applied in a similar fashion. These two facts can be exploited to yield
accelerated ODE integration with no drawback in accuracy.

This section introduces concepts to apply analytical solutions where possible and
re-use simulation results from RF pulse simulation. This is followed by the workflow
for full imaging experiment simulation. The benefit and efficiency of this approach
will be elaborated in sections 3.2 and 3.5.

2.2.1 Pulse idealization
RF pulses are usually thought of as acting as a rotation on the magnetization within
a certain on-resonance bandwidth. This idea is mostly sufficient to understand a
sequence, or to work on effects that are not directly affected by imperfection of this
assumption.

A solution that is often applied and closer to reality is the so called hard pulse
approximation, which basically integrates the Bloch Equation using the forward Euler
Method. There are no reasons to prefer this approach to a solution using a more so-
phisticated solver when it comes to solving the Bloch Equation, except for a byproduct
of the hard pulse approximation that allows inversion and can directly generate a
pulse shape for a desired pulse profile [31].

The following paragraphs define a workflow that possesses the full exactness of a
Direct Bloch simulated pulse, but is also as easy to use as the rotation approximation
of RF pulses.

2.2.1.1 Theory
A spin packet can be separated into smaller spin packets. This is particularly useful
when the effect of an RF pulse on similar spin packets is of interest.

The Bloch equation (Equation 1.1) is a homogeneous and linear equation, thus the
superposition principle holds:

f (
−→
M) :=

∂

∂t
−→
M = γ

−→
M ×−→

B −
Mx

−→ex + My
−→ey

T2
+

(M0 − Mz)
−→ez

T1
(2.1)

f (a
−−→
M(a) + b

−−→
M(b)) = a f (

−−→
M(a)) + b f (

−−→
M(b)) (2.2)

Consequently, any spin packet can be decomposed into a linear combination of four
basis spin packets. To ease the notation in the following paragraphs, the magnetization
vector is supplemented by the spin packet’s equilibrium magnetization magnitude to
form a vector of dimension four. The basis spin packets are:

−−→
M(1) = (1, 0, 0, 1),

−−→
M(2) = (0, 1, 0, 1),

−−→
M(3) = (0, 0, 1, 1),

−−→
M(4) = (0, 0, 0, 1). (2.3)
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Let
−→
M = (Mx, My, Mz, M0). Choose d = M0 − Mx − My − Mz, then:

−→
M = Mx

−−→
M(1) + My

−−→
M(2) + Mz

−−→
M(3) + d

−−→
M(4) (2.4)

Or equivalently:

−→
M = Mx(

−−→
M(1) −

−−→
M(4)) + My(

−−→
M(2) −

−−→
M(4)) + Mz(

−−→
M(3) −

−−→
M(4)) + M0

−−→
M(4) (2.5)

The evolution of the combined sub-packets when exposed to the Bloch equation will
always follow that of the original spin packet.

The choice of, e.g.,
−−→
M(1) = (1, 0, 0, 1) instead of

−−→
M(1) = (1, 0, 0, 0), is due to the

fact that spin packets without equilibrium magnetization would not be physically
reasonable, because no spin packet can be in this configuration—which would lead to
computational difficulties.

This separation into elemental spin packets could potentially be maintained for the
duration of the whole sequence, but that would further increase the numerical effort.
In this approach, the separation is only kept during a segment of the sequence, during
which pulses are present. After that, the sub-packets are recombined back into the
original spin packet:

Let
−−→
M(i)+ denote the magnetization of

−−→
M(i) after the pulse for i ∈ {1, . . . , 4}. Let

P =

⎛⎜⎜⎝
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34
0 0 0 1

⎞⎟⎟⎠ (2.6)

=

⎛⎝(
−−→
M(1)+ −

−−→
M(4)+) (

−−→
M(2)+ −

−−→
M(4)+) (

−−→
M(3)+ −

−−→
M(4)+)

−−→
M(4)+

⎞⎠
The spin packet

−→
M− = (Mx, My, Mz, M0) will evolve to

−→
M+ = P · −→M− after the pulse.

The great efficiency gain of this approach now lies in the fact that once the pulse
is simulated for the four elemental spin packets, a spin packet with equal relaxation
parameters that experiences the same magnetic field but is oriented a different way,
can evolve through the pulse duration in one matrix multiplication.

This potentially very helpful speedup, that does not deteriorate the solution in any
way, is ignored by established simulation approaches.

2.2.1.2 Dimensional reduction
All RF pulses can be categorized according to the gradient pulses that are applied
simultaneously. Less exotic gradient pulse shapes allow for dimensionality reduction
of the degrees of freedom in the spin packet’s tissue parameters.

Whenever a dimensionality reduction is feasible, a potentially large number of spin
packets share the same pulse effect. If the results of all pulse simulations are stored,
then those similar spin packets can directly use these results instead of requiring
recalculation.
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Non-selective pulses
An RF pulse is called non-selective when no gradient pulse is applied simultaneously.
They are moderately uncommon and mostly used for preparation purposes. The term
non-selective might be misleading since it still selects a certain frequency band due to
its temporal extension, but they are equally selective at any spatial position—coining
the term.

If no gradient pulse is present, then the position of the spin packet is irrelevant for
the Bloch equation’s right hand side. The tissue parameters (e.g. T1, T2, ∆ω) and the
coil transmissivity do of course depend on the position, but two spin packets that
possess the same environmental and tissue parameters will experience the same pulse
effect.

Slice selective pulses
In this work, a slice selective pulse is defined as a pulse that is applied in combination
with a constant gradient pulse for the duration of the pulse. Slice selective pulses are
the most common kind of pulse.

A gradient with a constant amplitude and direction results in a constant term in
the Bloch equation’s right hand side—and this fact can be exploited. The gradient
influence on the change in ∂

∂t
−→
M is given by:

∂

∂t
−−−→
Mgrad(

−→r ) = γ
−→
M ×

(−→
G · −→r −→ez

)
(2.7)

This is an extra offset frequency of the spin packet, that is determined by its position
in slice direction. The slice position can be merged with the also constant resonance
offset frequency ∆ω which is present due to T2’ and the chemical environment of the
spin packet. Even though the position of a spin packet is relevant for the pulse effect of
slice selective pulses, the equivalent pulse effect is experienced by a spin packet at the
isocenter with the corresponding offset frequency. Spin packets of equal parameters
except for slice position and offset frequency share a one-dimensional collection of
pulse effects.

The directions orthogonal to slice direction still have no influence on the pulse effect.

Variable rate pulses
A pulse is considered variable rate within this work if the gradient pulse applied
during the pulse has a constant direction, but not a constant amplitude. Pulses that
are commonly referred to as variable rate pulses are often used for safety-compliance
reasons because they allow an RF pulse to be of smaller amplitude albeit for the price
of a longer duration, effectively lessening the energy decomposition, but still yielding
the same effect in slice direction. Pulses with this distinguishing feature are also used
for 1D-spatial/spectral selection and not commonly called variable rate pulses, which
however does not pose a difference for the analysis carried out in this paragraph. 1D-
spatial/spectral selection pulses and variable rate pulses are rarely used and can often
be replaced by a combination of slice-selective and non-selective pulses.
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The position in slice-direction can now no longer be translated to a constant offset
frequency, thus these two dimensions do not share common solutions any more. How-
ever, the directions perpendicular to slice direction still have no direct influence in the
Bloch equation and can still be ignored.

3D/4D selective pulses
Any pulse that does not fall into either of the former categories is technically selective
in multiple spatial dimensions and frequency dimension. And indeed these pulses
are mostly used for exactly that purpose. But a well-tailored volume-selective pulse
takes a rather long time and puts a high strain on the patient in terms of energy
decomposition—and even then they are always followed by complicated side-effects.
For these reasons they are often avoided and even in its main area of application,
which is spectroscopy, often replaced by simpler pulses.

This is the worst case in terms of reusing calculated pulse effects. The experienced
pulse effect depends directly on position in a way that is devoid of a methodological
simplification based on above assumptions and since there can only be one tissue
property and transmissivity at one position, nothing is won by not calculting the pulse
effect for each spin packet individually. However, if the same pulse is applied multiple
times and the spin packet parameters are constant, then it can be reapplied without
solving the Bloch equation again.

Conclusion
Each gradient complexity comes with a restriction towards dimensional reduction. The
most common pulses induce effects can be heavily reduced, leaving only the tissue
parameters and pulse transmissivity as degrees of freedom for pulse effect.

This fact allows for a potentially great reduction in simulation time, which will be
illustrated in Section 3.5.

2.2.1.3 Instantanization correction

A pulse that is applied using the described method of decomposing and recombining
spin packets will also induce an implicit time-step that corresponds to the pulse length.
This has some practical complications that can easily be resolved. The simulation
methods described in the next sections also rely on this correction. This will be referred
to as the instantanization correction.

Correction
The effects that occur during the sequence can be expressed by one matrix multipli-
cation for any start and end time where no RF pulse is in-between, and this matrix is
always invertible (see Section 2.2.2).

By applying the effects of gradient pulses and relaxation during the pulse inversely
in the correct order around the pulse effect, a new pulse effect matrix P̃ is generated
as illustrated (Figure 2.2). This new pulse effect matrix produces equivalent results in
the context of the whole sequence simulation but does not imply a temporal jump.
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Figure 2.2: Schematic description of pulse instantanization. The uncorrected pulse effect matrix
implies a time step (a). It is possible to remove this time step (c), by correcting as
illustrated in (b).

After choosing an arbitrary pivot point, e.g., the center of the pulse, the matrix
description of gradient and relaxation effects during the pulse to and from the pivot
point can be calculated analytically for a given tissue set, yielding R1 and R2. The
inverse of these matrices corrects for the implicit time steps, such that

P̃ = R−1
2 ◦ P ◦ R−1

1 (2.8)

has the same effect, but does not imply a time step.
Simulations using P and P̃ pulse effects produce equal results, except when evalu-

ated at time points that are within the time span of the pulse. This is acceptable when
whole sequences are to be simulated, because no signal is measured during that time.

But even when the simulation of singular pulses are of interest, the instantanization
correction can be helpful, because the influence of tissue parameters is then separated
from the bias of the pulse duration’s influence. This will be shown in the results
chapter (see Section 3.2.1).

2.2.2 Magnetization state and signal calculation
The Bloch equation (Equation 1.4) is greatly simplified in the sections of the sequence
in which no RF pulse is active. The effects of the Mz component are completely de-
coupled from the transverse effects, and the equation has an analytical solution. The
gradient pulses cause further precession, and the relaxation effects commute with the
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precession effects.

The gradient pulse and relaxation effects on a spin packet M during the time-interval
[t−, t+] can be calculated as follows:

M⊥(
−→r , t+) = M⊥(

−→r , t−)eiφ(−→r ,[t−,t+]) e−(t+−t−)/T2 (2.9)

Mz(
−→r , t+) = M0 − (M0 − Mz(

−→r , t−))e−(t+−t−)/T1 (2.10)

φ(−→r ,
[
t−, t+

]
) := γ−→r ·

∫ t+

t−

−→
G (t)dt. (2.11)

The 0th moment of the gradient channel
∫ t+

t−

−→
G (t)dt is the most expensive calculation

within the solution, but it is completely independent of the object and can be directly
calculated for a given sequence. Further dynamics of Bz within the Bloch equation
(Equation 1.4) result in additional phase effects that can be treated independently, or,
in case of B0, remedied by choosing a suitable rotating reference frame.

Since this analytical approach is only possible for sections between the RF pulses, it
is most reasonable to choose the integration starting points t− to be at the end of each
pulse, or in case of instantanization correction directly at the pulse pivot points.

For each time point in the sequence outside of RF pulse sections, the spin packet’s
magnetization can be calculated from its magnetization at the end of the previous
pulse in one step with constant run time.

These analytical solutions are only valid for static tissue. Flow and diffusion can
also be treated analytically to some degree, as explained in later parts of this work (see
Section 4.1.1.1).

2.2.2.1 Signal acquisition

As for the signal acquisition process in the Smart Bloch Solver approach, no improve-
ment over the direct Bloch Solver is pursued. After the magnetizations of all spin
packets are calculated, they have to be accumulated for each coil, weighted by the local
coil sensitivity.

This process often requires most computational resources, which will be illustrated
in Section 3.5.

The following two simulation methods employ techniques to resolve this issue.

2.2.3 Full simulation work-flow

The full workflow for this method is separated into three steps: Pulse effect calculation
(Figure 2.3), RF pulse state calculation (Figure 2.4) and signal calculation (Figure 2.5).
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For each tissue-pulse combination

Calculate pulse
effect

Instantanization
correction

Calculate unique
pulses

Calculate unique
tissues

Phantom description Sequence description

Precalculated pulse effects

Figure 2.3: Smart Bloch Simulation workflow—Pulse precalculation

The pulse effects need to be calculated for each unique tissue parameter and each
unique pulse (Figure 2.3).

The pulses need to be precalculated in ranges according to their relevant effects.
These are usually T1, T2, offset frequency and coil transmissivity. However, T1 and T2
are potentially numerically negligible during the RF pulse, reducing the computational
effort. On the other hand, pulses that are classified as variable rate or volume selective
can be infeasible to precalculate and may rather be calculated on demand.

A great side effect of this precalculation is that pulses which are reused in the se-
quence only need to be calculated once according to the dimensionality reduction.
This also holds for slice selective pulses that are modulated with different resonance
frequencies, different phases or at different gradient amplitudes, which basically corre-
sponds to a different slice selection and a rotation of the pule effect. This is applicable
to most common pulse sequences, which have no more than a handful different pulses.

After all required pulse simulations have been identified, they have to be performed
for the four basis spin packets, corrected, and stored for usage in the next step.
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For each pulse instance

For each spin packet

Calculate state at
pulse instance

Calculate pulse
instances

Create spin packets
Calculate gradient

moments

Phantom
description

Sequence
description

Spin packet
states at pulse

instances

Precalculated
pulse effects

Figure 2.4: Smart Bloch simulation workflow—RF pulse state calculation

The goal of the second step (Figure 2.4) is to calculate the state of the system at the
pivot points of the RF pulses.

The individual spin packets need to be generated in the same way as it was the case
for the Direct Bloch simulation.

To perform the progression from the state at one pulse to the state at the next pulse,
the gradient moments between these two pulse times need to be calculated from the
sequence description.

The transition of a spin packet’s state at one pulse instance to the state at the next
pulse instance requires one analytical step. This step depends on the spin packet pa-
rameters and gradient moments in the time span between the two RF pulse pivot
points. Afterwards, the correct pulse effect that was calculated in the previous work-
flow step needs to be retrieved and applied.

The spin packet states are then stored to be used in the next workflow step. The
storage is not an essential step since those states can be iteratively processed and then
discarded if only the final signal is of interest. But the saving eases parallelization in
the following processes, and can also be reused if different coil settings need to be
considered.

43



2 Methods

For each sampling time point

For each spin packet

Calculate
magnetization

Accumulate net
magnetization

Append to full
signal

Calculate sampling
times

Calculate gradient
moments

Sequence
description

Spin packet
states at pulse

instances

Complete signal

Figure 2.5: Smart Bloch simulation workflow—Signal calculation

In the last step (Figure 2.5) the coil signals are calculated, based on the previously
generated system states.

This step requires the gradient moments, measured from each RF pulse instance
pivot point to the acquisition times following that RF pulse directly. This enables fast
calculation of the system’s state at the individual acquisition times.

The signal is then weighted and accumulated in the same way as it was performed
for the direct Bloch simulation.
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k-space based simulation 2.3
The Direct Bloch simulation and Smart Bloch simulation approaches require a large
number of particles that have to be traced individually. However, behavior of the
particles is systematically similar due to the MRI Bloch equation (Equation 1.4). Trans-
forming the problem into a suitable frequency space exploits some of this similarity.
The transformed problem is in general equivalent and the computational cost may be
reduced drastically.

The method described in this section is related to the extended phase graph al-
gorithm [19]. The methodological and functional differences and improvements are
elaborated in the later paragraphs of this section (see Section 2.3.4.4).

The method described in this section is only efficient and computationally feasible
if phantom and sequence are compatible. The workflow (see Section 2.3.5) and effort
estimation (see Section 3.5) will cast light on this issue.

2.3.1 Concept and basis

The original formulation of the extended phase graph algorithm is not used as a
starting point, because it includes simplifications that are not reasonable for full MR
imaging simulation. Even the basic description of the system state is handled in an
alternative way to allow for full accuracy.

The general idea however is the same. RF pulses transform transverse and longitu-
dinal magnetization; gradient pulses and offset frequency act on the magnetization
by inducing a phase accumulation which can be seen as a shift of the Fourier trans-
formed transverse magnetization, as foreshadowed by the definition of k-space (see
Section 1.2.1).

This and the following part will formally introduce a Fourier transform inspired
state system and transfer the results of the Smart Bloch Solver to this new system.

2.3.1.1 Basis definitions

The following paragraphs will introduce a pair of spatial and frequency bases, such
that effects can easily be translated between the two, in a way that is equally exact if the
object possesses adequate spatial and frequency descriptions. To improve readability,
vector arrows are omitted for location, gradient pulse, and frequency vectors.

Spatial domain

The magnetization of a spin packet can be expressed by a four-dimensional vector
describing its spatial components and equilibrium magnitude. To express the location
of the spin packet, an indicator function χr0(r) can be used which returns one if r
and r0 match, e.g., are in the same voxel, and zero otherwise. In the limiting case
of non-discrete resolution, χ degenerates to a δ-distribution. More formally: A spin
packet’s magnetization can be described by:

45



2 Methods

⎛⎜⎜⎝
Mr0

x
Mr0

y
Mr0

z
Mr0

0

⎞⎟⎟⎠
r=r0

:= Mr0
x
−→
er0

x + Mr0
y
−→
er0

y + Mr0
z
−→
er0

z + Mr0
0

−→
er0

0 (2.12)

where Mr0
x , Mr0

y , Mr0
z , Mr0

0 ∈ R, and

−→
er0

x := χr0(r)
−→ex (2.13)

−→
er0

y := χr0(r)
−→ey (2.14)

−→
er0

z := χr0(r)
−→ez (2.15)

−→
er0

0 := χr0(r)
−→e0 . (2.16)

This notation then motivates the basis generating set

Br :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎝

Mr0
x

Mr0
y

Mr0
z

Mr0
0

⎞⎟⎟⎠
r=r0

: Mr0
x , Mr0

y , Mr0
z , Mr0

0 ∈ R r0 ∈ Ωr ⊆ R3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (2.17)

which can be used to describe the magnetization state of a spatially resolved object
that is compatible with the choice of Ωr and χ.

In particular, the equilibrium state of an object A ∈ span(Br) with proton density
ρ(r) is given by:

A0 := ∑
r0∈Ωr

⎛⎜⎜⎝
0
0

ρ(r0)
ρ(r0)

⎞⎟⎟⎠
r=r0

(2.18)

Frequency domain
Likewise, under the assumption that the phantom that is to be simulated has a proton
density that can be represented in terms of the Fourier basis, any magnetization can
be described in frequency domain, which uses wavenumbers to express the spatial
variation instead of voxels:

⎛⎜⎜⎜⎝
Mk0

v

Mk0
w

Mk0
s

Mk0
t

⎞⎟⎟⎟⎠
k=k0

:= Mr0
v

−→
ek0

v + Mr0
w

−→
ek0

w + Mr0
s

−→
ek0

s + Mr0
t

−→
ek0

t (2.19)
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where Mk0
v , Mk0

w , Mk0
s , Mk0

t ∈ C, and

z = |z| eiθ = a + bi ∈ C (2.20)

z−→e⊥ : = a−→ex + b−→ey (2.21)

z
−→
ek0

v : = zei(k0·r)−→e⊥ = |z|
(
cos(k0r + θ)−→ex + sin(k0r + θ)−→ey

)
(2.22)

z
−→
ek0

w : = z̄e−i(k0·r)−→e⊥ = |z|
(
cos(k0r + θ)−→ex − sin(k0r + θ)−→ey

)
(2.23)

z
−→
ek0

s : =
1
2

(
zei(k0·r) + z̄e−i(k0·r)

)−→ez = |z| cos(k0r + θ)−→ez (2.24)

z
−→
ek0

t : =
1
2

(
zei(k0·r) + z̄e−i(k0·r)

)−→e0 = |z| cos(k0r + θ)−→e0 . (2.25)

This suggests the following generating set:

Bk :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎝
Mk0

v

Mk0
w

Mk0
s

Mk0
t

⎞⎟⎟⎟⎠
k=k0

: Mk0
v , Mk0

w , Mk0
s , Mk0

t ∈ C k0 ∈ Ωk ⊆ R3

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.26)

Note that there might be multiple ways to decompose an arbitrary magnetization in
terms of Bk because:

z
−→
ek0

v = z̄
−−→
e−k0

w (2.27)

z
−→
ek0

s = z̄
−−→
e−k0

s (2.28)

z
−→
ek0

t = z̄
−−→
e−k0

t (2.29)

But this redundant choice of representatives is convenient in later calculations, and it
is not necessary for this work to have a unique representation in terms of Bk.

The equilibrium state of an object A ∈ span(Bk) with Fourier transformed density
ρ̃(k) = F (ρ(r)) can be expressed by:

A0 = ∑
k0∈Ωk

⎛⎜⎜⎝
0
0

ρ̃(k0)
ρ̃(k0)

⎞⎟⎟⎠
k=k0

(2.30)

2.3.2 Magnetization state and signal calculation

The following paragraphs will deduce the evolution of each basis element when ex-
posed to the simulation experiment, reusing the results from the Smart Bloch Solver
approach. It will be shown that each effect can also be described in full exactness using
the new magnetization distribution generating set.
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2.3.2.1 Gradient and offset frequency effects

To keep track of the magnetization during an MRI sequence, it is necessary to know
how an arbitrary element of Bk behaves when a gradient pulse is applied. These effects
will be investigated, assuming the absence of all other effects.

Spatial domain

In order to understand how a gradient pulse alters the magnetization in the spectral
domain, it is useful to first formulate its effect in terms of the spatial domain’s basis.

The following notation is useful to express the effect of a gradient pulse G:

−→
∆k =

−→
∆k(t−, t+) := γ

t+∫
t−

−−→
G(t)dt (2.31)

As a gradient pulse is applied, the Larmor frequencies of the underlying spin pack-
ets follow a slope in the corresponding direction, and the phase gain of a spin packet
at position r can be calculated by evaluating ∆φ(r) = ∆φ(r, t−, t+) = ∆k · r. This was
explained in Section 2.2.2.

Let

M− :=

⎛⎜⎜⎜⎝
Mr0

x,−
Mr0

y,−
Mr0

z,−
Mr0

0,−

⎞⎟⎟⎟⎠
r=r0

=
(

Mr0
x,− + iMr0

y,−

)−→
er0
⊥ + Mr0

z,−
−→
er0

z + Mr0
0,−

−→
er0

0 (2.32)

with
−→
er0
⊥ = χr0(r)

−→e⊥ . We then apply this phase gain to calculate M+, the element’s state
after the gradient pulse:

M+ =
(

Mr0
x,− + iMr0

y,−

)
ei∆k·r−→er0

⊥ + Mr0
z,−

−→
er0

z + Mr0
0,−

−→
er0

0 (2.33)

=

⎛⎜⎜⎜⎜⎝
Re
((

Mr0
x,− + iMr0

y,−

)
ei∆k·r

)
Im
((

Mr0
x,− + iMr0

y,−

)
ei∆k·r

)
Mr0

z,−
Mr0

0,−

⎞⎟⎟⎟⎟⎠
r=r0

Frequency domain

The easiest way to investigate the behavior of the elements of Bk is to express them in
their spatial representation, apply the effect of the gradient pulse and translate them
back into elements of Bk afterwards.

48



2.3 k-space based simulation

For an element

M− : =

⎛⎜⎜⎜⎝
Mk0

v,−
Mk0

w,−
Mk0

s,−
Mk0

t,−

⎞⎟⎟⎟⎠
k=k0

(2.34)

=
(

Mk0
v,−ei(k0·r) + Mk0

w,−e−i(k0·r)
)−→e⊥ + Mk0

s,−
−→
ek0

s + Mk0
t,−

−→
ek0

t ,

applying the spatially dependent phase gain yields

M+ =
(

Mk0
v,−ei(k0·r) + Mk0

w,−e−i(k0·r)
)

ei(∆k·r)−→e⊥ + Mk0
s,−

−→
ek0

s + Mk0
t,−

−→
ek0

t (2.35)

=

⎛⎜⎜⎜⎝
0
0

Mk0
s,−

Mk0
t,−

⎞⎟⎟⎟⎠
k=k0

+

⎛⎜⎜⎜⎝
Mk0

v,−
0
0
0

⎞⎟⎟⎟⎠
k=k0+∆k

+

⎛⎜⎜⎜⎝
0

Mk0
w,−
0
0

⎞⎟⎟⎟⎠
k=k0−∆k

.

This result illustrates one power of the k-space formalism approach: The intensities
of all components are constant, the gradient pulse effect is a wavenumber shift of the
transverse components of the element. This shift is the same for all elements since it
does not depend on k0.

The phase accumulation due to offset frequency can be treated analogously to
the gradient directions. The offset frequency dimension of the object’s magnetization
distribution experiences a virtual gradient that is constant throughout the experiment.
A more formal explanation requires an extension of Ωk to allow for non-trivial offset
frequency distributions, but this generalization does not introduce further dynamics
and is thus not carried out.

2.3.2.2 Relaxation effects
Relaxation is the second MRI phenomenon that needs to be investigated. Fortunately,
the precession and relaxation effects commute, allowing us to apply both effects inde-
pendently of each other in the absence of other effects. At this stage, an object with
homogeneous relaxation times is assumed.

Spatial Domain
In the absence of external magnetic fields, the Bloch equations can be solved easily.
For an initial spin packet

M− :=

⎛⎜⎜⎜⎝
Mr0

x,−
Mr0

y,−
Mr0

z,−
Mr0

0,−

⎞⎟⎟⎟⎠
r=r0

(2.36)
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the final state is given by:

M+ =

⎛⎜⎜⎜⎜⎝
Mr0

x,−e−∆t/T2

Mr0
y,−e−∆t/T2

Mr0
0,− −

(
Mr0

0,− − Mr0
z,−

)
e−∆t/T1

Mr0
0,−

⎞⎟⎟⎟⎟⎠
r=r0

(2.37)

Frequency Domain
The relaxation effects are independent of position, they therefore translate directly to
frequency domain. For an initial configuration

M− :=

⎛⎜⎜⎜⎝
Mk0

v,−
Mk0

w,−
Mk0

s,−
Mk0

t,−

⎞⎟⎟⎟⎠
k=k0

(2.38)

the final state is given by:

M+ =

⎛⎜⎜⎜⎜⎝
Mk0

v,−e−∆t/T2

Mk0
w,−e−∆t/T2

Mk0
s,− −

(
Mk0

t,− − Mk0
s,−

)
e−∆t/T1

Mk0
t,−

⎞⎟⎟⎟⎟⎠
k=k0

(2.39)

2.3.2.3 Pulse effects
As described in Section 2.2.1.3, each pulse effect can be expressed by a matrix mul-
tiplication for each spin packet. For the sake of simplicity, pulses are assumed to be
non-selective in this section. This restriction will be lifted in Section 2.3.4.1. One detail
of the pulse description, which is of particular importance for this simulation method,
is that pulse effect operation occurs instantaneously and thus does not imply a time
step. This greatly simplifies the calculations.

Spatial Domain
Let P = (pij)i,j describe the corrected pulse effect. Then, for an initial magnetization

M− :=

⎛⎜⎜⎜⎝
Mr0

x,−
Mr0

y,−
Mr0

z,−
Mr0

0,−

⎞⎟⎟⎟⎠
r=r0

(2.40)

the magnetization after the pulse is given by:

M+ =

⎛⎜⎜⎜⎝P

⎛⎜⎜⎜⎝
Mr0

x,−
Mr0

y,−
Mr0

z,−
Mr0

0,−

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

r=r0

, P =

⎛⎜⎜⎝
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34
0 0 0 1

⎞⎟⎟⎠ (2.41)

Details and explanations can be found in the previous section (see Section 2.2.1).
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Frequency Domain

In frequency domain, there is a similar matrix that also expresses the pulse effect and
only mixes components with equal or inverse wavenumber. The calculations in this
sections are the main justification for choosing the Frequency domain generating set
in a redundant way, because it simplifies the calculations of pulse effects drastically.

The following approach will be used to find a matrix Q = (qij)i,j analog to P:

z−→ev ↦→ (q11z)−→ev + (q21z)−→ew + (q31z)−→es (I) (2.42)

z−→ew ↦→ (q12z)−→ev + (q22z)−→ew + (q32z)−→es (II)

z−→es ↦→ (q13z)−→ev + (q23z)−→ew + (q33z)−→es (III)

z−→et ↦→ (q14z)−→ev + (q24z)−→ew + (q34z)−→es + z−→et (IV)

The wavenumbers have been omitted for readability. The shorthand of this section is:

−→ev :=
−→
ek

v , −→ew :=
−→
ek

w , −→es :=
−→
ek

s , −→et :=
−→
ek

t . (2.43)

The most straightforward way to calculate these factors is to express each left hand
side using their spatial representation, apply P, and reorder the terms. It would also
be possible to use an alternative spatial representation and linearity arguments to
derive this matrix, but the required algebraic effort is similar and calculations are not
as tangible.

Investigation of 2.42(I):

Find q11, q21, q31, such that: z−→ev ↦→ (q11z)−→ev + (q21z)−→ew + (q31z)−→es

z−→ev (2.44)

=|z| cos(
−→
k · −→r + θ)−→ex + |z| sin(

−→
k · −→r + θ)−→ey

↦→|z| cos(
−→
k · −→r + θ)(p11

−→ex + p21
−→ey + p31

−→ez ) + |z| sin(
−→
k · −→r + θ)(p12

−→ex + p22
−→ey + p32

−→ez )

=: T + L

where T contains the transverse components and L contains the longitudinal compo-
nents.
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T = |z| cos(
−→
k · −→r + θ)(p11

−→ex + p21
−→ey ) + |z| sin(

−→
k · −→r + θ)(p12

−→ex + p22
−→ey ) (2.45)

= |z| cos(
−→
k · −→r + θ)(p11 + ip21)

−→e⊥ + |z| sin(
−→
k · −→r + θ)(p12 + ip22)

−→e⊥

= |z|1
2
(ei(

−→
k ·−→r +θ) + e−i(

−→
k ·−→r +θ))(p11 + ip21)

−→e⊥ + |z| 1
2i
(ei(

−→
k ·−→r +θ) − e−i(

−→
k ·−→r +θ))(p12 + ip22)

−→e⊥

=
1
2
|z|ei(

−→
k ·−→r +θ)(p11 + ip21 − ip12 + p22)

−→e⊥ +
1
2
|z|e−i(

−→
k ·−→r +θ)(p11 + ip21 + ip12 − p22)

−→e⊥

=
1
2

zei(
−→
k ·−→r )(p11 + ip21 − ip12 + p22)

−→e⊥ +
1
2

z̄e−i(
−→
k ·−→r )(p11 + ip21 + ip12 − p22)

−→e⊥

=
1
2

z(p11 + ip21 − ip12 + p22)
−→ev +

1
2

z(p11 − ip21 − ip12 − p22)
−→ew

L = |z| cos(
−→
k · −→r + θ)(p31

−→ez ) + |z| sin(
−→
k · −→r + θ)(p32

−→ez ) (2.46)

= |z|1
2
(ei(

−→
k ·−→r +θ) + e−i(

−→
k ·−→r +θ))p31

−→ez + |z| 1
2i
(ei(

−→
k ·−→r +θ) − e−i(

−→
k ·−→r +θ))p32

−→ez

= |z|(p31 − ip32)
1
2

ei(
−→
k ·−→r +θ)−→ez + |z|(p31 + ip32)

1
2

e−i(
−→
k ·−→r +θ)−→ez

=
1
2

z(p31 − ip32)ei(
−→
k ·−→r )−→ez +

1
2

z̄(p31 + ip32)e−i(
−→
k ·−→r )−→ez

= z(p31 − ip32)
−→es

Thus:

q11 =
1
2
(p11 + ip21 − ip12 + p22) (2.47)

q12 =
1
2
(p11 − ip21 − ip12 − p22)

q13 = p31 − ip32

Investigation of 2.42(II):

Find q12, q22, q32, such that: z−→ew ↦→ (q12z)−→ev + (q22z)−→ew + (q32z)−→es (mostly analog)

z−→ew (2.48)

=|z| cos(
−→
k · −→r + θ)−→ex − |z| sin(

−→
k · −→r + θ)−→ey

↦→|z| cos(
−→
k · −→r + θ)(p11

−→ex + p21
−→ey + p31

−→ez )− |z| sin(
−→
k · −→r + θ)(p12

−→ex + p22
−→ey + p32

−→ez )

=: T + L
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where T and L contain the transverse and longitudinal components respectively.

T = |z| cos(
−→
k · −→r + θ)(p11

−→ex + p21
−→ey )− |z| sin(

−→
k · −→r + θ)(p12

−→ex + p22
−→ey ) (2.49)

= |z| cos(
−→
k · −→r + θ)(p11 + ip21)

−→e⊥ − |z| sin(
−→
k · −→r + θ)(p12 + ip22)

−→e⊥

= |z|1
2
(ei(

−→
k ·−→r +θ) + e−i(

−→
k ·−→r +θ))(p11 + ip21)

−→e⊥ − |z| 1
2i
(ei(

−→
k ·−→r +θ) − e−i(

−→
k ·−→r +θ))(p12 + ip22)

−→e⊥

=
1
2
|z|ei(

−→
k ·−→r +θ)(p11 + ip21 + ip12 − p22)

−→e⊥ +
1
2
|z|e−i(

−→
k ·−→r +θ)(p11 + ip21 − ip12 + p22)

−→e⊥

=
1
2

zei(
−→
k ·−→r )(p11 + ip21 + ip12 − p22)

−→e⊥ +
1
2

z̄e−i(
−→
k ·−→r )(p11 + ip21 − ip12 + p22)

−→e⊥

=
1
2

z(p11 + ip21 + ip12 − p22)
−→ev +

1
2

z(p11 − ip21 + ip12 + p22)
−→ew

L = |z| cos(
−→
k · −→r + θ)(p31

−→ez )− |z| sin(
−→
k · −→r + θ)(p32

−→ez ) (2.50)

= |z|1
2
(ei(

−→
k ·−→r +θ) + e−i(

−→
k ·−→r +θ))p31

−→ez − |z| 1
2i
(ei(

−→
k ·−→r +θ) − e−i(

−→
k ·−→r +θ))p32

−→ez

= |z|1
2

ei(
−→
k ·−→r +θ)(p31 + ip32)

−→ez + |z|1
2

e−i(
−→
k ·−→r +θ)(p31 − ip32)

−→ez

=
1
2

z(p31 + ip32)ei(
−→
k ·−→r )−→ez +

1
2

z̄(p31 − ip32)e−i(
−→
k ·−→r )−→ez

= z(p31 + ip32)
−→es

Thus:

q21 =
1
2
(p11 + ip21 + ip12 − p22) (2.51)

q22 =
1
2
(p11 − ip21 + ip12 + p22)

q23 = p31 + ip32

Investigation of 2.42(III):

Find q13, q23, q33, such that: z−→es ↦→ (q13z)−→ev + (q23z)−→ew + (q33z)−→es

z−→es (2.52)

=|z| cos(
−→
k · −→r + θ)−→ez

↦→|z| cos(
−→
k · −→r + θ)(p13

−→ex + p23
−→ey + p33

−→ez )

=: T + L
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where T contains the transverse components and L contains the longitudinal compo-
nents.

T = |z|(p13
−→ex + p23

−→ey ) cos(
−→
k · −→r + θ) (2.53)

= |z|(p13 + ip23) cos(
−→
k · −→r + θ)−→e⊥

= |z|(p13 + ip23)
1
2
(ei(

−→
k ·−→r +θ) + e−i(

−→
k ·−→r +θ))−→e⊥

= |z|(p13 + ip23)
1
2

ei(
−→
k ·−→r +θ)−→e⊥ + |z|(p13 + ip23)

1
2

e−i(
−→
k ·−→r +θ)−→e⊥

= (p13 + ip23)z
1
2

ei(
−→
k ·−→r )−→e⊥ + (p13 + ip23)z̄

1
2

e−i(
−→
k ·−→r )−→e⊥

= (p13 + ip23)z
1
2
−→ev + (p13 − ip23)z

1
2
−→ew

L =|z|p33 cos(
−→
k · −→r + θ)−→ez (2.54)

=p33z−→es

Thus:

q31 =
1
2
(p13 + ip23) (2.55)

q32 =
1
2
(p13 − ip23)

q33 = p33

Investigation of 2.42(IV):

Find q14, q24, q34, such that: z−→et ↦→ (q14z)−→ev + (q24z)−→ew + (q34z)−→es + z−→et (mostly ana-
log)

z−→et (2.56)

=|z| cos(
−→
k · −→r + θ)−→e0

↦→|z| cos(
−→
k · −→r + θ)(p14

−→ex + p24
−→ey + p34

−→ez +−→e0 )

=: T + L
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where T contains the transverse components and L contains the longitudinal compo-
nents.

T = |z| cos(
−→
k · −→r + θ)(p14

−→ex + p24
−→ey ) (2.57)

= |z|(p14 + ip24) cos(
−→
k · −→r + θ)−→e⊥

= |z|(p14 + ip24)
1
2
(ei(

−→
k ·−→r +θ) + e−i(

−→
k ·−→r +θ))−→e⊥

= |z|(p14 + ip24)
1
2

ei(
−→
k ·−→r +θ)−→e⊥ + |z|(p14 + ip24)

1
2

e−i(
−→
k ·−→r +θ)−→e⊥

= (p14 + ip24)z
1
2

ei(
−→
k ·−→r )−→e⊥ + (p14 + ip24)z̄

1
2

e−i(
−→
k ·−→r )−→e⊥

= (p14 + ip24)z
1
2
−→ev + (p14 − ip24)z

1
2
−→ew

L =|z| cos(
−→
k · −→r + θ)(p34

−→ez +−→e0 ) (2.58)

=p34z−→es + z−→et

Thus:

q31 =
1
2
(p14 + ip24) (2.59)

q32 =
1
2
(p14 − ip24)

q43 = p34

q44 = 1

Assembly

Q =

⎛⎜⎜⎝
q11 q12 q13 q14

q21 p22 q23 q24

q31 q32 q33 q34

0 0 0 1

⎞⎟⎟⎠ (2.60)

=
1
2

⎛⎜⎜⎝
p11 + ip21 − ip12 + p22 p11 + ip21 + ip12 − p22 p13 + ip23 p14 + ip24

p11 − ip21 − ip12 − p22 p11 − ip21 + ip12 + p22 p13 − ip23 p14 − ip24

2(p31 − ip32) 2(p31 + ip32) 2p33 2p34

0 0 0 2

⎞⎟⎟⎠
Note that

q11 = q22, q21 = q12, q13 = q23, q31 = q32, q41 = q42, q14 = q24, (2.61)

but exploiting this property does not yield much for the applications of this work.
Now, for an initial state

M− :=

⎛⎜⎜⎜⎝
Mk0

v,−
Mk0

w,−
Mk0

s,−
Mk0

t,−

⎞⎟⎟⎟⎠
k=k0

(2.62)
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the state after the pulse is given by:

M+ =

⎛⎜⎜⎜⎝Q

⎛⎜⎜⎜⎝
Mk0

v,−
Mk0

w,−
Mk0

s,−
Mk0

t,−

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

k=k0

(2.63)

Algorithmically, it is reasonable to treat elements that are the result of an RF pulse
effect separately. This is due to algorithmic simplifications that cannot be pursued
otherwise, as will be explained later (see Section 2.3.3.1). The RF pulse effect then
becomes a split operation that generates three new elements for each previous one.

Example: Rotations
To further illustrate pulse effects within the k-space based simulation method, they
are exemplified for some basic rotations. The pulse effects Rx(α), Ry(α), Rz(α) that
correspond to a rotation of α around the three axes in spatial domain are:

Rx(α) =

⎛⎜⎜⎝
1 0 0 0
0 cos α − sin α 0
0 sin α cos α 0
0 0 0 1

⎞⎟⎟⎠ (2.64)

Ry(α) =

⎛⎜⎜⎝
cos α 0 sin α 0

0 1 0 0
− sin α 0 cos α 0

0 0 0 1

⎞⎟⎟⎠

Rz(α) =

⎛⎜⎜⎝
cos α − sin α 0 0
sin α cos α 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎠
Using the relationship of pulse effects in frequency and spatial domain (Equation 2.61),
they can be transformed into pulse effects that act on frequency basis vectors:

Q(Rx(α)) =

⎛⎜⎜⎝
cos2 α

2 sin2 α
2 −1

2 i sin α 0
sin2 α

2 cos2 α
2

1
2 i sin α 0

−i sin α +i sin α cos α 0
0 0 0 1

⎞⎟⎟⎠ (2.65)

Q(Ry(α)) =

⎛⎜⎜⎝
cos2 α

2 − sin2 α
2

1
2 sin α 0

− sin2 α
2 cos2 α

2
1
2 sin α 0

− sin α − sin α cos α 0
0 0 0 1

⎞⎟⎟⎠

Q(Rz(α)) =

⎛⎜⎜⎝
eiα 0 0 0
0 e−iα 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠
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These can be concatenated to yield a rotation around an arbitrary transverse axis,
which is particularly relevant to MRI because most idealized pulses are defined in
these terms:

Q(Rφ(θ)) = Q(Rz(φ)) Q(Rx(θ)) Q(Rz(−φ)) (2.66)

=

⎛⎜⎜⎜⎜⎝
cos2

(
θ
2

)
e2iφ sin2

(
θ
2

)
−1

2eiφi sin(θ) 0

e−2iφ sin2
(

θ
2

)
cos2

(
θ
2

)
1
2e−iφi sin(θ) 0

−e−iφi sin(θ) eiφi sin(θ) cos(θ) 0
0 0 0 1

⎞⎟⎟⎟⎟⎠
This is in agreement with the Echo Pathway Segment transition factors of the extended
phase graph algorithm [34], except for a different scaling factor of the longitudinal
components.

2.3.2.4 Signal Acquisition
Signal acquisition can be simulated quickly with the k-space formalism, in contrast to
the Direct Bloch simulation and Smart Bloch simulation approach.

Spatial Domain
In an MRI experiment, signal acquisition corresponds to measuring the total transverse
magnetization of the object. Physical coils have a spatial sensitivity that determines
how much of the signal at a specific location is acquired by the coil. However, by
compensating the density of the static object (see Section 4.1.1.1 for a discussion of non-
static objects) accordingly, an experiment using a physical coil can be reformulated as
an experiment using an ideal coil. It thus suffices to investigate ideal coils only, which
measure transverse magnetization independent of its location.

In other words: the total signal S at any point in time is given by:

S(t) = ∑
r0∈Ωr

Mr0
x (t) + iMr0

y (t) (2.67)

Even though the process of signal calculation is simple, it is the computationally most
costly part of the Smart Bloch simulation as mentioned before (see Section 2.2.2.1) and
illustrated later (see Section 3.5.3).

Frequency Domain
The sum of all voxels in Spatial Domain corresponds to evaluating the Fourier trans-
formed transverse magnetization distribution at zero:

S = M0
v(t) + M0

w(t) (2.68)

Depending on the implementation, the number of elements that have wavenumber
zero may be high. If the object has a non-discrete set of components that describe the
initial state and elements with equal wavenumbers are not merged, then the number
of elements with wavenumber zero grows exponentially with the number of RF pulses.
This will be explained in a later part of this section (see Section 2.3.3.1).
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2.3.2.5 Summary and terminology
In conclusion, the initial state of the system corresponds to the Fourier transformed
proton density. At each RF pulse, the intensities of basis elements of equal or inverse
wavenumber mix. If the initial state consists of only one basis element, then it is split
into three sub states at each pulse. In this work, every element that is created this way
is called Echo Pathway Segment. Tracing only one basis element is sufficient, which
will be explained in the next parts of this section (see Section 2.3.3.1).

The offset frequency and gradient pulses that are applied between the pulses shift
the transverse segments and do not affect the longitudinal segments. As the Echo
Pathway Segments reside as a specific type, they experience either T1 or T2 relaxation.
The graph that is generated this way is called the Echo Pathway Tree.

Any transverse Echo Pathway Segment that originated from a k = 0 basis element
and later assumes wavenumber zero, produces a so called echo at the corresponding
time point. If offset frequency induced phase accumulation is considered, assuming
wavenumber zero in that direction yields a spin echo. A wavenumber of zero in
gradient directions cause a so called gradient echo.

The components of type t are never generated nor destroyed; they stay constant
throughout the whole experiment. They restore the equilibrium configuration of the s
components as dictated by the T1 relaxation.

The following examples illustrate the k-space algorithm as it is defined thus far.

Three pulse experiment
A three pulse experiment (Figure 2.6) with different temporal RF pulse distances is
well suited to illustrate certain simulation effects and limits—which will themselves
play a very important role in more involved pulse sequences.

RF

P1 P2 P3

∆t = 20 ms ∆t = 30 ms

Figure 2.6: Three pulse experiment.

Three pulses that are arranged this way produce a total of six echoes. Echo behavior
and Echo Pathway Segment information are often illustrated through extended phase
graph diagrams [34]. The following diagram (Figure 2.7) is based on this idea.

The Echo Pathway Tree visualization displays the relationship of the Echo Pathway
Segments. The vertical axis corresponds to the wavenumber of the segments, as it
would develop in the presence of a constant gradient pulse. Alternatively, this axis can
be interpreted as the phase modulation in offset frequency direction. It is also possible
to express the phase modulation due to gradient pulses on the y axis. In that case,
pathway segments would not be displayed as lines but as curves that increase propor-
tionally to the 0th. A transverse segment that crosses the horizontal axis produces an
echo, as explained previously.
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2.3 k-space based simulation

Transverse segments are influenced by the change in wavenumber: the wavenumber
of v segments increases over time, the wavenumber of w segments decreases. The
longitudinal s components are not susceptible to these phase effects and thus stay
constant. This diagram assumes one initial Echo Pathway Segment, which is why only
one t segment is present. The wavenumber of t segments cannot change, therefore it
stays at kω = 0.

Along the time axis, segments split each time a pulse is applied. Phase and intensity
are not visible in this diagram.

t

kω

Pα1 Pα2 Pα3

∆t = 20 ms ∆t = 30 ms

RF t

v w s t

Figure 2.7: Pathway tree visualization of a three-pulse-sequence (see Figure 2.6). The echoes
can assume different phases and intensities—depending on the tissue and pulse
parameters. The vertical axis denotes the gain in wavenumber of the Echo Pathway
Segments, in the presence of a constant background gradient or offset frequency
effects. The Echo Pathway Segments split at each pulse and gain wavenumber
depending on their type. Echoes are produced when a transverse segment crosses
the horizontal axis. The intensity of the echoes or Echo Pathway Segments is not
illustrated in this diagram.

The Echo Pathway Segments that are generated possess different intensities depend-
ing on the tissue parameters and pulse settings. A pulse with a low flip angle favors
the segments that stay of the same type and otherwise mostly mix transverse with
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longitudinal components. A pulse with a high flip angle is mostly refocusing, meaning
that it transforms transverse segments into each other. It does not favor the mix of
transverse and longitudinal components.

There is however no defining property of excitation or refocusing pulses, as also
mentioned in Section 1.2.2.
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Figure 2.8: Echo intensities of a three-pulse-sequence (Figure 2.6), using 60◦ pulses, ordered
by their time of occurrence, depending on relaxation times (from a to e). The color
value represents the echo intensity based on an initial Echo Pathway Segment of
magnitude one.

The diagram in Figure 2.8 illustrates the echo intensities depending on the relaxation
time of the object. The first (a), second (b), and last (e) echoes are purely T2-dependent
because all of their pathway segments are transverse. The pathway of the third (c)
echo underwent T2 and T1 decay. Therefore its signal shrinks as T1 or T2 decrease.
The pathway of the fourth (d) echo experienced T1 recovery between the first two
pulses. For that reason, this echo increases in signal as T1 decreases. Using pulses with
different flip angles scales the echo intensities differently, but does not change the T1
and T2 dependence of the echoes.

The following diagram (Figure 2.9) shows the pathway tree of the three pulse exper-
iment when pulses are used that have emphasized excitation or refocusing behavior.

The echo formation is the same, but the intensities of the pathways depend on the
RF pulse properties. Some echoes are generated by pathways with low intensity and
are thereby suppressed.
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t

kω

Pα1 Pα2 Pα3

∆t = 20 ms ∆t = 30 ms

RF t

v w s t

t

kω

Pα1 Pα2 Pα3

∆t = 20 ms ∆t = 30 ms

RF t

v w s t

Figure 2.9: Pathway tree visualization of the three pulse sequence (Figure 2.6) with two dif-
ferent sets of pulses. The first variation contains one excitation pulse followed by
two refocusing pulses, the second variation contains two excitation pulses followed
by one refocusing pulse. Negligible pathways are drawn without color, negligible
echoes are not drawn.
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Example pathway emphasis

The pathway emphasis of the three pulse example (Figure 2.9) carries over to imaging
sequences. The following diagram (Figure 2.10) shows the simplified emphasis for a
TSE and an SPGR sequence (see Figures 1.8 and 1.5).

The turbo spin echo sequence refocuses the pathways after a single excitation pulse
multiple times, creating spin echoes in the middles between two refocusing pulses. All
other Echo Pathway Segments can be neglected and do not contribute to the useful
signal.

The gradient echo sequence does not foresee spin echoes. Consequently, the relevant
pathways of the pathway tree do not cross the horizontal axis. However, the spatial
encoding gradients are applied in a way that the main signal generating pathway seg-
ments, which are indicated by thick colored lines, cross the gradient wavenumber axes.
But in this illustration, only the wavenumber effects of a constant background gradient
are displayed. The thin colored lines correspond to segments that are spoiled and do
not contribute to the useful signal. This means that the wavenumbers corresponding to
the segments are big, and the tissue geometry can be expected to have low magnitude
at those wavenumbers.

In realistic applications, pulses cannot be perfect excitation or refocusing pulses.
Therefore, the pathways that are indicated by gray lines are also present and need to
be considered for the calculation of accurate signal.

2.3.3 Simplifications and optimizations

A few properties of the algorithm can be used to reduce the computational effort
without reducing the quality of the calculation.

2.3.3.1 Tracing of a single root Echo Pathway Segment

The Echo Pathway Segments at any time point originated from one of the root s
elements—it was split at each pulse and modulated its wavenumber between the
pulses, thereby following a specific Echo Pathway. If we trace the same pathway start-
ing at a different root element we will always stay parallel to the original pathway,
and moreover we will always apply the same linear operators. Therefore it is sufficient
to trace one representative root element and apply the corresponding factors to all
required parallel elements as needed. If the signal is of interest for the simulation
experiment, the only important echo elements that are important are those who pass
through k = 0 at the moment of signal acquisition. Through the parallelism, the re-
quired root pathway intensity contribution that was induced by the phantom shape
can easily be found.
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Figure 2.10: Echo emphasis of a TSE and an SPGR sequence.
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2.3.3.2 Merging Echo Pathway Segments
Pulse sequences often follow a repeating pulse succession with equal delays between
the pulses. Consequently, it is a likely scenario that multiple pathways happen to fall
on top of each other, meaning they possess the same wavenumber, are of the same
echo type and originate from the same root element. In those cases, Echo Pathway
Segments can be merged.

Pathway merging is not necessary and even produces a significant inconvenience:
Without merging, each pathway carries a unique history with unique time spans spent
as either segment type. The relaxation effects then do not need to be applied in the
Echo Pathway Tree generating process, and any combination of relaxation properties
can be simulated without regenerating the tree.

The times spent as either pathway type are mostly different and the resulting func-
tion of T1 and T2 cannot be expressed with fewer parameters than the separate path-
ways would need.

Applying the relaxation effects before each pulse is valid since the decay is memo-
ryless, and each pathway segment behaves the same way independent of its previous
pathway, thus enabling the merging process. The advantage of this strategy is, that
instead of having to trace an exponentially growing number of pathways, the number
of pathways might only grow linearly. Because of this decisive advantage, pathway
merging is used in this work whenever possible.

2.3.3.3 Discarding Echo Pathway Segment
Not all pathways are equally important. Estimating the importance of each pathway
and ignoring certain ones can greatly improve performance. Pathways that do not
intermix decay exponentially with at least T1, at best T2. If no merging is pursued,
then the pathway intensity will be etT1/T1+tT2/T2, where tTi are the times spent as the
respective segment relaxation type.

In addition to this exponentially decaying segment amplitude, pathways may carry
a high wavenumber—meaning that the corresponding signal that the coil measures
originates from a position in k-space which is far away from the center of k-space.
k-space falls off rather quickly, e.g. with O(1/|k|) (see Section 1.3.2.1) for a bounded
variation object geometry.

Yet, segments with a high wavenumber can be refocused if the sequence is structured
that way, and their contribution to the main segments can be of importance.

When pathway merging is performed and the merging relationship is supposed to
be applied to different tissue types, then the argument for discarding a pathway needs
to be reasonable for the relevant range of tissue types while also considering phan-
tom properties. An importance score that ranks the segments should be a combined
weighting of the pathways wavenumber and echo intensities for different relevant
tissue types.

2.3.3.4 Templatization
Another effort reduction strategy in pathway merging is that the merging relationship
is independent of T1 and T2. If a pathway tree needs to be regenerated with different
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tissue parameters, then the candidates that are suitable for merging do not need to
be determined again but can be reused, which basically saves a considerable number
of sort operations of all pathways for the discarding process. A useful side effect of
the templatization of pathway trees is that echo intensities can be directly compared,
which is otherwise complicated if the merging process is performed in a potentially
very different way for each tissue parameter set.

2.3.4 Specifics

The following paragraphs briefly address further details of the k-space approach.

2.3.4.1 Arbitrary pulses

Selective pulses are not easily incorporated into the k-space formalism. They can be
realized by separating space into compartments with constant RF pulse influence, e.g.
sub-slices for a slice-selective pulse. The alternative to that approach would be to do all
pulse calculation in the spatial domain and use a Fourier transform at each RF pulse
to perform the pulse effect calculation—which would introduce a high computational
burden, has poor error behavior and introduces new systematic inaccuracies.

The spatial dimensions that suffer from this inconsistent pulse effect should be
sampled with a density that is applicable to the problem at hand. In case of a slice-
selective pulse, the slice profile needs to be resolved with the same accuracy as would
be required by the direct Bloch simulation method. Each sub-slice then possesses its
own pulse effect that is global for the whole sub-slice.

As soon as the pulses become selective in multiple dimensions, multidimensional
sampling is required. In the extreme case of a 4D selective pulse, each voxel has it’s
own sub-segment and the simulation quality degenerates. In this case, the Smart Bloch
solver yields equivalent results.

2.3.4.2 T2’

The T2’ effect is based on the offset frequency distribution of the object. This distri-
bution can be treated as a spatial direction along which a constant gradient pulse is
active. This is because the phase evolution in offset frequency is in agreement with the
formula for the gradient evolution (Equation 2.9).

If the frequency of a specific tissue follows the commonly assumed Cauchy-Lorenz
distribution, then the corresponding T2’ decay contribution can be applied analytically
at each signal acquisition time.

In theory, each offset frequency is linked to a different pulse effect—suggesting a
separation into sub-classes along the frequency direction. In practice however, this
effect plays a very minor role for commonly employed RF pulses and tissues that are
of interest to clinical MRI. This is illustrated in the results chapter (Figure 3.4).
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2.3.4.3 Inhomogeneous tissue properties
The relaxation effects depend on T1 and T2, which are in turn location-dependent. A
location-dependent effect cannot be realized easily in the frequency approach because
it generally requires a convolution which makes the approach infeasible.

Since the spin packets do not interact and contribute to the total signal indepen-
dently, the simulation phantom can be separated into components of different tissue
properties that are then treated independently. This is very compatible with phan-
toms that consist of a low number of different tissues with constant tissue properties
each. An experiment that introduces a phantom with voxel-unique tissue properties is
numerically inconvenient to handle.

The best candidate for a phantom that undergoes a k-space simulation approach is
an analytical one consisting of a low number of sub-phantoms with different tissue
properties each. Each sub-phantom should be efficient to evaluate at any point k-space,
which may be two or three-dimensional depending on the pulses used.

If the phantom originates from a voxel image, but still has discrete tissue types, then
it can still be used but needs to be interpolated because it will likely not be evaluated
at the exact corresponding k-space position. If a linear interpolation can be assumed in
spatial domain, then the operation that needs to be performed in frequency space is a
sinc interpolation, or a convolution with the Kaiser-Bessel function for an approximate
solution [20].

The impact of the object description will be discussed for all simulation methods in
Section 4.1.4.

2.3.4.4 Relation to the classic k-space formalism and extended phase
graph approaches

The main ideas of this simulation method are related to the extended phase graph
algorithm. The recent review paper by Weigel et al. [39] provides a broad overview of
state-of-the-art phase graph approaches and related methods. The following compar-
isons are subject to the papers and algorithms mentioned therein.

The first main advantage of the method in this work is the employment of pulse
effects that are the result of Bloch simulations of the individual pulses for each isochro-
mat class. Alternative implementations exclusively use approximations in the form of
instantaneous rotations. This difference does not change the result drastically when
applied to classical EPG problems, but it changes the context in which the algorithm
is reasonable to pursue and allows it to answer more general questions. The approach
of this section aims at exactness that is algorithmically equal or superior to Bloch
equation integration. This unique focus has led to further algorithmical implications
that are not present in existing EPG approaches.

Common approaches do not attempt to be applicable to arbitrary pulse sequences
due to the exponential growth of states that need to be traced. As a result, strong
timing requirements are hardcoded and the development is shifted towards investi-
gating the result for sequences that are especially compatible with the EPG approach.
The methods of this work are designed to be generally applicable. This motivated
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the development of Echo Pathway Segment discarding functionality and more concise
segment merging formulations, which are not required for classical EPG problems and
not part of common EPG implementations.

Calculating the signal of a shaped object for an arbitrary echo formation is not a
standard EPG task. Most of the established codebase is either used exclusively to cal-
culate the echo intensities, or rarely [28] [34] used to apply sampling schemes of very
simple sequences with fixed and simplified echo formations [30]. All approaches even
restrict the signal calculation to the main segment and ignore the secondary effects.
This work combines both sides, and introduces means to perform the calculations in
a way that is computationally manageable and produces accurate results—through
pathway tree templatization, segment importance measure and the exactness of the
segment calculation algorithm.

The pathway tree templatization also emphasizes the decoupling of tissue geometry
and tissue-dependent echo features which ultimately spawned the Sequence Response
Kernel simulation method that is introduced in the next section. But even the tem-
platization in this method defines a two-step process for signal calculation that is
completely missing in existing implementations. This approach is designed to treat
heterogeneous tissues and reuse as many calculations as possible if new geometries
or even new tissue types are introduced.

In conclusion, this approach is an extension of classical EPG approaches with a
focus on accuracy and applicablity to a larger set of problems. The differences start at
the fundamental state space definition to permit exact solutions and also introduces
a more general workflow to allow for manageable calculations for arbitrary pulse
sequences. Established extended phase graph algorithms are seen as a fundamentally
different tool that is used to provide answers to a distinct set of problems; the k-space
based simulation method of this work is a natural improvement of the Direct Bloch
simulation or Smart Bloch simulation.
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2.3.5 Full simulation workflow

The full workflow consists of three steps: The pulse precalculation step (Figure 2.3),
the template generation (Figure 2.11), and the signal calculation (Figure 2.12). The first
step is shared with the Smart Bloch simulation, and is thus omitted here.

For each pulse instance

Advance and split
pathways

Merge pathways

Truncate pathways

Calculate pulse
instances

Choose
representative

tissue parameters

Calculate gradient
moments

Sequence
description

Phantom
description

Pathway tree
template

Precalculated
pulse effects

Figure 2.11: k-space based simulation workflow—Echo Pathway Tree template generation

The goal of the first step unique to the k-space based simulation (Figure 2.11) is to
generate an Echo Pathway Tree template. The state of the system is traced in terms
of Echo Pathway Segments. These segments are qualitatively equal for any tissue,
but weighted differently according to the tissue parameters. This step prepares the
data structures in a way that allows fast echo calculation for any tissue, based on the
qualitative template.

One or more representative tissue parameters need to be chosen for the template
generation process (see Section 2.3.3.4). These should be close to reasonable tissue
parameters because segments that are irrelevant and thus discarded in the template
will also be ignored for the signal calculation in the next step.

The pathway tree is initialized with one segment that is then advanced, split, merged,
and truncated at each RF pulse instance. The advancing and splitting is done according
to Section 2.3.2.5 and relies on the gradient moments between the RF pulses and the
precalculated pulse effects. Merging and splitting needs to be performed as explained
in Section 2.3.3.
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The template holds the information about merging and trunctation. These two
processes are computationally exhaustive and do not need to be redone for each tissue.
All that remains for calculating the correct Echo Pathway Segment magnitudes is to
follow the template with different tissue parameters.

For each tissue

For each segment and sample
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template

Phantom
description

Sequence
description

Complete signal

Figure 2.12: k-space based simulation workflow—Signal calculation

The actual tissue parameters and tissue geometries are not introduced to the simula-
tion until the workflow step (Figure 2.12). The pathway tree of each individual tissue
class is required. This can be calculated by following the template.

At each acquisition, the contribution of each relevant Echo Pathway Segment is
added to the signal. This requires an evaluation of the tissue’s Fourier transformed
spin density at a position dictated by the Echo Pathway Segment properties.

At the end of the process, the signals of the individual tissue classes are accumulated
to produce the total signal.
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2.4 Sequence Response Kernel simulation

The approach presented in this section further processes intermediate results from
the k-space based simulation. Under assumptions mainly aimed at the reconstruction
process, the simulation can be separated into geometry dependent and tissue type
dependent contributions, thereby being pushed into image space.

Investigating the simulation in image space has several theoretical and practical
advantages. Firstly, image space is more intuitive and closer related to the applications
of MRI than k-space or signal itself. It is more relevant to identify and quantify artifacts
in image space, since that is where artifacts are most relevant. Features such as blurring
or ringing are easily visible in image space, but are rather concealed and interwoven
effects in signal space.

Secondly, since the effects of geometry and signal are separated until after they have
reached image space, they can be exploited by image processing algorithms. This is
further elaborated in the next section (see Section 2.5).

Notably, no simplifications are assumed, thus full numerical accuracy can still be
maintained with this approach—even though it is reasonable to sacrifice some of the
accuracy for speed, which is directly controllable in this approach.

2.4.1 Concept and theory

The Echo Pathway Tree provides a different perspective on MRI signal. By introducing
the reconstruction process it becomes apparent that the image intensity of a physical
voxel can be expressed as a convolution of several sparse point spread functions.

2.4.1.1 Prerequisites
The first helpful property of MR imaging is linearity. The signals of two sub-objects
do not directly influence each other. Consequently, simulating each object individually
and accumulating all signals at the end is a valid approach.

If the reconstruction process exclusively consists of linear operators, then these
objects can also be handled individually in image space—which is a desirable property
of an imaging technique because the presence of one object should not influence any
other object.

The most common operators used for image reconstruction are linear, e.g. Fourier
transform, sampling, windowing. Counterexamples are baseline fitting, field of view
restriction or calculating the absolute value of a complex-valued image. The latter is
commonly used, but fortunately mostly at the end of the reconstruction pipeline and
not computationally exhaustive—therefore using this as a post-processing step after
the Sequence Response Kernel techniques is unproblematic.

The following parts of this section will assume that the reconstruction process
consists of merely a Fourier transform. Further linear operators can be introduced
into this concept, but as soon as the multiplication in signal space does not have an
easily evaluable counterpart in the corresponding intermediate reconstruction space,
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the separation of the various effects that influence signal intensity no longer holds,
degenerating the Sequence Response Kernel approach and making it computationally
infeasible.

2.4.1.2 Image function formulation
The signal of the object when exposed to the MRI sequence can be separated into a
sum of the signals of each voxel.

S(t) = ∑
r0∈Ωr

Sr0(t) (2.69)

The total signal of each voxel can itself be separated into the signal that is introduced
from the individual Echo Pathway Segments.

Sr0(t) = ∑
p∈Segments

cp(t)ρ̃r0

(
∆kp(t)

)
(2.70)

Where cp(t) is the intensity and phase of the segment, ∆kp(t) is the position in k-space
of the segment and ρ̃r0 is the Fourier transform of the voxel’s geometry, located at r0.

When introducing the 2D discrete Fourier transform, each point of interest in k-
space used for the reconstruction is acquired at one point in time, thus a change of
variables t = t(kx, ky) is possible. The image intensity equation then reads:

I(x, y) = F2D

(
∑

p∈Segment Groups
cp(kx, ky)ρ̃r0

(
∆kp(kx, ky)

))
(x, y) (2.71)

And by using common properties of the Fourier transform:

I(x, y) = ∑
p∈Segment Groups

F2D

(
cp(kx, ky)

)
∗ F2D

(
ρ̃r0(∆kp(kx, ky))

)
(x, y) (2.72)

Furthermore, in case of rectilinear grid voxel correspondence, the basis functions of
the physical voxels are the equal except for discrete shifts—which can be exploited
as well. The Fourier transform of a shifted voxel ρ̃r0(k) in terms of an unshifted voxel
with the same geometry ρ̃0(k) is: ρ̃r0(k) = ρ̃0(k) · e−ir0·k. And inserting this relation
into the image equation yields:

T := F2D

(
cp(kx, ky)

)
(2.73)

G := F2D

(
ρ̃r0(∆kp(kx, ky))

)
(2.74)

S := F2D

(
e−ir0·∆kp(kx,ky)

)
(2.75)

I(x, y) = ∑
p∈Segment Groups

(
T ∗ G ∗ S

)
(x, y) (2.76)

Even though convolution is usually a computationally exhaustive process if done
directly, the nature of well-behaved MRI sequences produces sparse kernels, making
direct convolution a reasonable approach:
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T - Tissue kernel
The first kernel accounts for the Echo Pathway Segment magnitude and phase. From
a sequence development point of view, it is most desirable to have constant Echo
Pathway Segment intensities because non-constant segment intensities amplify or
attenuate certain parts of k-space thereby creating artifacts.

When investigating sequences that cause the magnetization to reach a steady state, it
might be possible that this steady state is not reached while acquiring the first lines, in
case of rectilinear sampling. This will emphasize certain frequencies in phase encoding
direction and is also an undesired artifact in phase encoding direction.

If the time to acquire one line is high in comparison with T2, the signal acquired
at the end of the line will be less than the signal acquired at the beginning of the
line—this will cause blurring in frequency encoding direction.

Both effects cannot be easily compensated during the reconstruction process because
they would require a deconvolution based on known tissue parameters. Therefore,
most sequences are designed to yield homogeneous signal and thus sparse tissue
kernels.

G - Geometry kernel
The second kernel accounts for the voxel geometry. If chosen correctly, one voxel in
image space corresponds to one voxel in physical domain.

Because of the nature of sampling a continuous function and applying the Fourier
transform, slight artifacts might be introduced, mainly because the object is not repli-
cated beyond the field of view (see Section 1.3.2.1). But beyond that, the geometry
kernel should have only one nonzero entry.

Alterations from the correct sampling required for the Fourier transform will also
cause effects in this kernel.

S - Shift kernel
The third kernel accounts for the shift of a voxel. Any sequence imperfections related to
rectilinear resolution will be reflected in this kernel. Those are not present in properly
developed sequences, which will yield trivial shift kernels.

2.4.1.3 Kernel Illustration
The following figures provide basic examples for kernels and the image assembly
process.

The images in Figure 2.13 illustrate basic properties of exemplary tissue and geome-
try kernels. The tissue kernel experiences a blurring in horizontal direction due to the
T2 decay that occurs during a readout. The vertical direction is blurred because the
steady state is reached slowly over time.

The geometry kernel does not distinguish between the directions because the reso-
lutions and discretization artifacts are equal in both directions.

The intensity distribution plot shows that the kernels can be heavily truncated. A
truncation limit of ten suffices to include all entries with a value of at least 1% of the
maximum kernel value.
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Figure 2.13: Example tissue and geometry kernels and their intensity distribution. The cor-
responding sequence is defined in Section 3.4.1. The tissue parameters are
T1 = 388 ms, T2 = 155 ms. The intensity distribution diagram shows the ordered
magnitudes of the 1000 biggest kernel image values.

Simple Accurate k-space

Geometry kernel Accurate geometry Tissue kernel Accurate tissue

Figure 2.14: Illustration of kernels and assembled images for a SPGR sequence (Figure 1.5).
The relevant sequence parameters are: TR = 50 ms, TE = 8 ms, flip angle = 10◦,
resolution = 64 × 64. The simulated relaxation times of the phantom are:
T1 = T2 = 1.3 s.
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The illustrations in Figure 2.14 depict the basic process of image simulation. Trun-
cating both kernels to size one yields a rough picture (Simple). Not truncating any
kernels yields an image that shows the imperfections of the sequence (Accurate). The
k-space simulation result (k-space) cannot be expected to produce the same results
because of the discretization assumptions that are made in the Sequence Response
Kernel approach.

Truncating the tissue kernel heavily but using the full geometry kernel produces an
image that illustrates the errors that are introduced by incorrectly expecting the object
to repeat itself periodically for each field of view step (Accurate geometry).

Truncating the geometry kernel heavily but keeping full tissue kernels produces an
image that isolatedly displays the influence of signal behavior imperfections (Accurate
tissue).

2.4.2 Algorithmic details

Some details of the approach will be elaborated in the following paragraphs.

2.4.2.1 Echo Pathway Segment grouping
The algorithm requires a correspondence of nominal k-position and time. Since k-
space was likely acquired using multiple RF pulses, the Echo Pathway Segments have
to be grouped together by identifying segments that behave similarly for the whole
sequence.

In order to use the Sequence Response Kernel approach efficiently, it is necessary
to have tissue kernels that originate from segments with actually similar or at least
comparable amplitudes. Thus it is very counterproductive if significantly different
segments are incorporated into one tissue kernel.

Furthermore, the sparsity of the geometry kernel breaks down if the object’s Fourier
transform is not sampled adequately, e.g. due to a collection of Echo Pathway Seg-
ments that are not all in agreement with the sampling intended and assumed by the
reconstruction process. The effects on the shift kernel are similar to those on the
geometry kernel.

The grouping is usually not complicated but needs to be adjusted to suit the se-
quence. For example, for a sequence with rectilinear sampling and lines acquired in a
repeating fashion, segments can be grouped according to their wavenumber before the
phase encoding step. For radial sampling with radial spoiling, this approach might
not be viable and grouping via pathway amplitudes should be considered instead.

Theoretically, if all calculations are performed with perfect accuracy, the grouping
has no influence on the final image because of the linearity of the Fourier transform—
therefore any grouping can be justified. However, as stated before, some groups might
perform poorly in practice.

2.4.2.2 Tissue parameter influence
The tissue kernel is the only kernel that depends on the Echo Pathway Segment
intensity. The parameters required to fully define the tissue in the Response Kernel
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approach are the same as the segment’s intensities, and the dynamics are similarly
complex. However it is conceptionally easier to interpolate convolution kernels in
image space than interpolating Echo Pathway trees and therefore easier to handle for
image calculation.

2.4.2.3 Shift basis
In order to fully describe the physical object, the algorithm requires shifts to any
position in the image. However shifts can be concatenated; therefore it is more practical
to work with a reasonable basis of shifts that can be combined to produce an arbitrary
shift in few steps. A reasonable approach is to use a binary basis in the two image
directions, reducing the effort from x · y to log2(x · y) required kernels.

2.4.2.4 Non-ideal coils
The approach can easily be extended to allow for coils with spatial sensitivity. The
position of the physical voxel induces a weighting that needs to be respected before
adding the basis element contribution to the coil’s image. Imperfect transmissivity can
be treated as a tissue parameter.

Further system imperfections and dynamic object properties will be discussed in
Section 4.1.1.1.
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2.4.3 Full simulation workflow

The full simulation workflow of the Sequence Response Kernel approach requires six
steps. The first two have already been introduced in the previous sections, namely
the pulse precalculation and Echo Pathway Tree template generation. The next three
steps do not have a specific order and are responsible for the calculation of the tis-
sue (Figure 2.15), geometry and shift kernels (Figure 2.16) respectively. The last step
(Figure 2.17) assembles these kernels to produce the final image.
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Figure 2.15: Sequence Response Kernel simulation workflow—Tissue kernel calculation

The tissue kernel generation step (Figure 2.15) resembles the signal calculation step
of the k-space simulation workflow except for a few major differences:

1. The phantom that is used for this experiment is not yet known. In place of the
known tisssue classes, a tissue basis needs to be chosen.

2. The signal of the Echo Pathway Segments is calculated similar to the k-space
workflow step, but missing the tissue geometry influence.
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3. The signal of each individual tissue is sampled according to the reconstruction
description. This needs to be done per segment group.

4. Each complete signal set is reconstructed to form the raw tissue kernels. These
tissue kernels may be truncated to increase performance at the cost of accuracy.
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Figure 2.16: Sequence Response Kernel simulation workflow—Geometry and Shift kernel cal-
culation

The structure of the geometry and shift kernel calculation step (Figure 2.16) is similar
to the previous one. But instead of tissue parameters, the signal part calculation is
performed for each geometry and tissue basis element. This uses the template and the
k-offsets of each acquisition time, which were not directly needed for the tissue kernel.

Each geometry or shift contribution of the segment is sampled per segment group,
according to the reconstruction description. The reconstruction then produces the raw
geometry or kernels, which can then be truncated and stored.
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Figure 2.17: Sequence Response Kernel simulation workflow—Image calculation

The final step of the Sequence Response Kernel full simulation workflow is the
image assembly (Figure 2.17). For this step, the phantom needs to be decomposed
with respect to the chosen geometry and shift basis.

Each element of the decomposed phantom defines its own tissue, geometry and
shift kernels that need to be convolved to yield its image contribution. Those kernels
were generated in the previous steps and need to be retrieved.

These image contributions can then be accumulated to result in the complete simu-
lated image.

78



2.5 Derived Algorithms

Derived Algorithms 2.5
The Sequence Response Kernel approach enables a different perspective on the way
simulation can be used in research, education and clinical applications.

The results and direct discussion of the methods that are presented here will be
exhibited in the following chapters (see Section 3.6, 4.1.1.5).

This section showcases the potential of the approach with a focus on the algorithm
itself, rather than the results that it provides in this exemplary instance.

2.5.1 Sequence feature extraction

The Sequence Response Kernels contain a lot of information about the sequence. How-
ever, the important information of each kernel is hidden inside an image with the full
resolution of the MRI sequence. In order to appropriately investigate these kernels, the
properties of each kernel need to be expressed in a more intuitive way, which greatly
benefits from knowledge about the usual properties of these kernels.

Each sequence feature extraction process is essentially a mapping from the high-
dimensional space of all tissue and sequence parameters to a one-dimensional space
that has tangible meaning in image space.

The reduction of this mapping to a lower-dimensional domain, for instance contain-
ing relaxation time, echo time, or flip angle can then capture the sequence performance
with respect to that domain in a way that is very approachable.

2.5.1.1 Formal definition
Let S be the space of sequence and reconstruction parameters, let D(s), s ∈ S be the
sequence and reconstruction information (see Section 1.1.2.1), and let T ,G,S be the
tissue basis (set of tissue parameters), geometry basis (set of object geometries, i.e. the
set containing only one voxel geometry) and shift basis (set of shifts, i.e. powers of
two of voxel extents in each direction) respectively.

A function

f : S × B → F (2.77)
B ∈ {T ,G,S}
F ∈ {C, R}

is called feature extractor. In other words, a feature extractor maps a combination
of sequence and tissue/geometry/shift parameters to a one-dimensional property.
Examples of such properties are presented in the following paragraphs.

2.5.1.2 Tissue kernel features
The tissue kernel is the most important, most computationally exhaustive and most
interesting Sequence Response Kernel.
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Contrast information / signal

The most relevant part about the tissue kernel is the main signal response of a certain
parameter combination. The contrast information is the image intensity or brightness
that the sequence translates the physical parameters to. It can be extracted by taking
the value of the tissue kernel entries.

When the tissue appears at the position of the image that corresponds to the actual
physical position, then this value will be that element of the kernel that does not imply
a shift. This is—depending on the implementation of the Fourier transform—either
the first or the center sample.

Shift

For tissue parameter sets containing offset frequency, a shift (chemical shift) will occur
in frequency encoding direction. The best way to extract this shift is to compute the
intensity-weighted average position of all kernel entries.

The shift parameter is prone to Nyquist errors because only integer-valued voxel
shifts can be sharply identified in the tissue kernel. Remedies for this problem will be
discussed later (see Section 4.1.1.4).

No shift One pixel shift 1.5 pixel shift

No shift Extreme shift

Figure 2.18: Shift kernels of an EPI sequence. The first three images are zoomed to illustrate
the effects more clearly. The first tissue is on resonance. The second one possesses
an offset frequency that corresponds to one pixel—the kernel is practically the
same, shifted by one pixel. The third tissue has an offset frequency that induces a
1.5-pixel shift—the image experiences high blurring due to the discretization error.
The first image of the second row is the non-zoomed version of the first image,
and the last tissue possesses a very high offset frequency—the induced shift is
high enough to also affect the phase encoding direction.
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Blurring
The T2-decay always induces a signal attenuation at the end of an acquisition period.
This corresponds to a Lorenz kernel in image space, which is wide-spread if the decay
is prominent, or sharp if the T2-decay is mostly negligible.

In case of single echo acquisition, this Lorenz-curve will be oriented in frequency
encoding direction; in case of echo train acquisition, such as EPI, blurring occurs in two
directions and for 3D acquisitions, all three spatial dimensions experience blurring.

Short
relaxation times

Medium
relaxation times

Long
relaxation times

Figure 2.19: The blurring of different tissues for an EPI sequence. High relaxation times induce
a negligible blurring. Medium relaxation times induce some blurring and also
decrease the highest signal magnitude. Low relaxation times further amplify the
effect.

Entropy
The signal development does not usually follow a specific pattern in non-frequency
direction. There is no vastly applicable model to describe this process and likewise,
this effect can have numerous manifestations in image space.

Calculating the entropy of a kernel provides a measure for the amount of signal that
a voxel produces at clearly visible positions, allowing further investigations of artifacts
that are not directly related to decay.

Luckily, the effect of reaching a steady state for a sequence of RF pulses is inde-
pendent of the decay that occurs during the acquisition of one line. Therefore, the
dimensions of a 2D image can be investigated independently.

Undesired signal
The relation of contrast information magnitude to the cumulated magnitudes of all
other kernel entries is a measure for the undesired signal. This measure is a particularly
valuable result of the Sequence Response Kernel approach, because it can not be
approached easily with a model approach.

Most prominent values
Reducing a kernel to a fixed number of most important components and omitting
the rest is the standard and most versatile approach to deal with kernels, and allows
for finely tunable accuracy of image computation. It does not directly yield easily
understandable parameters that allow for classification of the sequence.
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Image gradient

If the tissue basis parameter ranges are chosen according to a regular grid, then the
image gradient operator applied after the contrast information function is defined and
yields a derived extractor. It can be understood as a local distinguishability map which
is particularly relevant when postprocessing algorithms need to be considered for the
given sequence.

2.5.1.3 Geometry and shift kernel features

The geometry and shift kernels are mostly related to sampling of the different Echo
Pathways. They can usually be replaced by ideal kernels because they hold few infor-
mation about the sequence. But there can be exceptions:

Incomplete Pathway groups

Some echoes are not present for all acquired lines. Such incomplete groups will induce
artifacts that might need further investigation. They can be extracted by quantifying
the ratio of intensity values of the strongest kernel value and all the other values
combined. This incomplete Pathway group problem is usually a minor issue since
they are commonly linked to minor echoes with low intensities.

Intensity loss

If the resolution used for the geometry kernel is not completely compatible with
sequence or reconstruction, artifacts will be apparent for the different shifts—related
to Nyquist sampling mismatch characteristics. An inconsistent phase for the highest
calculated shift is the best indicator for such problems in imaging plane directions.
The consistency of shift and geometry kernels can easily be confirmed by checking
against the expected result. The standard deviation of the kernels is a good measure for
resolution inconsistency of sequence and reconstruction or an incomplete compatibility
of the geometry basis.

2.5.2 Sequence optimization

The sequence characteristics of the previous paragraphs can be used as an input to
objective functions that reflect the desired behavior of a sequence. In that case, the
feature kernel extractors are restricted to a subspace of sequence parameters and fixed
tissue parameters that are to be optimized. Since the kernels are supposedly precal-
culated, the objective function assembly and the following optimization is detached
from the computationally exhaustive simulation steps, and can thus be performed or
tweaked even in the presence of limited resources.

2.5.2.1 Examples

Maximization of contrast

If the task is to fine-tune a sequence to provide optimal contrast of two tissues with
known physical properties, then the contrast feature of the tissue response kernels
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can be used almost directly to define the objective function. This objective function is
given by:

fcontrast(x) = − |c1(x)− c2(x)| , (2.78)

where c1 and c2 are the contrast maps of the individual tissues and x is an element of
the set of relevant sequence parameters.

Maximization of contrast-to-signal ratio
For pratical purposes, it may be more interesting to investigate the contrast-to-signal
ratio.

fcontrast to signal(x) = − |c1(x)− c2(x)|
|c1(x)|+ |c2(x)| , (2.79)

This way, the relative distinguishability is maximized. A tissue combination that pro-
duces low signal with a high relative difference is easier to distinguish in practice than
a tissue combination that produces high signals with low relative difference.

Minimization of undesired signal
The undesired signal that is caused by the tissue properties corresponds to the sum
of all kernel’s absolute values except for the center position. This feature cannot be
extracted through conventional simulation methods (see Section 2.5.1.2).

fundesired signal(x) = ∑ ωiui(x), (2.80)

where ui are the undesired signals of the tissues of interest, and ωi are weighting
factors.

Simultaneous optimization of run time and contrast
The available kernels can be combined with other measures of sequence quality. Run
time is a critical factor for the sequence, and parameters that are key to the run time
also often influence contrast. The desired trade-off can be controlled through the
weighting factors of the objective function and the optimization is still fast. In this case
the objective function is:

fcontrast run time(x) = − |c1(x)− c2(x)|+ g(t(x)), (2.81)

Where t is the runtime and g is a function that applies a weighting.

2.5.3 Model-free parameter mapping
Quantitative MRI is a very active research topic, mainly due to the multitude of
available sequences and the lack of a tangible ground truth. It is common practice to
choose one sequence, vary one or very few of the sequence parameters and then fit
the voxel-wise signal to a simplified signal model.

A set of images acquired with sequences that do not have a common signal model
cannot be readily used to extract information simultaneously, and since the different
sequence types are likely to be used for the fitting of different parameters, some images
may be mostly redundant and scan time could have been saved. The Sequence Re-
sponse Kernels can assume the role of the common signal model and enable parameter
mapping without the need for analytical signal-models.
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2.5.3.1 Formal description
Let I be a K-valued, N−dimensional image space, let I1, . . . , In ∈ I be a set of mea-
sured images with known sequence and reconstruction descriptions D1, . . . , Dn, and
D = {D1, . . . , Dn}. Let P ′N ⊂ PN be a connected subspace of the space of vox-
elized objects represented by voxel-wise object model parameters. Furthermore, let
Sim : PN ×D → I be the simulation.

Objective:
Find an image of parameter vectors P ∈ P ′N such that the cumulated residual r(P) of
the simulated images Sim (P, D1) , . . . , Sim (P, Dn) is minimized:

r(P) =
n

∑
i=1

N

∑
j=1

|Ii(j)− Sim(P, Di)(j)| , (2.82)

find: Popt := arg min
P∈P ′N

r(P)

2.5.3.2 Method
The starting point of the algorithm is a set of images, acquired with given sequences.

First, the parameter fitting domain is determined. This should be done while keeping
in mind that fitting in higher dimensions is costly. For the desired fitting domain,
Sequence Response Kernels need to be calculated. For algorithmic convenience and
illustration purposes, the kernels are truncated to only contrast information. This
truncation enables the isolated optimization of each voxel.

For each voxel, the objective function is the sum of the squared differences between
simulated image intensity and measured image intensity. The squared differences are
calculated in image space.

One evaluation of the objective function is fast. It requires the lookup of the kernel
response images at the identical positions, followed by calculating the squared residu-
als with the image values. Since the kernels are of equal dimensions and the required
position is identical, the lookup can be very efficient if the memory/tiles of the images
are arranged suitably. The voxel values in the measured images can be kept in memory
since they will be constant for the calculation of all the objective function values. In
its naïve implementation, this is even more efficient than evaluating a signal model
function.

The minimization method must be suitable for the available data and tissue pa-
rameter space. Since the contrast values are only available in a discrete space, some
basic operations that many methods rely upon—for instance analytical or numerical
derivatives—are not readily available. Otherwise however, the objective function is
very well suited since it can be expected to be smooth and to have a low number of
local minima.

2.5.3.3 Simulated Annealing
Since optimization is not a main topic of this work, a very robust algorithm that can
find the optimal solution even under harsh conditions was chosen and is explained
very briefly in the following paragraphs. Details are elaborated in the original pa-
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per [23]. The Simulated Annealing algorithms is used for all optimization problems in
this work.

The general procedure of Simulated Annealing is similar to the hill climbing algo-
rithm. But in order to encourage the algorithm to escape local optima, neighbors that
perform worse than the current state are also accepted with a certain probability. This
probability or temperature function decreases over time, thereby slowly transitioning
the algorithm from random walk to hill climbing.

Simulated Annealing can cope with non-continuous functions or discrete data and
is stochastically guaranteed to find the global optimum if given a slowly cooling
temperature function, a sufficient number of steps, and a suitable neighbor generating
function.

The major drawback of Simulated Annealing is the need for a high number of
steps. But in the context of this work, this if of no relevance and even underlines
the practicability of the energy function that is to be optimized in the respective
optimization problem.

2.5.4 Error characterization

One issue that arises when very different images are combined to extract mutual infor-
mation is that the shapes of the uncertainties gain importance. The mutual information
is likely to be of a higher dimension and as such, standard deviations disregard the
shape of the uncertainty. The uncertainty volume may even be non-connected. The
shape and volume of this uncertainty also gives hints about what causes the error and
what kind of sequence is required to reduce the uncertainty.

2.5.4.1 Formal description
Let I , I1, . . . , In, D, D1, . . ., Dn, P , P ′, Popt, Sim, r be as defined in Section 2.5.3. Let
p(i, P) : {1, . . . , N} × P → PN be the canonical perturbation of Popt ∈ P ′N in the ith

entry, and b :K→ {0, 1} be an indicator function representing an error threshold.

Objective:
For a given i ∈ { 1, . . . , N }, approximate

Ei = {x ∈ P : f (i, x) = 1} (2.83)

where

f (i, x) = b(r(p(i, P)(x))), (2.84)

which is a subspace of object model parameter space that satisfies the error condition
for the ith object voxel, thus representing its uncertainty.

2.5.4.2 Method
This algorithm is supported by the previous one. The prerequisites and setup of the
data is the same up to the definition of the objective function.
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The uncertainty volume is the set of parameter combinations that fulfill the uncer-
tainty condition. This could for instance be defined as being within a certain quantile of
the possible objective function range—which may be voxel-dependent. If possible, the
uncertainty condition should not be a binary function, but a measure of the distance
to the threshold to ease the following step.

For each voxel, some initial values are chosen, and Simulated Annealing minimiza-
tion with the uncertainty condition function is performed.

The parameter space is discretized to allow for volume determination by counting
small volume elements that can be assumed to have equal set membership properties.

The final optimization positions are tested for the uncertainty condition, yielding a
number of seed points for the next step.

The seed points are then used for an iterative region grow until no more neighbors
are left to be tested, resulting in the final uncertainty volume.

The volume is best saved in an octree data structure to avoid unnecessary allocation
of memory. It is reasonable to expect that the continuous version of the uncertainty
set is locally convex, and the storage of larger blocks of equal set membership is very
efficient for the octree data structure.

Another aspect is that the uncertainty condition function results can be cached for
Simulated Annealing random walk steps. The Simulated Annealing algorithm is able
to cope with discrete spaces, and the function evaluation can be sped up significantly.

2.5.5 Information density optimization
An MRI acquisition protocol is often chosen based on experience. Some specific pa-
rameters may be quantified by dedicated sequences with a theoretically evaluated
synergistic performance in mind, but that idea cannot be applied to a broader range
of possible sequences.

The algorithm explained in the following paragraphs will define a tool to quantize
the importance of each individual image in context of the whole protocol and thus
allows to omit images that do not yield sufficient extra information with respect to the
fitting process employed.

The algorithm leans on the uncertainty volume defined in the previous paragraphs,
but could also be built on top of a different error measure.

2.5.5.1 Formal description
Let I , I1, . . . , In, D, D1, . . ., Dn, P , P ′, Sim be as defined in Section 2.5.3. For an index
set I ⊂ {1, . . . , n} define

r(P, I) := ∑
i∈I

N

∑
j=1

|Ii(j)− Sim(P, Di)(j)| . (2.85)

And define Ei(I) analog to the Ei of Section 2.5.4, where r(P, I) replaces r(P). Further-
more, define a partial order on II := {Ik : k ∈ I} by:

Ii ≤ Ik ⇔ |E(II \ {Ii})| ≤ |E(II \ {Ik})| . (2.86)
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This expression orders images through the uncertainty volume of all remaining images.
The smallest image corresponds to the one that least deteriorates the uncertainty
volume when removed from the set of images.

Objective:
Let I0 := {1, . . . , n}, and Ik+1 := Ik \ {lk}, where lk is implicitly defined through
Ik ≤ Ii∀i ∈ Ik. Find l0, . . . , ln−1.

This sequence describes the resulting order of images when the image that deterio-
rates the uncertainty volume least is removed iteratively.

2.5.5.2 Method
The uncertainty volume measure can be calculated for any subset of the available
images. If one image is removed, then the difference in the uncertainty volume images
can be interpreted as a representation of the individual image’s contribution to the
overall information density.

That way, starting at a well over-determined set of images, the least important image
can be eliminated iteratively. This results in a ranking of the images by their order
in the elimination chain, which itself can be a helpful indicator for determining the
usefulness of an image within the protocol.
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3 Results

3.0 Introduction

In this chapter, the main features of each individual simulation method are revealed.
Each of them has its own main area of application, advantage over the other
methods and systematic imperfection. Those were qualitatively described in the

methods chapter but lack supporting arguments, which are provided here through
simulation experiments.

The computational effort that each method requires is extracted for each workflow
step, and then put into perspective by applying the estimation to realistic simulation
conditions.

Lastly, algorithms that are derived from the Sequence Response Kernel approach
are put into action to show the versatility of the approach.

All measured images were acquired on a Siemens Skyra 3 T system [32].
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Direct Bloch simulation 3.1

The direct Bloch solver was not developed further. The algorithm is taken as the
ground truth for the later methods of increased efficiency. For that reason, simulation
results of this approach are not presented as results of this work. Details can be found
in [22] [35] [2] [14] [40] and a comparison with existing solvers is omitted due to the
availability of analytical solutions and the focus on algorithmic efficiency opposed to
benchmarking.

The efficiency is estimated in the following paragraphs as a result of the abstract
workflow presented in Section 2.1.4.

3.1.1 Full simulation workflow effort estimation

In any case it is reasonable to choose a stepper that can adapt the integration step
size, but there are lower bounds for the step sizes that can be assumed to be respected
because the effects that are present are resolved by that step size.

In the absence of RF pulses, thus in the absence of any magnetic field in the trans-
verse plane, there are no effects that occur on a timescale smaller than the smallest
of: relaxation, phase gain of the applied gradient and offset frequency. In cylindrical
coordinates, the precession effects can be calculated accurately when the steps match
the linear segments of the gradient channel. A trapezoidal gradient pulse for example
does not require more than four steps to be processed adequately.

The relaxation process is an exponential decay with rates T1−1 or T2−1. The step
size should be smaller than the corresponding time scales of those effects.

In the presence of an arbitrary RF pulse, the behavior of a spin packet is limited
by the maximum pulse amplitude. These effects are on the order of the RF pulse’s
sampling rate.

The signal has to be calculated at every time point at which the sequence is set to
acquire it. This often occurs during the flat-top time of the gradients and thus requires
further steps that would otherwise not be necessary.

The effort of integrating the Bloch equation is mainly dictated by the complexity
and number of pulses which have a large contribution, and by the complexity of the
gradient pulse shapes.

In addition to the integration of the Bloch equation, the signal has to be accumulated.
Each spin packet needs to be weighted according to the local coil sensitivity and can
then be added to the total coil signal. In case of multiple coils, the signal has to be
accumulated with multiple respective sensitivities and thus needs to be accumulated
once for each coil.
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In general, the effort EDirect Bloch simulation, quantized by the number of operations as
defined in Section 1.3.1.2 can be estimated as follows:

EDirect Bloch simulation = O(Nspin packets · Nsequence events) (3.1)

= O
(

Nspin packets · (Ngradient channel linear segments

+ NRF pulse samples

+ Nacquisitions · Ncoils

+ Npulse free time periods)
)

This will be put into the context of full imaging sequence simulation in Section 3.5.

92



3.2 Smart Bloch simulation

Smart Bloch simulation 3.2
The Smart Bloch simulation introduced concepts to handle the Bloch equation in its
most common specialization most efficiently. The simulation approaches that were
defined in the methods chapter are supported by analytical arguments and do not
require further validation. The practical value of the pulse instantanization will be
illustrated in the next paragraphs, followed by arguments about T2’ approximation
which are useful for the k-space method. Direct comparison of Smart Bloch simulation
and Direct Bloch simulation is omitted because both methods are equally exact by
design.

The full workflow effort is estimated for each workflow step, as a result of the
workflow description (see Section 2.2.3).

3.2.1 Pulse instantanization

A sinc pulse is often assumed to act uniformly on a selected frequency band. However,
the pulse also creates a mostly linear phase dispersion in its pulse profile (Figure 3.1).
If the spin packets experienced the frequency band due to a slice selection gradient
pulse, then the linear part of the phase dispersion can be corrected by applying the
rewinder gradient.

If this pulse effect is calculated using the Smart Bloch Solver but without the instan-
tanization correction, then the solutions will show the same phase behavior as for the
pulse without the rewinder gradient. The pulse effects are then hard to analyze and
hinder the interpolation capabilities of the solutions.

The corrected P̃ (see Section 2.2.1.3) generates algorithmically equivalent results as
the decomposition and recombination part alone, but the interpolatory capabilities of
the pulse effect is greatly increased.

The choice of the pivot point for the instantanization correction can be arbitrary and
does not even necessarily need to be inside the pulse, but is optimally placed at a point
which minimizes the phase dispersion of the corrected pulse profile. In this example
this pivot point is chosen to be at the center of the pulse.

The Figure 3.2 illustrates that the relaxation effects that occur during an RF pulse
are also more homogeneous and thus easier to interpolate when the correction is
employed.

The correction reduces most of the relaxation effects that occur during the pulse,
most notably for low T2 values. The amplitude of the corrected result varies less; low
T1 appears to be problematic, but tissues for which T1 < T2 are not realistic [37].

3.2.2 T2’ simplification

In theory, the offset frequency that the T2’ of each tissue induces, perturbs the pulse
effect that a spin packet experiences. This is particularly costly for the k-space simula-
tion because each different pulse effect requires an individual Echo Pathway Segment
calculation. However, in most practical circumstances, the influence of this effect is so
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Figure 3.1: Corrected and uncorrected pulse effect of a Hann-windowed sinc (Figure 1.2) pulse
with three side lobes and a duration of 2 ms, applied to a spin packet in equilibrium
(M0=1). The correction removes the oscillation and the result can be interpolated
easier.
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Figure 3.2: Corrected and uncorrected pulse effect of the same pulse used in Figure 3.1, applied
to a spin packet in equilibrium (M0=1). A very long pulse with a duration of 10 ms
was chosen to produce extreme results. The color represents the magnitude of the
transverse components.

94



3.2 Smart Bloch simulation

small, that it can be ignored or resolved sparsely. The simulation experiment illustrated
by Figure 3.3 casts light on the actual deviation of the magnetization.
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Figure 3.3: Signal errors that result from not respecting the T2’-induced offset frequency in the
pulse effects, and instead using a homogeneous pulse effect. Each vertical position
on the 2D plane corresponds to a tissue type a = 2 · T1 = 2 · T2. The horizontal
axis corresponds to the T2′ induced offset resonance distribution. The value at each
position is the signal difference magnitude between a spin packet that is simulated
respecting/not respecting the resonance offset in the pulse effects. The employed
sequence is a spin echo sequence with TE = 40 ms and Hann-windowed sinc pulses
with a bandwidth of 3 kHz, |M0| = 1, displayed at t = TE.

Even though all offset frequencies are theoretically present for any T2*, the relative
amount of spin packets outside of the pulse’s bandwidth is very low for realistic
tissues. Furthermore, the strong frequency change at the boundaries of the distribution
disperses that magnetization—further weakening the impact of the perturbed pulse
effect.

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

a in s

to
ta

ls
ig

na
l

exact
idealized

0.04 0.045 0.05 0.055
0.35

0.4

0.45

0.5

0.55

a in s

to
ta

ls
ig

na
l

Figure 3.4: Signal errors that result from not respecting the T2’-induced offset resonance fre-
quency in the pulse effects. The setting is the same as in Figure 3.3, but the trans-
verse components of the magnetizations were accumulated in b direction to illus-
trate the signal error magnitude for that tissue.
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The actual tissue-dependent signal difference is negligibly small, as illustrated in
Figure 3.4. The errors of the simulation occur at frequencies that are already highly
dispersed and barely noticeable in the total signal.

In conclusion, even extreme T2* values usually do not need to be resolved by the
pulse effect. The pulse can be assumed to have a constant effect—enabling the ana-
lytical handling of the T2’ effect in the k-space simulation approach for common use
cases.

3.2.3 Full workflow effort estimation
For the Smart Bloch solver, the numerical effort can be estimated more meaningfully
and directly, in terms of the sequence’s structure rather than step size estimates. The
workflow can be separated into three logical sub-processes with partially separated
effort contributions.

Pulse precalculation
A solution for each RF pulse and spin packet parameter combination is required for
each of the four basis magnetizations. Depending on the dimensionality reduction
that the RF pulse type allows, certain spin packet and pulse parameters may not yield
unique pulse effects and can be omitted. The numerical effort for one such integration
is on the order of the number of pulse samples at most. Thus for a complex pulse
which is 10 ms long, Esingle pulse simulation = 10 000 evaluations of the right hand side of
the Bloch equation are roughly the worst case. Simple pulses perform better.

The effort of this stage can be estimated as follows:

Epulse precalculation = O
(
Esingle pulse simulation · Nunique pulses · Nunique spin packets

)
(3.2)

Spin packet states at pulse instances
For each RF pulse instance and each spin packet, the effect of the time between each
two pulses has to be applied, followed by the next pulse effect. This takes one operation
each, which is greatly accelerated in comparison with the recalculation of each pulse
effect for each pulse instance.

The effort of this stage is:

Epacket states at instances = O
(

Nspin packets · Npulse instances
)

(3.3)

Signal calculation
For each signal acquisition event and each spin packet, the magnetization at the time
of acquisition can be calculated from the magnetization at the previous pulse in one
step. After that, the magnetization has to be processed once for each coil.

The effort amounts to:

Esignal calculation = O
(

Nspin packets · Nsamples · Ncoils
)

(3.4)

The effort will be put into context and compared with the other methods in a later
section (see Section 3.5).
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k-space based simulation 3.3
The k-space based simulation makes use of a change in state space, which is not easy to
grasp in the context of full image calculation. Therefore, the side-effects from choosing
insufficient pathways, or a sequence with poor echo behavior is illustrated in the first
section.

Intermediate results of this simulation approach are also of value. Applying the Echo
Pathway Tree template to parameter sets can yield information about B1 robustness
or the slice profile, as elaborated in the following two sections.

Finally, the effort is estimated for the individual workflow steps that were defined
in the methods chapter (see Section 2.3.5).

3.3.1 Pathway tree truncation

The following diagram (Figure 3.5) shows the effect of choosing a low truncation limit
for the maximum number of pathways. The phantom used for this experiment is a
variation of the Shepp Logan Phantom [12] [24], which is defined as a set of ellipsoids
with homogeneous proton density and relaxation times.

Even in this simple case of a very basic sequence, effects are present that cannot be
recreated by a conventional Bloch simulation with reasonable effort.

Using only three pathways per pulse yields the same result as the signal equation
of the sequence if perfect spoiling is assumed, or alternatively a Bloch approach that is
sampled with one spin packet at the center of each voxel. Using the ten most important
pathways reveals the extra signal that is created by the spoiled echoes of the previous
pulse. The echo intensity is rather high since the flip angle is low, but the k-values of
those echoes are also high due to the spoiling. The imperfection of the 4π spoiling in
this sequence is a result of the sharp edges of this analytical phantom, which yield
a slowly decaying Fourier transformed density that still has considerable amplitudes
at the Echo Pathway Segment positions. Figure 3.6 shows the result of an even more
imperfect spoiling.

Advancing to 200 pathways per pulse reveals further artifacts. Some of the non-
primary pathways are now refocused and merged into the central pathways, which
influences the main segments constructively or destructively, depending on the RF
pulse phase, which is designed to minimize the unwanted stimulated echo effect by
employing RF spoiling (see Section 1.2.3.1). If those effects are to be recreated using
the Direct Bloch solver or Smart Bloch solver approach, then a resolution that can
comfortably resolve a phase dispersion of approximately 250π per voxel is required.

If an even deeper pathway tree is generated, then the image still changes slightly.
Now even the tissues that possess particularly high relaxation can be calculated with
accurate signal intensities. A pathway tree that traces 2000 pathway segments per
pulse can be considered a full representation for this sequence.

The effects that the k-space simulation reveals in this example are not drastic, which
is why they are often overlooked. However, for more extreme sequences, those effects
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Figure 3.5: Simulation results and difference images of an MRI Shepp Logan Phantom, mea-
sured using a spoiled gradient echo sequence (Figure 1.5) with TE = 8 ms,
TR = 50 ms, 15◦ flip angle, 4π spoiler. The simulation was performed keeping
only the most important 3, 10, 200 or 2000 pathway segments at each step. The
differences are emphasized in the difference pictures.
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can cause undesired behavior that is hidden if the (Smart) Bloch simulation approach,
or a simplified signal model is pursued.

Figure 3.6 shows variations of the same simulation experiment with adjusted pa-
rameters that show extreme cases of the previously described effects.

Original simulation Original k-space

High flip angle Weak spoiling Weak spoiling—k-space

Figure 3.6: The same simulation experiment as in Figure 3.5, using 2000 pathways per pulse.
The first row shows the same image as the previous figure, alongside with it’s
magnitude k-space image. On the second row, the flip angle is changed to 40◦ for
the first image, and spoiling is set to π/8 for the other two images.

The 40◦ flip angle provokes a stronger mixing of the segments and therefore incon-
sistent echo properties.

The weak spoiling causes a significant amount of misplaced signal to still be present.
This is clearly visible in k-space as replications of the original k-space in spoiling
direction. The reconstructed image shows shifted replications of the original images
with superposed high-frequency waves in spoiling direction. The shift in y-direction
is due to the different phase of RF pulse and acquisition that is chosen for each line
acquisition.

These effects appear obvious in these artificial examples, but under non-virtual
experimental conditions, the source of the undesired effects is often hidden, unclear
and impossible to isolate. A simulation is a natural choice to identify the source of
these problems, but if the sources are of a similar form as here, then the Direct Bloch
simulation or Smart Bloch simulation is a poor choice, while the k-space formalism is
very efficient.
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3.3.2 TSE main pathway intensity

The k-space formalism is particularly interesting for sequences with complex pulse
schemes and non-trivial gradient moments between the pulses. For those sequences it
can predict signal that cannot feasibly be resolved by the Direct Bloch simulation or
Smart Bloch Simulation. This example (Figure 3.7) illustrates the applicability of the
method by investigating different crushing schemes for a TSE sequence.
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Figure 3.7: Echo magnitudes of the main echo of a TSE sequence for different crushing schemes,
depending on the B1 transmissivity. The sequence and relaxation parameters of this
experiment are 20 · TE = T1 = T2 (spacing of the refocusing pulses), TR = T1 = T2
and a turbo factor of 16. The horizontal axis represents the pulse instance, the
vertical axis represents the relative B1 transmissivity with respect to the intended
magnitude.

The crushing technique employs a pair of strong equal gradient pulses that are
applied directly before and after a refocusing pulse. This separates the Echo Pathway
Segments in the direction of the gradient pulses (see Section 1.2.3.1). Depending on the
crushing scheme, segments can interfere constructively or destructively. In these exam-
ples, the moments of the crushing gradients are multiples of a basis moment, which
suffices to rule out influence of the crushed segments on the main signal. The schemes
of this example are: constant (1, 1, 1, 1, . . .), linearly increasing (1, 2, 3, 4, . . .), oscillatory
(1,−1, 1,−1, . . .), and quadratically increasing (1, 4, 9, 16, . . .). Further details of the
crushing schemes can be found in [13].

The quadratically increasing crushers show the clearest, most predictable behavior
since no pathway segments can fall on top of each other—the main pathway decays
with T2 after each excitation pulse. The system is not in a steady state at the first and
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second excitation pulse, but the third and fourth excitation pulses are applied to a
mostly identical system.

The oscillating crushing scheme performs almost as good as the quadratically in-
creasing one. One great advantage of this crushing scheme is that it does not reach
hardware limits with an increasing number of refocusing pulses—opposed to the
previous crushing scheme.

The linearly increasing crushers cause a mixing of the pathways starting at each
fifth refocusing pulse. The signal is considerably higher, but the decay is less intuitive
to understand. The signal behavior at an RF pulse transmissivity of 1 is the same for
all crushing schemes because the pulses are perfect 180◦ pulses. But a transmissivity
of 70 % or less would result in an image with blurring that is hard to grasp visually,
because the lines in k-space show complicated signal fluctuations. It also takes slightly
longer for this configuration to reach a steady state.

The last sequence configuration employs constant spoiler gradients. The overall
signal magnitude is highest, but a lot of stimulated echoes are produced. The patterns
of those stimulated echoes in tissue and parameter space are hard to describe and
produce artifacts in the resulting images which are hard to understand.

Conclusion

The k-space formalism is a great tool for understanding MRI sequences in a way that is
different to the standard Bloch simulation approaches. The methods that are presented
in this work provide an efficient way to investigate echo behavior—most notably
through the use of a template pathway tree—while still maintaining full accuracy.

3.3.3 SER slice profile

Simultaneous Echo Refocusing [13] is a technique that relies heavily on Echo Pathway
analysis. This experiment (Figure 3.8) investigates a SER sequence with parameters
similar to those used for the TSE sequence in the previous section. The only structural
difference between these two sequences, that is important for the k-space formalism, is
that instead of one excitation pulse, two excitation pulses are employed. These pulses
excite different slices, yet the refocusing pulses are selective to both. This leads to an
intricate slice profile.

The Echo Pathway Segment mixing and decay effects are qualitatively similar to
those of the TSE sequence. The general signal shape agrees with [13] and additionally
reveals the echo behavior over time and over multiple shots.

Conclusion

The k-space formalism defined in this work can be used effectively to investigate
experiments for which the exact pulse dynamics are of interest. This goes beyond
the contemporarily used extended phase graph implementations, as discussed in Sec-
tion 2.3.4.4.
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Figure 3.8: Main echo intensities of a SER sequence. The vertical axis describes the slice posi-
tion for a constant transmissivity of 1. All other settings are as in Figure 3.7. The
individual images correspond to different spoiling schemes—as in Figure 3.7. The
excitation pulses have a bandwith-time product of 5, the refocusing pulses have a
bandwidth-time product of 30. Both are Hann-windowed sinc pulses. The bands
of the excitation pulses are chosen to touch, the band of the refocusing pulses are
chosen to embrace the excitation bands exactly.
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3.3 k-space based simulation

3.3.4 Full workflow effort estimation
In contrast to the previous method, the effort required to simulate a sequence using the
k-space formalism approach heavily depends on sequence and phantom properties.
Typically, a pathway tree template is created first by generating initial trees, discarding
segments according to a chosen importance score. Then this template is applied to all
required tissue parameters, which is a discrete number that depends on the phantom.
For each tree, the signal is then evaluated and added to the total signal. These three
stages are preceded by the pulse effect precalculation of the Smart Bloch solver.

Echo Pathway Tree template
Each important Echo Pathway Segment needs to be traced. In the worst case scenario,
each pulse triples the number of segments. The number of pulses itself is usually of the
order of the number of lines in the acquired image. This is not computationally feasible,
so the maximum number of segments at each pulse should always have a hard limit. In
the best case scenario, which is equidistantly positioned pulses with constant gradient
moments in between, the number of segments present can be merged drastically to a
linear growth.

The tree is generated iteratively, starting with one initial pathway. At any pulse, the
pathways need to first undergo all processes that occur in between the two pulses, then
each pathway splits into three children with split factors determined by the same pulse
precalculation as the Smart Bloch Solver approach. This is basically one operation per
segment.

The effort of splitting all segments at a pulse is:

Esegment splitting = O
(

Nsegments before pulse
)

(3.5)

The segments need to be merged. Therefore they have to be sorted:

Epre-merge sorting = O
(

Nnew segments · log(Nnew segments)
)

(3.6)

After merging, the score of each segment needs to be calculated and the worst-
performing segments need to be eliminated:

Epre-elimination sorting = O
(

Nmerged segments · log(Nmerged segments)
)

(3.7)

This can be simplified:

Esingle pulse succession = O
(

Nsegments present at pulse · log(Nsegmetns present at pulse)
)

(3.8)

For the worst case of no possible merging and no truncation limit, this amounts to:

Epathway template = O

⎛⎝Npulses

∑
n=0

3n · log(3n)

⎞⎠ (3.9)

= O
(

3/4
(

2 · 3Npulses Npulses − 3Npulses + 1
)

log(3)
)

= O
(

3Npulses Npulses

)
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Which is worse than exponential and cannot be handled computationally for realistic
sequences.

If a truncation limit is enforced and the sequence is ill-suited, such that this limit is
reached almost immediately, the effort can be estimated as follows:

Epathway template = O

⎛⎝Npulses

∑
n=0

Ntruncation limit · log(Ntruncation limit)

⎞⎠ (3.10)

= O
(

Npulses · Ntruncation limit · log(Ntruncation limit)
)

Thus the effort scales linearly with the number of pulses, while the truncation limit
can be adjusted to achieve an acceptable computation time.

If the merging can be performed with optimal—but common—effectiveness, the
number of segments present increases linearly. In that case:

Epathway template = O

⎛⎝Npulses

∑
n=0

3n · log(3n)

⎞⎠ (3.11)

= O

⎛⎝Npulses

∑
n=0

n · log(n)

⎞⎠
= O

(
Npulses

2 · log(Npulses)
)

.

In practice, the effort of a pathway template creation is between former two estimates
and will fall back to the truncation-limited effort progression eventually. This ensures
that the effort eventually scales linearly with the number of pulses, but it is important to
keep in mind that the quality of the pathway tree template depends on the preservation
relevant Echo Pathway Segments. This quality is likely to suffer if the truncation-
limited progression is reached early.

Echo Pathway Tree regeneration
After the template is calculated, trees can be generated efficiently for any tissue param-
eter set. Each Echo Pathway Segment is calculated by combining its parents at their
state right before the respective pulse with their according pulse transition factors.
Then the effects between the pulses should be calculated for that segment for further
usage required by the next pulse. In the regeneration phase, each segment needs to be
operated on only once. Thus:

Epathway regenerations = O
(

Nunique tissues · Nall segments
)

(3.12)

Signal calculation
At every sample, the available transverse segments need to be evaluated at their corre-
sponding wavenumber to calculate the signal. For that it is reasonable to again discard
any Echo Pathway Segment that is too far away from the k-space origin to produce
relevant signal. It is very unlikely that there are more than a handful of relevant seg-
ments. In most cases there is only one. It is important to note that discarding further
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3.3 k-space based simulation

segments for the signal calculation is reasonable—this is because segments that are far
away from the center could very well be refocused and contribute to the intensities of
the main segments in the future, but are dormant for some signal acquisitions.

If the relevant segments are marked in the pathway tree template, then calculat-
ing the signal of one sample requires only one evaluation of the phantom’s k-space
geometry at the corresponding position—per tissue type:

Esignal calculation = O
(

Nunique tissues · Nrelevant segments · Nacquisitions
)

(3.13)

This potentially minor effort is the main argument for choosing the k-space formal-
ism.

Further information about the computational effort will be elaborated later (see
Section 3.5).
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3.4 Sequence Response Kernel simulation

This section showcases Sequence Response Kernel simulations of full images, com-
pared with physical measurements. This is followed by the last simulation workflow
effort estimation, based on the workflow defined in Section 2.4.3.

Further Sequence Response Kernel-related examples and results can be found in the
derived algorithms section of this chapter (see Section 3.6).

3.4.1 Image assembly—contrast tubes

The following experiment (Figure 3.10) displays the speed-accuracy trade-off of the
Sequence Response Kernel approach. Six cylindrical gel phantoms were measured
using a set of spin echo sequences to determine their characteristic T1, T2 and proton
density values. Afterwards, they were measured using a bSSFP sequence (Figure 1.7)
to be compared with simulation results.

Position PD T1 in ms T2 in ms

top left 1 222 42
top right 1 88 61
middle left 1 378 63
middle right 1 284 85
bottom left 0.4 2087 2372
bottom right 1 486 157

Table 3.9: Average tissue parameters of six gel phantoms.

The simulation was performed using tissue parameter ranges sufficient to cover the
measured gel phantom parameters. The first simulation was performed with heavily
truncated kernels of size one to reflect the basic image contrast. The second image
assembly used tissue kernels that were big enough to hold the full relevant signal.

Fast Measured Accurate Measured

Figure 3.10: Simulated and measured gel phantoms. The fast simulation and accurate simula-
tion are using the single most important kernel value, and the 128 most important
kernel values respectively. The measured images show the same measured gel
phantoms with adjusted windowing to allow for comparison. The sequence used
for this image is a bSSFP sequence with TR = 9.6 ms, flip angle = 44◦, 20 averages.
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3.4 Sequence Response Kernel simulation

The image contrast can be recreated with the heavily truncated kernels. This calcula-
tion took 6 ms on a contemporary desktop computer. The larger kernels can produce
some artifacts that are similar to those seen in the measured image. However, one
major source of the image artifacts are the partial volumes that are not respected by
this geometry basis choice. This calculation took 44 s, which is on the order of the run
time of the sequence.

3.4.2 Image assembly—brain

This example (Figure 3.11) is based on a parameter map that is generated in a later
section (see Section 3.6.3). The parameter map was then used to simulate four TSE
sequences using heavily truncated kernels of size one. The perceptual tissue contrast
of the images can be recovered adequately and with great computation speed.

measured

simulated

difference

joint
histogram

Figure 3.11: Four pairs of measured and simulated TSE images of a brain. The sequence param-
eters can be found in Table 3.29 at index 9, 18, 19 and 26. The transfer functions of
the images, including the difference images, are equal.

The errors are pronounced at the skull area, mostly due to fat, which requires offset
frequency consideration which is not employed in the parameter mapping step. The
sinus sagittalis, seen near the boundary of the brain on the right side of the image,
introduced flow artifacts on some acquired images. They can be seen as stripes in
phase encoding (vertical) direction. The effects of movement between the individual
images deteriorates the fitting quality at sharp edges, such as at the skull.
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The other errors are likely due to the over-determinedness of the parameter ex-
traction phase. The fitting errors are investigated further in a following section (see
Section 3.6.4).

3.4.3 Full workflow effort estimation

The Sequence Response Kernel simulation workflow is based on the Echo Pathway
Tree as well, so it shares the effort of pathway tree template generation and pathway
tree regeneration with the k-space approach.

3.4.3.1 Kernel calculations
Each kernel calculation requires a sampling of the signal contribution of each element
to signal space:

Esignal accumulation = O
(

Nelements · Npathway segment groups · Nacquisitions
)

. (3.14)

Where the number of elements is either tissue, geometry or shift basis size. The path-
way grouping which is required in the pathway tree template generation step does
not introduce significant overhead.

Next, the image of each Echo Pathway Segment group for each parameter set needs
to be reconstructed individually. In the context of this work, the effort for this step is:

Ereconstructions = O
(

Nelements · Nsegment groups · Nacquisitions · log(Nacquisitions)
)

, (3.15)

which is mainly dictated by the Fourier transform.
The truncation step requires another sorting of all kernel values of each image. This

process is as exhaustive as the reconstruction:

Etruncation = O
(

Nelements · Nsegment groups · Nacquisitions · log(Nacquisitions)
)

. (3.16)

Tissue kernel calculation
For each parameter combination of the tissue basis, the pathway tree has to be regen-
erated the same way as in the k-space approach:

Epathway tree regenerations = O
(

Ntissue basis · Nall segments
)

(3.17)

The rest of the effort is the same as all other kernel efforts with

Nelements = Ntissue basis (3.18)

Geometry kernel calculation
The geometry basis does not require more than one element if the voxel basis is chosen.
This basis does not require a pathway tree template regeneration since the geometry
basis is independent of the tissue types.

Nelements = 1 (3.19)
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3.4 Sequence Response Kernel simulation

Shift kernel calculation
The shift kernel basis size introduces a trade-off between the number of convolutions
that are required in the image generation process and the number of elements that need
to undergo the signal contribution kernel extraction process. Multiple convolutions of
shift kernels also potentially introduce new errors. Any basis size between one, the
number of image voxels and even beyond that are feasible, but a good choice is:

Nelements = log(Nimage resolution) (3.20)

3.4.3.2 Image assembly
The decomposition of the phantom into basis functions should be easy if the basis
is chosen in a compatible way. The number of basis elements that result from this
decomposition should be on the order of the image dimension in case of a voxel basis.
It may be smaller if many voxels are empty or it could be larger if there is a fuzzy
relationship between the tissue types and the image voxels. For each such phantom
component, the convolutions have to be performed. For a general convolution followed
by another truncation:

Econv(T1, T2) = O(T1 · T2 · log(T1 · T2)) (3.21)

Where T1, T2 are the respective truncation limits (not relaxation times).

Even though the convolution operation is commutative, convolution order matters.
The shift kernels are usually the sharpest and a low truncation limit does not de-
teriorate the result. On the other hand, the tissue kernel holds most of the artifact
information and requires the highest truncation limit. It should be applied at the end.
In most cases, the order shift → geometry → tissue is the best choice. The composite
effort of one phantom component is:

Ecomponent processing = O(Tshift · Nshifts · Econv(T1, T1) (3.22)

+ Econv(T1, Tgeometry) + Econv(T2, Ttissue))

Where T1 and T2 are the truncation limits that are enforced after the individual convo-
lution steps.

The full image assembly requires:

Eimage assembly = O(Ncomponents · Ecomponent processing) (3.23)

The effort estimations will be put into relation in the next section (see Section 3.5).
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3.5 Effort estimation

The individual simulation methods perform well at distinct sub-tasks and suffer from
their respective weaknesses. In this section, the effort estimations of the previous
sections are used to reveal the bottlenecks of the full imaging sequence simulation for
five exemplary settings.

3.5.1 Sequences

Sequence parameters that do not influence the computational effort are omitted in the
description. Sequence descriptions can be found in Section 1.2.4.

Sequence Configuration

EPI • standard pulse
• 64x64 resolution
• single slice

SPGR • standard pulse
• RF spoiling
• 128x128 resolution
• single slice

TSE • standard pulse
• turbo factor 7
• 32 excitations
• RF spoiling
• 256x224 resolution
• single slice

bSSFP 1 • standard pulse
• 128x128 resolution
• single slice

bSSFP 2 • 32 slices
• (otherwise the same as bSSFP 1)

Table 3.12: Sequences used for effort estimation.

3.5.2 Method effort magnitude

The effort magnitudes, as outlined in Section 1.3.1.2, do not allow for a direct interpre-
tation. As elaborated in Section 1.3.1, the O-notation can only describe the asymptotic
behavior of an algorithm. Factors between different sub-tasks do not necessarily trans-
late directly to run time. For instance, each operation that requires constant time is
considered to be equivalent. This means that a data lookup, followed by a 4× 4 matrix
multiplication, then followed by one evaluation of the exponential function is consid-
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3.5 Effort estimation

ered as costly as one floating point multiplication—even though the latter operation
is about fifty times faster.

However, a subtask that is clearly dominant by orders of magnitude, or a subtask that
has constant effort for all sequences is a strong argument for this kind of comparison.

Direct Bloch simulation
The calculations in this paragraph are based on the workflow of estimate (see Sec-
tion 3.1.1). One hundred spin packets per voxel are assumed to suffice to remove sim-
ulation artifacts and are thus chosen as the number of spin packets per imaging voxel.
The RF pulse events clearly dominate the whole simulation process. Any solver needs

number of operations EPI SPGR TSE bSSFP 1 bSSFP 2

sim. of gradient events 3.18 · 108 3.15 · 109 2.04 · 1010 3.77 · 109 3.22 · 1012

sim. of RF pulses 3.28 · 109 1.68 · 1012 1.17 · 1013 1.68 · 1012 1.72 · 1015

signal accumulation 1.68 · 109 6.71 · 109 3.29 · 1011 6.71 · 109 2.75 · 1013

sim. of pulse-free periods 4.10 · 105 4.19 · 108 2.94 · 109 0.00 0.00

total 5.27 · 109 1.69 · 1012 1.21 · 1013 1.69 · 1012 1.75 · 1015

EPI SPGR TSE bSSFP 1 bSSFP 2
105

108

1011

1014

Gradient simulation
RF pulse simulation
Signal accumulation
Simulation of pulse-free periods
Total

Figure 3.13: Direct Bloch simulation effort overview.

to perform a high number of calculations when the magnetization changes drastically—
which is during the RF pulses. Gradient segments are less in number than RF pulse
samples and far easier to process in cylindrical coordinates. The simulations of time
spans during which no pulses are applied are even easier and usually even fewer in
imaging sequences. The bSSFP sequence for instance has none. The signal accumula-
tion is the second most important effort contributor, and even on par with the pulse
calculation effort for the EPI sequence.

Smart Bloch simulation
For the Smart Bloch solver, it is assumed that 128 unique tissues are sufficient to resolve
the pulse effects. Also, 100 spin packets per imaging voxel are assumed, in agreement
with the Direct Bloch solver estimate. The general workflow effort was calculated in
Section 3.2.3.

The pulse precalculation effort is equal for the EPI, SPGR and bSSFP 1 sequences
because they share the same number of pulses. The SPGR and bSSFP 1 sequences
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number of operations EPI SPGR TSE bSSFP 1 bSSFP 2

pulse precalculation 4.10·106 4.10·106 8.19·106 4.10·106 2.10·109

state at pulses 4.10·105 2.10·108 1.47·109 2.10·108 2.15·1011

signal accumulation 1.68·109 2.68·1010 3.29·1011 2.68·1010 2.75·1013

total 1.68·109 2.71·1010 3.30·1011 2.71·1010 2.77·1013

EPI SPGR TSE bSSFP 1 bSSFP 2
105

108

1011

1014

Pulse precalculation
State at pulses
Signal calculation
Total

Figure 3.14: Smart Bloch simulation effort.

furthermore share all parameters that are relevant for the simulation effort and thus
produce the same result. The second pulse of the TSE sequence doubles the pulse
precalculation effort and the extra slice resolution significantly raises the effort for the
bSSFP 2 sequence.

Most of the computations are very clearly performed in the signal calculation sub-
process—consistently throughout all sequences.

k-space simulation
The k-space simulation in the following calculations enforces a truncation limit of 1000
and uses eight unique tissues. A higher number of tissues is used for the Sequence
Response Kernel method in the next paragraph, which shares most of the sub-tasks
with the k-space simulation. The workflow effort was estimated in Section 3.3.4.

number of operations EPI SPGR TSE bSSFP 1 bSSFP 2

pulse precalculation 2.56·105 2.56·105 5.12·105 2.56·105 8.19·106

pathway template generation 3.00 3.45·104 7.68·105 3.45·104 1.15·107

pathway tree regeneration 2.40·101 1.31·105 2.05·106 1.31·105 9.85·108

signal calculation 6.55·104 2.62·105 9.18·105 2.62·105 2.68·108

total 3.22·105 6.84·105 4.25·106 6.84·105 1.27·109

For this method, there is no clear dominance of a specific subtask. The signal cal-
culation effort is mostly as high as the tree regeneration. This means that neither the
pulse calculation nor the signal calculation is a bottleneck of the k-space simulation
method—in contrast to the spin packet based simulations. The SPGR and bSSFP 1
sequences again yield the same effort.
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EPI SPGR TSE bSSFP 1 bSSFP 2
100

103

106

109

Pulse precalculation
Template generation
Tree regeneration
Signal calculation
Total

Figure 3.15: k-space simulation effort overview.

Sequence Response Kernel simulation
The efforts of the Sequence Response Kernel simulation are separated into the precal-
culation and the assembly part because multiple configurations are reasonable for full
imaging sequence simulation. The precalculation can be performed sparsely—for eight
different tissue configurations—or densely—for 65 536 different tissue configurations.
The subsequent assembly step is not affected by this choice. The fast assembly uses
completely truncated kernels or features that are extracted from the kernels, while the
accurate assembly uses truncation limits of 64, 64 and 128 for shift, geometry and tis-
sue convolutions respectively, as defined in Section 2.4.3 and estimated in Section 3.4.3.

number of operations EPI SPGR TSE bSSFP 1 bSSFP 2

pathway template generation 3.00 3.45·104 7.68·105 3.45·104 1.15·107

pulse precalculation sparse 2.56·105 2.56·105 5.12·105 2.56·105 1.31·108

pathway tree regeneration sparse 2.40·101 3.77·105 6.35·106 3.77·105 2.27·108

kernel calculation sparse 7.07·105 3.55·106 1.50·107 3.55·106 3.85·108

pulse precalculation dense 2.10·109 2.10·109 4.19·109 2.10·109 1.07·1012

pathway tree regeneration dense 1.97·105 1.07·109 1.68·1010 1.07·109 2.52·1011

kernel calculation dense 2.21·109 1.01·1010 3.95·1010 1.01·1010 4.28·1011

total sparse 9.63·105 4.22·106 2.26·107 4.22·106 7.54·108

total dense 4.31·109 1.33·1010 6.05·1010 1.33·1010 1.75·1012

number of operations EPI SPGR TSE bSSFP 1 bSSFP 2

assembly fast 4.10·103 1.64·104 5.73·104 1.64·104 5.24·105

assembly accurate 4.67·1010 2.18·1011 8.61·1011 2.18·1011 9.46·1012

The precalculation effort basically consists of k-space simulations and reconstruc-
tions. Both are rather exhaustive and have to be performed for each basis element of
the tissue, geometry, and shift basis. The image assembly effort scales directly with
the image resolution with a scaling factor of one for fast simulation or 1.14·107 for
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EPI SPGR TSE bSSFP 1 bSSFP 2
103

106

109

1012 Sparse preparation
Dense preparation
Fast simulation
Accurate simulation
Sparse-fast total
Dense-fast total
Sparse-accurate total
Dense-accurate total

Figure 3.16: Sequence Response Kernel simulation effort overview.

accurate simulation. The full simulation effort is clearly dominated by either of the
two processes, depending on the combination.

3.5.3 Conclusion
The direct Bloch simulation is dominated by the RF pulse simulation. The pulse precal-
culation of the Smart Bloch solver resolves that issue. However, both spin packet based
solvers require the same high amount of operations for the signal accumulation at
each acquisition time. This problem is circumvented by the k-space approach. But now
the number of tissues that are present, and the pathway compatibility of the sequence
influence the computational cost. The Sequence Response Kernel approach does not
remove this effort, in fact the effort of the k-space method is still present and even
extended by numerous reconstruction operations. But the Sequence Response Kernel
approach separates this effort from the actual image assembly process. The amount of
tissues that are present is not relevant for the image assembly step, it only depends on
the chosen image assembly parameters and the image resolution.

The transition from Direct Bloch solver, to Smart Bloch solver, to k-space simulation,
to Sequence Response Kernel simulation each removes the most computationally in-
convenient sub-process to the point at which the computation time can be controlled
and adjusted directly. However, the error nature and intrinsic inaccuracies of the meth-
ods are different, which is why the more advanced method may not always be the best
choice.

This section only covered the use case of full image simulation. This may not always
be of interest for a simulation experiment. A more detailed discussion from task
perspective (see Section 4.1.2) and guidelines for selecting the optimal method (see
Section 4.1.6) are part of the next chapter.
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Derived algorithms 3.6
The byproducts of the Sequence Response Kernel approach can be used for algorithms
that use precalculated simulation results, work on image space, and can be evaluated
with a well-configurable accuracy-time trade-off.

This section applies the algorithms described earlier (see Section 2.5).

3.6.1 Sequence feature extraction

The sequence feature extractors (see Section 2.5.1) return a value that is meaningful
in image space for a given sequence, reconstruction, tissue and geometry basis choice.
Performing this process on a one-dimensional or two-dimensional parameter range
yields images that are intuitive to read and capture the sequence nature.

The sequences that are associated with the following illustration (Figure 3.17) are:

• SPGR (Figure 1.5):
TE = 8 ms, TR = 20 ms, base resolution: 256, flip angle: 15◦

• EPI (Figure 1.6):
TE = 50 ms, base resolution: 64

• bSSFP (Figure 1.7):
TE = 8 ms, base resolution: 256, flip angle: 20◦

• TSE (Figure 1.8):
TR = 1200 ms, TE = 8.5 ms, TI = 100 ms, base resolution: 256, turbo 32, flip
angles: 90◦ (excitation), 120◦ (refocusing), 180◦ (inversion recovery)

The following examples (Figure 3.17) illustrate the contrast, undesired signal and
gradient features that were explained in Section 2.5.1.2.

The spoiled gradient echo sequence in this configuration is commonly referred to
as T1 weighted. And indeed, the contrast information barely changes in T2-direction.
However, it does change in the presence of extreme T2 values, which is clearly visible
in the image. The error feature is also mostly unaffected by T2, low at small T1 values,
maximal at about T1 = 520 ms. The image gradient image of all sequences is extreme
for low T2 values because T2 always strongly determines signal intensity, but it also
strongly increases as T1 decreases for this sequence.

The EPI kernels are completely T1 independent. The T2 contrast dependence is also
rather low for values above the echo time (T2 > 300 ms). The error kernel is very
pronounced at low T2 values due to the long echo train length.

The contrast information of the bSSFP sequence shows its signature T2/T1 contrast.
The error kernel however has high values at low T1 values due to the long time it takes
to reach a steady state.
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Figure 3.17: Extracted contrast information (signal at the central kernel position), total error
(signal outside of the central kernel position) and image gradient magnitude fea-
tures for some common sequences.
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The IR TSE contrast kernel has the expected T1 time at which the recovery cancels
out the magnetization (at T1 = TI/ln(2) = 144 ms). The TSE kernel behavior is hard to
describe with words—supporting the usefulness of this view on a sequence. Interest-
ingly, the image gradient is zero at a specific location on the T1-axis because the signal
information has a plateau at this position.

3.6.1.1 Conclusion

Sequences are commonly given terms such as T1 weighted, even though no practical
sequence can carry a pure T1 weighting. The actual essence of a sequence’s weighting
cannot be captured adequately by such decoupled properties. But on the other hand,
a high dimensional mapping cannot be grasped directly. These kernel feature images—
projections of these mappings—are easy to read and understand, but can still hold the
most important information.

3.6.2 Sequence optimization

As described in Section 2.5.2, the kernels can also be used for a different purpose—
as objective functions for sequence parameter optimization. In this example, kernel
features were calculated for a small set of tissue parameters and reasonable ranges of
flip angle and TR of a bSSFP sequence.

The objective function can then be assembled almost instantly—using nothing but a
few standard image arithmetic operations. The tissues used for the following sequence
optimizations are listed in Table 3.18.

Description T1 in ms T2 in ms proton density

Tissue 1 800 80 1.0
Tissue 2 500 70 1.2
Tissue 3 500 70 0.87

Table 3.18: Tissue parameters used for the sequence optimization examples.

3.6.2.1 Maximization of contrast

Following Equation 2.78, the contrast objective function is the absolute difference
between the two contrast kernels. This optimization is performed for two tissue com-
binations and illustrated in Figure 3.19.

The first objective function (a) has a clear optimum at a small TR and relatively high
flip angle. The second example (b) shows a local optimum which is near the optimum
of the first example, but the global optimum is at a lower flip angle and a substantially
higher TR.

Even though Tissue 2 and Tissue 3 only differ in proton density, the resulting objec-
tive function and optima are very diverse.
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Figure 3.19: The contrast between hypothetical tissues. (a): Tissue 1 and Tissue 2. (b): Tissue 1
and Tissue 3. The optimal setting is highlighted.

3.6.2.2 Maximization of contrast-to-signal ratio
Following the objective function defined in Equation 2.79, the relative signal difference
is optimized and illustrated in Figure 3.20.
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Figure 3.20: The contrast-to-signal ratio between the same hypothetical tissues. (a): Tissue 1
and Tissue 2. (b): Tissue 1 and Tissue 3. The optimal settings are highlighted. The
first example has two global optima.

This example uses the same tissue configurations as the previous example, but the
contrast-to-signal objective function produces fundamentally different results.

The first optimum (a) is shifted to a substantially higher TR and flip angle. Since
all objective functions are axially symmetric around 180◦ flip angle due to the nature
of the bSSFP sequence, a second global optimum is visible within the ranges of the
diagram.

The second objective function (b) is optimal at minimum flip angle and maximum TR.
This result is plausible because a small flip angle and long TR = 1/2 TE combination
yields a high distinguishability in proton density and T2. However, the small flip angle
also limits the total signal, which is why this result is not feasible.
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3.6.2.3 Minimization of undesired signal
Following Equation 2.80, weighted total absolute error kernels were used as an objec-
tive function, illustrated in Figure 3.21.
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Figure 3.21: The negative undesired signal. (a): Equally weighted Tissue 1 and Tissue 2. (b):
Equally weighted Tissue 1 and Tissue 2, restricted to the domain that corresponds
to at least 85 % of the optimal objective function value of Figure 3.19a.

For this example, the undesired signal information of Tissue 1 and Tissue 2 is equally
weighted. The two diagrams show the same objective function with different LUTs.

The undesired signal is self-evidently zero whenever the total signal equals zero,
which is at 0◦ and 180◦ flip angle for this sequence type. It is therefore not reasonable
to directly optimize this feature directly.

In the second image (b), an area is highlighted which corresponds to at least 85 %
of the optimal value of Figure 3.19a. Restricting the optimization of undesired signal
to this area yields a reasonable result at its boundary. This optimum has a lower flip
angle and higher TR in comparison with Figure 3.19a.

3.6.2.4 Simultaneous optimization of run time and contrast
As defined in Equation 2.81, the objective functions can be enhanced by introducing
further influencing factors, in this case the sequence run time, illustrated in Figure 3.22.

For this example, run time is directly proportional to TR and has a linear influence
on the objective function.

As the time influence factor is increased, the optimum sequence parameters from
Figure 3.19b=3.22a first switch to the formerly local optimum (b) until they eventually
become optimal at the lowest possible TR (c).

3.6.2.5 Conclusion
Through the extracted kernels, sequence parameters can be optimized without sequence-
specific simplifications and without the need for computationally exhaustive simula-
tions during the optimization process. The objective function can be adjusted easily
and sequences that use different approaches to acquire the image could be compared.
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Figure 3.22: Contrast optimization similar to Figure 3.19b, extended by a sequence run time
penalty in (b) and (c).

3.6.3 Model-free parameter mapping

A set of 30 brain images were acquired using a set of TSE sequences with diverse set-
tings (Table 3.29). The sequence parameters were not chosen according to a particular
scheme, but following intuition with the goal of producing perceptually heterogeneous
contrasts.

Sequence Response Kernels were then calculated for a reasonable parameter range
and the standard geometry basis. For this parameter-mapping experiment, they were
truncated to size one.

Measured 1 Measured 2 Measured 3 Measured 4

Contrast 1 Contrast 2 Contrast 3 Contrast 4

Figure 3.23: Acquired images and extracted contrast feature maps in the ranges T1 ∈ [0 s, 4 s],
T2 ∈ [0 s, 4 s]. All images are rendered using the same LUT.

Together with the proton density as a proportionality factor, the extracted kernels
form a 3D signal model for each image. These signal models are then combined to
form a voxel-wise objective function (see Section 2.5.3). In this example, the Simulated

120



3.6 Derived algorithms

Annealing algorithm was used for the optimization (see Section 2.5.3.3). The result is
shown in Figure 3.24.

T1 T2 M0

T1 averaged T2 averaged M0 averaged

Figure 3.24: The result of the parameter mapping process (top row). Forty averages of the
parameter mapping (bottom row).

Outside of the object, there are some voxels that have a substantial proton density,
but those voxels also possess a very low T2 value. This is an expected ambiguity. Those
parameter combinations are not biologically meaningful, but are in full agreement with
the signal models.

Some artifacts in the phase encoding direction (top/down) can also be found. They
are a direct consequence of the image artifacts that some of the images experienced.
Particularly noteworthy are the flow artifacts that are induced by the sinus sagittalis.
The rest of the results appear reasonable.

The average over forty optimization repetitions reassures the reproducibility. The
random noise at the voxels that are poorly distinguishable by the objective function
are due to the Simulated Annealing algorithm. The averaging removes this noise and
thereby gives hints about the noise properties. Further investigation of the fitting error
is carried out in the next section.

A forward simulation back into image space was used as an example in a previous
section (Figure 3.11). That forward simulation allows a direct comparison between
simulated and measured images. The following diagram (Figure 3.25) displays the cu-
mulated joint histogram of all measured and simulated images. The histogram shows
some spread and a multitude of clusters, which is due to the overdeterminedness of
the system and the presence of distinct tissue types, but it gives no indication of a bias.
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Figure 3.25: Joint histogram of all measured and simulated images

3.6.4 Error characterization

An indicator function can be used to characterize the error volume in tissue model
parameter space (see Section 2.5.4). In this example, the indicator function is chosen
to represent the subspace for which the objective function value is below the 1 %
threshold of possible objective function values.

Error map

T2

M0

T1

Uncertainty volume 1

T2

M0

T1

Uncertainty volume 2

Figure 3.26: Uncertainty volume map and uncertainty shapes. The first image depicts the voxel-
wise uncertainty volume. The next two images depict the uncertainty shape within
the parameter range box. (uncertainty volume 1) corresponds to the bottom right
marked voxel in (error map), (uncertainty volume 2) corresponds to the top left
voxel.

The uncertainty volume image highlights the voxels that are hard to parameterize
for the objective function. Background and skull are particularly hard to distinguish
for the objective function—which is in agreement with Figure 3.11.

The uncertainty shapes at well-behaved positions give hints about parameter combi-
nations that cannot be ruled out easily. Standard deviations that can only approximate
boxes or ellipsoids do not suffice.
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3.6.5 Information density optimization
As described in Section 2.5.5, the error volumes are used to iteratively remove the
image that the fitting objective function least benefits from. The same dataset as in the
previous sections was used for this example. The following diagram shows a subset
of the results (Figure 3.27).

uncertainty T1 T2 proton density

n=31

n=23

n=10

n=5

n=4

n=3

Figure 3.27: Uncertainty volume, fitted T1, fitted T2 and fitted proton density using the most
important 31, 23, 10, 5, 4, 3 images according to greedy error volume elimination.

As more sequences are removed, the overall uncertainty decreases at first, but starts
to increase at n = 10. Likewise, the visual quality of the fit is equal for n = 31 and
n = 23, but starts to deteriorate at n = 10—most notably at positions with high
relaxation times.

The algorithm favors the elimination of sequences that introduce extreme and error-
prone behavior, thereby improving the overall error volume map, thus the first third of
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the eliminated images did not noticeably change the parameter map. But the algorithm
also favors sequences that reveal the properties of tissues with extreme parameters
such as the cerebrospinal fluid or the skull. Therefore, elimination of the second third of
all sequences does not affect the residuals that are created by the last third—since those
last sequences are not particularly sensitive to those extreme tissue parameters. Using
the last five remaining sequences still provides a passable parameter map, but further
elimination renders the optimization insufficient except for a rough skull segmentation.
Figure 3.28 shows simulated images using the parameter maps originating from a
reduced set of sequences.

n=3 n=4 n=5

n=10 n=23 n=31

measured

Figure 3.28: Forward simulation of sequence 22 (see Section 3.29) using the 3, 4, 5, 10, 23, 31
most important sequences. The measured image is provided for reference. The
LUTs are equal. Forward simulation allows for easy comparison with the simula-
tion to validate the parameter map.

The four most important sequences (see Table 3.29) are indeed remarkably suitable
for the parameter mapping process. The two most important ones are mostly equal,
except for the maximally different echo time. The third most important sequence intro-
duces inversion recovery, a different turbo factor, short TR, and a different refocusing
flip angle. The fourth most important sequence introduces a maximally different TR.

These four sequences are partially similar, so they produce similar artifacts, but also
different in the parameters that produce distinguishable contrast.
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Number TF TE TRrefoc TRexc TI αrefoc IR Rank

1 34 60 8.57 1200 900 120 yes 29
2 34 60 8.57 1200 900 150 yes 24
3 34 60 8.57 1200 900 180 yes 20
4 34 60 8.57 1200 900 180 no 16
5 34 60 8.57 1200 900 150 no 12
6 34 60 8.57 1200 900 120 no 27
7 7 12 12 3000 100 180 no 22
8 7 12 12 2000 100 180 no 17
9 7 12 12 1000 100 180 no 4

10 7 12 12 500 100 180 no 3
11 7 12 12 200 100 180 no 28
12 7 25 12.5 3000 100 180 no 31
13 7 12 12 3000 100 180 no 21
14 7 37 12.33 3000 100 180 no 26
15 7 50 12.5 3000 100 180 no 19
16 7 62 12.4 3000 100 180 no 23
17 7 75 12.5 3000 100 180 no 25
18 7 87 12.42 3000 100 180 no 30
19 7 12 12 3000 500 180 yes 18
20 7 12 12 3000 700 180 yes 5
21 7 12 12 3000 900 180 yes 8
22 7 8.5 8.5 1200 900 180 yes 15
23 7 8.5 8.5 1200 900 180 yes 10
24 7 8.5 8.5 1200 900 180 yes 11
25 7 8.5 8.5 1200 900 180 yes 13
26 7 8.5 8.5 1200 900 180 yes 24
27 7 12 12 500 100 180 yes 7
28 7 60 8.57 1200 900 180 yes 1
29 7 60 8.57 1200 900 160 yes 2
30 7 60 8.57 1200 900 140 yes 6
31 7 60 8.57 1200 900 120 yes 9

Table 3.29: Table of sequence parameters used in the TSE simulation experiments. The rank
reflects the importance of the sequence and was calculated using greedy elimination
(see Section 2.5.5.2), a high rank means late elimination. TE corresponds to the
time until the center sample is acquired. TF is the turbo factor and the IR column
indicates whether inversion recovery was employed. All times are in ms.
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Figure 3.30: Uncertainty volumes as each remaining individual image is left out at each greedy
removal iteration. The sequences are ranked by their final importance on the
horizontal axis—meaning that each rightmost image is removed. The vertical axis
reflects the iteration. The sequences behave mostly consistent for most of the
process. The right half of the image does apparently not change in order—the
brightness decreases in horizontal and vertical direction. The left half shows clear
stripes, meaning that the importance is similar in relation to the other sequences
during most of the time. The lower third of the image is less structured because
the optimization is pushed beyond its reasonable well-posedness.

3.6.6 Concluding comments
The main argument of this section was that the Sequence Response Kernel approach
opens doors to novel algorithms that are applicable to many sequences, easy to under-
stand due to their connection to image-space, and most importantly very compatible
with contemporary efficient computer science data structures and algorithms. It is also
noteworthy that despite the stochastic nature and the high number of objective func-
tion evaluations of the optimization algorithm that was used throughout this section,
the computational power of a common scientific workstation was absolutely sufficient.
Further discussion of derived algorithms can be found in the following chapter (see
Section 4.1.1.5).
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4.0 Introduction

Now that the simulation methods are described, justified, and exemplified, they
can be discussed more generally. The goal of this work is to find efficient
and accurate means to simulate full MR imaging experiments. No tool that

is currently available is able to handle this task adequately or even attempts to do so.
Therefore, the procedures that are defined in the methods chapter should be consid-
ered the main result of this work. The common approaches, namely the Direct Bloch
equation simulation (see Section 2.1) and extended phase graph algorithm [34], have
been used as a starting point and were then further developed to suit the task. That
development gave rise to the Sequence Response Kernel approach (see Section 2.4),
which is a completely novel and very task-centered way to perform MRI simulation.
The potential of this approach was showcased in some derived algorithms (see Sec-
tion 3.6).

The third chapter’s primary function was to support the design choices that were
made in the methods chapter. Some simplifications are only reasonable in certain
contexts, and barely computationally manageable otherwise. Likewise, some approxi-
mations are perfectly reasonable only if used within their limits of applicability. These
details were discussed argumentatively in the methods chapter, and then further ex-
hibited through simulation examples in the results chapter. Another part of the third
chapter was to estimate the effort of the individual methods and put them into a
common context (see Section 3.5).

The first section of this chapter discusses technical aspects of this work. First, further
extensions of the algorithms and possible support of additional physical phenomena is
discussed (see Section 4.1.1). The next part (4.1.2) focuses on the task perspective and
discuss the best method for a typical simulation problem. Afterwards, the influences
of the imaging sequence 4.1.3 and the phantom that is used for the experiment 4.1.4
are elaborated. The next part reveals the limits and verification between the methods
(see Section 4.1.5). The last part of the section (4.1.6) summarizes the applicability of
the individual methods.

The next section of this chapter discusses more general aspects of this work. The
simulation objectives that were described in the introduction chapter (see Section 1.4)
are revisited, evaluating the impact of the methods of this work. This is followed by
an outlook, possible further development, and requirements for optimal integration
(see Section 4.3).
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Technical discussion 4.1
4.1.1 Further development
The simulation approaches can be supplemented by advanced features to support
non-static tissues and some system imperfections. This topic will be addressed briefly
in this section, followed by comments about feasible further development of the algo-
rithms that were derived from the Sequence Response Kernel approach.

4.1.1.1 Dynamic object properties
The methods of this work were described for static objects. Certain dynamic prop-
erties, such as flow, diffusion and time-dependent tissue parameters are compatible
with some of the approaches. The following paragraphs will describe the necessary
extensions of the individual algorithms.

To support time-dependent object parameters, the only difference in the Bloch equa-
tion (Equation 1.4) for a given spin packet is, that location and tissue parameters need
to be time-dependent. This time-dependence does not not affect the solving algorithm.

The Smart Bloch approach takes advantage of the Bloch equation’s properties. This
is partially hindered by object time-dependent parameters.

The pulse effects need to be calculated according to the new degrees of freedom that
the dynamics yield. These new degrees may not be relevant on the timescale of the RF
pulses and can potentially be simplified, analogous to the other degrees of freedom
(see Section 2.2.3).

The relaxation and phase behavior of a spin packet can still be treated indepen-
dently because they commute, regardless of their time dependence. However, their
computation is more complex. Time-dependent relaxation times require an evaluation
of
∫

T2(t)−1 dt and
∫

T1(t)−1 dt, which may not have an analytical solution for ad-
vanced models. Deterministic motion of a spin packet affects the phase accumulation
that is induced by the gradient pulses. The required evaluation of

∫
r(t) · G(t)dt is

potentially hard to simplify because it mixes the sequence-specific gradient behav-
ior with the object-specific motion of the spin packet. A polynomial motion model
or an approximation by polynomial segments can resolve this problem, but requires
higher-order gradient moments, e.g., for uniform flow:∫

−→r (t) · −→G (t)dt =
∫
(−→r0 + t−→v0 ) ·

−→
G (t)dt = −→r0 ·

∫ −→
G (t)dt +−→v0 ·

∫
t
−→
G (t)dt. (4.1)

In case of a non-deterministic motion model, the probabilistic behavior of the spin
packets can either be sampled to then be treated deterministically, or the Bloch equa-
tion can be extended. The most common extension is the Bloch-Torrey equation [36],
which incorporates diffusion effects. The extra terms of the Bloch-Torrey equation
can be treated independently of the other effects and evaluated similarly to the phase
effects.
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Unlike former two methods, the k-space simulation does not apply to spin packets
directly, but is applied to sub-objects with similarly treatable behavior. The operators
of the Smart Bloch solver that are required for dynamic object properties need to be
transformed to be applicable to the set of k-space simulation basis elements. This
can be done for polynomial motion models and unrestricted diffusion and has been
combined with the extended phase graph approach [39]. However, this may be im-
practical if the models possess many degrees of freedom. In particular, motion that
is defined through a spatially varying flow field is not compatible with the k-space
approach, resembling the incompatibilities of arbitrarily varying relaxation times (see
Section 2.3.4.3).

The Sequence Response Kernel approach is based on the calculations of the k-
space simulation, hence it needs to be prepared for an extended set of parameters to
reflect the dynamic object properties. But since polynomial motion models cause a
change of phase in signal space that is independent of the observed tissue, it can be
expressed as an additional motion-dependent factor in signal space. It thereby becomes
an extra convolution kernel in image space with behavior that can be investigated and
applied independent of the tissue, geometry, and shift kernels. Similarly, diffusion and
further advanced effects may be introduced with ease to the Sequence Response Kernel
approach if it can be expressed as a multiplication in signal space. However, if the
motion model affects the pulse effects, such as flow perpendicular to slice direction in
the presence of slice selective pulses, then the tissue kernels still need to be calculated
for the respective combinations of pulse effects.

4.1.1.2 RF imperfections

The methods of this work can be extended to support RF coils with non-homogeneous
transmissivities and sensitivities, as defined in the specialized Bloch equation (Equa-
tion 1.4).

RF transmissivity can be treated as a tissue parameter throughout all algorithms.
The Smart Bloch solver then requires pulse precalculations that cover the present RF
transmissivities, the k-space method requires objects that experience homogeneous
RF transmissivities, and the tissue kernels of the Sequence Response Kernel approach
need to be extended by the according extra dimension.

Inhomogeneous RF sensitivities introduces a weight on each spin packet, depending
on its location (see Section 2.2.2.1) for the Direct Bloch solver and Smart Bloch solver.
In frequency space, this multiplicative weighting can be obtained by convolving the
object geometry with the Fourier transform of the weighting map. Depending on the
complexity of the weighting, incorporating the effect each time signal is measured is
likely to be a huge strain on computation time. A precalculation of the coil-weighted
Fourier transformed proton density of each specific sub-phantom might be the best
choice to improve this inconvenience, but imperfect coils are mostly not efficiently
suitable for k-space based simulation unless the convolution can be performed analyt-
ically. The Sequence Response Kernel approach can introduce sensitivity directly as a
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scaling factor in image space that depends on the position of the corresponding basis
element. This is equivalent to introducing it as a tissue parameter that directly weights
the signal, which is independent of the other tissue parameters and can therefore be
treated separately.

RF imperfections can be combined with dynamic object parameters, but the dimen-
sionality of the k-space and Sequence Response Kernel algorithms increases corre-
spondingly.

4.1.1.3 Gradient imperfections
If the gradient coils produce a non-linear field, then the image will be distorted ac-
cordingly. If this nonlinearity can be corrected for by inversely distorting the object,
then all algorithms are still applicable. The Sequence Response Kernel then requires a
more intricate shift and geometry basis, and the object needs to be decomposed into
distorted volume elements.

Gradient imperfections of this kind can be combined with RF imperfections and
dynamic object parameters, if both can be distorted accordingly.

4.1.1.4 Fractional shifts in the Sequence Response Kernel approach
In this work, only integer-valued voxel shifts due to offset frequency were introduced.
Non-integer chemical shifts are common, but unfortunately not directly compatible
with the Sequence Response Kernel approach. They can be supported by not storing
tissue kernels with direct image voxel correspondence, but instead first identifying an
optimal fractional shift, for which the entropy of the kernel is minimal. This extra offset
information can decrease the necessary kernel size by minimizing discretization errors
and could also be used as a kernel feature for chemical shift. Similarly, the Sequence
Response Kernel approach can be extended to support voxels that are not in perfect
correspondence with the geometry basis.

4.1.1.5 Further development of derived algorithms
The derived algorithms described in Section 2.5 were only briefly exemplified in Sec-
tion 3.6. They could be further refined to become more robust, more efficient or more
applicable to relevant problems. The following paragraphs will address the feasible
further development of the individual examples.

Model-free parameter mapping
An optimization algorithm which requires less function evaluations than Simulated
Annealing is a natural improvement of the tool.

Furthermore, Sequence Response Kernels can be used for non-single voxel optimiza-
tion, which is particularly interesting for offresonance frequency influence in a bSSFP
sequence, because the steady state develops slowly, and also interesting for sequences
with long echo trains that result in intricate blurring. The computational burden of
this idea is quite high because the evaluation of the objective function takes dispropor-
tionately more time due to memory management inconveniences, because the voxels
cannot be fitted individually.
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It could also be beneficial to use a subset of the images to fit some of the parameters, a
different subset to fit the others, and repeat the processes until all parameters converge.
This may treat higher-dimensional tissue model parameter spaces efficiently.

Error characterization
Many indicator functions are feasible. Depending on the application, it may be bene-
ficial to choose an indicator function that is adapted to objective function properties,
the reasonable tissues, or the neighboring voxels. These possible choices also motivate
more refined fitting techniques.

Information density optimization
The greedy elimination approach is not an algorithm that is guaranteed to reach the
best-performing subset of sequences. But on the other hand, testing all possibilities is
not computationally manageable. Further numerical analysis could modify the uncer-
tainty measure to be more efficient to evaluate for a given subset of images. It could
also be reasonable to define a redundancy metric to assess image pairs based on a
ground truth parameter map.

The elimination process could also be modified to insist on certain sequences that
are part of a fixed protocol, or to keep sequences with a particularly important kernel
feature behavior to ensure certain information, such as structure or T2.

Furthermore, the algorithm was merely applied to a single sequence type in the
example of this work. Conjoint applicability beyond the sequence type is one of the
main advantages of the Sequence Response Kernel approach, and was not carried out
to its full potential in this work.

4.1.2 Task perspective

There cannot be a single simulation method that is a reasonable choice for all sim-
ulation tasks. This section casts light on the applicability of each method from task
perspective.

4.1.2.1 RF Pulse simulation
When the task is to investigate the effect of a single RF pulse, and in case it is rea-
sonable to assume that the MR physics related parameters influence the actual pulse
effect, there is no way around actually solving the Bloch equation with a contemporary
ODE solver.

Using the Bloch equation without any simplifications or numerical adjustments
other than polar coordinates and a rotating reference frame is perfectly applicable,
and even unavoidable for very involved pulses. When the pulses are long, have a big
amplitude and have nontrivial gradients applied simultaneously, this might even be
the most investigative approach to answer simulation task related questions.

The Smart Bloch solver might be a valuable choice, since it yields additional infor-
mation without imposing restrictions to the Bloch equation. One added benefit is that

132



4.1 Technical discussion

the effect is captured in one matrix, opposed to requiring an initial condition (see
Section 2.2.1).

The instantanization correction of the Smart Bloch solver (see Section 2.2.1.3) helps
compare the dependence of the experiment parameters on the pulse effect. The ef-
fects that arise because the pulse has a temporal extension are separated from the
effect that the actual pulse application has. Often times, relaxation, flow, diffusion, and
slight offset frequencies do not alter the pulse effect significantly and can be ignored
or in- and extrapolated, which is more apparent using instantanization (see Figure 3.2).

The other simulation methods are not supposed to investigate the effects of single
pulses—they even require the pulses to have no temporal extent and utilize the Smart
Bloch Solver approach to correct the physical pulses accordingly.

4.1.2.2 Pulse pattern simulation

Pulse patterns such as the spin echo, three pulse experiment or simple repeating pulse
patterns are the prototypes of actual MR sequences and need to be treated differently
for efficient and accurate results. In most cases, the actual generated signal is not as
important as understanding the magnetization state of the system.

Solving the Bloch equation directly is still a valid approach when certain points of
interest are respected and programmed to not be skipped as it would be the case for a
naïve implementation using adaptive step size.

There is no reason other than developing convenience to not make use of the Smart
Bloch solver approach, when the Bloch equation is used in its MRI formulation (Equa-
tion 1.4). The added effort of calculating the pulse effects is at most a factor of four
for the time spans of pulse applications, but yields the benefit of potentially reusing
simulation results. The stepping effort of the Direct Bloch simulation where no RF
pulses are active is replaced by one step while also removing possible integration inac-
curacies of the ODE solver. The worst case scenario of arbitrarily changing spin packet
parameters can be handled with greater ease in the Smart Bloch Solver environment, as
the required integrals can be investigated directly, opposed to multiple times on the fly.

The Smart Bloch Solver still requires single spin packets to be treated individually. In
many applications this is not necessary because they form classes of similar behavior.
If only one tissue parameter combination is of interest, or if the tissue parameters are
a discrete set, and only density, orientation and position differ, then k-space formalism
approach may be the best way to understand the RF pulse sequence pattern. The
k-space formalism requires the pulse sequence to be well-behaved for echo analysis.
In general, the number of Echo Pathway Segments depends exponentially on the
number of RF pulses. Likewise, the type of pulses in the sequence might increase the
dimension of classes that need to be treated separately, effectively degenerating the
efficiency of this approach. When the k-space formalism is used to simulate signal,
the spatial information of the resulting image is algorithmically perfect, which is
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particularly important when the sequence contains crushing or spoiling methods,
since they manipulate the magnetization on a sub-voxel basis.

The k-space simulation also provides supplementary information in form of echo
behavior, which is in many cases superior to direct spin packet magnetization infor-
mation.

The Sequence Response Kernel approach is based on the k-space formalism but also
requires a reconstruction pipeline. Since pulse patterns do not produce images, the
approach cannot be properly used to understand pulse patterns.

4.1.2.3 Imaging sequence simulation
Imaging sequences are simulation tasks that are linked strongest to the goals of MRI.
Further details about this task will be explained in later sections of this chapter.

The direct Bloch solver is impractical for realistic imaging sequences. Even simpli-
fied versions of realistic imaging sequences can only be handled with HPC support.
This is mainly due to the high number of required spin packets, the many required
signal accumulations and the many integration steps needed.

The Smart Bloch solver can be used whenever the direct Bloch solver is applicable.
But the general problem intrinsic to spin packet approximation is the same. The only
part that can be remedied by the Smart Bloch solver is the number of steps needed
per spin packet for the magnetization calculation. The only reason to fall back to the
direct Bloch solver is convenience or necessary inclusion of advanced physical models.

The k-space formalism removes the number of spin packets required for spatial of
offset frequency resolution and replaces it with classes of similar echo behavior. This
can be a great speedup if the phantom supports it. But each class needs to be treated
separately, and the echoes that theoretically need to be accumulated grows exponen-
tially. But it is usually not desired from a sequence development standpoint to have
many significantly contributing echoes. In conclusion, the k-space approach can be
used most of the time and promises a great speedup.

The Sequence Response Kernel approach transforms the signal to image space
and assembles images based on, e.g., a voxel basis. This only works if the k-space
formalism is applicable and the echo-behavior is consistent. But if that is the case, then
all calculations can be performed in image space with arbitrarily adjustable accuracy.
Providing a different view on the sequence and sequence complexity-independent
image calculation given sufficient precalculation.

4.1.3 Sequence influences

The nature and patterns of sequences largely influence simulation efficiency. The com-
plexity influence on each simulation method differs—some aspects that do not influ-

134



4.1 Technical discussion

ence the efficiency of one method might practically break another method. This section
addresses imaging sequence properties and resulting method-specific ramifications.

4.1.3.1 Influence of gradient pulses applied during RF pulses

As elaborated in Section 2.2.1.2, gradients that are applied during the RF pulse’s dura-
tion alter the way spin packets react to the pulse, depending on their location.

The Direct Bloch solver will not be affected by extra pulse complexity since no in-
formation about the pulses is required by the method.

The Smart Bloch solver on the other hand attempts to reduce the dimensionality of
the pulse effect and will be hindered if complicated gradients are applied. For each
direction in which the applied gradient is non-constant, the frequency-position cou-
pling breaks and an extra dimension of pulse simulation is necessary. The efficiency of
the Smart Bloch approach decreases that way, yet by design it cannot be considerably
worse than the Direct Bloch solver.

The k-space based simulation requires the spin packet classes to possess equal
pulse effects and spin packet properties. Firstly, this separates the spin packets along
the frequency direction and the selective pulse directions independently. If all pulses
are applied without gradients, no additional separation is required. If slice selective
pulses are used to select parallel slices, then classes need to be additionally separated
along the slice selection direction. However if slice-selective pulses are not parallel,
the classes need to be split in multiple directions, which degenerates the k-space ap-
proach since each class practically corresponds to a voxel or sub-voxel, which is easier
simulated using former approaches. It does not make a difference for the k-space
simulation approach whether the pulses have non-constant gradients applied along-
side or constant-gradient pulses are applied in different directions, the resulting class
separation is the same and will practically break the k-space approach.

The Sequence Response Kernel approach depends on a clear echo structure within
the k-space simulation approach. If the sequence contains pulses that are selective
in different or multiple directions, then the k-space approach degenerates and the
sequence response kernel approach can also not be readily used. Both the k-space
method and the sequence response kernel method can potentially still be used if the
pulse effects can be idealized, but this requires further application-specific assump-
tions.

4.1.3.2 Influence of RF pulse duration

If the pulse’s duration is at least a tenth of the relaxation times, then it can be consid-
ered a long pulse. Long pulses are often connected with elaborate spatial or spectral
selection, introducing the problems of the previous paragraphs. But independent of
the concurrently applied gradients, the following complications arise.
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The direct Bloch solver will be not affected since it does not require any higher level
information about the sequence. The step size of the integrator will however suffer for
elongated time spans.

The Smart Bloch solver attempts to reuse already simulated pulse effects. This
should involve appropriate interpolation where applicable. The relaxation constants
are mostly irrelevant for short pulses, but need to be considered for long pulses. Since
pulse effects can be reused, the step size problems of the Direct Bloch solver are not
significant.

The k-space and Sequence Response Kernel approaches utilize the pulse effects from
the Smart Bloch solver. Since the phantom already needs to be separated into classes
of differing relaxation times, long pulses do not introduce further algorithmic facets.
Heterogeneous pulse effects might emphasize the Echo Pathway transition factors in
considerably heterogeneous ways, but the relaxation that occurs between the pulses is
likely to overshadow this aspect.

4.1.3.3 Influence of Rapid pulse succession
The spacing between pulses impacts the magnetization state strongly. Pulses that are
far apart allow for more relaxation to occur, allowing the system to reach a more stable
state. But this stability is usually deliberately sacrificed for better measurement time.
The term rapid in this paragraph signifies the relation of pulse distance to relaxation
time—a pulse spacing on the order of the relaxation time is considered a rapid pulse
succession.

The Bloch solver effort is mostly linked to the number of sequence events, not the
spacing of the sequence events—thus making it immune to rapid pulse successions.
The accuracy might suffer because the numerical errors have less time to decay be-
tween the pulses.

The Smart Bloch solver possesses an essentially equal immunity to pulse spacing,
and a slightly superior error behavior since analytical solutions are used between the
pulses.

The echo behavior strongly depends on the pulse spacing. Each Echo Pathway de-
cays partially with T1 and T2 after its first split. During that decay, it is further split
into three sub-pathways at each pulse. If many pathways stay important and can-
not be discarded during the pathway generation process, then the k-space approach
becomes inefficient. This is most problematic when the utilized pulses show mixed
excitation and refocusing behavior—optimally problematic for 90◦ flip angles. A hard
limit on the number of pathways and reasonable merging should solve this problem
for common pulse sequences, but if the amount of discarded pathway energy is not
satisfactory, it is likely that additional information about the sequence can improve the
simulation quality, e.g. preferred preservation of refocused pathways or removal of
all pathways before each excitation. This may appear to be a drastic limitation of the
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k-space approach, yet the inaccuracies due to higher-order echoes are unapproachable
in former two methods for realistic computational conditions.

The Sequence Response kernel calculation is generally as complex as the k-space
formalism. The presence of many segments is no theoretical obstacle for the approach,
but the segment grouping might be non-trivial for complex echo formation and may
need manual adjustments to become reasonable. A clear echo formation and seg-
ment grouping is crucial for the Sequence Response Kernel approach and needs to
be fulfilled for the simulation method to be numerically feasible. Notably, the image
generation process does not suffer from these problems if they can be resolved.

4.1.3.4 Influence of gradient pulses applied between RF pulses

The 0th moment of the gradient pulses that are applied between the RF pulses have
the strongest influence on the simulation methods. They can be classified according to
their influence as follows:

• Balanced:

The 0th moment between two pulses equals zero.

• Constant:

The 0th moment between two pulses is constant.

• Discrete:

The 0th moment between two pulses is a multiple of a basis moment vector.

• Arbitrary:

The 0th moment between two pulses does not fall into former categories.

Higher-order moments become relevant when object motion is considered (see Sec-
tion 4.1.1.1).

The gradient moments do not influence the Direct Bloch solver or Smart Bloch solver,
even though the intention behind this method often aims at effects that in turn require
a drastic increase in simulation resolution. The k-space and Sequence Response Kernel
algorithms on the other hand behave differently. In general, the complexity of the
calculations for these two method directly scales with the number of Echo Pathway
Segments.

Suitable gradient moments place Echo Pathway Segments on top of each other in
terms of wavenumber. This allows for pathway merging—soothing the otherwise ex-
ponentially growing complexity. If offset frequency is not of interest, then all pathways
will keep the same wavenumber in the balanced case. This echo behavior is not very
interesting but might help investigate k-space trajectories when the echo formation is
not as relevant. The number of pathway segments stays constant in this case.
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If offset frequency is of interest, then balanced gradient moments behave the same
way as constant gradient moments if the pulse spacing is constant (see Section 2.3.4.2).
In that case, the number of present pathway segments grows linearly.

If the gradient moments are multiples of a basis moment, then the possibility of
some segments falling on top of each other persists. This scenario is often present, for
instance at sequences that use advanced spoiling or crushing schemes. If the offset
frequency is of interest and the pulses are equally distanced nonetheless, then it can
be expected that few pathway segment wavenumbers are going to match.

If the gradient moments do not follow one of the former schemes, then it can be
expected that no pathways will be mergeable. In that case, the number of pathways
grows exponentially and the k-space formalism is only reasonable if the pulses do not
succeed rapidly with respect to the relaxation times, because pathway discarding is
necessary.

The gradient behaviors may mix—in that case the complexity grows according to
the currently employed gradient behavior. Some sequences prepare the magnetization
with heterogeneous moments between preparation pulses, but are followed by a very
structured readout section. In that case, the number of segments first grows exponen-
tially, but much slower afterwards.

The Sequence Response Kernel approach is again only reasonable if the k-space
formalism behaves nicely. Yet the complexity of the calculations does not necessarily
carry over to the image space—even though many segments might be needed to
calculate the magnetization states accurately, the signal generating Echo Pathway
Segments do not need to be plentiful or posses complicated kernel representations. As
a consequence, a sequence may be well-treatable in image space using the Sequence
Response Kernel approach, even though it required a high computational effort in the
precalculation phase.

4.1.3.5 Non-Cartesian readout

The readout is linked to the gradients that are applied in-between the pulses, thus it
has no effect on the Direct or Smart Bloch solver.

The k-space based simulation is also not affected by the readout method. The ex-
isting Echo Pathway Segments assume different positions in k-space as they are mea-
sured.

The Sequence Response Kernel cannot be readily used in case of non-Cartesian read-
out. The reconstruction is usually not a mostly linear operator, breaking the approach
immediately. Further investigation of the reconstruction methods and its effects on
image space need to be performed.
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4.1.3.6 Multiple slices
If the sequence acquires slices in a successive manner, then it might be most produc-
tive to simulate the acquisition of only one slice and then transfer the results. Some
methods are more susceptible to this strategy than others. This section assumes the
presence of slice selective pulses and the absence of multi-dimensionally selective
pulses.

It can only be assumed that the acquired slices look similar if the initial conditions
before each slice are equal. This cannot be validated easily using the direct Bloch solver
because supplementary information is not readily available due to the generally raw
nature of the sequence description.

The Smart Bloch Solver can be modified to help evaluate this requirement. If the
magnetization states between two slice acquisitions are sufficiently similar for given
respective slices, then it may be reasonable to assume that the slices can be treated
independently. This, however, is a very manual approach that requires careful consid-
eration to rule out effects that are hidden, e.g. due to heterogeneous tissue parameters
or higher order echoes.

The k-space approach is well-suited to investigate the equality of initial conditions
for each slice acquisition: If the Echo Pathway Segments present at the beginning of
each new slice acquisition are sufficiently similar for the individual slices, then each
slice will be acquired the same way. This has to be tested for pathway trees within
reasonable tissue parameter ranges.

The Sequence Response Kernel approach is the most approachable way to test if
successive slices are acquired the same way since the comparisons can be performed
directly in image space on kernel basis—circumventing the manual definition of simi-
larity criteria on complex data structures in k-space or magnetization. It also directly
yields a similarity measure of the slices in image space.

When the independence of slice resolution is proven, it is a good idea to fall back to
simulation of single slices or few slices. The generalization back to multiple slices
should be done in image space if required—which is easiest using the Sequence
Response Kernel approach.

4.1.3.7 Resolution
Increased resolution requires readout modules to evaluate further parts of k-space,
and can thereby influence the number of pulses that are required or the resolution at
which the simulation has to be performed.

The Direct Bloch solver and Smart Bloch solver require a higher number of spin
packets. The higher gradient moments that are linked to the higher wavenumbers in
the traversed k-space need to be resolved spatially. The simulation artifacts can be held
constant if the number of spin packets per voxel stays the same. The higher number
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of pulses does not introduce further effects.

The k-space approach does not require a higher resolution due to the different read-
out because its spatial resolution is intrinsically infinite. But the potentially increasing
number of pulses increases the number of Echo Pathway Segments, which may de-
crease the efficiency or accuracy in case of rapid pulse succession.

The Sequence Response Kernel approach shares its complexity with the k-space ap-
proach. But the transition to image space allows for additional resolution-dependency
analysis. A fall-back to lower spatial resolutions may be justifiable based on Sequence
Response Kernel analysis. Also, the image assembly accuracy can still be controlled
freely—independent of the imaging resolution.

4.1.4 Phantom influences

For any MR imaging sequence, the description of the object that is to be simulated may
be well or ill-suited for a specific simulation method. This section describes possible
natures of phantoms and their impact on the simulation methods.

4.1.4.1 Analytical phantom with discrete tissue properties
An analytical phantom with discrete tissue properties is suited optimally for all simu-
lation methods. The formal conditions can be defined as:

• Only few discrete tissue properties are present.

• The tissue composition at a specific location can be evaluated quickly.

• The Fourier transform of each component density at any frequency can be evalu-
ated quickly.

Phantoms of this kind usually consist of simple geometric objects, e.g. ellipsoids or
cuboids. These types of phantoms is of high importance because they are described
independent of the image space that is used to acquire the signal. The edges of the
sub-objects may mismatch the image resolution and thus generate related artifacts—
which is considered in this phantom representation.

The spin packets that are required by the Direct and Smart Bloch solvers can be sam-
pled spatially within the simulation domain in a randomized or resolution-specific
way. At each sampled location, a spin packet needs to be spawned for each present
tissue component. After the spin packets are selected, the Direct and Smart Bloch ap-
proaches do not rely on the phantom description any more, which is unique to these
simulation approaches. Especially when the phantom becomes more complex and the
evaluation of the geometry ceases to be quick, the Direct and Smart Bloch solvers are
mostly unaffected.
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The k-space simulation requires the Fourier transformed proton density for each
tissue type. Each Echo Pathway Segment that contributes to the signal does so pro-
portional to the echo intensity and the Fourier transformed proton density at the
segment’s wavenumber. The tissue types are treated independently, thus the effort
scales with the number of different tissues. Tissue overlap is irrelevant in contrast
to former two solvers. But the Fourier transform can easily become computationally
expensive, e.g. by adding multiple ellipsoids to a single tissue class.

The pulses that are present in the sequence might also require a sub-classification
along the slice position. This also scales the computational effort linearly.

The Sequence Response Kernel approach requires a set of basis geometries for image
calculation. This set of basis geometries might be defined considering the phantom
geometry, for example the same set of ellipsoids that are used in the phantom. But it
would be closer to an actual application to use a basis that matches the voxel size that
is used for the imaging process.

The phantom is otherwise mostly ignored in the precalculation process. The image
assembly process however requires the phantom to be sampled in accordance with
the basis geometries. All effects that arise from a mismatch of the geometry basis
with the phantom components cannot be represented—most prominently edges that
do not align with the basis. This cannot be resolved because the basis also needs
to be chosen to be well-suited to the sequence resolution to produce sparse kernels.
Therefore if those effects are of interest, the Sequence Response Kernel approach needs
to be avoided.

4.1.4.2 Fuzzy voxel-based phantom
A phantom may also be defined on a voxel basis while still containing a discrete num-
ber of tissue types. This type usually originates from registration of anatomical images.
A prominent example is the Brainweb phantom set [6]. For this type of input data,
sub-voxel information is lost. The missing partial volume effects cannot be recovered.

In comparison with the analytical phantom:

• Only few discrete tissue properties are present.

• The composition of the tissue at a specific spatial point can be evaluated quickly.

• The Fourier transform of each component density cannot be sampled adequately.

The Direct and Smart Bloch approaches are in no way hindered by this phantom
simplification—The Fourier transform is not needed at all.

The k-space approach is problematic for this kind of input data, since the k-space
positions that are required to calculate the signal do not necessarily agree with the
available k-space positions resulting from the discrete Fourier transform. The phantom
needs to be continued reasonably, which can be done by assuming no presence of extra
spins packets outside of the field of view, and linear interpolation between the voxels.
Even this relatively simple model requires an expensive sinc-interpolation in theory,
which can be approximated by falling back to the Kaiser-Bessel window. In conclusion,
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this type of phantom is mostly incompatible with the k-space approach.

The Sequence Response Kernels on the other hand are a perfect fit for this type of
phantom, despite the fact that it is based on the incompatible k-space method. The
geometry basis can be chosen to suit the phantom voxels, thereby trivializing the
basis decomposition process. The spatial distribution of the phantom only needs to
be considered in the image assemply stage. As an added bonus, the use cases that
revolve around fuzzy voxel-based phantoms usually consider many phantoms in the
same image space and concern images created with a shared sequence. Therefore the
precalculations can be reused.

4.1.4.3 Parameter map
This type of phantom is a further generalization:

• There is a large number of tissue properties present.

• The composition of the tissue at a specific spatial point can be evaluated quickly.

• (The Fourier transform of the object geometry does not matter.)

This type of phantom usually arises from a parameter mapping process, which often
involves voxel-specific fitting.

The Bloch approaches are again not hindered by this phantom type—however the
Smart Bloch solver might require more pulse precalculations if the varying tissue con-
stants are relevantly different.

The k-space approach is not applicable in this case. All available spin packets need
to be separated into classes, and those degenerate in the presence of many tissue prop-
erties. These classes will not posses a meaningful Fourier transform anymore and can
thus not be used for reliable signal calculation.

The Sequence Response Kernel method however may be an optimal choice. If the tis-
sue property ranges are simulated with sufficient resolution, then the virtually infinite
tissue properties can be interpolated using a manageable set of simulation results. If
the parameter map then furthermore follows a voxel basis, then this basis can be used
to the advantage of the method, as explained in the previous phantom type. In fact
this approach is so efficient that it can be used for the inverse process as exemplified
in the derived algorithms sections of this work.

4.1.4.4 Conclusion
Simulation experiments on imaging level usually involve a phantom of the introduced
kinds.

The Direct Bloch solver and Smart Bloch solver are always applicable because they
require the least phantom properties.
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The k-space approach can easily be broken by even slightly more involved phan-
toms, which is the main reason why it is not used in scientific practice to simulate
natural images. It is a great tool to help understand the workings of a sequence, but it
can almost solely cope with abstract phantoms types that can be described comfortably
in frequency space.

The Sequence Response Kernel approach shows great potential in terms of phan-
tom compatibility. Firstly, it is very applicable to voxel-wise defined phantoms which
comprise the majority interesting phantoms. It can circumvent the phantom geometry
restrictions that break the k-space approach by introducing its own set of basis geome-
tries, yet still preserves the echo-based computation efficiency that makes the k-space
approach superior to the Bloch methods. Lastly, the need for discrete tissue classes can
be partially lifted by employing interpolation.

4.1.5 Limits and verification

Each simulation method has its own strengths and oftentimes there is an obvious can-
didate for optimal handling of the simulation problem. They follow a rough hierarchy
and have overlapping regions of applicability. This is particularly interesting because
it enables verifiability and testability of the simulation methods. For this it is necessary
to push the methods to their limits to reach a common denominator.

This section will address the places where the methods meet, focusing on the cases
that are particularly interesting for cross-validation and testing the limits of the sim-
ulation approaches. It also emphasizes the aspects for which there is no single true
answer to the problem because the involved methods introduce individual systematic
imperfections.

4.1.5.1 Direct Bloch solver

The Bloch equation is the most pure and general description of MR-physics related
processes. It is easy to employ, easy to understand and easy to adapt to arbitrary new
physical phenomena. It can be considered a ground truth for simulation purposes.

In order to build a solid foundation for more advanced simulation methods, the
Bloch equation solver can be tested against analytical solutions that arise from analysis
of special pulse sequences. A mere testing against the Hahn Echo experiment or the
free induction decay does likely not suffice for the coverage of real-world imaging
sequences.

The artifacts of the direct Bloch simulation usually arise from two possible sources:
The first source is the solver itself. The ODE is usually not continuously differen-

tiable, resulting in solution inaccuracies. A pure ODE solver is not readily compatible
with the right hand side of common MRI sequences. Multiple timescales are present
through prolonged distances between the pulses or long constant gradients. The extra
information about the change of pace needs to be communicated to the solver, and
this part is very prone to numerical or implementation errors.
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The second artifact source is the discretization. The Bloch equation is defined for
single spin packets. Discretizing a continuous object insufficiently or inadequately
introduces systematic errors that could be hard to isolate. Constant spacing of the
samples can easily cause aliasing artifacts. Randomized sampling is a simple fix for
this issue, but it hinders reproducibility of the results. But even when the sample
distance is chosen to be extremely low, the effects that are induced by the sequence
could have an even finer resolution.

Therefore, sampling without considering the scale of the magnetization effects
causes systematical errors intrinsic to the approach.

4.1.5.2 Smart Bloch solver

The Smart Bloch solver is essentially an enhancement of the direct Bloch solver. It does
not suffer from the ODE solver issues described in former paragraphs since it uses
analytical solutions at the problematic sections. The cost of this improvement is that
it cannot be used if the analytical solutions for those sections are not available, for
instance in the presence of time-dependent relaxation or complicated motion. In these
cases an additional model for the Smart Bloch solver would be required.

However, due to the analytical approach and the ceasing approximation influence,
testing the Bloch solver against the Smart Bloch solver is sufficient on an elemental
basis that consists of the unique building blocks of imaging sequences. If both methods
agree on this level, then the results of the Smart Bloch solver can be considered superior
to those of the direct Bloch solver.

The discretization issues of the Direct Bloch solver apply in the same way.

4.1.5.3 k-space based approach

Comparing and validating the k-space based approach in a simulation environment
cannot be done directly because the calculations are performed in different spaces.
But since the derivation of the formalism is based on the Smart Bloch solver, any
intermediate result can be imprinted onto sampled spin packets. The waves that are
dictated by the Echo Pathway Segments can be superposed, followed by multiplication
with the spatially sampled spin packets. The other direction however is not readily
possible due to the overdeterminedness of the target space.

Comparing the signal of the different approaches cannot be expected to provide
perfectly agreeing data, because the k-space formalism does not suffer from discretiza-
tion errors. If sampled randomly with a very high number of spin packets, it can
be expected that the signals are stochastically equal. And if multiple Echo Pathway
Segments are actively contributing to the signal, then the k-space approach is more
exact.

This however only holds if the phantom description in spatial and frequency space
can be considered equally accurate. The k-space approach limits the phantoms that
can be used for simulation. Phantoms that do not possess a Fourier description that
can be separated by tissue cannot be handled adequately or suffer from conversion
errors.
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4.1.5.4 Sequence Response Kernels

The Sequence Response Kernels require a valid k-space simulation algorithm and
a compatible reconstruction pipeline. Both can be investigated independently. Both
may reveal slight incompatibilities with the assumptions of the approach. The relevant
tissue ranges can evoke unsuitable echo behavior for the given sequences and thereby
cause unacceptable error properties or insufficient sparsity of the kernels. The recon-
struction pipeline might include operators that introduce expensive kernels into the
image assembly process, or might even be incompatible altogether.

Those mentioned limits can be easily measured in image space and extracted as
fitness factors of the Sequence Response Kernel approach. Together with the approx-
imation level that is chosen for the experiment, the deviation can be evaluated by
testing the result against the k-space formalism with a matching geometry and tissue
basis.

Further validation is possible by comparing with the Bloch Solver result. This valida-
tion is best done using the final images. Interestingly, potential candidate phantoms for
this kind of validation are parameter maps with continuous parameter spaces which
are not compatible with the k-space formalism. This validation spans over a very wide
range of algorithmic steps with no possibility of investigating intermediate results, but
the simplicity of the Bloch Solver is a huge argument for the power and usefulness
of this alternative validation. However, in addition to the error that is introduced by
truncating the kernels, an additional discretization error is present due to the choice
of the basis.

4.1.6 Guidelines for selecting the optimal method

The following questions help ruling out specific simulation methods to emphasize the
methodological limits of the approaches. The questions are roughly ranked by their
ability to distinguish between the applicability of the simulation methods.

Is the experiment based on an extension of the Bloch equation? (As defined in
Equation 1.4)

If the Bloch equation needs to be modified to cover a more general case or special-
ized model, then all higher level methods are potentially broken and need at least
a thorough theoretical investigation of the newly introduced features. Adapting the
Direct Bloch solver to the deviations of the specific experiment is likely to be the only
convenient choice.

Are spin packet properties other than magnetization time-dependent?

Depending on the complexity of the spin packet behavior, the Smart Bloch solver may
be partially usable or fully adaptable to the behavior. If the dynamic properties are not
relevant on RF pulse timescales, then the RF pulse calculation methods of the Smart
Bloch solver can be readily used. For instance, this is the case when flow experiments
are investigated where the excitation is not tailored to the expected flow velocities, but
rather relevant to the readout module.
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The analytical solution of the spin packet behavior between the pulses may be found
for slightly advanced time-dependent behavior, such as flow that follows a polynomial
function or isotropic diffusion.

Further theoretical investigation is also needed for the k-space and Sequence Re-
sponse Kernel methods. But even if the operators can be translated to the according
space, the k-space approach may still be impractical if the classes of similarly behaved
spin packets turn out to be small. The Sequence Response Kernel is still promising if
the added complexity can be expressed either as a separate tissue class dimension or
as a factor in the signal equation.

Are gradients non-constant in multiple directions during the application of single
RF pulses?
Each linearly independent direction adds a degree of freedom to the pulse-effects and
also an extra dimension of required echo class separation. The echo class separation
dimensions are likely to break the applicability of the k-space formalism and the
Sequence Response Kernel approach.

The Smart Bloch Solver is not affected in theory, but the effort reduction for pulse
simulation will diminish.

Does the reconstruction include non-linear operators at the beginning of the recon-
struction pipeline?
Each reconstruction step requires a careful theoretical analysis to suit the Sequence
Response Kernel method. Especially non-linear operators at the beginning of the
reconstruction pipeline can make the Sequence Response Kernel approach largely
inefficient or even non-applicable. Thus, if advanced reconstruction methods are used,
this approach should be avoided.

The other methods produce raw signal and do not include the reconstruction in any
way, and are thus unaffected.

Are the gradients that are applied during the pulses always parallel to each other?
If the individual pulses are rather simple, but applied in multiple linearly independent
directions, then the same need for high-dimensional echo class separation breaks the
k-space and Sequence Response Kernel method.

The Smart Bloch Solver is unaffected.

Is the number of different tissue types big?
As elaborated in the phantom considerations section (see Section 4.1.4), the k-space
approach becomes impractical when many different tissue types need to be considered.
The Sequence Response Kernel approach can remedy this by interpolation. The Smart
Bloch Solver is only slightly affected because the pulse calculations may need to be
performed for a larger tissue set.

Are the RF pulses spaced in a complicated way? Is the 0th gradient moment between
the individual RF pulses complicated?
Complicated RF pulse spacing is generally a strong indicator for the presence of unde-
sired signal behavior, which affects all methods. The k-space and Sequence Response
Kernel methods are particularly error-prone because the echo formation is complex
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and the relevant signal contributions are spread out widely over the exponentially
growing number of Echo Pathway Segments. The Bloch solvers do not introduce
further algorithmic complexity, but they may produce simulation artifacts without
providing insight into the error sources because they are intrinsically inefficient in the
presence of many segments.

As described in Section 4.1.3.4, the gradient moments between the RF pulses affect
the merging capabilities of the k-space approach. This leads to complicated echo
behavior and therefore the same effects as complicated RF pulse spacing.

Is the distance between the RF pulses short in comparison with the relaxation
times? If so: Are the RF pulse flip angles neither small nor big?
If so, the amount of relevant stimulated echo signal can be expected to be rather large.
The Bloch solvers are intrinsically ill-suited to cope with stimulated echoes while
the number of important segments is likely to be large for the other methods. The
k-space or Sequence Response Kernel method should be preferred, even though the
computational effort is still high.

Does the phantom have a computationally efficient Fourier representation?
The k-space method relies on many evaluations of the phantom’s Fourier transform.
If that part is computationally inefficient, then most computation time will be spent
evaluating the Fourier transform of the object. This might suggest falling back to the
Smart Bloch Solver or advancing to the Sequence Response Kernel approach that do
not require the Fourier transform of the phantom.

Summary
The following table (Table 4.1) provides a compact overview of each method’s capabil-
ities. Besides this section, supporting information can be found in sections 3.5, 4.1.1,
4.1.3, 4.1.4, 4.1.2 and 4.1.5.
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Feature DB SB k SRK

Full image simulation ✗ ✓✗ ✓✗ ✓

Reuse pulse simulations ✗ ✓ ✓ ✓

Voxel-based phantoms ✓ ✓ ✗ ✓

Geometrically complicated phantoms ✓ ✓ ✓✗ ✓✗

Many different tissues ✓ ✓ ✗ ✓✗

Sub-voxel effects ✓ ✓ ✓ ✗

Effects of higher order echoes ✗ ✗ ✓ ✓

Extensions to the Bloch equation ✓ ✗ ✗ ✗

Intricate image reconstruction ✓ ✓ ✓ ✗

Dynamic object properties ✓ ✓ ✗ ✓✗

Rapid pulse succession ✓ ✓ ✗ ✓✗

2D/3D selective pulses ✓ ✓✗ ✗ ✗

Exchangeable object geometry ✗ ✗ ✓ ✓

Useful intermediate results ✗ ✓✗ ✓ ✓

Effort increases with number of RF pulses ✗ ✗ ✓ ✗

Effort increases with resolution ✓ ✓ ✗ ✗

Table 4.1: Method feature overview—A green check mark ✓ indicates a compatibility or agree-
ment with the corresponding statement, a red cross mark ✗ indicates incompatibil-
ity, disagreement or unpracticability. The yellow combination of check and cross
mark ✓✗ indicates a partial compatibility, partial agreement or reasonable—but
increased—computational effort. The methods are abbreviated by DB (Direct Bloch),
SB (Smart Bloch), k (k-space based), SRK (Sequence Response Kernel).
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Significance of this work 4.2
The applications and derived algorithms that were carried out in this work are proof-of-
concepts and prototypes. They are ready to be implemented into a more approachable
environment to satisfy the need that was motivated in the first chapter (see Section 1.4).
The following paragraphs state the manner in which the methods can be employed.

4.2.1 Research impact

The development of MRI methods is in part hindered by the large effort that needs to
be put into a thorough simulation.

The efficiency-focused techniques introduced in this work are relevant for a large
span of required accuracies as well as computation speed. In particular, the Sequence
Response Kernel simulation approach can be tuned finely. The algorithm can meet any
given error tolerance, but also supports fast approximations. The image assembly can
be as fast as a lookup-table if needed—which requires the same effort as the image ren-
dering. These two extremes have been present before, as complete Bloch simulations
and specialized signal approximations. But it was not possible to arbitrarily choose
the degree of exactness or speed. This is particularly interesting for applications that
can benefit from multi-scale or refinement options. Many artifacts are too complicated
to be treated adequately by a model, yet the application doesn’t allow for a full-scale
simulation. The proposed approach can solve this problem.

Beyond the Sequence Response Kernel approach, many of the developed workflow
steps can be used to aid research tasks: For the Smart Bloch simulation, the pulse
instantanization helps understand and estimate pulse effects, the pulse precalcula-
tion process reduces computational redundancy, and using analytical solutions when
possible increases the numerical accuracy.

The k-space method can now be used with full accuracy, in contrast to contemporary
implementations of the extended phase graph algorithm, and can also be applied to
arbitrary sequences and can be used with a wider range of software phantoms.

Each of the algorithms derived from the Sequence Response Kernel approach can
be developed further to become a powerful tool in quantitative imaging, error analysis
and protocol optimization. This further development does not rely on deep insight
into the workings of MRI since the Sequence Response Kernels supposedly contain all
information needed to interpret the images. It is thus very approachable by specialists
of different scientific fields.

4.2.2 Education impact

The transition from signal space to image space can yield a great potential when ideas
need to be communicated. Signal amplitude and k-space traversal schemes are two
main ways of explaining a sequence. The Sequence Response Kernel approach com-
bines both, adds a thorough theoretical background and then transforms it onto image
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space. Image space is a more natural and approachable means in MRI since images
are the final objective of each acquisition. The suggestive sampling and reconstruc-
tion is not left as a thought exercise for the consumer of the education, easing the
understanding.

Explaining an MRI sequence through convolutions of images can be an easy entry
for developers of image-based algorithms. It is then not necessary to understand MR
physics in order to incorporate MR-related artifacts and simulation information into
the algorithms, while still maintaining a high numerical accuracy.

Apart from this educational shortcut, parts of the other approaches also have strong
illustrative power. The Smart Bloch solver produces the magnetization states at the
individual pulses. Given these states, calculating the state at an arbitrary time point
is trivial. In addition, even changes to the sequence can be respected quickly if the
pulses are precalculated adequately. This can provide a flexible and accurate tool that
replaces the commonly employed hand waving when explaining MRI effects.

4.2.3 Clinical impact
Contemporary simulation frameworks are largely incompatible with clinical work-
flows, but the methods of this work are feasible to be implemented into clinical appli-
cations.

The Sequence Response Kernel approach removes the need for a specialized math-
ematical signal model and enables comparability of the images. It is also based on
the full sequence with potentially high numerical accuracy and is thus superior to the
quality of an approximate signal model.

It thereby enables highly responsive and reliable simulation support that adds fur-
ther meaning to acquired images, or provides optimal acquisition parameters.

Some reasonable clinical applications that could be supported by the Sequence
Response Kernel method will be elaborated in the next section (see Section 4.3.2).
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Outlook 4.3
The potential impact of this work has been elaborated in the previous section. The
following section discusses the next steps that are necessary to realistically reach those
goals.

4.3.1 Context and infrastructure considerations
The establishment of satisfactory and usable simulation tools needs to solve some
issues that are explained in the following paragraphs.

4.3.1.1 Unified Simulation Framework
There is an abundance of tools that either answer very specified simulation problems
that depend on several problem assumptions, or try to answer a broad range of prob-
lems by relying on the largest common denominator. The first kind has a limited range
of applicability while the second one is largely inefficient.

For example, pulse simulation has nothing in common with echo calculation. Fur-
thermore, a change in the physical model of the Bloch equation potentially breaks all
advanced methods. A unified simulation framework should provide the freedom to
adapt the physical description, modify the advanced simulation methods and validate
the individual results.

It is important to keep in mind that MRI is a large field and not every researcher has
an understanding and functional knowledge of advanced aspects that revolve around
MRI simulation, and well-chosen simulation parameters are crucial for satisfactory
results.

Certain effects may or may not be of interest, such as pulse simulation opposed to
pulse idealization or the sub-slice profile. Many of the resulting simulation parameters
can be set directly if the user makes a statement or is asked about such effects. Other
parameters, such as the weighting of the Echo Pathway importance function or the
number of pathways, cannot be determined automatically. It is merely possible to
estimate the error and guess whether this error is acceptable.

A single workflow is not a realistic goal. A good framework should provide tools
and carefully provide hints about possible inaccuracies or inefficiencies, as hinted in
the method selection guidelines section of this chapter (see Section 4.1.6).

4.3.1.2 General description language
A unified framework needs a general sequence and phantom description language.
The level of sequence abstraction that the individual methods need is very different,
and the highest level of abstraction might not be available at the time of problem
formulation.

Sequence
The Direct Bloch equation simulation requires no knowledge about the sequence
except for the magnetic fields that the individual spin packets experience at a given
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time point. The higher level methods imply gradient linearity, short RF pulses or even
Cartesian readout. The user of a unified simulation framework needs to have several
points of entry to define the sequence and should be encouraged to define the sequence
on an abstract level to enable the potential of more advanced methods.

The nature of the sequence should already suffice to provide hints about the possible
complications that arise when the individual methods are used. Without the need of
user investigations, some methods can be discarded directly, inefficiencies can be rated
and the computational effort can be estimated. This automatic simulation applicability
investigation alone can be a huge benefit in sequence development. Most of the higher
level methods are designed for sequences that follow a desired behavior, and if the
requirements of the higher level methods are stressed, it is likely that the sequence de-
veloper introduced changes that give rise to unwanted behavior, e.g. many stimulated
echoes or incomplete readout.

There are numerous different MRI sequences, and the advanced methods require a
preparation to identify the pulse classes, readout scheme, gradient moments etc. There
is currently no MRI sequence description standard—therefore each sequence that is to
be simulated needs to be embedded in a compatible way. This is a huge problem that
can easily take more time than implementing the simulation procedure itself. And if
done inadequately due to intellectual property restrictions or poor reimplementation,
the results are invalid.

Phantom and object definition
The object that is to be simulated can also span over multiple levels of abstraction (see
Section 4.1.4), and it needs to be transformed into an object that is suitable for the task
at hand. Knowledge about the sequence can help determine compatible processing of
the phantom. The pulses yield information about the slice positions and required slice
profile resolution. The spoiling and crushing gradients can help to decide whether a
fine sampling of the spin packets perpendicular to the slice direction is needed.

The phantom may of course also be incompatible with the simulation method, or
not suitable. In those cases the phantom abstraction type and sequence should be
sufficient to determine the computational effort and expected error range.

4.3.2 Clinically motivated applications

Clinical applications are the strongest motivation of MRI in general. The Sequence
Response Kernel approach has great potential for clinical applications, but needs to
be adapted further.

4.3.2.1 Automatic sequence characterization
Historically, the development of a sequence begins with an acquisition strategy, for
instance gradient echo, spin echo or echo planar imaging, and describes the resulting
signal analytically by using individual simplifications. Further development and im-
provement is usually justified based on those models. Simulation provides a common
tool to remove the individuality of the models, and enables cross-comparison of the
different sequence types.
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The Sequence Response Kernel approach dictates that contrast behavior, blurring
and undesired signal can be calculated in the shared image space. A sequence can
be characterized this way and yield a concise and understandable description of its
properties.

Sequences can be characterized as elaborated in the according section (see Sec-
tion 2.5.1). With a characterization of that manner, a clinician can quickly grasp the
contrast or imperfections of a sequence and compare it to existing ones. This can ease
the transition to new methods since comparison with existing methods can be done on
that basis rather than through an abstract signal model or a set of some practical exam-
ples. Also, virtual experiments can be performed quickly to showcase the differences
in an illustrative way.

The development of such a characterization tool requires further research to identify
the features of interest, and the implementation of a large set of sequences into the
simulation framework.

Reaching a general acceptance of such an automatic and unified characterization
is not feasible, since many sequences are designed for a very specific purpose, thus
working against the clarity of the characterization, and other sequences are incompat-
ible with the Sequence Response Kernel approach. Realistically, such an application
should first be pursued where equal characteristics of multiple sequence are of interest,
for instance in manual protocol optimization. This may also lead to the discovery of
derived sequence fitness quantities that further perpetuate the understandability of
the nature of MRI sequences.

4.3.2.2 Protocol optimization

Nowadays, finding the best sequence parameters is a tedious task, driven by expertise
and legacy conventions. This process can in part be replaced by an automatic optimiza-
tion which is driven by parameters that have a tangible meaning. The clinician could
choose features that he aims for—such as contrast between a set of tissues, robustness
to chemical shift artifacts or scan time—and receive an optimal configuration of the
physical sequence parameters. If a scanner operator wants to change the sequence
parameters directly, the simulation can produce feedback in terms of image features
and inform about artifacts that are likely to arise. As laid out in the derived algo-
rithms section, sequences can be optimized based on Sequence Response Kernels (see
Section 2.5.2).

This process requires a very responsive simulation that is evaluated in image space.
The Sequence Response Kernel approach and sequence optimization prototype ex-
plained in the previous chapters lay the theoretical basis for this task.

This idea can be used to design protocols that are not a succession of isolated ac-
quisition sets that produce one diagnostically relevant parameter each. The relevant
parameters can be derived using a heterogeneous dataset. Each image contributes
strongly to those parameters that it provides a high distinguishability for, and weakly
to those that it is not sensitive to. This concept is the logical progression of the informa-
tion density optimization elaborated in the previous chapters. The importance of each
individual sequence within the protocol can be spread out, such that more information
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can be gained in less time while still allowing for robustness against measurement
errors if desired.

The implementation of optimization routines that can quickly optimize image fea-
tures at the scanner can be realized in two ways: Either by a vast preprocessing and
storage, or by establishing a connection to an HPC environment. Since this optimiza-
tion can be done on a per-sequence basis, it can be adapted and quality-assessed
individually, hiding the details and algorithmic complexities from the MRI technician.

Sequences that are most promising for this algorithm are those that require trial and
error by the clinician to achieve the contrast that is desirable.

4.3.2.3 Information synthesis

The later algorithms in the derived algorithms sections (see Section 2.5) all aim at
extracting as much information from an image set as possible, while respecting the
nature of the individual sequences. This is a broad and ambitious goal that can best
be answered on a use-case basis.

Parameter mapping is a self-evident information synthesis problem. The Sequence
Response Kernel approach provides an efficient parameter mapping strategy with-
out the need for a mathematical model, but applications that benefit from parameter
mapping usually introduce dedicated sequences that can handle the parameter map-
ping process particularly well with the aid of a signal model. The real potential of the
Sequence Response Kernel approach lies in respecting the parameter-dependence of
the sequence effects of sequences that do not have a signal model for that particular
parameter. In this situation, the Sequence Response Kernel approach builds the bridge
between the sequences opposed to isolating them.

This new comparison tool can also help to harmonize data and protocols of different
sequence versions running on different scanners by different vendors. Multi-center
studies require a lot of expert input to tweak protocols to realize sufficiently homoge-
neous conditions at each site. Even though the goal is to achieve similar image features,
the homogenization is done by adapting the raw physical sequence parameters. An
image-based homogenization loop could solve this complication directly, removing
the bias that originates from the physical sequence description.

The approach can also be used to enable a more standardized way of information
synthesis. MR images are often interpreted individually. A diagnosis is often times
driven by a localized feature on an image that is acquired with one sequence in
conjecture with a different feature on a second image. This is either done manually,
or by using a simplified mathematical model that was adapted to the approximate
sequence class. The Sequence Response Kernel approach motivates means to merge
information without the need for a specialized model.

But a direct implementation of this idea is not feasible. The full parameter space
is generally of high dimensionality and not computationally manageable. It is more
reasonable to use subsets of the image set to fit certain parameters and improve the fit
iteratively, fixating the respective parameters of minor influence. This process needs
to be adapted to an actual application.

154



4.3 Outlook

4.3.2.4 Quality and relevance analysis
Quality and relevance analysis is related to the information synthesis idea, which have
also been foreshadowed in the derived algorithms sections.

Whenever information is erroneous and redundant, the agreement of the informa-
tion components can be investigated. Quality assurance, and especially automatic
quality assurance is a highly relevant research topic of clinical studies. The error mea-
sure of this work (see Section 2.5.4) is a prototype and starting point for simulation-
assisted quality assurance. This error measure should be further developed to produce
a concise and more generally applicable workflow.

But the further development potential appears promising: Problematic images could
be discarded, and repaired or replaced synthetically. Sequences that are not relevant
could be replaced by those that maximize information content.

Developing the framework and evaluating the method is feasible, mostly because
clinical studies often involve large datasets that the method is applicable to.
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4.4 Conclusion

The problem of efficient MRI simulation does not have a single solution. Depending
on the circumstances, desired accuracy, and acceptable effort, a compromise has to be
found.

The methods of this work were developed to greatly exploit the circumstances while
retaining the capabilities of full numerical accuracy. These methods and their auxiliary
algorithms show great potential in all areas of MRI simulation. For the case of very
compatible circumstances, a completely novel simulation approach was developed that
has the potential to introduce MRI simulation easily and accurately in image-based
algorithms—fundamentally changing the way MRI simulation can be used.

Intermediate results have been presented at conferences [7] [8] [9], but the true
value of this work needs to be exemplified further through clinical applications and
connections to specialized research and development tasks.
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