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Chapter 1

Introduction

In this chapter we lay the foundation for the rest of the thesis. We give the
motivation behind simulating the operation of a Li-ion battery in Section 1.1.
Specifically, we discuss why we are interested in simulating electrochemical
and degradation phenomena inside them. To this end we also present the
battery structure on the scale we consider in Section 1.2. In Section 1.3 we
give a brief overview of degradation phenomena in batteries and state the
main goals and results of the thesis. Finally, in Section 1.4 we summarize
the structure of the thesis.

1.1 Motivation

In the last couple of decades there has been an exponential growth in the de-
velopment and integration of portable consumer electronics in our everyday
lives. Many of us cannot imagine what would we do without our smart-
phones, tablets or laptops. With the race for bigger and better screens,
while decreasing thickness and weight of the devices, the need for design-
ing batteries that are smaller but with higher capacity and longer calendar
life is becoming more important for both consumers and the companies pro-
ducing the electronics. And these are not the only places where one has a
need for a battery. We can find batteries also in tools like drills, cars and
even airplanes. For many of these applications manufacturers are turning
to Lithium-ion batteries. This is due to their high energy density and long
cyclability without the memory effects present in other types of rechargeable
batteries.

However, with the increasing number of applications for Li-ion batteries, they
are more and more pushed to their limits. Many of the main building blocks
of the batteries are originally designed and tested only for small devices which
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do not need very high currents. But since nowadays people also use them
from high-end laptops to cars and airplane electronics, their actual uses can
be in places where very high power is required. This necessitates additional
testing procedures and verification for such applications. There are several
notable failures in recent years where we can see the importance of careful
investigation of the degradation processes in batteries. In 2006 laptops from
several manufacturers, using certain Sony batteries had to be recalled due to
catching fire [27]. In 2014 a whole line of Sony laptops, Vaio Fit 11A, had to
be recalled for the same reason [93]. In 2013 all airline operators using the
Boeing 787 Dreamliner had to ground the planes [77] due to problems with
the lithium ion batteries leading to smoke and fire on some planes [25]. After
an investigation, the reason for at least one of the incidents was determined
as a short circuit in one of the battery cells, leading to a thermal runaway

[68].

1.2 Battery fundamentals

O

Electrolyte

Anode Cathode

Figure 1.1: Macroscopic view of a battery cell

Here we give a short overview of the structure and operation of Li-ion batter-
ies. For more details, see e.g. [63, 67]. Batteries in application are multiscale
systems. We first focus on the scale we are interested in, and then explain
where it fits in. We call this scale, the microscale.
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Figure 1.2: Microscopic view of a battery cell

The first thing to consider is the structure of a lithium-ion battery cell. In
lithium ion batteries we have a negative and positive electrodes which are
called anode and cathode, respectively (Figure 1.1). They are typically in
the range of tens to hundreds of micrometers in thickness. Each electrode is
composed of multiple solid particles connected together (Figure 1.2). These
particles could be in the range of tens of nanometers to tens of micrometers.
The space between the particles is filled with an ion-conducting non-aqueous
electrolyte solution. Note that in some batteries the electrolyte can also be
solid but we are not considering such types of batteries currently. Between
the two electrodes there is a porous separator making sure they do not touch
and short-circuit the battery. In order to improve certain properties like elec-
trical conductivity some additives are usually mixed with the active material
or special coatings can be applied on the particles. Binders are needed to
keep the structure intact and connected to the rest of the battery. Each elec-
trode connects to the outside world through the metallic current collectors.
After the description of the main building blocks of a battery cell, let us also
explain briefly how all these components fit together in action.

Both the anode and the cathode are materials which can accommodate
lithium in their structure. The process of lithium insertion into the elec-
trode material is called intercalation. The inverse process when the lithium
leaves the active material is called deintercalation. Both processes are initi-
ated when an electric current flows between the two current collectors. When
the device we need to power is turned on (i.e. discharging the battery), pos-
itively charged lithium ions are formed in the anode. They leave the active
material for the electrolyte, move through the separator and ultimately in-
tercalate into the cathode. The corresponding electrons leave the battery
through the current collector and travel through the external circuit to the
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cathode since they cannot enter the electrolyte. Also due to lithium being
highly reactive with water, the electrolyte is a non-aqueous organic solution.
When we charge the battery, the opposite happens and the lithium ions move
from the cathode to the anode. The transport in the electrodes themselves
can be quite complex. While mainly modeled as diffusion, in some types of
materials there are also other phenomena occurring. For example in lithium
iron phosphate (LiFePO,) according to some experiments larger particles can
charge before smaller particles [33]. In silicon there are recent experiments
which indicate a loading regime where first the whole particle is charged to a
partial state (Lig 5Si), before the full capacity (Liz5Si) is reached at any point
[98]. Also sharp gradients in the lithium concentration can be observed.
The final important component to note are the electrochemical surface reac-
tions between the solid particles and the electrolyte. They are responsible for
the intercalation and deintercalation of lithium from and to the electrolyte.
Also, during the first couple of charge-discharge cycle, on the surface of the
particles in the anode a solid-electrolyte interphase layer (SEI layer) forms.
This is due to chemical reactions of the organic solvent with the lithium. In
the formation of the SEI layer some lithium is lost.

Let us now specify where our material-resolved microscopic view of the bat-
tery cell stands among the different scales of the battery. A schematic is
shown in Figure 1.3

SEl layer

115N %%%® -
1Y QQ>©©
O]

Electrode Battery Cell Battery Pack

S

Figure 1.3: Multiple scales of a battery

One could go further down, to even smaller scales, where kinetic effects can
be considered for single particles. We could also include a spatially resolved
SEI layer. We consider the surface kinetics right now as simply occurring
on a domain with zero volumetric measure and include them as a surface
reaction. When we go in the other direction, we can see that the battery cell
is usually much bigger in the other two directions compared to the thickness.
These cells are stacked next to each other in a battery pack. In some big
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batteries (e.g. in electromobility) multiple such packs can also be stacked
together.

1.3 Degradation processes and main contri-
bution of the thesis

In this section we start with a brief overview of some degradation mechanisms
and how they could affect the operation of the battery, and then specify our
main focus and the contribution of this work.

The degradation processes can lead to capacity fade or unsafe operating
conditions. It has been shown that high currents and low temperatures can
result in plating, which is to say that a Li-metal layer can form on the surface
of the active particles at the anode [46]. This of course results in reduced
capacity of the battery. Should this process continue, dendrites can form
on the metal layer [2]. If these dendrites grow enough they can puncture
the porous separator and connect the two electrodes, resulting in a short-
circuit which in turn may lead to ignition of the electrolyte. However, our
main focus is on the deterioration of the electrode materials. Such an effect
could be a result of thermal processes [51, 80] or even the intercalation of
lithium. Due to the change in composition of the materials resulting from
intercalation and deintercalation of lithium, a series of important effects can
be observed. These include the volumetric changes of the particles [100, 4],
the internal mechanical forces, i.e. stresses induced by the process, fracturing
and pulverization of the active particles [78], change of the structure of the
underlying material, e.g. crystalline to amorphous [62] etc. In some materials
these effects are especially pronounced. For example in silicon electrodes the
volume expansion can reach 300-400% [4] and macroscopic cracks can form
after only a small number of charge/discharge cycles. While not as severe as
silicon, every electrode material degrades with time and cracks appear [99].
This results in loss of capacity since on the new interfaces a new SEI layer
has to be formed. It can also result in reduced or lost connectivity between
particles. For additional degradation mechanisms, see e.g. [96, 14, 100, 2],
etc.

The main contribution of this work is the numerical solution of several
electrochemical and mechanical models and comprehensive numerical study
of related degradation phenomena in a realistic three dimensional setting.
This is accomplished using a finite element method framework, developed in
C++ as part of this thesis. Several important contributions of this thesis are

e Simulation of the isothermal model [59] in three dimensions and a com-
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parative study between finite element method solution and voxel based
finite volume method solution

e Simulation of the non-isothermal model [58] and study of the behavior
of the temperature and heat sources

e Coupling of the full electrochemical model from [59] to the small strain
model from [105] and numerical study of the resulting model

e Comparison between two finite strain elastic models to study the sensi-
tivity of the intercalation induced deformation and its related quantities
on the mechanical model

e Reproducing the general behavior of mechanical stress from certain
experimental results of Silicon [84], using finite strain elastic models
and taking into account the softening of the Silicon anode with respect
to the li-ion concentration

First, we present and solve an isothermal electrochemical model [59] on the
microscale level, which is subsequently also used as part of a more compli-
cated simulation with coupling to a linear elasticity model. We also do a
comparative study between FEM and voxel based FVM on this model to il-
lustrate the sensitivity of the solution on the discretization. The next model
considered is the thermal extension of the previous one proposed by Latz
et al. [58]. The author of the thesis also used this model as the basis for
simulation of non-isothermal electrochemical processes in a two dimensional
setting in his master thesis [90]. However the previous study was restricted
to relatively small problems in 2D. In that sense there was no way to sim-
ulate a realistic porous electrode. Although we do not consider degradation
phenomena related to temperature increase in our current simulations, it is
nevertheless important that we can capture the thermal effects as they can be
used as a starting point in future simulations. Therefore the fact that we can
simulate the model on 3D geometries is important, because we can observe
individual heat sources and assess any possible hotspots. Due to the specifics
of our setting, the temperature in this model shows mainly a macroscopic
behavior. This allows us to recast it as an ODE, which is also a contribution
of this work. That significantly reduces the effort required to solve the heat
equation, since we no longer need to solve a system of equations on each time
step. After the non-isothermal simulations we shift our focus on mechanical
models and specifically the effect of intercalation on mechanical stresses. We
consider both small and large deformation models. For the small deforma-
tions, we use a model proposed in the context of batteries by Zhang et al.
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[105]. We first use it as given to test individual particles and then couple it to
the full electrochemical model by Latz et al. [59] to simulate a more realistic
scenario. Finally, we study large elastic deformations, using two elastic finite
strain mechanical models. The first relates the second Piola-Kirchhoff stress
to the Green-Lagrange strain and the second — the Cauchy stress to the loga-
rithmic strain. For both mechanical models, we use concentration dependent
Young’s modulus and expansion coefficient. The second model is similar to
the one proposed by Zhao et al. [106] for elasto-plastic deformations resulting
from lithium intercalation in silicon electrodes. For all of these models we
run comprehensive numerical studies using different admissible geometries
and operating regimes. They are solved using isoparametric finite element
method in three dimensional setting. We built the code for the discretization
of the PDEs from the ground up.

1.4 Structure of the thesis

In this section we give a short summary for each of the remaining chap-
ters. Since with this thesis we try to approach also physicists, engineers and
chemists working in the field, there are some known mathematical results
given for self-consistency.

In Chapter 2 the main focus is to give a brief overview of the different math-
ematical methods that we employ and the way we use them. There are no
original results in this chapter. First we describe the method that we use for
spatial discretization of the partial differential equations - the finite element
method. A general overview of going from strong to weak form is given and
then several specific aspects of the FEM itself, like the structure of the trial
and test spaces. The advantage of using isoparametric finite elements is also
addressed. Following the spatial discretization is the time discretization since
we are dealing with time dependent problems. The method that we use and
explain is the backward Euler method. It is an implicit method that results
in a system of algebraic equations that needs to be solved. In many of the
PDEs that we consider these equations are nonlinear. In fact the same holds
true also for some of the quasi-static equations that we use. In order to solve
them we linearize the system using the Newton method. A brief derivation
of the method as well as the resulting algorithm are present in the relevant
section. Since some of the models are easier to linearize using directional
derivatives, there is also a section on this subject. Rounding up the mathe-
matical preliminaries section is a short overview of tensor algebra, necessary
for some of the mechanical models.

In Chapter 3 we present the two electrochemical models for the full bat-
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tery cell that we use — the isothermal [59] and the non-isothermal [58] ones.
We begin the chapter with a brief state of the art for electrochemical mod-
els. We follow this with description of the models, setting, parameters and
assumptions we make. The models describe the behavior of lithium concen-
tration and electrical potential in three distinct regions — anode, cathode and
electrolyte. The non-isothermal model also has an additional unknown quan-
tity — the temperature. Based on the results we obtain from the numerical
simulations of the non-isothermal model, namely that we observe no spa-
tial variations of the temperature, we also present an ODE form of the heat
equation. After presenting the PDEs in strong form we then derive the weak
form. This weak form is discretized using the methods discussed in Chapter
2. However, since the models describe functions that are discontinuous on
the interfaces between the different media, we also present in more detail the
necessary considerations stemming from this fact. After the discretization
we continue with our numerical results. We run numerical experiments using
different realistic working regimes and geometries.

In Chapter 4 the attention is on the mechanical stresses and effects resulting
from the intercalation of lithium in the particles. In order to facilitate a
clearer explanation of the chemomechanical models, we first describe some
preliminaries from continuum mechanics. The initial explanation is presented
on a general setting where we do not assume anything about the scale of the
deformation. When linear elasticity is later introduced we make the simpli-
fication of having only small deformations and a single geometry as well as
specific linearizations applicable to this setting. However, since we also use
finite strain models with large deformations the general approach is also used
without any simplifications. After giving the mechaincs specific information
we present the models we use. They are described in separate sections. The
first model is a small strain model where the intercalation dependence is in-
cluded using an additive decomposition of the linearized strains. The other
model is a large strain model where we account for the concentration influ-
ence using a multiplicative decomposition of the deformation gradient. For
both models we also give detailed discretizations and solution specifics. Nu-
merical studies are performed for the two models.

Chapter 5 is dedicated to the computer implementation and the difficulties
that we encountered with it. We give a brief explanation of the interfaces
that are key in building a new problem. An overview of the tradeoffs that
we chose between ease of use and speed are given. We also show a numerical
verification of the main building blocks of the program by solving a simple
problem with the different finite elements that we use for the simulations in
the other chapters.

In Chapter 6 we discuss shortly the results from the previous chapters.



Chapter 2

Mathematical preliminaries

In the current chapter there are no new results, but rather we present for com-
pleteness and self-consistency the necessary mathematical apparatus. The
presentation is based on the classical textbooks [37, 76, 20, 13, 75, 42, 109,
29, 69, 7.

For a simple demonstration of the process of going from a PDE in strong
formulation to a discretized problem, we use a model problem given in Sec-
tion 2.1. We start with the weak formulation and the solution spaces in
Section 2.2. Then we present the numerical methods which we use to solve
our physical models. They are explained in the order of generality for our
uses. We start with the spatial discretization method which we use for all
the models we consider, namely the finite element method (Section 2.3). For
time discretization we use the Backward Euler Method, described in Section
2.4. Since many of our models include nonlinearities we use the Newton
method for solving the nonlinear algebraic systems obtained after discretiza-
tion (Section 2.5). In some of the models considered, it is easier to develop
the linearized equations in the terms of directional derivatives, so in Sec-
tion 2.6 we give a brief presentation on them. Finally, in Section 2.7 we show
some necessary properties and operations on vectors and tensors.

Note that due to the introductory nature of this chapter, we usually provide
only a couple of references per section, where most of the presented material
can be found in detail. We give additional references for points, which are
possibly either not addressed in the reference material or which we want to
emphasize on.

15
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2.1 Model problem

For ease of explanation we use the diffusion equation to illustrate the different
methods and formulations. In strong form it is given by

u — V- (D(u,x)Vu) = f(x,t), (x,t) € Q x [0,T] (2.1)
u(x,t) = g(x,t), (x,t) € I'p x [0,7] (2.2)
—D(u,x)Vu(x,t) - n = b(u,x,1t), (x,t) € T'n x [0, 7] (2.3)
u(x,0) = up(x), (x,t) € Q x {0} (2.4)

where (2 is a given region with sufficiently regular boundary, I'p and 'y
are the parts of the boundary of 2 in which we have Dirichlet and Neu-
mann boundary conditions respectively. The diffusion coefficient D can be
a full matrix in cases when the speed of diffusion is dependent on the di-
rection, but here we consider it as a scalar coefficient. It is also assumed to
be sufficiently smooth and strictly positive, i.e. D(x) > 0. If D becomes
negative, this equation is called anti-diffusion equation and it is notoriously
unstable. For a strong solution, obviously if f(x,t) € C(0,7;C(Q)), then
u(x,t) € C0,T;{C*(Q) N C°Q)}), wu; € C(0,T;C()). Note, that this
regularity can be relaxed if instead of requiring the function v be C?(Q) in
space, we require the flux DVu to be C1(Q).

2.2 Weak formulation

Requiring a classical solution from a PDE can many times be a too strong
condition as such solution might not exist even for PDEs describing real
physical phenomena. In order to relax the requirements on the regularity of
the solution we recast the problem in weak formulation. In order to do so let
us multiply (2.1) by a test function ¥ (x) and integrate over the domain €2

/ ubdv — Q/ bV - (DVu)do = Q/ Fpdv (2.5)

Q

and we have for the second term

—/V - (DVu)pdv = — /V - (Y DVu)dv + / DVu - Vido
0 Q 0

= — /wDVu : nda+/DVu - Vipdo (2.6)
o0 Q
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We pick the test function ¢ (x) to have zero trace on the Dirichlet part of the
boundary and hence the boundary integral in (2.6) is only over the Neumann
part of the boundary. We substitute (2.3) in the first term of (2.6) and the
result is then used in (2.5) to obtain

Q/ upbdv +a£ vbda + Q/ DVu - Vipdv = Q/ Fodv (2.7)

It is obvious now that in this weak form we greatly reduced the requirements
on u since we no longer have second derivatives and all the terms are integrals,
meaning that we can have discontinuities on sets with measure zero with
respect to the measure of the integral. In that sense we use the functional
spaces

Ly(Q) = {u(x)| /Qu2dv < oo} (2.8)
and
HY(Q) = {u(x)|u € Ly(Q), Vu € (Ly(Q))% ™}, (2.9)

Namely L’s elements are functions which are square integrable and H'’s
elements are functions, which together with their first derivatives are in Ls.
These derivatives are meant in the weak sense. The specific trial space where
we look for u(x) is

u(x,t) € Lo(0,T; Hp (),  wui(x,t) € Ly(0,T; H1()) (2.10)
where
HL(Q) = {ux)|u e HY(Q),u(x) = g(x),x € Tp} (2.11)

i.e. H' functions which satisfy our Dirichlet boundary conditions in the trace
sense. For the test space we pick

V = {u(x)|u € H'(Q),u(x) = 0,x € [p} (2.12)

i.e. functions with zero trace on the Dirichlet boundary.
Let us simplify a little the notation by introducing the Lo(€2) product

(U, V) o) = /uwdv (2.13)

Q
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and the form

a(u,v) = /D(u,x)Vu - Vapdu (2.14)
0
Then (2.7) becomes
(ur, 0) Ly(@) + a(u, v) + (b,0) Ly 00) = (f, 0)La(@) (2.15)

We do not go here in more detail about weak and strong solutions of PDEs,
for more information, see [37], [76].

2.3 Finite element method

For spatial discretization of our PDEs we use the finite element method [20].
We construct a finite dimensional space to use instead of the original infinite
dimensional functional space, i.e. V; C V. We are using only conforming
finite elements. This means that our discrete space is a subspace of the
original functional space. The basic idea is that we divide our given geometry
into smaller and simpler shapes (often simpleces) called elements. We define
a set of functions (usually polynomials) called shape functions, which we use
for the local approximation of the unknown quantities over each element.
Finally, we fix a set of functionals to describe the values which we want to
obtain (e.g. nodal values of the functions or their derivatives). Let us denote
by 75 the partition of €2 into elements. We define the local interpolant of
u(x) in the element 7 € 7}, to be

k

un(X, )] = D uilt)pi(x) (2.16)

=1

where k is the number of shape functions in each element, y; are the shape
functions themselves and u; are the coefficients which correspond to the val-
ues of the functionals. The global interpolant is just the union of all local
interpolants

up(x,t) = up(x,t)|,, xer, fe 7€7T, (2.17)

i.e. for x € ) we calculate the local interpolant over the element in whose
domain x belongs.

For the shape functions we use polynomials. The elements we consider are
Lagrangian, i.e. we are solving for the nodal values. The specific element
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types are P1 (triangles or tetrahedra) and Q1 (quadrilaterals and hexahedra).
Each global basis function related to a specific node is the union of the local
shape functions related to this node. We form a partition of unity basis
{pi}XY,. Namely for the basis function ¢; we have that it has a compact
support and

ngi(x) =1, x€e (2.18)

where N is the number of nodes in the mesh. Furthermore, the basis we
consider is an interpolating basis, i.e.

wi(x;) = dij (2.19)

where ¢;; is the Kronecker delta. This means that with each node we associate
a basis function. In this way we can also define our global interpolant like

N

up(z,t) = Zuz‘(t)%‘(x) (2.20)

i=1

These basis functions have local support, restricted only to the elements
which contain the node, the specific basis function is related to, i.e.

supp(p) = |J 7 (2.21)

kix; €T

This means that when we substitute the interpolation in (2.15) we can cal-
culate the integrals in an element-wise fashion. We are also using the same
spaces for the trial function and the test function. This is known as the
Galerkin method. We test with all basis functions from our discrete space to
obtain the following system of equations

N N
<Z Uj, 1 Pj %’) +a (Z Ujp;, V%’) + (b, 0i)1a(0) = ([ 0i)12(0)  (2.22)

Jj=1 Jj=1

For the simplex elements we can build the basis directly on the original mesh
by using the interpolation property (2.19). For the Q1 elements however this
would not give us a conforming element. Indeed, on a single quadrilateral
element we have the following interpolation for our function u

Up = Ujp; = ag + a1x + asy + azry (2.23)
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Let us now take an element which has as one of its sides the line y = x. When
we restrict the local interpolant on this line we get a quadratic function in
one of the variables

up, = ag + (a1 + ag)r + azx? (2.24)

If we do the same for the adjoining element who shares this edge we also
get a quadratic function. However, we only have two conditions on this
edge, namely the values of the function in the nodes. This means that our
quadratic functions are not uniquely defined and hence might not coincide on
the edge from the two sides. Therefore we use isoparametric finite elements
to ensure that we have a conforming method as explained in the next section
(2.3.1).

We briefly mention that for linear problems, when using polynomials of order
n, i.e. P, for the shape function, the standard error estimates [13] are

[ —un||z, < Ch%|u

H*(Q) (2.25)
and
||u — uhHH1 S Chs_lyu‘Hs(Q) (2.26)

where h is a characteristic length of the mesh and we assume that v € H*(2)
for 2 < s < n. We also mention for completeness that

[ = wnl| = 0 (2.27)

when u is an element of the finite dimensional space, i.e. u € V.

2.3.1 Isoparamteric FEM

In isoparametric FEM [75] we use a reference element in addition to the real
elements for most of the calculations. The shape functions are defined in
terms of the reference element and we compute the integrals using a trans-
formation from the reference to the real elements. The integrals themselves
are computed using quadrature formulas. We use the quadrature points and
weights given in [26],[45]. Later we show that using isoparametric finite ele-
ments, we obtain a continuous interpolant also for the Q1 elements. Let us
now illustrate the process in 2D for simplicity, since it is analogous in 3D.

First we start with the transformation between the reference coordinates
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(&,m) to real coordinates (z,y)
k
i=1

where ¢;(£,n) are the shape functions over the reference element, and (x;, y;)
are the coordinates of the nodes of the real elements. We say that these
elements are isoparametric, since we have the same order of polynomials for
both the transformation and for the interpolation of the solution

up(§,m) = Zum(é,n) (2.29)

If the order of interpolation was higher or lower than the transformation, we
would call this elements sub- or superparametric respectively. The integra-
tion is performed as

/uuym@mez/@@mw@mmaUME (2.30)

where 7, is an element from the discretized geometry, F is the domain of the
reference element and J is the Jacobi matrix of the transformation given by

Oz Ox imas@i(&n) zk:xﬁsoi(f,n)

_ J 0 ? 0

J = af 377 — i=1 f i=1 L (2.31)
oy Oy Zk: Dpi(&,m) zk: Dpi(&,n)
65 877 pa Y (96 pa Y; 87]

and hence the integration of the integrals in front of the time derivatives is
simply

/%@w%mwwz/%@mM@Mwa (2.32)

Tk E

However for the integration of

Q
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we also need the derivatives of the basis functions. Explicitly inverting the
transformation (2.28) can often times be intractable. In that sense it is
better to look at it another way. Let us examine the derivatives of ¢(x,y)
with respect to & and 1. We have from the chain rule

8_g0_ 8g08_x Oy Oy

9 ~ 92 0¢ ' 0y 0 23
which is equivalent to
9y O
Sl =a & (2.36)
an dy
from where we obtain
Dy Dy
E =J7 % (2.37)
dy on

For the boundary integrals, the transformation is with one dimension lower,
i.e. in 3D we have a two-parameter surface and in 2D we have a one parameter
curve. We show the transformation in 3D

l
2(¢,x) = Z zii(C, x) (2.38)
y(G0) = D _vtn(Gx) (2.39)
l
2Cx) =)zt x) (2.40)

i=1

The boundary integral thus becomes

/ b(un, 2, , 2)0(z, y, 2)da = / b(C )0 (0l x rlldS (241

Vi S
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where 7 is part of the discretized boundary of the domain, S is a reference
surface element, and r. and r, are given by

Oox dy O
oxr Oy O
ry = <£ %, é) (2.43)
An
p3('1!1) p4(1’1)
=
Pi(-1,-1) P,(1,-1)

Figure 2.1: Standard quadrilateral element

Let us now verify the assertion from the previous section that the isopara-
metric Q1 elements provide a continuous approximation between elements.
The Q1 quadrilateral 2D element is shown in Figure 2.1. The shape functions
associated with nodes py,...,ps are

prlEm) = (1 -6)(1 1) (2.44)
eafom) = 1L+ €1~ ) (2.45)
palen) = 11— 1+ ) (2.46)
palem) = 7+ +1) (2.47)

In that case the interpolant over a specific element is

un(€on) =ur 3 (1= (1= ) + s (1+ (1 — )+

us (1= 1+ n) +ua (L4 (1 +1) (2.45)
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Let us now assume that the side psps maps to x = y. Considering the side
psps is equivalent to setting n = 1. The resulting interpolation for u(x) over
this side is then

UnE M)l = (1= €) + ua (14 6) (2.49)
which is a linear function. Since we have two parameters us and uy, the
interpolant is uniquely defined.

There are some restrictions on the positioning of the vertices of the real
element. Since we want to have a strictly positive Jacobian of the transfor-
mation, in quadrilateral elements for example, all the angles must be smaller
than 180 degrees.

An interesting note can be made about the use of higher order elements. As
previously mentioned a higher order polynomial in the function interpolant
gives higher order L, and H! estimates. In the case of isoparametric elements,
however, we use these higher order polynomials also for the transformation
between the reference and real element. By analogy to the consideration
of the previous paragraph to Q1 elements, one can also use elements with
curved sides and still obtain continuous interpolant. This allows us to get
much better approximations to curved boundaries for example. There are
also additional restrictions on where we can place the non-vertex nodes. As
previously - we want the Jacobian of the transformation to be strictly posi-
tive, but also with improper placement we can influence the interpolant and
its derivatives. In some special cases this can be exploited for e.g. simulation
of solutions with singular first derivatives [3].

2.4 Backward Euler method

For the time discretization we use the implicit backward Euler method [42].
It is easiest to derive by integrating both sides in an ODE with respect to
time in the interval [¢,,¢,.1] and then approximating the necessary integrals.
Specifically, for the backward Euler we have for the ODE w, = f(u,t)

tna1 tnt1
/ wudt = / fu,t)dt (2.50)
tn tn
tnt1
The time differential integrates exactly as [ w;dt = u(t,41) — u(t,) whereas
tn

we approximate the right hand side integral with the value on the right side
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of the integration interval, i.e.

/ flu,t)dt = f(u™ t, 1) At (2.51)

tn

where At = t,,1 —t, and u" = u(t,). This gives an unconditionally stable
method with an O(At) accuracy for linear problems. The downside is that
we have to solve a possibly nonlinear equation to obtain the solution on
the current time step. We could also take the value on the other side of the
interval to obtain the explicit Euler method, but since it is only conditionally
stable, it needs to satisfy a certain condition which can be very restrictive for
nonlinear PDEs. We could also use the second order trapezoid rule for the
integration to obtain the second order accurate Crank-Nicholson method, but
it can become unstable for nonlinear problems [20]. Finally, for our model
problem the fully discretized equations are

mountt — uf
Y. s (ene) ta ZU"H%,%) + (b, i) 1ag00) = (f, 03 1a()
j=1 j=1
(2.52)
The matrix
Mij = ]At s 1,] = ]_,...7N (253)

is called mass matrix. In our calculations we mostly use lumped mass ma-
trices where we sum the coefficients in each row

M” = diag(mZ) (2.54)
1 & 1
mi; = —tZ(%,% Y (Z soj,soz) At(l vi) =X, / pidv (2.55)
j=1

For explicit methods this is useful, in order to remove the necessity of solv-
ing a system of equations on each time step. In our case we use it to reduce
oscillations in the solution. We address this shortly in subsection 2.4.1. For
linear diffusion problems, this does not impact negatively the convergence
rate [16]. For convection-dominated transport, the consistent mass matrix
(or appropriate corrections to the solution if using lumped matrix) might be
more suitable due to unwanted effects accumulating in the solution [109].

However, let us assume now that we have no nonlinearities in both the dif-
fusion coefficient and the boundary conditions to give a better idea of the
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structure of the discretized problem. We already introduced the mass matrix
M., so let us now introduce the stiffness matrix. It is defined as

K =a(pi,¢;), 4.j=1,...,N (2.56)

i.e. it contains the elements of the discretization of the diffusion term (the
one with the second order derivatives). Our right hand side is the sum of the
discretized source term f(z) and the boundary intergrals over the Neumann
boundaries

Fi=(f,0)0 — (0,000, i=1,...,N (2.57)
This gives us our discretized PDE in matrix notation as
M+Kju=F (2.58)
To impose the Dirichlet boundary conditions we do the following

Aij = 51']'7 1 X; € FD (259)
F, = g(Xi,t), x;, €I'p (260)

That is, for all nodes on the Dirichlet boundary, where we know the value
of the function, we modify the matrix to have one on the main diagonal and
zero at all other positions and set the right hand side to the known value.
If the matrix was originally symmetric, we can preserve this property by
substituting the known values in the rest of the equations and subtract the
result from the right hand side.

2.4.1 Maximum principle

We give a very brief discussion on the discrete maximum principle (DMP),
since we have time dependent problems and use 3D tetrahedral geometries.
Both of them could lead to violation of the DMP and thus bring oscillations
in the numerical solution. For a more thorough explanation consult e.g. [55].
Let us first start by considering the continuous maximum principle for linear
elliptic operators. Let us define the full elliptic operator as

Lu(x) = — Z aij(a:)aing (x) + Zbl(x)g;i () + c(z)u(z), x€Q

(2.61)

where 0 C R? is open and bounded, u(x) € C?(€2) and the coefficients satisfy
the following conditions
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e a;;(x) are such that szzl ai(2)&& > p S L, €2 for all d-dimensional

vectors € = (&1, ...,&4), where 1 is a positive constant
e |a;(z)|,|bi(z)| < C for some positive constant C
o ¢(x)>0
Now if for some function u(x) we have
Lu(x) <0, z€Q (2.62)
then the function is bounded by

< 0 2.63
max v < max{0, max u(z)} (2.63)

Researchers [95, 23] studied the existence of an analogous principle for the
discretized operator L"u defined as

N
(L) = aju;, i=1,...,N (2.64)
j=1

Namely, when does it follow from
L"u<0 (2.65)
that

max u < max{0, max u} (2.66)
u; EQR u; QN

i.e. that the maximum lies in a boundary node. Ciarlet [23] gives the follow-
ing sufficient conditions for the existence of the discrete maximum principle

e the diagonal elements are strictly positive a; >0, i=1,..., N
e the off-diagonal elements are non-positive, i.e. a;; <0, 4,j=1,...,N
e the sum of the row sums are non-negative Zjvzl a; >0, i=1,...,N

e the matrix A is irreducibly diagonally dominant

Under these conditions the discrete operator (2.64) is guaranteed to satisfy
the maximum principle (2.65,2.66). Note that these are not necessary con-
ditions and indeed Ciarlet himself shows in the same paper a matrix for a
discretized operator that satisfy the maximum principle but not the above
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conditions. However, we still use them as guidelines, when questioning the
quality of the discretization.

Let us now consider, for illustration, an example in 1D where the elements
are simply line segments. For constant coefficients, uniform mesh and linear
shape functions, the contributions of the three terms for an internal node of
the mesh are

Tit1
Ouy, Op; —Uji—1 + 2U; — Uigq
—_— dr = 2.67
/ “ Oxr Ox r=a h ( )
for the diffusion
Tit1 a
Pi Ui+1 — Ui—1
b dr =5 2.68
/ h ox o 2 ( )
Ti—1
for the advection and
Tit1 4
cupp;dr = ch 2=t + U Ui (2.69)

6

Ti—1

for the reaction terms respectively. We can see now that the discretized diffu-
sion term satisfies the sufficient conditions. The discretized advection term,
however, will add a positive off-diagonal value either above or below the main
diagonal depending on the sign of b. The discretized reaction term always
adds positive off-diagonal values. In order to satisfy the above conditions
one can reduce the mesh size h. For the advection term one can also use
an upwind scheme, which however gives only first order accurate scheme, in-
stead of the second order provided by the central difference. For second order
elements even if we only consider the diffusion term, we already have for the
endpoint nodes of each element the discretization a““2_8“1"1“;}1:1'_8”"““”2,
i.e. even in 1D we already have positive off-diagonal elements.

In 2D and 3D, the derivatives of the shape functions, and hence the elements
of the matrix, depend on the angles of the elements. There are results in 2D,
for linear triangular elements, that show that if the triangulation is Delau-
nay [32], the diffusion term is discretized well. For rectangular elements, the
mesh must be of non-narrow type,i.e. for each rectangle the ratio between
its sides must be lower than /2 [38]. For parallelepiped elements in 3D,
only cubes guarantee the DMP [53]. For tetrahedra, there are also criteria
on the angles that the elements must satisfy [11]. However, to the best of
our knowledge, there is no known automatic mesh generating method, that
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consistently produces tetrahedra, that always satisfy the angle restrictions
for the mesh. In that sense it is possible for some oscillations to occur in
the solution, especially if subgrid scale features are present. Specifically if
there are some boundary layers or internal layers, where the solution changes
rapidly in neighboring elements. In such cases one can refine the mesh, to
resolve the features, or apply algebraic flux corrections for the diffusion fluxes
[54], like one can do for the advection for example.

Let us now consider parabolic operators like

ou

(a + Lu)(z,t), (x,t) € Qx[0,T) (2.70)

where Lu is the elliptic operator defined in (2.61). The continuous maximum
principle for this operator is then

0
Ay < 0= maxu = max ¥ oI Maxu = ImMax U (2.71)
ot Q I'x[0,T] Q Q

where uy = u(z,0). Similarly, the same conditions as before have to be true
for the discretized operator. However, when we use linear elements and the
backward Euler method, from the mass matrix the off-diagonal elements are
modified with positive values. To alleviate this problem we can either reduce
the mesh size until the discretized diffusion is dominating the sum (if the mesh
is good in the sense that the discretized diffusion is positivity preserving), or
lump the mass matrix [17]. As we already mentioned in Section 2.4 we do
the latter. One has to be careful with this approach for higher order elements
in two and three dimensions as the row sum of the mass matrix can become
non-positive.

2.5 Newton method

Since we obtain a nonlinear system of equations we need some way to linearize
it. For that we use the Newton method [29][69]. Consider the system of
nonlinear algebraic equations R(u) = 0. For the vector function R(u) the
Taylor series expansion around a point uy is

R(u) = R(ug) + J(ug)(u — ug) + O((u — uz) ®@ (u — uy))

where J is the Jacobi matrix, i.e.

I(w) = 5= (w) (2.72)
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We drop all higher order terms (i.e. the nonlinear part) and substitute the
truncated expansion in the equation R(u) = 0 to obtain

R(ug) + J(ug)(u—u;) =0

and solve for u. This is summarized in the following algorithm.
Algorithm. Newton method

e Pick an initial iterate ug
e DO
— Compute R(uy)

— Compute the Jacobi matrix of R
Compute the direction dy = —J ()R (uy)

— Upy1 = u; +dg
WHILE ||dg|| > ¢[[do]|
Applied to our model problem we have

n n+1 . n k

u U
Riug) = ) | =" (e 00) + Dy ales, 00) + (b(wr), 90) = (f 1)
Jj=1 j=1
(2.73)
R (%5, i) L9
8un+1 - At + a(@]v 901) + (augoja 901) (274)

J

It has quadratic convergence speed when certain conditions are met. In that
sense, we make note of some important restrictions and considerations. The
most obvious one is that since we need the first derivative (in this case the
Jacobi matrix) it must exist and be invertible, i.e. non-singular in all the
iterates ug,uy,.... This can be problematic if for example the derivative
J(u) is singular at the root of the equation R(u) = 0. Since we are solving
everything numerically, even if it is analytically invertible, poor conditioning
may still lead to problems in the solution. Another thing is that the quadratic
convergence is guaranteed only in a ball near the solution. In general there
is no guaranteed global convergence of the method. If the initial iterate is
not in the necessary ball, it is possible for the method to diverge. Again
as before this could also happen due to poor conditioning of the problem,
since we are using computers with finite precision. The final thing that we
mention here is that even in the linearized problem we still need to solve
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a system of linear equations. We solve it using iterative methods. Since
the problems we consider in general lead to non-symmetric matrices, the
popular conjugate gradient, CG, method would not work. One can either
symmetrize the matrix and then apply the CG method (which however leads
to squaring of the condition number of the matrix and thus more iterations)
or use a method applicable to non-symmetric systems. We use either the self
implemented BiCGSTAB [94] method with ILUT [79] preconditioning or the
external library SAMG [81], which is based on algebraic multigrid methods.

2.6 Directional derivatives

In some cases it is easier to derive linearized equations using the directional
derivative [7]. It is defined as

pFjy) = 4E e (2.75)

de e=0

It can also be generalized to the Gateuax derivative over Banach spaces. It is
also worth to point out that sometimes the classical Frechet derivative might
not exist, while a function is still Gateuax differentiable. The reason, the
directional derivative is a convenient way to develop some of the linearized
equations, is that when both the Frechet and Gateuax derivatives exist, they
coincide. In the case of our model problem (after discretizing in time) we

have
1 + -
—(u"“ —u",v) + a(u"“,?f) (b(u" 1)’ v)oa — (f,v)

R(u™) = A7
(2.76)

dR(u + ed)

DR(u™ )] = —

T de \At

— é(d,v) +a(d,v) + (%(un“)d, v) (2.77)

If we now do the usual finite element approximations for both u and d

N
un =Y wigp, (2.78)
=1

N
dp = Z dipi (2.79)
i=1

d (i(u’“rl +ed —u",v) + a(u™™ 4+ ed,v) + (b(u"T + ed),v) — (f, v)>



32 CHAPTER 2. MATHEMATICAL PRELIMINARIES

we get
DR(u)[d] = J(up)d (2.80)
and for the Newton method
Jd=-R (2.81)

i.e. we arrived at the same formulation that we already obtained in the
previous section.

2.7 'Tensor algebra

We assume that the reader is already familiar with matrices and vectors and
most of their properties. For completeness, however, we show certain aspects
of the tensor algebra that we need for some of the considered models [7]. Of
main interest to us are vectors, matrices and 4th order tensors (actually
the only 4th order tensor that we use is the elasticity tensor in Chapter
4). We make use of repeated index summation (i.e. if there is a repeated
index in a term, we have a sum over it) in some places for convenience,
although in the chapters where it is used, it is explicitly noted. Unless
otherwise specified (e.g. if they are transposed), the vectors we use are
column vectors. If the dimension of the space is n, we assume that a vector
v has n components {v;}, i=1,...,n, amatrix A has n X m components
{ai;}, i=1,...,n, j=1,...,mand a fourth order tensor C has n x m x
p x q components {Cj;r }. We start now in no particular order to express the
concepts we need.

The trace of a matrix is defined as the sum of the elements of its main
diagonal, i.e.

trA = agy (2.82)
The product of two matrices is expressed as
C=AB & (Cj; = Ay By; (2.83)
We define the contraction between two matrices A and B as
A:B=A;B; (2.84)

We also have the following relation between the trace and the contraction of
matrices

A :B =tr(BTA) = tr(BAT) = tr(A"B) = tr(AB”) (2.85)
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The contractions between a fourth order tensor and a second order tensor
are given as

B=C:A= C’Z-jklakleiejr (286)
B=A:C= aijCijkleke;[ (287

The cofactor matrix Cof(A) of a square matrix A is defined as
Cof(A);; = (—1)" My, (2.88)

where M;; are the minors of A, defined as the determinant of the matrix
resulting from removing the i-th row and j-th column of A. With respect to
these cofactors, the determinant can be expresses, using Laplace’s formula
as

det(A) = zn:(_wH%Mij (2.89)

j=1
where in this case the summation is only over j and i can be any index from

1 to n. The inverse matrix A~! is

1
~ det(A)

Cof(A) (2.90)

We also need the invariants of A defined as the coefficients of the character-
istic polynomial of A

P(\) = det(A — AI) (2.91)

Specifically, the first invariant is the coefficient in front of \»~!, the second
- in front of A» 2 and so on until the last, which is just the free coefficient.
We restrict the discussion here to a 3 x 3 symmetric matrices, since we are
only using the invariants of such matrices. If A is such a matrix, its three
invariants are given by

I = tr(A) (2.92)
II,=A:A (2.93)
1114 = det(A) (2.94)

1
Note that the second invariant should be Q(tr(A)2 — A : A). However 1y

in (2.93) is obviously also invariant and following Bonet and Wood [7] this is
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the expression we use. The derivatives of the invariants with respect to the
matrix A are

(%)U - gi/j = ZGT’Z-C = 03 (2.95)
(50), - B, ase

or in matrix form
%/f =1 (2.98)
T (2.99)
OLILA _ Cof(a) = det(A)A™ (2,100

Every symmetric real matrix can be expressed as
A = PAP? (2.101)

where P is an orthogonal matrix which contains the eigenvectors of A as
columns and A is a diagonal matrix with the eigenvalues of A on its main
diagonal. It is easy to see that the invariants of A can also be expressed as
functions of the three eigenvalues as

]A - )\1 + )\2 + )\3 (2102)
ITy =X+ X+ )] (2.103)
IT14 = A\ Ao)s (2.104)

Also for the powers of A we have

A" =PA"P” (2.105)



Chapter 3

Electrochemical models

The main processes that we consider are the transport of lithium-ions and
electrical charge inside the battery cell. As previously mentioned in the intro-
duction, this transport can vary depending on the type of underlying material
used for the specific anode or cathode. Originally the modeling of lithium
transport was initiated by Newman and his coworkers. An account of the
development of these models along with more recent results is given by New-
man and Alyea [67]. The type of diffusion models they considered are still
widely used today and actually the two models that we use [59, 58] for the
electrochemistry are also based on diffusive transport. One of the most pop-
ular models of this kind is the volume averaged 1D+1D model for spherical
particles by Doyle et al. [31]. There are also other models on this semi-
upscaled battery cell level based on the asymptotic homogenization theory
[56],[35]. The models we consider however are on the real porous structure.
Other models on this scale include [97, 57]. Numerical experiments on the
model [59] are also given in [61, 72], where the researchers use the voxel based
finite volume method. We compare in the results section the FEM and the
voxel based FVM for the same model [59] to study the dependence on the
discretization.

There are also models which deal with more complicated phenomena for
the lithium transport in the solids. As we already mentioned in Chapter
1 some materials exhibit unusual loading patterns where particles charge
depending on their size, or where sharp phase transitions form between lithi-
ated and non-lithiated parts. Such phenomena are modeled by researchers
with e.g. Fokker-Planck [33] or Cahn-Hilliard [86] types of equations. The
Cahn-Hilliard equation is a fourth order PDE, originally used for describing
separation of binary fluids. It is also extensively studied theoretically and
numerically. In that sense, even though we do not use it here, our software
can be easily extended to solve the Cahn-Hilliard equation, based on for-

35
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mulations where the equations are written as a system of two second order
PDEs [36].

There are many models [70, 44, 92, 74] that couple a heat transport equation
to the volume averaged model by Doyle et al. [31]. There are also models
which consider the temperature directly on the stack level [18, 19]. We make
note here that in our simulations, the temperature increases macroscopically
even though we use a cell-resolved model. This allows us to reformulate the
thermal balance equation of the model [58] as an ODE for the temperature.
However, we still account for the volumetric heat sources and we show that,
indeed, there can be big differences in the values of the sources resulting from
the geometry.

Software tools used by researchers for simulating such electrochemical mod-
els include Battery design studio [15], COMSOL [48], BEST [50], etc.

The remainder of this chapter is organized as follows. In Section 3.1 we show
an isothermal electrochemical diffusion-type model [59] for transport in both
the electrolyte and the electrodes. In the next section, 3.2, we also present
a non-isothermal electrochemical model [58]. The heat equation from Sec-
tion 3.2 is then recast in ODE form in Section 3.3. After that, we give the
discretizations of the two spatially resolved models in Section 3.4. Finally,
we present the results obtained by solving the two microscale models as well
as the contribution of the various heat sources as obtained in the ODE from
Section 3.3.

3.1 Isothermal model

The isothermal model which we use [59] is based on diffusive transport in both
the electrodes and the electrolyte. It is posed on the microscale level (um to
nm scale) where we can resolve the porous structure of the electrodes, but
where we do not consider kinetic models for individual atoms. In this model
the unknown quantities are the lithium-ion concentration ¢ and the electrical
potential ®. The two phases, solid active materials and liquid electrolyte,
are coupled through the highly non-linear Butler-Volmer equation on the
interface between them. The values of the concentration and the potential
are discontinuous across the interface. The PDEs in the active material and
the electrolyte are of the same form with respect to the electrical current j
and the flux of lithium-ions N, however the fluxes themselves are different in
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the two phases. The common form of the system of PDEs is the following

8—C+V-N:0, x € () (3.1)

ot
V-j=0, xe€ (3.2)

where 2 is the whole computational domain. The fluxes in the electrodes are
given as

N,=-D,Vc,, x€Q, (3.3)
o= KV, x€Q, (3.4)

and in the electrolyte they are given as

1—t, RT
je = =K VP, + ke—————Ve,, x€. (3.5)
F  c
t
N, = —D.Vec, + F*J x €, (3.6)

The subscripts s and e are used to distinguish between solid and electrolyte,
respectively. In the above D is the diffusion coefficient, F' is Faraday’s num-
ber, R is the gas constant, ¢, is the transference number and x is the electrical
conductivity. The domains 2, and €2, refer to solid and electrolyte respec-
tively, and we further distinguish two subdomains for €, €2, for anode and
Q. for cathode. A two dimensional sketch of the domain is given in Figure
3.1

1—‘|a/F|\F|c

I‘cc< Q

> Fec

I'. )

Figure 3.1: Schematic of the computational domain:  is the whole domain; Q., Q,, 2.
are the subdomains of the electrolyte, anode and cathode, respectively; I'c, ', and T'; are
the external boundaries of the electrolyte, the anode and the cathode; I';, and I';. are the
interface boundaries of the anode the cathode and I'y = I';, UT';. is the whole interface;
I'ce is the boundary next to the current collectors, c.f. Figure 1.2

Since lithium-ions cannot leave the battery cell, we set the lithium ion flux
to zero in the normal direction on the external boundaries in both phases.
For the electrical current we assume that no current flows out through the
external boundary of the electrolyte, i.e. we set the electrical current to zero
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in the normal direction. In the electrodes we fix the potential on the boundary
of the anode and prescribe a non-zero value for the electrical current in the
cathode. In summary

N:-n=0, xel
j-n=0, xel,

J =iy, xcl,
b, =a, xel, (

W ~ —~ —

.10

O oo
~— — ~— ~—

where I' = 0€ is the external boundary of the whole geometry, I'. = 9Q2N0S2,
is only the external boundary of the electrolyte (i.e. without the interface),
I'. =00Nn090, and I', = 902N 0N, are the external boundaries of the cathode
and the anode respectively.

On the interface between active material and electrolyte I'; we have

js'ns:je'ns:ise; XGFI (311)
NS-nS:Ne~ns:%, x eI (3.12)

where n; is the normal vector pointing from the active material to the elec-
trolyte and I'y = ', Ul . T'py = 09\, and 'y, = 0Q.\I'.. are the interfaces
between the active materials and electrolyte at the anode and the cathode,
respectively. The interface current density i, is given by

ise = o (eXp(O;—;ns) - exp(—og—;ns)) (3.13)

We have for the prefactor g
ig = ket cS (Csmaz — Cs)™° (3.14)

and for the overpotential 7
ns = @ — @ — Up(cs) (3.15)

In the above Uy is the material specific open-circuit potential.

3.2 Non-isothermal model

The non-isothermal model [58] can be seen as an extension of the isothermal
model [59]. We have a new quantity — the temperature 7". The lithium and
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charge transport equations are modified by the addition of a thermal gradient
to the fluxes, namely

Sk S
N, = —D,(Ve, + < —EVT), xeQ, (3.16)
js = —Rrs(VO, + B, VT), x € Q (3.17)
. 1—t, RT 1 RT
Je = —meV(I)e + fieTc—evce - '%e(/ge - F e )VT, X € Qe (318)
f Decok
N, = —D.Ve, + —j. - CT VT, xeQ, (3.19)

We also have an additional PDE in each of the subdomains governing the
heat transport. In the electrolyte we have

oT j2 .
pepe gy =VOIT) + 5 —TV(3,j.)+

RT (N, — %j.)?
Ce D,

t
—TV (RkT,e(Ne — %je)) . x€Q. (3.20)

and in the solid

or s : U, N2
pops 5 =VNVT) + 22 — TV(B4,) — P2
TEV (CS%%NQ , xeQ, (3.21)

The new parameters in these equations are the thermal conductivity A, the
specific heat capacity c,, the density p, the Seebeck coefficient 5 and the
Soret coefficient k7. The model is given here in its complete form, but due
to the small values of the Seeback coefficient, we neglect this term in our
simulations.

On the external boundary we have a Robin type boundary condition

“AVT -1 = (T — Togternat), X € Dec (3.22)

where I'ce is the part of the boundary, that is connected to the current
collectors (the brown domains on the sides of the battery cell in Figure 1.2)
and « is the heat transfer coefficient. Unlike the concentration and the
potential, the temperature is continuous across the interface, i.e.

T.=T, xecTly (3.23)
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Instead we have an interface condition on the heat fluxes

—AVT -ng+ A V1T -n, =

oU, RTkr (1 —t
- 7;86778 - Z-sel_[ + Z-se (Cs_okT,s + L }(7 +)>

el 3.24
Oc X ! ( )

leading to further sources of heat on the interface. In the above II is the
Peltier coefficient. In Table 3.1 we give a list of the heat sources. Note that
we do not give all the sources present in the model, as after discretization
some of them cancel out.

Table 3.1: Heat sources

Source Electrolyte Solid Type
Joule heat £ ii Irreversible

sl RT (Ne—ti.iE)Q aU, N2 :
Mixing heat 5 —F5e5 Irreversible
Soret heat -1V (RkT@(Ne — %Je)) TFV <cs%k?st> Reversible
Interface Joule term LseMs Irreversible
Interface Peltier term el Reversible

3.3 ODE form of the heat equation

In our experiments, we obtain that the temperature has very small spatial
variance and practically behaves macroscopically on this scale. As such it
seems unnecessary to solve a full PDE to obtain it. In this section we derive
an ODE form of the heat equation from the previous section. It is a lot more
efficient to solve as an ODE since we no longer have to solve a linear system
on each time step. The derivation itself is similar to the one we show later
in Section 3.4 for the discretized PDE, but we do not have a test function.
Recall now the PDEs for the heat production in the electrolyte (3.20) and
the solid (3.21). Let us integrate them over their respective domains and
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sum them to obtain

or or
Cp,epeadv + Cp,spsgdv =

Qe Qs
/V A VTdv + /V - A VTdu+
Qe Qs

+2 :2 2

J J RT (N an N

—d =—d d —

Ke vt Kg U+/ 80 D,

e Qg Qe
t+ . aUO kT

TV - N-= TFV - (c,——N 2
/ V - (Rkp( FJ))dv + / V- (es 9 T )dw (3.25)
Qe Qs

We use now the divergence theorem and the assumption that the temperature
and its time derivative are constant in space to obtain

oT
N / cppdv =

/ AVT -nds + / AsVT -nds — [ A.VT -ngds +/)\SVT -ngds+

0Q.Nl'ce NsNC'ce J r
2
[has a0 [,
Qs
ol

/T(RkT(N— fj))-nsder/F( o krN) - mds (3.26)

Qe Qs

We apply the interface conditions (3.11),(3.12),(3.24) and the boundary con-
dition(3.22)

oT
En / cppdv =
oU,

fore(1—t
B / AT — Tewterna)ds + / Isels + lsell —ise (cs 50 s + RT-T ( i < )) ds+
(&

Fce

) 2 2
J J RT ( - f.] 8U0 N
I{edv + I{de —i—/ —— " dv 80 D
e Qs Qe
RTkpig (1 —1 Uy ., .
/ r F( +)d8 + /c 2. O orioeds (3.27)

r r
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After canceling the repeating terms we get

orT
5 / cppdv =
Q
- / Q(T - Tea:ternal)ds + /isens + iSEHdS+
Fce T
22 2 t \2 9
J J RT (N — #j) U, N
—d —d P qo— [ P2 d 3.28
Ke ot Ks v_l_/ Ce De ! 80 Ds v ( )

e s e s

3.4 Discretization

Following the same procedure as in section 2.2 the weak form of (3.1),(3.2)
1s

%wdv — /N - Vipdo + /N ‘ngds =0 (3.29)
Q Q I,
—/j-dev+/j-n5wd3+/j-nwds:0 (3.30)
Q r; r
and specifically we have in the electrolyte
dc t+ . Use _
Ewdv + /(D€Vc6 - FJ) -Vipdo — / f¢d3 =0 (3.31)
Qe Qe Iy
1—t, RT
/ 5.V, — et T e,) - Ty - / atds = 0 (3.32)
Qe ‘ Iy
in the anode
a .86
a—j@bdv n / DuVe, - Vipdv + %@bds —0 (3.33)
Qa Qa Fla
//{aVCDS - Vipdo + / 1se0ds = 0 (3.34)
Qa 1ﬂl]a
and in the cathode
a '36
/ a—j@bdv n / D.Ve, - Vipdo + %@bds —0 (3.35)
Qc Qc I—‘Ic
//{CV@S - Vipdv + /ise@bdv + /iapplwds =0 (3.36)

Qc FIC 1—‘lC
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where we assume that ¢, ®,¢9 € H'(Q),k = e,a,c. For the discretization
itself we must also keep in mind that the two functions are discontinuous on
the interfaces between the liquid and solid phases. Thus the basis functions
have to allow for such discontinuities. One way to look at this is that the
basis functions themselves are discontinuous there. This means that on the
interface nodes they are unity in one phase and drop to zero in the other
phase, c.f. Figure 3.2.

Figure 3.2: Support of interface basis function ;. The support of the func-
tion is restricted to the striped region. The interface is given as bold dashed
line.

Their support is thus limited to a single phase. This allows us to think of
the discretized quantities as being defined in the whole region as is the phys-
ical setting. On the other hand we can also consider the different phases as
separate regions, with some quantities defined in the respective regions and
connected to some other quantities on the interface. In both cases the dis-
cretized equations would be the same. Either way we employ node splitting
on the interface, i.e. we mesh the whole geometry and then we consider each
node on the interface as two distinct nodes. We do this in order to keep
the two nodes geometrically in the same place. One could also define the
nodes on the two sides of the interface in a way that they do not coincide
geometrically and interpolate as necessary for the quadratures. This, how-
ever, introduces both increased complexity in the computations as well as
potential numerical instabilities coming from the interpolation of the values.
Let the discretized mesh have N nodes. Let N; of these nodes lie on the
interface. Then the total number of the nodes we consider is N = N + Ny,
when we also take into account the number of nodes on the interface coming
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from the node splitting. The discretized functions over the whole domain are
as follows

Nr

Cr=> Cipi(z), x€Q (3.37)
=1
Nt

O, =Y Pyi(x), x€Q (3.38)
=1

where C},, @), are the discretized lithium concentration and discretized po-
tential, respectively, over Q, C = (C},...,Cy,) and ® = (Py,..., Py,) are
their nodal values and {p;}7 are the basis functions of the discrete space
Vi, € HY(Q,) U HY(Q,) U HY(Q.). We also further distinguish the partial
sums

Ne

Che = Z Ciepi(x), x€( (3.39)
i=1
NS

Chs = Z Cispi(x), x € (3.40)
i=1
Ne

Ope=> Popi(x), x€Q (3.41)
i=1
Ns

oy, s = ZPZ"S(,OZ‘(X), x € (3.42)
i=1

as the interpolants of the two functions in the subregion of the electrolyte €2,
and the subregion of the solid particles €2,. In the same manner we also denote
the vectors C,, C,, ®., P, as containing the nodal values of the functions in
the respective subregions. The number of nodes in €2, is N, and in €, —
it is Ns. We do not show here the residual R(Ch ¢, Ppe, Ch s, Prs), since it
is very similar in form to the weak formulation (3.29),(3.30). Namely, in
order to derive R, we substitute the discretized functions (3.37),(3.38) in the
weak formulation and test the two equations with each function of the basis.
This residual thus has 2N7 elements since we have two PDEs, discretized
over Ny nodes. To apply the Newton method, we need the derivatives of
this vector residual in order to assemble the Jacobi matrix. We are going
to show the derivatives of the two main equations in the electrolyte and the
solid with respect to the elements of C., C,, ®., ®,. Because the solutions in
the regions are coupled only through the interface integrals, the derivatives
of equations of one region with respect to values in the other region will
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come only through these integrals. Since the weak formulations in the anode
(3.33,3.34) and cathode (3.35,3.36) differ only by a linear boundary integral,
that does not contribute to the derivatives, we again use the subscript s to
denote either solid. We list the derivatives with respect to the nodal values
of the functions. These derivatives are the elements of the Jacobi matrix.

We start with the discrete lithium transport in the electrolyte

OR; (¢ pj) t+(1—ty) RT
oc.. At T\ P, ) Vet

o el 1) BT
TR

1 C1!1,5(1 - Ch,s) . FTI
7 (k:\/ Cr sinh <2RT ) Pi

vch,e; v@z) -

aRz t+K/
8P67]' < V@]? VQOZ>

1 Fn\ F
F (k\/Ch,eCh,s CYh s) cosh (2RT> RT@]? @z)

— = 2| i/ ’ h
ac,, Ja (‘P; Che o= sin (2RT)

\/Ch,eCh,s Ch s) cosh <2RT) ﬁ acs 5, @z)

oR; Fn\ F
op,, = ( \/C’heChs (1 — C) ) cosh (2RT> RTgpj,ng>

(3.43)

(3.44)

(3.45)

(3.46)



46 CHAPTER 3. ELECTROCHEMICAL MODELS

and the charge transport also in the electrolyte

aaé?j = (—/«;1 ;t+ g}i Vo, + wjnl_% gg; Vi, Vgol-) —
(k\/% sinh (2];7;) i ) (3.47)
gjﬁz (kY Vipi) +
( \/Ch ¢Chs(1 — C 5) cosh (;;7;) R—Z;goj, goi) (3.48)
\/Ch,eC’h,S(l — C},5) cosh (;;2) %?9[0]50 ©j, gpi) (3.49)

F F
— (k\/Ch,eC’hs — C},s) cosh (2R7;> RT%’%> (3.50)

In the solids we have

086}*1 - = ( \/W sinh (ZFR"T) 90> (3.51)
glfi = —% (k\/ChyeChs — C},s) cosh (2];7;) ;T(pj,gpz) (3.52)
- - - B bi)  (D,v, Vo) +

% (%x/@ Clh_(f(ihch st (2]; ’7T)

V/CneCis(1 = C) cosh <;;’7T> ;T g((f 5 @Z) (3.53)

Fn F
=% (k\/ChﬁChs — Cp,s) cosh <2RT) Taak %’) (3.54)
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for the derivatives of the discretized lithium transport and

OR; Chs(1—=Chy) . Fn
= | k) ===~/ h .
ac., ( \/ Cr sin (QRT i (3.55)

aPeyj - ( \/Oh eChs 1 - Oh 8) COSh <2RT) RT¢J’¢1) (356)

=—k | pivV/Che ’ h
8CSJ (SOJ " \V Ch 3(1 - C(h s) - (2RT

\/Ch eChs 1 —Oh s) cosh <2RT) ﬁa—%QOJ,QOZ) (357)

OR;
P,

= ("iv@jﬁ V%) +

F F
(k\/ChyeCh,s — Ch,s) cosh (ZPZ;) RT(’DJ’ cpz) (3.58)

for the discretized charge transport.

On each time step we solve the coupled system of equations (3.1, 3.2) simul-
taneously for both the isothermal and the non-isothermal models. When we
are also solving the heat transport equation, however, we use a sequential
approach. We solve the electrochemical PDE system using the temperature
from the previous time step and then use the electrochemical solution as
input for the last PDE. Our previous work [91] showed us that in two dimen-
sions there are practically no spatial variations in the temperature on our
scale, since the heat diffusion is much faster than the heat generation. With
our current experiments we found the same to be true in 3D, and thus one
can neglect the temperature gradients in the first two equations and we do
so here in the discretization for clarity. Also the relatively small variations of
the temperature between two time steps seem to cause no discernible effect
on the converged solution for the electrochemical system. Hence, we do not
iterate between the electrochemical system and the temperature equation,
but solve them only once per time step. The only terms in the heat equa-
tion, that we keep on the current time step are the diffusion term, so as not
to impose a very strict time step restriction, and the Robin boundary con-
dition. For the spatial discretization of the temperature we do not use the
double nodes, since it is continuous even on the interfaces. The interpolant
is

N
T, =Y Twpi(x), z€Q (3.59)
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where T} are the nodal values of the temperature and {p;}, are defined as
regular basis functions over €, i.e. they are not discontinuous on the interface
and thus ¢; € V;, € HY(Q). Due to the small values of 3, we neglect the
terms with the Seeback coefficient in the discretization and the solution of
the heat equation. The weak formulations for the heat equation (3.20,3.21)
in the two phases are

T
/cp7€peaa—t@/zdv + /)\EVT - Vidv — / AVT -n pds—
Qe Qe Qe

RT (N - j)?
i—wdv—/ o

/ T (kaN - %j)) s = (3.60)

in the electrolyte and

T
/Cp,sﬂs%—tﬁbdv + / AVT - Vipdv — / A VT - ngpds—

Qs Qs Qs

2 aU, N?
;L—S@Z)dvjt / FEO ot

Oc Dy

s QS

a(]0 kT,s

s

/ FT (cs%k;SN) -nytpds = 0 (3.61)

Jdc

Qs

in the electrodes. To obtain the weak form over the whole domain, as well
as to include the interface condition (3.24) for the heat flux over the whole
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domain, we sum the two equations. The result is, after simplification

oT
/cppawdvjt/)\VT-V@/}dv—
Q Q
2 T Ne o t_+.e 2
J_G@Z,dv_/R_M@de_
K c D,
Q Qe

] V(T - (RkT,e<Ne - %L)) dv—
Qe

:2 2
Js 8(&)P¢S
Owdv+/F 5 Dgl/}dm—

s QS

8UvO kT,s

S

/ise(ns + [Mpds + / (T — Tepterna)ds = 0 (3.62)

'y Feo

After discretization in space and time we get

Tt — e
/cpph—hgpidv - /)\VT,’ZHl - Vpidv—

At
Q Q
1\ 2 T (N? — t4 sn\2
/(Je—) %d“_/R NE— T o
K cn De
Qe Qe

ty .
[ vt (Rrns = i) do-
Qe

§)? oUp (N3)?
/Tgozdv + FWTSQDZCIU_"
Qs Qs

m naUO kT,S n
/FV(goiTh) : <cs§ R NS) do+

/i’;e(ns + )p;ds + / Oz(Tg”rl — Torternal)ids = 0 (3.63)

Iy Fce

i.e. we calculate all the heat sources with the values from the previous time
step, where we denote with superscript n, the values from the previous time
step and with n + 1 — at the current time step.
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Initial Newton iterate. For the Newton method we also need a good
initial iterate, which is close to the solution. Otherwise the interative process
might not converge. For the time dependent equations we simply use the
already converged solution from the previous time step. We can also do
the same for the quasi-static potential equation after the first time step.
However, on the first time step for specific situations, e.g. if we apply high
charge or discharge currents, it is possible for the solution to diverge. For
that reason we do the following procedure to determine a good initial iterate
for the potential. First, we assume that the potentials are uniform in all the
media (with different values in the different phases). From our experiments
this assumption seems reasonable for the electrodes. For the electrolyte, we
do have spatial variations, but with the assumption for spatial uniformity we
still obtain a good initial iterate. With these assumptions in mind, we have
from the equations in the cathode

0=-V-o(VD,)

/V o(Voy))dv

— / oV, - ndv
Qe
_ / fedls + / fapprcls (3.64)
FIc Fc
and hence
/iseds = —/iapplds (3.65)
FIC Fc

Using similar transformations we also obtain that in the electrolyte we have

/iseds = —/iseds (3.66)

FIa FIC

However, since we impose a Dirichlet boundary condition in the anode, and
we also assumed that the potential is constant in space, we already know the
value for the potential in the whole anode. Namely, it is the value of the
boundary condition. Since this procedure concerns obtaining a good initial
iterate for the potential before the first time step, it is not unreasonable to
also consider the values of the concentration to be constant in each of the
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different phases. Finally, what we obtain is

/z’seds = /z’applds (3.67)

Tra e

We can now use the expression for i, to compute the value for ¢, and then
for .. Due to the assumption that all the quantities are constant

/z’seds:z’se/ds (3.68)

FIa FIa
and therefore
fiappldS
. .
se = 3.69
t |FIa f dS ( )
Fla
If we take (3.13) and use a, = o, = 0.5 we obtain
F
(0 sinh (m%) = iS@|FIa (370)
. ise|r 2RT
. = asinh [ 2ol ) 200 3.71
1s = asin ( i > I ( )
se 2RT
b, — p. — Uy = asinh (m) — (3.72)
10 F
se 2RT
e = @, — Uy — asinh (—Z _|F’“) — (3.73)
10 F

We can now do the same for the integrals in the other electrode to obtain @,
as

2RT

e (3.74)

®. = ¢, + Uy + asinh (%>
20

3.5 Results

We are running a series of experiments using the isothermal and non-isothermal
models. We test several scenarios with varying the geometry and the input
parameters. Namely, we study the sensitivity of key engineering quantities
on the geometry, the strength of the current applied, and the level of thermal
insulation of the battery cell. We also compare the finite element solution
against a voxel based finite volume method solution on the same geometry.
This is done to demonstrate the advantages and disadvantages of the two
approaches for the models we consider.
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3.5.1

We list the common volumetric parameters we use in Table 3.2 and the
common interface ones in Table 3.3. The specific parameters and regimes
for the two models are given in the respective subsections. Note that these
parameters are taken to be in the realistic range of values and not necessarily
measured values for a specific material. However, they are similar to the ones
used in [40, 31, 61]

Common setup

Table 3.2: Common parameters used for the simulations

Symbol Name Electrolyte Anode Cathode
D Diffusion coefficient 1.622 x 10’6% 10’10% 10-10cm’
iy Transference number 0.399 0 0
K Electroconductivity 0.022 102 0.38 2

Crmaz Maximum concentration - 0.023671 gfé 0.024681 %031

Table 3.3: Values of the parameters for the interface conditions

Symbol Name Anode Cathode
Qq Transfer coefficient 0.5 0.5
' Transfer coefficient 0.5 0.5
k Reaction rate constant | 0.002 ‘ifor;f: 0.2 /?[forf_:

For the open-circuit potential we use the specific expressions given by Fuller
et al. [40]

Up=—0.132 + 1.41e 35%¢ x € Q,
Up =4.06279 + 0.0677504 tanh(—21.8502s0¢ + 12.8268) — 0.045¢~7"-69%0¢" _

]' —200(soc—0.19
0.105734 <(1.00167 ESTE — 1.576) + 0.01e ( ),X € Q.
where
soc = —= (3.75)
Cmaa:

is the so-called state of charge. For the concentration we use the following
initial conditions
c(x,0) = 0.1¢maz,
c(x,0) = 0.9¢maz,

x €,
x € (),
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Figure 3.3: Mesh for the simple electrodes

Figure 3.4: Mesh for the spherical particles

For the temperature we use
T(x,0) = 298K (3.78)

where for the isothermal model, we just use this value throughout the whole
simulation.

3.5.2 Isothermal model

Here we run the simulations on three different geometries:

e simple electrode geometry consisting of a single block of non-porous
material for each of the electrodes, c.f. Figure 3.3; 4009 tetrahedral
elements, 1198 nodes

e porous electrode geometry consisting of multiple connected spheres.
Each sphere is about 10 micrometers in diameter, c.f. Figure 3.4; 56727
tetrahedral elements, 14557 nodes

e the electrodes comprise of long cylinders. The diameter of the cylinders
is about 9 micrometers, c.f. Figure 3.5; 101078 tetrahedral elements,
24631 nodes

The volume of the solid of the first geometry is larger compared to the other
two geometries, while the solid volumes of the second and third geometries
are about the same. In all cases the electrodes are 55um thick and the solid
volumes of the spherical and cylindrical geometries are about 66% of the

Figure 3.5: Mesh for the cylindrical particles
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volume of the non-porous electrode, giving porosity of 34%. The interface
surface area of the non-porous geometry is 100um?, for the spherical geome-
try it is 1250um? and for the cylindrical geometry it is 1616um?. The charging
and discharging processes are performed on a 1C and 2C currents. Specifi-
cally 1C is the current we need to apply to charge or discharge the battery in
one hour (where depending on the sign of the current we charge or discharge).
This value is calculated under the assumption that the lithium diffusion is
so fast in the particles, that we can consider the lithium concentration to be
constant in the electrodes. The formula is thus obtained from

de ise I dappt| el
adv = — /V -Ndv = — / Fds =% /zapplds = % (3.79)
Qc Qc FIc

Ie

and using the assumption that % is constant in space, we can take it out of

the volumetric integral and obtain

@ Lappl | L. ’

= 3.80
ot F|Q.| ( )
Integrate in ¢ from 0 to ¢ fina
Z-a Z|Fc’
trinal) = —2 S tina 0 3.81
c(tfinat) Floy 1 +¢(0) (3.81)
Substitue ¢(0) = ¢maz, tfina = 3600s, ¢(3600s) = 0 and solve for i,y
. . Cmaz ||
Lappl = L1C = _—|F ’36008 (3.82)

where we denoted with i1 the applied current density we need for 1C rate.
Note however that the assumption on the concentration being constant in
space is in general false. In fact the diffusion in the particles is relatively
slow, and we can obtain very uneven distributions in the concentration profile
with steep gradients. Two times the C-rate or 2C is then the current which
we would theoretically need to empty an electrode in half an hour. Also
we calculate these values for the geometry with the spherical particles and
adjust them for the other two geometries as to drive the same total current
in all cases, i.e.

ispherical‘rc|spherical = Z‘cylinder’Fc‘cylinder = Z.bm'ck’Fc‘brick (383>

We demonstrate that despite the much higher theoretical capacity of the
simple electrodes, for any reasonable usage scenario the other two geometries



3.5. RESULTS %)

give a lot more usable capacity.

On Figure 3.6 we show the cell voltage U, versus transferred charge @) for
a charging process. The transferred charge () is the amount of charge we
already moved from one electrode to the other. It is useful in the sense
that we can compare directly different charging/discharging situations with
respect to the actual capacity used. Otherwise we cannot really compare 1C
to 2C for example, because it would only be natural when we apply a two
times higher current, for the battery to be empty a lot quicker. The formula
we use to obtain the transferred charge @) (in ampere-hours (Ah)) is

Q= Gappl X |Te| X
36002

(3.84)

where t is the time (in seconds). The cell voltage U,y is the difference
between the electrical potentials in the two electrodes as measured at their
external boundaries, i.e.

Ucell - q)|FC - CI)|Fa (385)

It is important because in real batteries, the manufacturers usually use the
cell voltage as measure to determine when to stop charging or discharging
to avoid damage to the battery. As one can see when we apply a higher
current, we obtain a higher cell voltage for the same transferred charge. If
the cutoff voltage (that is the voltage used internally to determine when
to stop charging or discharging a battery) is for example 4.4V in the above
comparison (the dotted line in the figure) we can observe that with the higher
currents we would be able to use about half of the capacity compared to the
lower currents. For the specific geometries we consider, we also note that
for the cylindrical one we obtain slightly lower voltages for both 1C and
2C than for the spherical one. With the brick geometry even for 1C the
usable capacity is negligible compared to the other two geometries. This also
shows why in practice brick-like non-porous electrodes are very seldom used.
In Figures 3.7 - 3.10 we can also observe the spatial profile of the lithium
concentration for the spherical and cylindrical particles for both 1C and 2C
cases. As can readily be observed for both geometries the higher current
we apply, the steeper the gradients of the concentration of lithium ions in
the electrodes. If we use smaller particles we can utilize more of the lithium
ions. With smaller particles we can also obtain much higher surface areas.
The higher surface area we have, the lower would be the cell voltage when
we charge the battery, since we drive the same current through a bigger
surface, and hence the pointwise values in i, would decrease meaning a
smaller potential jump. Finally in Figures 3.11 - 3.14 we show the electrical
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Figure 3.7: Final concentration (Z’:rfé) profile after 1740s (Q = 1.116 x
107?Ah) in the charge process for 1C for spherical particles

current for the cylindrical and spherical electrodes. In 3.11 we see that where
the channels in the porous spherical geometry are thin we have high electrical
current. A closer view of the electrolyte near the anode is given in Figure
3.12 where this is easier to observe. Similarly in Figures 3.13 and 3.14 we
give the electrical current for the geometry with the cylindrical electrodes,
first for the whole electrolyte and then for the electrolyte near the anode. For
this geometry there are no such localized high currents. This is important
because the electrical current and the lithium flux are main ingredients in
the volumetric heat sources in the non-isothermal model. We do not show
the lithium flux here since its behavior is the same as the electrical current,
only the values are different.
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3.5.3 Comparison with the finite volume method

We also perform a comparison for the isothermal electrochemical model when
solved with the finite element and the voxel based cell-centered finite volume
methods. For the finite volumes we use a voxel discretization coming from the
software tool GeoDict [43]. For the finite element we use a tetrahedral mesh
generated in Netgen [82] as well as the voxel mesh used for the FVM with
hexahedral elements. The FVM simulation itself is run using the software
tool BEST [50]. The FEM simulations are run, using software developed
within this thesis. In the test cases we consider here, we use only one geome-
try consisting of four spheres for each electrode and a charging process with
1C and 10C charging rates. Note that the voxel discretization of the spheres
gives a slightly larger volume for the active material than in the original ge-
ometry, which would result in a higher current being applied. This is why we
computed the total applied current for the tetrahedral geometry and used it
to calculate the applied current density for the voxel geometry, i.e.

ivoxel _ itetrahedral|Fc|tet7‘ahed7‘al (386)
|Fc|voa:el

Also the number of elements in the tetrahedal mesh is chosen to be approxi-
mately the same as the number of volumes for the voxel mesh. The differences
in the solutions are given for the cell voltages in Figure 3.15. The difference
in cell voltage between FEM with tetrahedral elements and the FVM with
voxel volumes for 1C is about 35-40mV. For 10C we observe a difference of
about 100mV. If the operating regime of the battery is about 1V between the
two cutoff voltages this is about 4% error for the 1C case and about 10% error
for the 10C case. The cell voltage is a macroscopic quantity, where one would
generally expect the two methods to give very close results. The differences
can be explained mainly with two things - bigger interface surface area for
the voxel mesh and the presence of nodes on the interfaces for the FEM. The
bigger interface surface area, leads to lower resistance and hence lower values
for the potential in the cathode. However, the difference between FEM with
hexahedral elements and FEM with tetrahedral elements for the cell voltage
is about two times smaller than the difference with FVM for both the 1C
and 10C cases. This seems to imply that due to the steep gradients of the
concentration close to the interface, the presence of interface nodes in the
FEM also contributes to the difference in the cell voltages between the two
methods. Indeed, augmenting the FVM with values on the interfaces leads
to improved results in 1D cases as shown by Zhang et al. [103].

The spatial distributions of the concentration in the anode are given in Fig-
ures 3.16-3.18. When looking at the values for the concentration, we see
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Figure 3.15: Cell voltage differences for charging process. The red line is
difference between the solutions of the FEM with tetrahedral elements and
FEM with hexahedral elements, and the blue line is the difference between
the solutions of the FEM with tetrahedal elements and the FVM

that the hexahedral FEM vastly overestimates the values on the interfaces
where there are corners. This is true for both 1C and 10C cases. While the
FVM does not seem to suffer from such overestimation, we should note that
even in the 1C case (and especially in the 10C case) the distribution of the
concentration on the interface is not uniform as is the case for the tetrahedral
FEM. This could be important if one needs the values of the concentration as
an input for computing another quantity. If one wants to simulate for exam-
ple intercalation-induced stress, both the distribution of the concentration
and the artificially created corners from the voxelization can be important.
Similar observations about hexahedral FEM on voxel mesh versus tetrahe-
dral FEM in the context of battery simulations coupled to linear elasticity
are also reported by Hun et al. [47]. On the other hand the FVM is lo-
cally conservative, and on a Cartesian grid it is easier to build a scheme that
satisfies the discrete maximum principle (Section 2.4.1), thus guaranteeing a
non-oscillatory solution.
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3.5.4 Non-isothermal model

For this model we need several parameters in addition to the ones already
given in Tables 3.2 and 3.3, that we give in Table 3.4.
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Table 3.4: Parameters for the thermal simulations
Symbol Name Electrolyte Anode Cathode
kr Soret coefficient 1 1 1
A Thermal conductivity | 0.01 CIYXK 0.01 CXK 0.01 CXK
p Density 0.001-% | 0.0029_% | 0.0036_%;
cp Specific heat capacity | 2000 | 7000 | 70002
II Peltier coefficient - -0.28V -0.38V

For the non-isothermal model we test only with the cylindrical and spheri-
cal electrodes from Section 3.5.2 and show the temperature increase for 1C
and 2C and various levels of thermal insulation of the battery. Note that in
our experiments the temperature behaves like a macroscopic quantity which
changes on the scale of the whole cell. Therefore, we only report it as macro-
scopic, i.e. only a single value for the whole cell. We also show the con-
tributions of the various heat sources in the model both on the level of the
whole cell and for selected time steps also spatially to appreciate where these
sources are strongest.

We first show in Figures 3.19a and 3.19b the averaged temperature under
different conditions. Namely, we show for both geometries considered and
for both 1C and 2C charging regimes, the temperature with respect to dif-
ferent levels of thermal insulation of the battery. One can observe that with
increasing the C-rate the temperature increases faster for the same trans-
ferred charge for both geometries. We also observe that when we set the
heat transfer coefficient o to be nonzero the temperature can almost reach a
steady state by the end of the charge cycle for the 1C case, whereas this is
not the case for the 2C case. Finally, we make note of the final temperatures
reached in all cases, presented in Table 3.5. We observe that the tempera-
tures for an equal transferred charge are higher in the spherical geometry for
the same charge rate and insulation conditions. For the 2C case this differ-
ence is about half a degree. As we already pointed out in Section 3.5.2 the
larger surface of the cylindrical electrodes leads to lower electrical potential
in the cathode and to smaller absolute values of i,. Since iz is also the
boundary condition for the concentration equation this also leads to not so
sharp gradients for the concentration. For these reasons the temperature is
lower in the cylindrical particles. Similar argumentation is also applicable
to 1C versus 2C results where one also has a two times difference in the
electrical current due to the boundary conditions and also two times higher
values for i,,. We show in the next subsection the contributions of each heat
source, but make note here why the temperature increase between 1C and
2C is not even two times, let alone more. While the heat source contributions
per second increase quadratically in the case of the Joule and mixing heats
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and linearly in the case of the interface contributions, the charging process
ends much sooner for 2C charging rate than for 1C charging rate.

Table 3.5: Temperature reached for 10"°Ah transferred charge

Cylindrical | Spherical
1C, a =017~ 304.8K | 305.13K
2C, o = 05 306.34K | 306.83K

1C, a =10 "= [ 300.97K | 301.34K
2C, =10 | 303.32K | 303.85K

Let us now focus on the individual heat sources. As one can see in Table 3.1,
we have both irreversible and reversible heat sources. As we already showed
in Section 3.3, under the assumption of constant in space temperature, the
Soret effects in the bulk and on the interface cancel out. In that sense we
only show here the spatial distributions of the Joule and mixing heats. The
Joule heat and the mixing heat are functions of the squares of the fluxes
and the coefficients in front of the fluxes are always positive and hence the
terms are irreversible heat sources. On the interface we have two remaining
terms after the discretization, namely i,.n and i, Il (see Equations (3.63)).
One can easily observe from the definitions of i, and n that they always
have the same sign and thus the first term is also always irreversible and
positive. The second term, however, can change sign depending on whether
we are charging or discharging, since 7, changes sign and it is not necessary
for the Peltier coefficient II to do so (and since we take it as a constant in
our simulations it, indeed, does not). It is thus a reversible heat source, i.e.
it can act as either a source or a sink depending on the process. In Figures
3.20 to 3.27 we show the pointwise values of the volumetric heat sources -
Joule heat and mixing heat (given in Table 3.1). From Figures 3.20 and 3.21
we observe that for the cylindrical electrodes the values for Joule heat are
higher in the electrolyte than in the electrodes. From Figures 3.24 and 3.25
we see that the same holds true also for the spherical particles. However, it is
important to note that while the Joule heat does not exhibit any localization
and sharp changes in the cylindrical electrodes geometry, for the spherical
geometry there are some local effects where the maximum value for the Joule
heat is more than an order of magnitude higher than the maximum in the
cylindrical geometry. For the mixing heat in the cylinder we see from Figures
3.22 and 3.23 that the situation is reversed and the values are higher in the
electrodes. Again the distributions themselves are without steep gradients.
In Figures 3.26 and 3.27 we have the values of the mixing heat for the spher-
ical geometry. While most of the values are higher in the electrodes, we see



64 CHAPTER 3. ELECTROCHEMICAL MODELS

Pseuclocokor
Var: Joule_heat

-U‘UHKJ

—0.008809

- e

e

—0.002930

2092809
Max: 001175
Min: 2.092e-09
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that in the electrolyte there are again local effects, in the same places as
before, where the maximum mixing heat values are not only higher than the
values for the cylindrical geometry, but are also higher than the values in
the electrodes. Finally, we present in Figure 3.28 the pointwise values of the
interface term i, Il which contains the Peltier coefficient to illustrate that,
indeed, it has negative values.
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Figure 3.19: Temperature (K) versus transferred charge (Ah) for different

values values of the heat transfer coeflicient (CTKQ/K)

Heat production as an ODE

Using the ODE form of the heat equation (3.27) we obtain tempeatures which
coincide up to six significant digits with the results obtained with the original
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PDEs (3.20),(3.21). We distinguish the heat source terms

j? j?
Pjoule = //{_dv + K_dv (387)
Qe ¢ Qs °
RT (N — Lj)2 O, N2
P = [BETINZ@) [0 |
izing / . D, dv / e D. dv (3.88)
Qe Qs
F)interface == /(isens + Z'sel_[>d5 (389)
N

where Pjyy. is the Joule heat, Piziny is the mixing heat and Pierface is the
interface heat. In time we discretize it similar to the full PDE in a sequential
fashion to the other two PDEs and use the temperature from the current
time step only for the outer boundary terms.

T /cppdv—l—At / ads | =
Q aQout

™ / Cp/)dU + At F)joule + Pmim'ng + Pz'nterface + / aTexternaldS (390)
Q agout

Let us denote the coefficient in front of 77! with

Tcoef:/cppdv—i—At / ads (3.91)
Q aQout

We show now in several graphs and tables the contributions of the various

joule Pmim'ng inter face
) )

heat sources as for the Joule heating, the mixing

Tcoe f Tcoe f Tcoe f
heat and the interface heat sources respectively. As can be readily observed

in Tables 3.6 to 3.9 the predominant heat generation is coming from the in-
terface reactions. The sources on the interface are two and three orders of
magnitude bigger than the mixing heat sources and the Joule heat sources,
respectively. Another important observation is that when we increase the
applied current density from 1C to 2C, the Joule and mixing contributions
increased quadratically, i.e. four times while the interface contribution in-
creased linearly, i.e. two times. It still is, however, the dominant heat source.
Comparing Table 3.6 to Table 3.8 and Table 3.7 to 3.9 we see that, indeed, for
the chosen geometries, the heat sources are more intense for the spherical ge-
ometry than for the cylindrical. In Table 3.10 we show the total contribution
of each heat source at the end of the simulations.
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Table 3.6: Contributions of Joule heat, mixing heat, interface heating at
different times for 1C charge process on cylindrical electrodes

Tlme I;—z’oule X 105 P;mnng X 105 Pi'r;erface X 103
coef coef coef
Bs 1.58% 0.826% 435
200s | 1.62% 8.79% 415
100s | 1658 1075 1
600s | 1.68% 11.3% 3.9
800s | 1.68% 1145 3.9%

Table 3.7: Contributions of Joule heat, mixing heat, interface heating at
different times for 2C charge process on cylindrical electrodes

Time % X 105 P;zrzng X 105 Pigferface % 103
coef coef coef
Bs 6.355 1.44% 1045
200s 6.63% 35.55% 9.6%
400s 6.55% 42.8% 9.55
600s 6.60% 44,75 9.6
800s 6.64% 455 9.8%

Table 3.8: Contributions of Joule heat, mixing heat, interface heating at
different times for 1C charge process on spherical electrodes

Bs 3.44% 0.906% 47E
200s | 3.51% 12.78 445
400s | 3.54% 15.6% 445
600s 3.58% 16.6% 135K
800s 3.55% 17K 135K

Table 3.9: Contributions of Joule heat, mixing heat, interface heating at
different times for 2C charge process on spherical electrodes

Time | 724 x 107 | Spizins x 107 | Dgtendece o (P
5s 13.75 145 1125
200s | 14.3% 51.6% 10.5%
400s 14L& 62.2% 1045
600s | 14.1% 66.1% 10.6%
800s | 13.9% 67.5% 10.95
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Table 3.10: Total contributions of Joule heat, mixing heat, interface heating
at the final time step

Hinal Pjoule inal Prizing inal Pinterface
Geometry | C-rate of Toedt 6[ e dt 6f —gerteeedt
Cylindrical 1C 0.033K 0.21K 7.90K
Cylindrical | 2C 0.06K 0.34K 8.40K
Spherical 1C 0.07K 0.32K 8. 70K
Spherical 2C 0.13K 0.52K 9.52K
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Chapter 4

Chemoelasticity

Since our primary objective is the simulation of degradation of the materials,
in this chapter we consider models that take into account the generation of
internal stresses in the electrodes as a result of the intercalation of lithium
ions. There are two main directions that we explore. Namely, we use small
strain models and large strain models. For the former we consider both a
single phase model, used by Zhang et al.[105] and we also couple the me-
chanical model from [105] to the full isothermal electrochemical model [59],
described in Chapter 3. Let us note here that solving the coupled model is
implementationally challenging. Some of the equations are defined only in
parts of the domain and are also solved separately. We need a convenient
way to express the relation between the nodes and the degrees of freedom of
the solution. To this end we developed a special class that can be used to
automatically assign degrees of freedom to the nodes of the mesh. We give
details in Chapter 5.

For the finite strain, our simulations are mainly in two directions. First,
we want to show that a finite strain elastic model can recover some general
behavior known from experimental results. Second, we do a comparison be-
tween two elastic material models to study their applicability in finite strain
battery simulations. The two models are popular elastic models from the
literature. To the best of our knowledge, however, there is no previous com-
prehensive study on the elastic model for large deformations in batteries and
several different elastic models are used by different researchers [22, 106, 10].
The chapter itself is subdivided in several sections. First we start with gen-
eral information about solid mechanics and mechanical stresses in Section
4.1. We give some of the measures and formulations that we need for the
mechanical part of the chemoelastic simulations. We then consider the sim-
plification to small strains and specific models on that setting in Section 4.2.
The final section (4.3) is about finite strain models and simulations.

71
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4.1 General solid mechanics

In this section we look at solid mechanics in a general setting. By that, we
mean that we consider the motion of a solid body between two physically
distinguishable states, that we call reference and current configurations. Here
we give only a short introduction to the topic. For more detailed account see
(7, 24]. Let us denote by € the reference configuration, and by € the current
configuration. The transformation between these configurations is given by
the equation of motion

x =p(X,t), X eQ (4.1)
Here X are the coordinates of the points in the original configuration, whereas
x are the coordinates in the current configuration 2. Alternatively we can
also express (4.1) as

x =X+u(X,t), X e (4.2)

where the vector u(X) gives us the displacement between the two states. Let
us also denote by

o o9 9\
= 4.
Vo (axl’ 90X, 8X3> (4.3)
the gradient with respect to the reference coordinates and by
o 9 9\
= =—,=—,— 4.4
v (61’17 8.232’ 8333) ( )

the gradient with respect to the current coordinates. Since in this chapter we
make a frequent use of vector functions, in order to distinguish between vector
indeces and derivatives we use the following notation — a subscript letter or
number, without comma in front of it is an index, and if there is a comma
it is a derivative. Small English letters mean differentiation with respect to
the current coordinates and capital letters mean differentiation with respect
to the reference configuration. Namely u; ; means that we differentiate the
i-th component of the vector u with respect to z; and w; ; means that we
differentiate it with respect to X ;. Also if there are two repeated indeces in
a term, unless otherwise specified, we sum on the repeated index, i.e. A;;By;
means that we have a sum over the index k.



4.1. GENERAL SOLID MECHANICS 73

An important quantity we need is the deformation gradient

8I1 8x1 (9x1
s |3 B B
X i) i) i)
_ v = X =1 4.
X~ |ax, ax, ax, | veXw=IaVeu o (45)
8x3 8%3 8563

0X:1 0Xy 0X;

which is the Jacobi matrix of the transformation. Observe that we have

dx = FdX (4.6)

F

The Jacobian of the transformation
J = det(F) (4.7)

must be always positive for the transformations we consider. Also note the
relation between the infinitesimal volume elements in the reference and cur-
rent configurations

dv = JdV (4.8)
From this relation we can also express the conservation of mass as
podV = pdv = pJdV (4.9)
or
oo = pl (4.10)

Important tensors derived from the deformation gradient are the right and
left Cauchy-Green deformation tensors

C=F’F, b=FF" (4.11)

The right Cauchy-Green tensor arises naturally when we consider the length
of a vector dX in the reference and current configurations

dx - dx = (FdX)" (FdX) = dX'F'FdX = dX*'CdX (4.12)

We can use the deformation tensor C to define the Green strain tensor

| 1 .
B=(C-T)= (F'F 1) (4.13)
= (T4 Vou)" (T 4+ Vou) ~ ) (4.14)

= L1 (Vow) 1 Vou + Voul Vou - T) (4.15)

2
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Compare this to (4.51) where the quadratic term is missing (and also the
differentiation here is with respect to the initial configuration). From the
polar factorization theorem [24] we have that we can decompose F into a
stretch component U or V and a rotation R

F=RU=VR (4.16)
In order to find U we write the eigen decomposition of C

C = QA’Q” (4.17)
A? = diag()\?) (4.18)

where the eigenvalues of C are the squared values of the so called principal
stretches \;. From (4.16) it follows that

C =U'R'RU (4.19)
However since R is a rotation we have that R’R = I and hence
C=U"U (4.20)
We pick U to be the square root of C,i.e. U = C: or
U =QAQ" (4.21)
We can now find R to be
R=FU"! (4.22)

Note that we can now also express the aforementioned Green strain as

E = %(UZ —I) = QAEQ" (4.23)

Ap = %diag(/\? —1) (4.24)
Analogously we can decompose b into
b = qA%q” (4.25)
and find V = b2 to be

V =qAq” (4.26)
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We define the logarithmic strain as
e =InV =q(nA)q” (4.27)
Note that from Equations (4.16), (4.21) and (4.26) it follows that
RQAQT = qAq"R (4.28)

or after a multiplication from the right with R”

RQAQ'R’ = qAq” (4.29)
Hence we have that
RQ=q (4.30)
and consequently
F = RQAQ" = qAQ” (4.31)

Now we also need an appropriate stress measure. The main one, we are

interested in, is the Cauchy stress tensor o. Using this stress field we can

uniquely determine the forces acting on a surface of the current configuration

[24, 7], although this analogy is not shown here. It satisfies the following
equilibrium equations

—dive (x) = f(x), x€Q (4.32)

o(x)n=t(x), xel} (4.33)

In the above f(x) are the applied body forces densities, t are the densities of

the applied surface forces on the part of the boundary of €2, denoted by I';.
The Cauchy stress tensor is also symmetric

o=o" (4.34)

For the solution we also need the above equations in weak formulation where
as usual we multiply by a test function 1@ and integrate over the current
domain €2

/ dive - ¢pdv = / £+ 9pdv (4.35)

Q Q

Now using the divergence theorem we obtain

/U:V¢dv:/f-¢dv+/t-¢da (4.36)

Q Q Iy
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We also derive several other stress measures with respect to the reference
configuration. First, we have

Q/ o Vipdv = / Jo : VpdV = Q/ T VapdV (4.37)

Qo

where we denoted with 7 = Jo the Kirchoff stress. However, the derivatives
in the test function are still with respect to x. To change them to derivatives
in the reference configuration we apply the same logic that we used previously
for the isoparametric finite elements. Specifically

O Oy Oy,
p— 4-
or
Vo = Vi F (4.39)
and from that we obtain
Vip = VopF ! (4.40)
Let us now use (4.40) in (4.37)
/T : VpdV = /7‘ : Vo F1dV =
Q Q0
/ tr(rF Vo' )dV = / TF T VopdV =
Q() QO
/P : VopdV (4.41)
Qo

where P = JoF~7 is the first Piola-Kirchoff stress tensor. Note that it is
not symmetric. For this reason we use the second Piola-Kirchoff stress tensor
given as

S=JF'l'oF "=F'P (4.42)
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From (4.41) we have

/P : VopdV = /FF‘lP : VopdV

Qo QO

= / S : FI'VgpadV (4.43)

Qo
In order to pose the problem entirely in the reference domain we also need to
pull back the integrals containing the body and surface forces. We already

have the connection between the infinitesimal volume elements and for the
surface elements we have [7]

da _ JNTCIN (4.44)

=
Then for the body forces we have
/f~1/)dU:/Jf-t/JdV:/fo-¢'dV (4.45)
Q Qo Qo

and for the surface forces

/t-v,bda: /tj—j-wA: /to-v,/)dA (4.46)
0N 0o Qo

Finally the weak formulation in the reference configuration is

/ S:FIvyypdV = / £ - pdV + / to - PdA (4.47)
Qo Qo Qo

The last thing we want to define here are the so called Von Mises stress and
Von Mises strain given as

3 1

OvM = \/5017‘01’]‘ - §(Ukk)2 (4.48)
2 1

EvM = 56%6%, G?j T §5ij€kk (4.49)

where ¢ is the Cauchy stress and e is the strain tensor. These quantities are
useful scalar measures on the stresses and strains, often used to determine
the onset of inelastic deformations.
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4.2 Small strain

The small strain study of diffusion induced stress was originally proposed by
Prussin for thin plates [73], based on an analogy with thermoelasticity. Later
this model was also put in the terms of three-dimensional formulation, see
e.g. Yang [101]. The three-dimensional model was introduced in the context
of lithium-ion batteries, for electrodes that undergo relatively small deforma-
tion during lithiation, by Zhang et al. [105], although a similar model was
also used earlier by Garcia et al. [41]. Furthermore Zhang et al. [104] also
couple this model to heat generation.

DeLuca et al. [28] study stress generation in Si using a small strain model
with concentration dependent elastic moduli, surface stresses and Butler-
Volmer condition for the boundary of the diffusion equation, but assume
fixed values for the lithium concentration and the electrical potential in the
electrolyte. Ryu et al. [78] use the small strain model for Silicon particles,
and they couple it to fracture to study the dependence of fracture on particle
size. They derive a concentration dependent volume expansion coefficient
that we also adopt in our simulations. Kalnaus et al. [52] couple the model
[105] to damage and fracture models to study Si particles. Other researchers
also couple it to plasticity and fracture [108, 107, 65].

In the current work, we use the model [105] to predict the small strain me-
chanical behavior. It is described in Section 4.2.1. In the same section we
also describe how we couple this model to the full electrochemical model
[59]. In Section 4.2.2 we show the discretized equations. Finally, in Section
4.2.3 we show the numerical experiments that we perform. We first test the
model [105] for two different scenarios for a cylindrical particle, to study the
influence of the advective term on the concentration. We then compare the
results obtained when using the model [105] as is and when we couple it to
[59] as described in Section 4.2.1.

4.2.1 Model

Let us now briefly describe the model [105]. In small strain theory we assume
that the deformation is sufficiently small that we can consider the initial
and the final configurations to coincide. This means it is only necessary to
consider the Cauchy stress measure and we can also neglect the nonlinear
term VuVu! from the Cauchy-Green strain tensor to arrive at the so called
engineering strain measure. The engineering strain is given by

1
57;]' = 5 (UZ'J‘ + ujj) (450)
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or in vector form
1
€= (Vu+ Vu') (4.51)

The assumption is then that we can decompose additively this strain in an
elastic strain and chemical strain

E=¢€.+¢&, (4.52)

We also assume that the volumetric expansion due to the intercalating lithium
is linear with a coefficient €2 called partial molar volume [1]. Let us further
assume that the chemical expansion is isotropic along the main axes. We
can then obtain a linear coefficient of expansion along a single axis, the same
way as in thermoelasticity, i.e.

w2

(4.53)

and hence
Ecij = OZC(Sij (454)

where ¢ is the lithium concentration. From Hooke’s law we have then

o =2ue. + Mr(e. )l = (4.55)
2u(e —e.) + Mr(e —e)I = (4.56)
20(0.5(Vu + Vu’) — acl) + Atr(0.5(Vu + Vu’) — acl)I = (4.57)

2
20(0.5(Vu -+ Vu")) + Ax(05(Vu + Tu )T 0L A= (458)
2ue + Mtr(e)I — el (4.59)

where we have denoted with § = kQ and kK = @ is the so called bulk
modulus. Also o is the Cauchy stress tensor and A and p are the Lame
parameters. Usually in experiments we have data for Young’s modulus F
and the Poisson ratio v. The Lame parameters can be determined from FE
and p using the relations

E
2(1+v)
Ev

A= AE a2 (4.61)

= (4.60)
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Finally for the ionic flux Zhang et al.[105] give the following expression

Qe
The resulting model is given by
Qc
Ct— V-D <VC - WVU}L) =0 (463)
Qc
- D <Vc — ﬁVUh) ‘n=g (4.64)
for the diffusion of lithium ions and
Eij = 5 (’LLiJ' + uj,i) (465)
0y = 2 + (Aekr — Bc)dy (4.66)
Uij,i = 0 (467)
oc-n=t (4.68)
o, = (011 + 022 + 033)/3 (4.69)

for the mechanical stress. The latter equations can also be given in vector
notation, rather than index notation as

€= %(Vu + vu’) (4.70)
o = 2ue + (Mr(e) — fe)l (4.71)
V.o=0 (4.72)
oc-n=t (4.73)
o = §tr(a‘) (4.74)

Note that this model considers only the lithium diffusion in the relevant
electrode and the Butler-Volmer interface condition is replaced by a fixed
Neumann boundary condition. Later we extend the model from [105] by
coupling the equilibrium equation (4.67) (along with its boundary condi-
tions) to the full isothermal electrochemical model [59] from Section 3.1. We
do this by using (4.62) in Equation (3.1) as the expression for the lithium
flux in the electrodes. We can observe in (4.63) that the diffusion transport
is modified by an additional pressure term. Ryu et al. [78] also consider the
use of the Butler-Volmer equation on the boundary of the electrode and a
potential equation in the electrode, but use fixed values for the concentra-
tion and potential for the electrolyte. Bower et al. [10], also propose a full



4.2. SMALL STRAIN 81

electrochemical model for a battery half-cell (i.e. they use Li-metal for the
cathode) coupled to a finite strain model for the deformation and relate the
electric charge and the stress. In our case, we do not include such relations.

4.2.2 Discretization

For the weak form of the momentum equation let us recall (4.36)

/aszdv—/t-wdazo (4.75)

Q o0

where we note that the volumetric body force integral is omitted since in this
model we do not have explicit body forces. Let us also present the above
equation in displacement formulation. We have for the first term

/0' : Vt/)dv = /aijwi,jdv

Q

2ueij + (Aewr — Be)di]ei jdv

iy + wj) + (Auge — 5¢)dii]abs jdv (4.76)

When we plug (4.76) back into (4.75) we get

/[/L(ui,j + Ujﬁ') + (Auk,k — ﬁc)éij]z/}i,jdv — /tlwzda =0 (477)

Q o0

For the concentration equation (4.63) we have

Q
/cvt@/J +D (Vc — R—;Vah> - Vipdo + /g@/}da =0 (4.78)
) o9

Similar to how we solve the thermal electrochemical model, we solve the
diffusion equation and the equilibrium equation sequentially and not simul-
taneously. We use the following discretizations of the main quantities

uy, — Z @pUp = Z @y | Ub2 (479)
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for the displacement field, where uy; is the i-th coordinate of the b-th unknown
nodal displacement value. We also have

N
Cp = Z PvCh (480)
b=1

for the concentration. The three components of the displacement and the
concentration are discretized using the same basis functions. We use this
basis for both the trial and for the test functions. The vector test function
1) is picked as

Y=upe;, =123 (4.81)

i.e. at any given time only one of its components is non-zero and the non-zero
component is one of the basis functions. Note that this is equivalent to testing
each of the three scalar equations of the momentum equation separately.
Let us now discuss the discretized form of the equilibrium equation. We
substitute ¢, and uy, in (4.77) to obtain

/[#(mebg' + wpi o) + (AUpkPo,k — Ben)0ij]@a,jdv—
Q

/pnigpadazo, a=1,....N i=1,2,3 (4.82)
o9

We solve the diffusion and equilibrium equations consequently, and so we
take the concentration part of the stress in Equation (4.82) as a right hand
side

/[M(Uzn'sﬁb,j + Up; o) + ApkPp 03] Pa ;AU =
)

/ﬁchgpa,idv + /pnigoada, a=1,...,.N i=1,2,3 (4.83)
Q o9

Let us now determine the elements of the stiffness matrix. Since we are dis-
cretizing a system of three PDEs, for the three components of the displace-
ment, for each interaction between the basis functions ¢, and ¢, correspond
a 3 x 3 matrix. Let us denote by

U1
U2

u=|:|= (4.84)

U3
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the vector of the unknown nodal displacements, with

fﬁchgpa,ldv + fpnlgoada
Q a0
F=|:|, f.=|/Pardv+ [ prapeda (4.85)
! Q Q0
fy [ Bengasdv + [ pnsp.da
Q 0N

the discretized right hand side and with

K11 KlN
K=| : - (4.86)
KN1 KNN

the stiffness matrix, where K, are 3 x 3 matrices as previously noted. We
can thus write the discretized system as

KU=F (4.87)

The final thing we need are the elements of the stiffness matrix, i.e. Kgp 5,
where in this case the comma stands to distinguish the indeces of the K,
matrices and not for differentiation. Let us consider the term on the left
hand side in (4.83)

/ [ (upispn,j + UpjPpi) + ko k0i5)Pa,jdv =

)
/[M(Ubi@b,j%,j + Up;Pb.iPaj) + AUp; b jPaildv = (4.88)
)
/[Ubj(ﬂ%,i%,j + Aob,jPasi + 1105500 kPa k)| dV (4.89)
Q

and hence we obtain that

Kapij = / (1496,iPar; + APbjPasi + 110550 kPak)dV (4.90)
Q

It is also easy to check that K is symmetric, i.e. Kq = KZ .

The diffusion equation is discretized similarly to the model problem we con-
sidered in Chapter 2. However, we now have a nonlinearity in the diffu-
sion coefficient and an additional advection term due to the pressure term.
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Namely, we consider the concentration equation in the following form

Q
/cytw +D (Vc — R—;Vah> - Vipdv + /gwda =
Q o9

Q
/c}tw +D ((1 +yc)Ve — R—;Vaeh) - Vipdo + /gwda =
Q o0

/c,t@/) + D ((1 4+ ~v¢)Ve — evep) - Vibdo + /g1/1da =0 (4.91)

Q o0

where o, is the part of the hydrostatic stress (4.69), without the concen-
tration term and we have denoted v = % and v, = %Vaeh. This is an
advection-diffusion type of equation for the concentration, with a non-linear
diffusion coefficient. Since the discrete stress is discontinuous across element
boundaries, in order to obtain nodal values for o}, we take the average of its
values from all elements that meet in the respective node. The discretized

concentration equation is

Cn—i—l —
/ h - b+ D (147 )Vert! — vy, - Vv + /g%da 0
“ o0

(4.92)

The elements of the Jacobi matrix are

de; / ‘PAsoj + D ((1+79) Ve ™ + (1 + 76 ) Ve, — 9van) - Vipidy
& t
Q

(4.93)

4.2.3 Results

We first test our program against a known solution obtained in the paper
[105]. Tt is for a spherical particle, where we apply a constant current density
of 2A/m? on the surface of the sphere. In Figure 4.1 we show the distribution
of the concentration after 1000s of simulation. These values are in good
agreement with the ones from the paper. As one can see from Figure 4.1
when we apply this model to a spherical particle, we have a uniform increase
in the diffusion speed.

We also test with the same model but on a perforated cylindrical particle,
where the perforation is also a cylinder with the same height, but smaller
radius (Figure 4.2). On this geometry we study several scenarios. We test
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with different boundary conditions for the stresses, i.e. with zero traction
boundary (no stress) and a constant pressure value. We also test these two
cases, when bases of the cylinder are free or when they are fixed in the z
direction, essentially leading to radial solutions. The outer radii of the bases
are 5um, the inner radii of the bases are 1um and the height of the cylinders
is 25um, i.e.

Q= {(z1,22,23)[107° < (/22 + 22 <5 x107° 23 €0,25 x 1079}

It is discretized by 2700 hexahedral elements and 3200 vertices. Let us denote
the inner wall by

I = {(z1, 39, 23)|\/2} + 23 =107, 253 € (0,25 x 107°]}
the top and bottom bases by
g = {(21,29,23)|107° < /22 + 22 <5x107%, 23 € {0} U{25 x 107%}}
and the external wall by

To = {(x1,29,23)|\/2? + 23 =5x 1075, 23 €[0,25 x 1079}

We use the following boundary conditions

u(x)=0, xely (4.94)

o-nx)=0, xelp (4.95)

o-nx)=-pn, xeTly (4.96)

-D (Vc - %Vm) -n(x) =24/m?*, x¢cTlp (4.97)
Qc

—-D (Vc - —Vah> ‘n(x)=0, xel;Ulp (4.98)
RT

c¢(x,0) =0, x€Q (4.99)

where for p we use either zero or a constant value of 200MPa. This is mo-
tivated by Dreyer et al. [34] where researchers show that the pressure on
the boundary is not zero and can indeed reach such levels. For the other
parameters we use the same values as Zhang et al. [105] given in Table 4.1.
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Table 4.1: Parameters for Mn,QOy,

Symbol Name Value
D Diffusion constant 107m? /s
E Young’s modulus 10 GPa
v Poisson’s ratio 0.3
) Partial molar volume | 3.497 x 10~°m?/mol
Cmaz | Maximum concentration | 2.29 x 10* mol/m?

In Figure 4.3 we show the lithium distribution in the cylindrical particle af-
ter 1000 seconds. One can observe that since we do not restrict the cylinder
at the bases in the z direction, we have spatial variation in the hydrostatic
stress along the height of the cylinder and consequently variations in the
concentration. Notice that such variations are not present in Figure 4.3a,
but rather only in the ones where we take into account the stress effects.
Such variation is present for both the zero traction and the 200MPa pres-
sure boundary condition cases. This point is further illustrated in Figures
4.4, 4.5 and 4.6 where we take lineouts of the concentration along the radial
direction at the middle and at the base of the cylinder, and along the height
of the cylinder at the internal boundary, respectively. Notice that in order
for the concentration to have a more uniform distribution, the values near
the inner wall have to be higher than the reference concentration (i.e. the
one without stress) and the values near the outer wall have to be lower. We
can see from Figure 4.4 that this is true in the middle of the cylinder for
both stress test cases. Also, the case where we apply pressure leads to better
uniformity than both other cases. However, near the bases we observe from
Figure 4.5 that this is no longer universally true. For both cases, in which
we account for the stress, near the inner wall we have lower values than the
reference concentration. For the rest of the values, for the zero traction case,
we have values that are very near the reference, and slightly lower at the
outer wall. For the applied pressure case, we have a noticeable acceleration
of the lithium transport from the outer to the inner wall, when looking at
values that are away from the inner wall. In Figure 4.6, which is a lineout
of the concentration values on the inner wall, we can also observe that away
from the bases, the behavior is consistent with a more uniform distribution
of the concentration, i.e. the values are higher when we account for the stress
effects.

When we fix the displacement at the bases in the z direction i.e. uz(x) =
0,x € I'g, the stress field assumes a variation only in the radial direction.
This leads to an uniform distribution along the height for the concentration
and in fact, the values of the concentration are virtually the same for the
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two cases as shown in the lineout in Figure 4.7. Since the hydrostatic stress
is included in the diffusion equation only with its gradient, this points to
the hydrostatic stresses in the two cases being different with only a constant
value. The hydrostatic stresses for the two cases are shown in Figure 4.8a
and their difference in Figure 4.8b. We observe that, indeed, the maximum
and minimum values in Figure 4.8b differ by only about 0.5MPa. In Figure
4.9 we can see that the values for the Von Mises stress (4.48) are also about
two times higher for the case with constant pressure on the boundary.

Next we move on to the comparison between solving equation (4.63) with
constant Neumann boundary conditions and solving it coupled to the full
electrochemical model. This is important because even though the total flux
across the interface is the same, the boundary condition for the full electro-
chemical model would have spatial variations. This would of course lead to
spatial variations in the value for the lithium ion concentration. The elec-
trochemical parameters for the simulation are taken from Table 3.2 and the
mechanical parameters are taken from Table 4.1. For this simulation we only
couple the mechanics to the diffusion in the anode and use the usual diffusion
equation for the cathode. Note that the electrochemical parameters (espe-
cially the material specific open-circuit potential Uy) are for graphite while
the mechanical parameters are for Mn,O4. However, the mechanical param-
eters are also in the admissible range for graphite and hence it is justified to
use them. We solve for the cylindrical particles geometry from Chapter 3.
For boundary conditions we use fixed displacement on the external boundary
of the anode, i.e. u(x) = 0,x € I'; and zero traction on I'; where we use the
notations from Chapter 3.

In Figure 4.10 we show the values for i, i.e. the one from the interface
conditions, after 1000 seconds. It is obvious that there is, indeed, a spatial
variation. In Figures 4.11 and 4.12 we show the concentration for the simple
model and for the full electrochemical model. We can easily see that the
values on the interface are distributed differently. Likewise, from Figures
4.13 and 4.14 we can observe that the same is also true for the hydrostatic
stress. However, in Figures 4.15 and 4.16 we see that the same does not hold
true for the Von Mises stress where both the values and the distributions are
close to each other. It seems that the fact, that we fix the displacement in
all directions on the external boundary of the anode, affects the Von Mises
stress more than the difference in the spatial distribution of the concentration
between the two models.
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Figure 4.1: Lithium concentration (%) distribution along the radial direc-
tion of a spherical particle with and without stress effects

Figure 4.2: Geometry for a cylindrical particle
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(a) without stress effects (b) stress effects and (c) with stress effects and
zero traction boundary 200MPa constant pressure
conditions boundary conditions

Figure 4.3: Lithium concentration (%) after 1000s
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Figure 4.4: Lithium concentration (%) distribution along the radial direc-

tion of a cylindrical particle for z = 12.5e-6 with and without stress effects



90 CHAPTER 4. CHEMOELASTICITY

12000 —
— Without stress
— Zerotraction
11000 [~ — 200MPa pressure
- 4
E 10000 _
°
2 4
=4
' 9000 -
i<l
8 4
& 8000 —
c
8 4
< 7000 -

6000

5000 . | . | . | . b
1e-006 2e-006 3e-006 4e-006 5e-006
X directioninm

mol

Figure 4.5: Lithium concentration (25) distribution along the radial direc-
tion of a cylindrical particle for z = 0 with and without stress effects
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Figure 4.6: Lithium concentration (%) distribution along the z direction of
a cylindrical particle near the inner cylinder with and without stress effects
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tion of a cylindrical particle for z = 0 with and without stress effects and

fixed discplacement in the z direction. The red and blue lines coincide
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Figure 4.8: Hydrostatic stress (Pa) along the radial direction of a cylindrical
particle for z = 0 with fixed discplacement in the z direction
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Figure 4.9: Von Mises stress (Pa) for cylinder
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Figure 4.10: Value of i, in a cylindrical particle after 1000s for 1C current
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Figure 4.11: Concentration (2%) in a cylindrical particle using the pure
diffusion model after 1000s for 1C current
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Figure 4.13: Hydrostatic stress (Pa) in a cylindrical particle using the pure
diffusion model after 1000s for 1C current
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Figure 4.14: Hydrostatic stress (Pa) in a cylindrical particle using the full
electrochemical model after 1000s for 1C current
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Figure 4.15: Von Mises stress (Pa) in a cylindrical particle using the pure
diffusion model after 1000s for 1C current
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Figure 4.16: Von Mises stress (Pa) in a cylindrical particle using the full
electrochemical model after 1000s for 1C current
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4.3 Finite strain

Finite strain chemomechanical models for lithium-ion batteries are still rel-
atively rare. Christensen and Newman [22] use Hooke’s law to relate the
Cauchy stress and the Eulerian strain, and use an additive split for the
stresses. Bower et al. [10] use finite strains and also use a multiplicative
decomposition for the chemical strains and elasto-plastic strains. They cou-
ple the second Piola-Kichhoff stress to the Green-Lagrange strain. Bower et
al. [9] further couple this model to fracture and use it in FEM simulations.
Similar model for elasto-plastic deformation, also with a multiplicative de-
composition for the deformation gradient, is used by Zhao et al. [106]. In
the latter model, the researchers couple the Cauchy stress to the logarithmic
strain.

In our simulation, we are using a multiplicative decomposition of the deforma-
tion gradient, to account for the chemical straining. The elastic mechanical
models we consider are the same elastic models used by Bower et al. [10]
and by Zhao et al. [106]. These are also popular elastic models used in solid
mechanics [7, 24]. We compare the two models, to study the range of stresses
and strains obained by the different models, for realstic parameters used in
batteries. We also include a dependence on the concentration for the Young’s
modulus. Since we use hyperelastic mechanical models, a short description
is given in Section 4.3.1. Next, in Section 4.3.2 we present the models we
consider. In Section 4.3.3 is given the discretization of the problem. Finally,
in Section 4.3.4 we show our numerical results.

4.3.1 Hyperelasticity

For this section we mostly follow the book by Bonet and Wood [7] in the
explanation. In hyperelasticity the main assumption is that the state of
behavior of the materials can be determined from the current configuration
only. After removal of the loads, the body restores its original configuration.
We express hyperelastic laws using a stored strain energy function

¥ = ¥(C) (4.100)

which in our case is a function of the right Cauchy-Green deformation tensor.
We find the second Piola-Kirchoff stress tensor by differentiating the elastic
stored strain energy with respect to E to obtain

ov oV ov
S(C,X)=2" =%".g,, = °
( ) ) SIJ aE[J

°C = 35 (4.101)
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We are mainly interested in isotropic materials where the material response
is the same in any direction. For such materials we can consider the elastic
potential to be a function only of the invariants of C (given in Section 2.7),
namely

U =U(Ig, [, IT1¢) (4.102)

and the second Piola-Kirchoff stress becomes

oV OV al, oV ll, . OV Il
_2%% _y ; 2 41
5=25¢ = %a1. a9¢ " 2orl, oc 2ol oc (4.103)

where the derivatives of the invariants with respect to C are given in Section
2.7. Therefore we have

ov ov ov

_ 9= 2 —1

S —28101+28I[CC+2J —(’HHCC (4.104)
) ov T , 00 o
_2aICQQ +2aHCQAQ +2J aJuCQA Q
= QAsQ" (4.105)
o oV v ., L, 9V

Ag = 2diag (8IC+8IIC)\i+J 8IHC>\1' ) (4.106)

where it is easy to see that the term in the brackets is

oV(Ig, I, I11c) 0¥ Olc ov 0ll¢ ov 0lllx

= 4.1
72 dlooxn T arle ov T arig o (4107
and also
ov 1 ov
— = — 4.108
ON2 2\ 0\ ( )
The Cauchy stress is
o — ZFSF”
- J
1
= quQTQAsQTQAqT
1
= quUqT (4.109)
v
A, = diag(o;) = diag [Ai (gx)} (4.110)

The values o; are called principal stresses.
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4.3.2 Model

In the finite strain case, we no longer use the additive split of the mechanical
and chemical strains. We assume that we can decompose the deformation
into an elastic deformation, resulting from mechanical processes and a chem-
ical deformation resuling from the intercalation of lithium ions. With this
assumption in mind, the deformation gradient is split in an elastic and a
chemical part

F=F.F,. (4.111)
and also due to the properties of the determinant
J = det(F) = det(F,.)det(F,) = J.J. (4.112)

Such a split is also used in large deformation analysis in other settings such
as finite strain elasto-plasticity [60], finite strain thermoelasticity [88], etc.
As in the small strain case, we again assume that the chemical expansion
is isotropic and the chemical deformation gradient has the following general
representation

F.=ar(c)l (4.113)

This representation is also used by other researchers [10, 106].

We also use the definition of the volume expansion coefficient as in Ryu et
al.[78] where they assume a linear expansion with respect to the number of
lithium ions, i.e.

‘/current = ‘/:92 + QnLi (4114)

where (2 is again the partial molar volume and ny; is the number of deposited
lithium ions. Due to the definition of concentration

2%
= 4.115
¢ ‘/;urrent ( )
the volumetric expansion coefficient they obtain [78] is
Q
= 4.116
VT Qe ( )

Finally, the form that we use for F. is

F.= (14 ayc)/’1 (4.117)
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We can now determine F, as
F.=FF.! = (14 ayc)”/°F (4.118)

We use two different elastic material laws for F, to test the dependence of
the results on the specific model. Note that the second Piola-Kirchhof stress
is given as

ov,

S = OE,

(4.119)

where E, = %(FeTFe —1I) is the elastic Green-Lagrange strain. And in general
we use here the notation with subscript e to denote quantities obtained with
respect to the elastic deformation gradient F..

The first model is given for the second Piola-Kirchoff stress tensor with re-
spect to the elastic Green-Lagrange strain as

S = J.2u(c)Ee + (A(c)trE.)I) (4.120)

and is known as St. Venant-Kirchoff model. This expession for the second
Piola-Kirchoff stress can be obtained from the stored elastic strain energy
function

1
U (E.) = J. (/,L(C)Ee : E. + §A(C)(trEe)2) (4.121)
We can also rewrite it as a function of the elastic stretches \.; as

We(Aer, Aez Aea) = e (@(Xél Xy Xy = 2000 + A6 +A5) +3)+

A
%(Aﬁl + A%+ A2y — 3)2) (4.122)
In order to solve the model on the current configuration we need to find o
either by the push forward of S which in this case is
1 T

o= erSFe (4.123)
or by directly using Equations (4.110) and (4.122) to obtain the principal
stresses. Either way we obtain

1 A
0; = T[M(Xéi - /\gz) + 50‘31 + /\52 + )‘23 - 3))\31'] (4'124)

€
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The second model is given for the Cauchy stress with respect to the elastic
logarithmic strain by

2 A
o; = ’f) In A + ? In J, (4.125)
It can also be written as
2 A
o — ’fl(c) eo. + §C> tr(ege)I (4.126)

The respective stored elastic strain energy function for this model is

U, = Jou(c)[(InXe1)? + (In Ae2)? + (In Ae3)?] + Jc%c)(ln J.)? (4.127)

As we already mentioned in the introduction to this chapter, the two models
are popular elastic models from literature [7, 24]. Actually, it is easy to
see why — in practice these two models give a Hooke’s law-like relation for
the different stress and strain measures. Namely, Equation (4.120) is Hooke’s
law between the second Piola-Kirchhoff stress and the Green-Lagrange strain,
and Equation (4.126) is almost Hooke’s law between the Cauchy stress and
the logarithmic strain, with the difference being the presence of J. in the
denominator. Zhao et al. [106] also use the second model (4.125), but they
further introduce a plastic stretch and assume the elastic deformation is
isochoric. In this section we focus mainly on the influence of the concentration
on the mechanical stress and omit the back coupling of the influence of stress
on the lithium transport. In that sense we couple the equilibrium equation to
the simple diffusion equation where we do not account for the stress effects.
The only influence left is the deforming domain, where the equations are
posed. Finally, we use the following expression for Young’s modulus

E(c) = Eg; + ygc (4.128)

since we have a phase change in the material and the final composition can
potentially have vastly differing material properties than the original one.
Linear dependence of elastic parameters on the concentration in general
applications (not restricted to batteries) are also considered by other re-
searchers, e.g. [102]. In the context of batteries, a concentration dependent
Young’s modulus is also used by, e.g. [10, 28]. Experimentally, Boles et al.
(6] show that a fully lithiated Silicon has a much lower elastic modulus than
pure Silicon and Shenoy et al. [85] show an almost linear dependence on the

lithium fraction in Li,Si, using a first-principles study.
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4.3.3 Discretization

Here we give the discretization of the problem. For simplicity, in this section,
we do not use the subscripts for the different configurations, but rather treat
the problem as if it were a regular problem from solid mechanics. Due to the
specifics of our problem the two descriptions would be almost the same, up
to a difference in subscripts.

In order to fully discretize and solve the finite strain equilibrium equations
we need both discretization and linearization. Let us rewrite equation (4.36)
denoting the term on the left hand side a residual and putting f and t to
zero since we do not consider in this model neither body nor surface external
forces, i.e.

R(x) = /a : Vapdo (4.129)
Q
(4.130)
and as usual we solve
R(x) =0 (4.131)

In this instance we do the linearization using directional derivatives for con-
venience

R+ DRJu] =0 (4.132)

For simplicity the directional derivative is sought on the reference configura-
tion, where for the residual we use the left hand side of equation (4.47). We
have

DR[u] = / D(S : FTVg3p)[u)dV

_ / FTVotp : D(S)[u]dV + / S : D(F"Voip)[u]dV

Qo QO

— / F'Vo : C: D(E)[uldV + / S : D(FT)[u]VopdV
QQ Q0

— / F Vo : C:0.5(Vou'F +F'Vou)dV + / S : Vou! VypdV
QO Q0

= / F Vo : C: FT'VoudV + / S : Vou VoypdV (4.133)

Qo Q0
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We used that

_ 08
I=%
where we denoted with C the 4th order material elaticity tensor. Its elements
are given by

D(S)[u : DE[u] = C : DEJu] (4.134)

051 0V
C = =4 =C
IIKL = 5 Frxi 9C;,0Cs KLIJ
Besides that major symmetry written above, C also has two minor symmetries
[7], ie. C[JKL = C[JLK and C]JKL = CJ]KL. Due to them we have that

C:A=C:A" (4.136)

(4.135)

The directional derivative of F is
d
DFu] = (d—gvo(x + Eu))

and the directional derivative of E is

= Vou (4.137)

e=0

DEu] = % (%[VO(X +eu)"Vo(x + eu) — I])

e=0

1
— 5(FTvOu + Vou'F) (4.138)

Using (4.39) for the spatial derivatives, the directional derivative (4.133) of
R in the current domain is

/ JIFTVYF : C : FTVuFdv + / J7'S : FTvu! VyFdv
Q Q
= / V4 :c: Vudv + / o : Vu' Vipdv (4.139)
Q Q
where the spatial elasticity tensor c is given by

Cijpt = J FirFiy o FiCrykr (4.140)
The first integral simplified due to

/ J'FTVYF : C : FTVuFdv
Q

Z/J_le'I%,ijJCIJKLFkKUk,zFlLdU

Q
:/Vzp :c: Vudv (4.141)
Q
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and the second due to

J'S : FIvu! VyFdv

J 1 (STFTVu! VyF)dv

JIFSFT : Vul Vpdu

Q/
Q/
/ J Hr(Vu! VyFSTF!)dv
Q
Q/

= / o : Vu' Vpdv (4.142)
Q

We now use the following discretizations

X = Z ei(£)X; (4.143)

for the initial coordinates and

X = Z wpi(§)xi(t) (4.144)

for the current coordinates. We also interpolate the displacement u

u = Z ei(&)uy(t) (4.145)

In order to obtain the deformation gradient F at a point, we differentiate the
interpolant for the current coordinates with respect to the original coordi-
nates

N
F =) xVop/ (4.146)
=1

where the derivatives with respect to the initial configuration are computed
as previously

VQQDZ' = (VgX)_TV§QOi (4147)
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We also have for the right and left Cauchy-green tensors
C= Z(Xz -%;)Vopi Vop, (4.148)
4,3
B =) (Vog: - Vog;)xx] (4.149)
4,3

For the discretized residual R for basis function a we have

R, = /a'Vapadv (4.150)
Q
For the first term in Equation (4.139) we have
/Vw :c: Vuydo = /wmcl-jklubkgpwdv (4.151)
Q Q

and when we make the analogy for discretizing each equation of the vector
equilibrium equation separately as in the case for small strains, i.e. that
Y = p,e;, we obtain the contribution to the stiffness matrix of the first term
as

K;b,z'k = /Soa,jcijleOb,ldU (4.152)
Q

For the second term we have

/O’ . VUZV’lde = /O’kl’umjki/}deU = /Jklubmgob’kwm,ldv (4153)

Q Q Q

and making the same analogy as before, the contribution of this term to the
stiffness matrix is

Kc%b,ij = /Ukl%,k%,zdv (4.154)

Q

and the total nodal contribution for basis functions a and b is
KCLb - Kcllb + bi (4155)

We do not show again the discretization of the diffusion equation, but we
still have to make some notes. Remember that in disretized form over a
stationary domain it is given by
n+1 n
Ch T Ch n :
/Tgpidv + [ DV Vdv + /zapplgoida =0 (4.156)
Q

Q o
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Even though we do not include the mechanical effects explicitly in the diffu-
sion equation as was the case in the small strain models, the domain of inte-
gration still changes. However, since we solve the diffusion and the mechanics
in semi-implicit fashion, from the point of view of the diffusion equation, the
domain can be considered stationary. For the discretized in time volumetric
integral of the time derivative, we need the concentration from the previous
time step, obtained on the previous geometry, on the current geometry. We
use the conservation of mass equation (4.9) from the previous geometry to
the current geometry, i.e.

c(x™,t,) = J" e(x" M t,) (4.157)

where J"*1 is the Jacobian of the transformation from the geometry on
time step n to the geometry on time step n 4+ 1 and x" and x"*! relate
the coordinates in the two geometries between the two time steps.

For the boundary integral note that we want to preseve the total flux across
the boundary. Then similarly to the boundary condition for the equilibrium
equation (4.46) shown earlier, we have for the applied current density that

. i da
gl = za;;;d—A (4.158)
and so we pull back the whole boundary integral on to the reference config-
uration. Finally we solve the diffusion equation as

n

n+l ¢

Ch Jn+1 +1 i
————p;dv+ [ DV, Vyidv+ | igpupidA =0 (4.159)
Q

At

Q Qo

4.3.4 Results

We test several scenarios with single particles which are of parallelepiped
initial shape. We study the dependence of the magnitudes of the stress and
strain on the size of the particle. Our aim here is to reproduce behavior
similar to experimental results for the stress [84] and to show that for larger
particles relatively high mechanical strains can occur. We also compare the
two models (4.120) and (4.127) on two geometries to study the sensitivity
of the results on the specific material model. The sizes of the particles are
2um x 2um x 1um for the bigger particle and 2um x 2um x 250nm for
the smaller particle. We charge the particle only on the top surface, i.e.
where z = 1um. Due to symmetry considerations we take only one quadrant
of the structures on the x — y plane. We also assume that the resulting
parallelepipeds are situated in the octant of the coordinate system where all
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three coordinates are positive and the walls of the structure are parallel to
the z — y,y — z,x — z planes. We perform a charge-discharge cycle of the
particle, where we charge the particle until some point reaches 0.7 state of
charge and then reverse the current and discharge until some point reaches
zero state of charge. In summary these are the test cases we consider

1. Parallelepiped particle with domain Qg = {[0,1075]x[0, 107¢]x [0, 107%]}
(see Figure 4.17a) used with the material model (4.120); one charge-
discharge cycle is performed; 24389 hexahedral elements, 27000 nodes

2. Parallelepiped particle with domain €y = {[0, 107¢]x [0, 1075] x [0, 0.25x
1079} (see Figure 4.17b) used with the material model (4.120); two
charge-discharge cycles are performed; 13689 hexahedral elements, 16000
nodes

3. Parallelepiped particle with domain y = {[0,107%]x [0, 107%]x [0, 0.25x
1075} used with the material model (4.127); one charge-discharge cycle
is performed; 13689 hexahedral elements, 16000 nodes

4. Parallelepiped particle with domain o = {[0,107¢]x [0, 107%]x[0,107]}
used with the material model (4.127); one charge-discharge cycle is per-
formed; 24389 hexahedral elements, 27000 nodes

0

(a) Geometry for Test Cases 1 and 4 (b) Geometry for Test Cases 2 and 3

Figure 4.17: Geometries for finite strain experiments
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The boundary conditions are as follows

w(X)=0, Xel, ( )
oyn; =0, Xel,, 1=23 ( )
up(X) =0, Xel, ( )
oin; =0, XeTl, i=13 (4.163)
us(X) =0, Xel, (4.164)
oyn; =0, Xel, i=12 (4.165)
oyn; =0, Xel,Ul), i=123 ( )
N-n:Z‘}?pl, X el (4.167)
lappl = 1'5A/m2 ( )

where

I, = {{0} x [0,107%] x [0,107%]}
T, = {[0,107% x {0} x [0,107%]}

I, ={[0,107% x [0,107%] x {0}}

are the sides of the structure that meet at the origin of the coordinate system
and are parallel to the y — z,x — 2, x — y planes respectively.

I, = {{107°} x [0,107°] x [0,107%]} U {]0,107%] x {107°} x [0,107°]}
is the union of the sides opposite to I'; and I'y, and
Iy ={[0,107% x [0,107%] X {zpas}}

is opposite to I',, where 2,4, = 1075 for cases 1 and 4, and 2,4, = 0.25x 1076
for cases 2 and 3.

The solution parameters are given in Table 4.2. We determine the value for
~vg from

Erisiy = Esi + YECmaz
or

ELi15Si4 - ESi 55
B = =

_ - _ _4 3
oo Tgsero 02X 107GPami/mol - (4.169)
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Table 4.2: Parameters for Li,Si

Symbol Name Value
D Diffusion constant 2 x 1071%m? /s [30]
Es; Young’s modulus for amorphous Si 80 GPa [5]
ElLissis Young’s modulus for Li;5Siy 25 GPa [6]
v Poisson’s ratio 0.3
Q Partial molar volume 8.539 x 107%m3/mol [§]
Cmaz | Maximum concentration in Li;5Siy | 8.867 x 10* mol/m? [§]
VE Rate of change of Young’s modulus | —6.2 x 107*GPa m?/mol

We make note that we are using the same applied current density for both
geometries. In reality, of course, one of the benefits of using smaller particles
is that we have higher surface area and hence lower current density. However,
in this case we want to accent specifically that even using the same currents,
we still obtain much lower stresses and strains with the smaller particle.

Let us first look at the concentration for the four cases at the end of the
charging process and at the end of the discharging process. In Figures 4.18—
4.21 we give the concentration for the four test cases, cut along the z = y
line. Due to the slow diffusion (for comparison, it is about 40 times slower
than the one used in Chapter 3) we can see that there are strong gradients
in the concentration. Especially for cases 1 and 4 we see that at the end
of the charging process, the concentration on the top of the particle is more
than two times higher than the one on the bottom. Conversely, at the end
of the discharge process, the top is almost empty, while in the bottom the
concentration is still about 3.5 x 10%mol/m?. For the other two test cases,
the difference between top and bottom is much smaller at about 10*mol /m?.
We also use these figures to study the shape and size of the lithiated sili-
con. The black box outline in the figures is the original structure, before
we deposit any lithium ions. While the cases with the bigger particle show
noticeable bending, the other two test cases give much more uniform expan-
sion. And finally, let us look at the volumes obtained at the different stages.
The volume expansion of the particle in test cases 1 and 4 is about 54-55%
at the end of the charging process, while for the other two cases we have
about 93% for both. We consider now how close these numbers are to the
the volume expansion prescribed by equation (4.114). For test case 1 the
volume at the end of the charging is 1.54373 x 10~ ¥m3 and the number of
lithium ions is 6.39407 x 10~'mol. Using relation (4.114) we determine the
predicted volume as 1.54599 x 107'8m?, which gives a ratio of about 0.998
of real to predicted volume. The corresponding such ratios for test cases 2,
3 and 4 are 0.999, 0.9995 and 1.00005 respectively. Conversely, at the end of
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the discharge process we have ratios of about 0.999, 1.0017, 1.002 and 1.0005
for test cases 1, 2, 3 and 4. This suggests that both in charge and discharge
the elastic strain is relatively small, compared to the chemical strains. On
that note, let us now study more closely the Von Mises strains (4.49) and
Von Mises stresses (4.48).

In Figure 4.22 we show the evolution of the signed Von Mises strain (where
for the sign, we take the sign of the hydrostratic strain, which is the trace of
the strain tensor) at the point on the top side of the particles, which initially
has coordinates pyy = (0,0,1 x 107%) for the big particle geometry and
pva = (0,0,0.25 x 107°) for the small particle geometry. In subfigure 4.22a
the Von Mises strain is given with respect to time and in subfigure 4.22b,
it is given with respect to the state of charge. We observe that at this spot
for all cases, the strains are compressive during charging and tensile during
discharging. Also, for cases 2 and 3, the Von Mises strain reaches about
3% in both negative (compressive) and positive (tensile) values, and on this
scale the strain is practically indistinguishable between the two models. For
test cases 1 and 4 the negative values are almost 8%, but the positive are
only about 5%. These values are potentially in the inadmissible region, since
according to Boles et al. [6], the fully lithiated silicon behaves similar to
the pure silicon in the sense that it admits only several percent of straining
before fracture. Furthermore, we can observe in Figures 4.24-4.27 that ac-
tually the highest and lowest values are reached in the exact opposite corner
of the geometry with respect to point py,,. While this has no effect on the
maximum and minimum values of test cases 2 and 3, for test cases 1 and 4 we
have even bigger values than before. The maximum tensile strain achieved
is about 7.5% for both cases while the minimum compressive strain is about
9.1% for test case 1 and about 9.7% in test case 4. This means that there is
about 0.6% difference between the two models. Observe also in these figures
that the strains on the free surfaces are mostly of the opposite sign to those
in the core (recall that the surfaces meeting at the origin are in fact repre-
sentative of the core of the whole particle as explained in the beginning of
the section).

Moving on to the Von Mises stress, similarly to before, we show in Figure
4.23 the evolution of the Von Mises stress at the point py s with respect
to time and state of charge. In these figures we see a very similar behavior
of the stress to the one obtained experimentally by Sethuraman et al. [84].
Namely, during charging the stress first decreases rapidly and then evens out
and starts to increase slowly. Of course, this is only a qualitative comparison,
since for a quantitative analysis, we would need much more data about the
exact specimen used. Note that as can be observed from Figure 4.22; in the
charging scenario, the strains never stop decreasing. This means that if we
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do not take into account the softening of the material by considering a con-
centration dependent Young’s modulus, we would not obtain this behavior
for the stress. In [12] the researchers obtain similar soc-stress curves for a
spherical particle, using a plasticity model in spherical coordinates, which
is solved in 1D. In our simulations we test in a fully three dimensional set-
ting using an elastic model. Bower et al. [10] show results that are in good
agreement with [84], also with a model that couples plasticity. We show
that even using only elasticity we can obtain similar curves to the ones from
experimental data, when we take the Young’s modulus to be concentration-
dependent. It is clear that by not accounting for inelastic effects, we are in
essence restricted to always predict the same curves regardless of how many
times we cycle the battery after the first cycle. This can be seen by the curve
for test case 2 in Figures 4.22b and 4.23b, where we see that on the second
cycle, the black curve joins the curves from the first cycle and from there
on out, they coincide. However, our simulations can be used as a basis for
future expansion, including plasticity, fracture, damage, etc.

Let us now focus on the differences between the mechanical models we con-
sider. From Figure 4.22 we already observed that the strains at the point
pvar are almost the same. From the spatial distribution of the strain we saw
that for test cases 1 and 4 the maximum difference is about 0.6%. Again at
the point py s we see about 80MPa maximum difference between test cases 2
and 3 but about 500MPa difference between cases 1 and 4. From the spatial
distribution of the stress, given in Figures 4.28-4.31, we see that for test cases
1 and 4 the maximum difference grows to about 2GPa in the corner where
also the maximum difference in strains was attained. However, as already
mentioned the strains in this case indicate that other effects, like fracture,
would have already taken effect at this point. For the small particle cases
2 and 3 the maximum difference of 80MPa is the same also in the spatial
distributions. This indicates that for the values of strain, where it is realistic
to expect to still have an elastic response, the difference between the two
models can be neglected.
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Figure 4.18: Lithium concentration (24) for test case 1
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Figure 4.19: Lithium concentration (Z%) for test case 2
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Figure 4.21: Lithium concentration (24) for test case 4
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Figure 4.22: Von Mises strain at point py s
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Figure 4.23: Von Mises stress at point py s
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Figure 4.24: Von Mises strain for test case 1
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Figure 4.25: Von Mises strain for test case 2
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Figure 4.26: Von Mises strain for test case 3

Pseudocolor
Var: von_mises_strain
0.03428
—0.001410
-0.03146

—-0.06434

.—-0.09721

Max: 0.03428
Min: -0.09721

(a) At the end of charge process after 3884
seconds of simulation

Pseudocolor
Var: von_mises_strain

-0.07392

—0.04898

0.02403

.:-0.00091 07
-0.02585
0.07392

Max:
Min: -0.02585

(b) At the end of discharge process after
5812 seconds of simulation

Figure 4.27: Von Mises strain for test case 4
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Figure 4.28: Von Mises stress (Pa) for test case 1
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Figure 4.29: Von Mises stress (Pa) for test case 2
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Figure 4.30: Von Mises stress (Pa) for test case 3
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Chapter 5

Computer implementation and
verification

In this chapter we give an overview of the design decisions and interfaces of
the code we developed to run our simulations. We also dedicate a subsection
to verification of the basic building blocks of our discretizations using known
solutions.

Let us also mention here the external software that we use. For building the
tetrahedal meshes, we used the Netgen mesh generator [83][82], version 5.3.
For building the hexhedral meshes, we used either GeoDict[43] or our own
code for the simpler meshes (the hexahedral meshes used in Chapter 4). For
visualization, we used LLNL’s VisIt software tool [21][66], version 2.7.1. The
code was compiled using GCC4.8.1 [39].

5.1 Code overview

This section is meant to give only a brief overview of the design of the code
and not go into specific details like function names. In that sense we also do
not explain computer architecture or programming topics and assume some
familiarity of the subject. For information on the C++ language, see [89],
on the C++ object model, see [64] and about computer architectures, see
[87]. We also present only the underlying FEM framework and not the im-
plemented discretizations of the various problems.

Our target for the code was to give flexibility with respect to the usage of the
different structures of the program. The motivation is that, since this is a
scientific application, one might want to e.g. choose a different linear solver,
or use the matrix structures, but use different discretization, etc. In that
sense, for this application we preferred to use object composition as much as
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possible rather than complex hierarchies, that can often restrict the extensi-
bility of the code. The code is standard-compliant C++11 and is portable
to all compilers that support the C+-+11 standard [49].

Let us first describe the discretization structures. We have three main build-
ing blocks in the discretization - elements, surfaces and points. We briefly
explain each of the classes without going into detail describing all of their
member functions and applications. The point_t structure contains the data
about a single point. We keep the coordinates and the boundary condition
of the point. However, due to the specifics of the application with regards
to splitting the nodes on the interface, the structure also provides a possi-
bility to store information about a potential double node. This can be also
exploited if solving problems with periodic boundary conditions where one
can provide the link between two periodic nodes.

For the element_t and surface_t structures, we wanted to provide the op-
tion of mixing different types of elements and consequently surfaces in the
same mesh. This would usually be accomplished using an abstract base class,
which is then inherited in classes representing specific element types. It is
then used by declaring a pointer of the base class and specifying the concrete
type when creating the object. However, even if one uses a smart pointer
for the base class, so as to prevent memory leaks, we still have to deal with
pointer semantics when handling variables of such type. We instead follow
an approach proposed by Sean Parent [71] that rather leads to value seman-
tics, i.e. one can copy and move the object as if it were a regular class.
In this approach, the abstraction is hidden in a helper class and one does
not need to inherit explicitly a base class, but just respect its interface. Our
classes are also move-enabled as per the C++11 standard and if one wants to
move the object rather than copy it, only the internal pointer is moved. For
the elements, we provide functions for computing the shape functions, their
derivatives with respect to both the reference coordinates and the real co-
ordinates, the Jacobian of the transformation and other quantities at points
on the reference domain. Using these functions, however, is useful only for
fast prototyping, since this approach is inefficient both from algorithmic and
from computing perspectives. From algorithmic side we have that many of
the computations need to be repeated for multiple quantities, e.g. the Jacobi
matrix is needed both for the derivatives with respect to the real coordinates
and for computing the Jacobian, the shape functions are needed also for the
transformation from reference to current coordinates, etc. From computing
side we still need to consider that there is a virtual call that needs to be re-
solved at runtime rather than at compile time. Due to this dynamic binding,
the compiler cannot inline any function calls to the member functions of the
elements. This means that there is a function call that always needs to be
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performed. For these reasons we provide two options for bulk computations
of all quantities in an element. The first option is to compute everything at
a single point in the reference domain. However, this can potentially still
be ineffective since for certain elements, like P1 triangles and tetrahedra,
the transformation matrices and the derivatives of the shape functions are
constant in the whole element. Thus, the second option is to compute all
the quantities in all the points required for a certain accuracy of numerical
integration and put them in a special structure, where the accuracy is a pa-
rameter passed by the user. This has several benefits. Namely, there is only
one function call per element, the redundant multiple computations of the
same quantities are omitted, and since the data needed for the computation
is relatively small it can fit in the Level 1 cache of the CPU, so there are not
multiple transfers between main memory and the cache structures.

The element_t, surface_t and point_t structures are wrapped in the class
element_space_t. We use it to manage the arrays of elements, surfaces and
points. Mostly it acts as a thin wrapper around vectors of the three basic
classes. However, the points in the elements and surfaces are given through
pointers. If one wants to resize the points structure (e.g. for mesh refine-
ment), all pointers in the elements and surfaces to the points would be inval-
idated. This class provides functions for resizing the internal vectors without
such invalidation.

The final class associated with the discretization, that we describe here, is
the solution description class. As we mentioned in Chapter 4, this class is
useful when one has to match multiple solutions, possibly defined in different
parts of the region. It is also useful if one does not want to manage the num-
bering of the degrees of freedom for the discretization of a system of PDEs.
Furthermore it provides the option to specify if a certain solution is vector
or scalar. We use this class in all of the discretized problems we consider,
but it is most useful in the coupled problem between the full electrochemical
model and the small strain elasticity, c.f. Section 4.2. The electrochemical
quantities concentration and potential are defined in the whole domain, but
the displacement is defined only in the electrodes.

We store the global matrices in Compressed Sparse Row format [79], where
the matrix is described by three arrays. The first array stores row point-
ers, the second stores column indeces and the third stores the values of the
elements of the matrix. The row pointers indicate where each row starts
in the other two arrays. The column indeces and the values have the same
size - the number of non-zero elements in the matrix. In the program, the
positions (i.e. the row pointers and the column indeces vectors) of the non-
zero elements are decoupled in a separate structure from the whole matrix.
We do this in order to be able to potentially reuse the pattern in multiple
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matrices without having to store it every time. We also provide functions for
reading the mesh files (in Netgen and BEST formats), building the structure
of the sparse matrices and for exporting the results in vtk files, but we do
not present them in detail here.

5.2 Verification

In this section we give verification of the code by solving a simple problem.
Namely, we solve the problem from Chapter 2 in the unit cube. We use a
constant diffusion coefficient D(x) and linear Neumann boundary condition
b(x). We use manufactured solutions, where we can calculate the Ly norm
of the error. The problem is solved using both tetrahedral and hexahedral
elements, since they are the ones we use for solving the physical models
presented in the thesis. To test the spatial discretization, we solve a station-
ary problem and to test the full discretization, we solve a time dependent
problem. The first problem is

— Au = f(x), xe€{[0,1] x[0,1] x [0,1]}
—Vu-n=0bz), xely
u(x) =up(x), xelp (5.3)

where up are just the values of the known function on the boundary. I'y
is the union of the two sides of the cube, where x € {{0} x [0,1] x [0, 1]}
and x € {{1} x [0,1] x [0,1]}. We use three tetrahedral meshes and three
hexahedral meshes to test the convergence rate. The tetrahedal meshes are

1. 6823 elements and 1534 points

2. 50852 elements and 10148 points

3. 418052 elements and 77378 points
and the hexahedral are

1. 1000 elements and 1331 points

2. 8000 elements and 9261 points

3. 64000 elements and 68921 points

As we already pointed out in Chapter 2 if a function u is an element of the
finite space then ||u — uy|| = 0 in both the L, and H' norms. In that sense,



5.2. VERIFICATION 119
the first manufactured solutions we test with are
ur(xy, vo,x3) = 1+ 21 + 29 + 23 (5.4)
f(z1, 02, 23) =0 (5.5)
1
b(xy,z9,23)=|[1] n (5.6)
1

for the tetrahedral elements and

’LLQ(ZL‘l, T, l’g) =1 -+ T + T2 + T3 + 1T + T1T3 + ToX3 + T1X2X3 (57)
f(@1,22,23) =0 (5.8)
1+ 29+ 23+ 2073
l+x1+23+2123 | -1
14+ 214+ 20+ 2129

(5.9)

b(xla Zo, .7;3) -

for the hexahedral elements. For u; using tetrahedal elements we obtain an Lo
norm of ||u—up||r,) = 1.78 x 107'% and an H' norm ||u—up|| 1) = 2.65 %
10712, For uy and hexhedral elements we have ||u — up||1,@) = 2.45 x 10713
and ||u — up|| (o) = 1.72 x 1072, The final stationary problem we consider
is

uz (1, T9, 13) = 2° + 75 — T3 (5.10)
[y, 29, 3) = —2 (5.11)
21’1
b(xy,x0,23) = [ 222 | -1 (5.12)
2.173
The norms are given in Table 5.1
Table 5.1: Ly and H' error norms for problem (5.10)
Tetrahedral Mesh | |Ju — up||r, X 10* | rate | [|u — up||g x 102 | rate
h 14.62 - 9.884 -
h/2 3.687 1.99 4.999 0.98
h/4 0.866 2.09 2.488 1.01
Hexahedral Mesh | ||u — up||z, x 10* | rate | |Ju — up||gn x 107 | rate
h 16.666 - 10 -
h/2 1167 2 5 1
h/4 1.042 2 2.5 1
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As one can observe, the convergence rates are consistent with the expected
results, namely for u; and us, the FEM solutions are exact within machine
accuracy and for usz we obtain second order convergence in the Ly norm and
first order in H' for both tetrahedal and hexahedral elements.

Finally, let us also show a single test case for the time dependent diffusion
equation

Uy (71, Ta, T3, 1) = 2179 + T35 — T3T3 (5.13)
uy — Au = 2tx1xe + 203 — 2 (5.14)
t2$2
Vu-n= |tz —2x923 | -n, xely (5.15)
213 — 3
u(xy, xe, x3,t) = uyg(z1, 0, 3,t), X EI'p 5.16)
u(wy, T, 13,0) = uy(x1, 79, 73,0), x € 5.17)

We give the Ly and H! norm for consistent mass and lumped mass ap-
proaches, using only hexahedral elements when ¢t = 4. The results are given
in Table 5.2

Table 5.2: Ly and H' error norms for problem (5.13) at ¢ = 4 using hexahe-
dral elements. u.p, is the solution with consistent mass matrix and wuy, is the
solution with lumped mass

mesh size | At | [|u — ue||r, x 10° | rate | ||u — wp||z, x 10° | rate
h 1 11.85 - 11.695 -
h/2 0.25 2.983 2 2.941 2
h/4 0.0625 0.7471 2 0.7365 2

mesh size | At | ||u — ue||m x 10% | rate | [|u — wp||gr x 102 | rate
h 1 8.677 - 8.606 -
h/2 0.5 4.348 1 4.328 1
h/4 0.25 2.175 1 2.17 1

The error is of order O(At + h?) for the Ly norm and O(At + h) for the H'

norm for both the consistent mass and the lumped mass approaches.




Chapter 6

Summary

In this work we studied degradation phenomena in lithium-ion batteries,
related to intercalation of lithium ions on the microscale. We investigated
the following topics:

Solution of three-dimensional isothermal [59] and non-isothermal [58]
electrochemical models on spatially resolved porous microstructures

Comparison between the finite element method (FEM) and the voxel-
based cell centered finite volume method (FVM) to study the depen-
dence of the solution of the isothermal electrochemical model [59] on
the discretization method

Analysis of the spatial data from the electrochemical simulations to
identify possible hotspots in the battery

Derivation of an ODE form of the energy balance equation from the
non-isothermal model

Application of a certain single phase small strain model [105] to observe
the generation of mechanical stress from the diffusion of lithium ions
and its influence on said diffusion

Coupling of the single phase small strain model [105] to the isothermal
electrochemical model [59] and numerical investigation of the resulting
model for cylindrical particles

Study of the behavior of the stress using large strain elastic models
with concentration-dependent Young’s modulus

Identification of an appropriate elastic finite strain model for Silicon
electrodes that expand up to several hundred percent
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We successfully discretized and numerically solved the isothermal [59] and
non-isothermal [58] electrochemical models (Chapter 3). This allowed us
to analyze where the individual heat sources exhibit exceptional behavior.
We further observed that even though we simulated the heat equation on
spatially resolved electrodes, for the investigated cases the temperature was
increasing as a macroscopic quantity. This allowed us to decrease the com-
putational effort for the heat equation by reformulating it as an ODE and
removing the necessity of solving an algebraic system of equations (Section
3.3). For the isothermal model, we also compared FEM to the voxel-based
FVM for small electrodes with several spherical particles. We observed that
due to the voxelization of the geometry and the absence of values on the
interface, the FVM underestimates the cell voltage of the battery. Also, the
concentration distribution on the surface of the spherical particles had vari-
ations in the FVM, in places where the FEM gave uniform values.

For the small strain model [105] (Section 4.2) we observed that even for
single particle configurations, depending on the boundary conditions, the
convective term in the concentration equation can influence negatively the
uniformity of the concentration. We also successfully coupled the full elec-
trochemical model to the small strain equilibrium equation and solved the
resulting system. For our test case we observed that the hydrostatic stress,
which includes a concentration-dependent term, was indeed influenced by the
different distribution of the concentration. However, the Von Mises stress,
which depends on the deviatoric stress tensor and hence does not include the
concentration explicitly, was mostly influenced by the boundary condition of
fixed displacement on the current collector.

Finally, for the finite strain case (Section 4.3) we compared two elastic mod-
els to study the sensitivity of the results on the specific model used. We
observed that for realistic values of mechanical strain, the two models give
close results. Note that, while we do not include here inelastic effects, many
models that do include them still rely on identifying the range of the elastic
regime. In that sense, choosing an appropriate elastic model can be just as
important as the inelastic model used, as an incorrect prediction of the me-
chanical stress and strain can cause overestimation or underestimation of the
respective inelastic effects. We also observed that when we account for the
softening of the material as it undergoes lithiation, we managed to reproduce
the general behavior of specific experimental results [84].

As future extensions of this work, one could investigate the influence of the
temperature on the degradation of the materials. Also, the inelastic effects
observed in practice, like fracture, could be included. Other models for the
electrochemical transport in the particles and in the electrolyte can be used
for materials where it makes sense.



Appendix A

Element types

We show briefly in this chapter the various elements we use, their shape
functions and their transformation matrices. For the volumetric elements we
show also the derivatives of the shape functions. For the tetrahedral element
we also give the Jacobi matrix, since it is constant.

A.1 Volume elements

A.1.1 Tetrahedron element

Shape functions

Derivatives

The Jacobl matrix is

901(51,&,53) =&

902(51,52,53) =&

903(51,52753) = {3

©04(81,62,83) =1 =& — & — &3
Ve (6,6, &) = (1,0,0)7
Vipa(&1,&2,&) = (0,1,0)7
Vs (&1, &2,&) = (0,0,1)7
Vpa(&1,62,&3) = (-1, -1, _1)T

X1 — Ty T2 — Ty X3 — T4

Y — Y4 Y2 —Ys Y3 —Ya
Rl — R4 R2 T R4 23— 24
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Note that for this element the derivatives and consequently the Jacobi matrix
and the Jacobian are constant.

A.1.2 Hexahedron element

Shape functions

Derivatives

Vr1(61,&2.6) =
Via(&1, 62, 83) =
Vips(&1,82,83) =
Vu (1, &,83) =
Vips (81,82, &3) =
Vipo(&1,&2.83) =
Vir (&1, &,83) =
Vips(&1,&2.63) =

o1(60,6,65) = 51— &)1~ &)1 - &)
2(60,60,65) = 1<1 FE)(1 - &)1 — &)
o3l 6) = S(1— &)1 +E)(1 - &)
il €0 6s) = 1<1 FE)1+ &)1 &)
<&f%@»=1u—&x1—@x1+&>
oo(€1, €0, 65) = 1<1 L)1 - &)1+ &)
<&@%@»=1u—&x1+@x1+@>
os(60, 0 8) = S+ &)1 +E)(1+8)

(—(1=&)(1 = &), ~(1 - &)1 = &), —(1 - &)(1 - &))"
(1-&)(1 = &), —(1+&)(1 = &), —(1+&)(1 - &))"
(14 &)1 = &), (1 - &)1 = &), —(1 - &)1+ &))"
(14 &)1 &), (1+&)(1 - &), —(1+&)(1+&)"
(—(1=&)(1+&), -1 - &)1 +&),(1-&)(1 - &))"
(1-&)(1+&), —(1+ &)1+ &), 1+ &)1 - &)
(—(1+ &)1 +&), (1= &)1+ &), (1 - &)1+ &)
(L&) +&), (L+&)(1+&), (L+&)(L+&)"

| — 00| — 00| — 0ol 00|l
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A.2 Surface elements

The transformation from reference to current coordinates is
Ty = lej%‘(fb &2)
j=1
my =) w2;0i(€1,%)
j=1

T3 = Z x3;05(&1, &2)

Jj=1

where n is the number of shape functions

A.2.1 Triangle element

Shape functions

e1(61,8) =& (A.10)

p2(81,&2) = & (A.11)

P3(61,6) =1 -8 — & (A.12)
Derivatives

Vi (&1,62) = (170)T (A.13)

Vo (&1, 6) = (0,1)7 (A.14)

Ves(&r,6) = (=1, -1)" (A.15)

A.2.2 Rectangle element

Shape functions
o1(61,6) = (1 -6)(1 - &)
palt1,62) = (1 +E)(1 - &)
ool ) = (1 - €)(1+8)
pa(&1,6) = }1(1 + &)1+ &)
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Derivatives

APPENDIX A. ELEMENT TYPES

Vior (1, 62) = ~(—(1— &), —(1— &))"

4
Via(61.6) = (1~ &), ~(1+&)"
Vis(61,62) = 3(~(1+ &), (1 - &)

4

Vu (&, &) = i((l +&),(1+&)"
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