Skip to main content
Log in

DNA copy number alterations in central primitive neuroectodermal tumors and tumors of the pineal region: an international individual patient data meta-analysis

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Little is known about frequency, association with clinical characteristics, and prognostic impact of DNA copy number alterations (CNA) on survival in central primitive neuroectodermal tumors (CNS-PNET) and tumors of the pineal region. Searches of MEDLINE, Pubmed, and EMBASE—after the original description of comparative genomic hybridization in 1992 and July 2010—identified 15 case series of patients with CNS-PNET and tumors of the pineal region whose tumors were investigated for genome-wide CNA. One additional case study was identified from contact with experts. Individual patient data were extracted from publications or obtained from investigators, and CNAs were converted to a digitized format suitable for data mining and subgroup identification. Summary profiles for genomic imbalances were generated from case-specific data. Overall survival (OS) was estimated using the Kaplan–Meier method, and by univariable and multivariable Cox regression models. In their overall CNA profiles, low grade tumors of the pineal region clearly diverged from CNS-PNET and pineoblastoma. At a median follow-up of 89 months, 7-year OS rates of CNS-PNET, pineoblastoma, and low grade tumors of the pineal region were 22.9 ± 6, 0 ± 0, and 87.5 ± 12 %, respectively. Multivariable analysis revealed that histology (CNS-PNET), age (≤2.5 years), and possibly recurrent CNAs were associated with unfavorable OS. DNA copy number profiling suggests a close relationship between CNS-PNET and pineoblastoma. Low grade tumors of the pineal region differed from CNS-PNET and pineoblastoma. Due to their high biological and clinical variability, a coordinated prospective validation in future studies is necessary to establish robust risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gaffney CC, Sloane JP, Bradley NJ, Bloom HJ (1985) Primitive neuroectodermal tumours of the cerebrum. Pathology and treatment. J Neurooncol 3:23–33

    Article  PubMed  CAS  Google Scholar 

  2. Li M, Lee KF, Lu Y, Clarke I, Shih D, Eberhart C, Collins VP, Van Meter T, Picard D, Zhou L, Boutros PC, Modena P, Liang ML, Scherer SW, Bouffet E, Rutka JT, Pomeroy SL, Lau CC, Taylor MD, Gajjar A, Dirks PB, Hawkins CE, Huang A (2009) Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. Cancer Cell 16:533–546

    Article  PubMed  CAS  Google Scholar 

  3. Timmermann B, Kortmann RD, Kuhl J, Rutkowski S, Meisner C, Pietsch T, Deinlein F, Urban C, Warmuth-Metz M, Bamberg M (2006) Role of radiotherapy in supratentorial primitive neuroectodermal tumor in young children: results of the German HIT-SKK87 and HIT-SKK92 trials. J Clin Oncol 24:1554–1560

    Article  PubMed  Google Scholar 

  4. Fangusaro J, Massimino M, Rutkowski S, Gururangan S (2010) Non-cerebellar primitive neuroectodermal tumors (PNET): summary of the Milan consensus and state of the art workshop on marrow ablative chemotherapy with hematopoietic cell rescue for malignant brain tumors of childhood and adolescents. Pediatr Blood Cancer 54:638–640

    Article  PubMed  Google Scholar 

  5. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2007) WHO classification of tumours of the central nervous system. IARC, Lyon

    Google Scholar 

  6. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellstrom-Lindberg E, Tefferi A, Bloomfield CD (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114:937–951

    Article  PubMed  CAS  Google Scholar 

  7. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821

    Article  PubMed  CAS  Google Scholar 

  8. Joos S, Bergerheim US, Pan Y, Matsuyama H, Bentz M, du Manoir S, Lichter P (1995) Mapping of chromosomal gains and losses in prostate cancer by comparative genomic hybridization. Genes Chromosom Cancer 14:267–276

    Article  PubMed  CAS  Google Scholar 

  9. Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, Benner A, Dohner H, Cremer T, Lichter P (1997) Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosom Cancer 20:399–407

    Article  PubMed  CAS  Google Scholar 

  10. Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A, Williams CF, Jeffrey SS, Botstein D, Brown PO (1999) Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 23:41–46

    Article  PubMed  CAS  Google Scholar 

  11. Bown N, Cotterill S, Lastowska M, O’Neill S, Pearson AD, Plantaz D, Meddeb M, Danglot G, Brinkschmidt C, Christiansen H, Laureys G, Speleman F, Nicholson J, Bernheim A, Betts DR, Vandesompele J, Van Roy N (1999) Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N Engl J Med 340:1954–1961

    Article  PubMed  CAS  Google Scholar 

  12. Zenz T, Mertens D, Dohner H, Stilgenbauer S (2008) Molecular diagnostics in chronic lymphocytic leukemia—pathogenetic and clinical implications. Leuk Lymphoma 49:864–873

    Article  PubMed  CAS  Google Scholar 

  13. Moinzadeh P, Breuhahn K, Stutzer H, Schirmacher P (2005) Chromosome alterations in human hepatocellular carcinomas correlate with aetiology and histological grade–results of an explorative CGH meta-analysis. Br J Cancer 92:935–941

    Article  PubMed  CAS  Google Scholar 

  14. Baudis M (2007) Genomic imbalances in 5918 malignant epithelial tumors: an explorative meta-analysis of chromosomal CGH data. BMC Cancer 7:226

    Article  PubMed  Google Scholar 

  15. Russo C, Pellarin M, Tingby O, Bollen AW, Lamborn KR, Mohapatra G, Collins VP, Feuerstein BG (1999) Comparative genomic hybridization in patients with supratentorial and infratentorial primitive neuroectodermal tumors. Cancer 86:331–339

    Article  PubMed  CAS  Google Scholar 

  16. Pfister S, Remke M, Toedt G, Werft W, Benner A, Mendrzyk F, Wittmann A, Devens F, von Hoff K, Rutkowski S, Kulozik A, Radlwimmer B, Scheurlen W, Lichter P, Korshunov A (2007) Supratentorial primitive neuroectodermal tumors of the central nervous system frequently harbor deletions of the CDKN2A locus and other genomic aberrations distinct from medulloblastomas. Genes Chromosom Cancer 46:839–851

    Article  PubMed  CAS  Google Scholar 

  17. Miller S, Rogers HA, Lyon P, Rand V, Adamowicz-Brice M, Clifford SC, Hayden JT, Dyer S, Pfister S, Korshunov A, Brundler MA, Lowe J, Coyle B, Grundy RG (2011) Genome-wide molecular characterization of central nervous system primitive neuroectodermal tumor and pineoblastoma. Neuro Oncol 13:866–879

    Article  PubMed  CAS  Google Scholar 

  18. Clarke M, Godwin J (1998) Systematic reviews using individual patient data: a map for the minefields? Ann Oncol 9:827–833

    Article  PubMed  CAS  Google Scholar 

  19. Riley RD, Sauerbrei W, Altman DG (2009) Prognostic markers in cancer: the evolution of evidence from single studies to meta-analysis, and beyond. Br J Cancer 100:1219–1229

    Article  PubMed  CAS  Google Scholar 

  20. Altman DG (2001) Systematic reviews of evaluations of prognostic variables. BMJ 323:224–228

    Article  PubMed  CAS  Google Scholar 

  21. Baudis M, Cleary ML (2001) Progenetix.net: an online repository for molecular cytogenetic aberration data. Bioinformatics 17:1228–1229

    Article  PubMed  CAS  Google Scholar 

  22. Baudis M (2006) Online database and bioinformatics toolbox to support data mining in cancer cytogenetics. Biotechniques 40:269–270, 272

    Google Scholar 

  23. Wilne S, Collier J, Kennedy C, Koller K, Grundy R, Walker D (2007) Presentation of childhood CNS tumours: a systematic review and meta-analysis. Lancet Oncol 8:685–695

    Article  PubMed  Google Scholar 

  24. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097

    Article  PubMed  Google Scholar 

  25. Stewart LA, Tierney JF (2002) To IPD or not to IPD? Advantages and disadvantages of systematic reviews using individual patient data. Eval Health Prof 25:76–97

    Article  PubMed  Google Scholar 

  26. Simmonds MC, Higgins JP, Stewart LA, Tierney JF, Clarke MJ, Thompson SG (2005) Meta-analysis of individual patient data from randomized trials: a review of methods used in practice. Clin Trials 2:209–217

    Article  PubMed  Google Scholar 

  27. Boerma EG, Siebert R, Kluin PM, Baudis M (2009) Translocations involving 8q24 in Burkitt lymphoma and other malignant lymphomas: a historical review of cytogenetics in the light of todays knowledge. Leukemia 23:225–234

    Article  PubMed  CAS  Google Scholar 

  28. LeBlanc M, Crowley J (1992) Relative risk trees for censored survival data. Biometrics 48:411–425

    Article  PubMed  CAS  Google Scholar 

  29. Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481

    Article  Google Scholar 

  30. Kleihues P, Cavenee WK (2000) World Health Organization classification of tumours. Pathology and genetics of tumours of the nervous system. IARC, Lyon

    Google Scholar 

  31. Eberhart CG, Brat DJ, Cohen KJ, Burger PC (2000) Pediatric neuroblastic brain tumors containing abundant neuropil and true rosettes. Pediatr Dev Pathol 3:346–352

    Article  PubMed  CAS  Google Scholar 

  32. Paulus W, Kleihues P (2010) Genetic profiling of CNS tumors extends histological classification. Acta Neuropathol 120:269–270

    Article  PubMed  Google Scholar 

  33. Korshunov A, Remke M, Gessi M, Ryzhova M, Hielscher T, Witt H, Tobias V, Buccoliero AM, Sardi I, Gardiman MP, Bonnin J, Scheithauer B, Kulozik AE, Witt O, Mork S, von Deimling A, Wiestler OD, Giangaspero F, Rosenblum M, Pietsch T, Lichter P, Pfister SM (2010) Focal genomic amplification at 19q13.42 comprises a powerful diagnostic marker for embryonal tumors with ependymoblastic rosettes. Acta Neuropathol 120:253–260

    Article  PubMed  Google Scholar 

  34. Schwalbe EC, Lindsey JC, Straughton D, Hogg TL, Cole M, Megahed H, Ryan SL, Lusher ME, Taylor MD, Gilbertson RJ, Ellison DW, Bailey S, Clifford SC (2011) Rapid diagnosis of medulloblastoma molecular subgroups. Clin Cancer Res 17:1883–1894

    Article  PubMed  CAS  Google Scholar 

  35. Thompson MC, Fuller C, Hogg TL, Dalton J, Finkelstein D, Lau CC, Chintagumpala M, Adesina A, Ashley DM, Kellie SJ, Taylor MD, Curran T, Gajjar A, Gilbertson RJ (2006) Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 24:1924–1931

    Article  PubMed  CAS  Google Scholar 

  36. Kool M, Koster J, Bunt J, Hasselt NE, Lakeman A, van Sluis P, Troost D, Meeteren NS, Caron HN, Cloos J, Mrsic A, Ylstra B, Grajkowska W, Hartmann W, Pietsch T, Ellison D, Clifford SC, Versteeg R (2008) Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One 3:e3088

    Article  PubMed  Google Scholar 

  37. Cho YJ, Tsherniak A, Tamayo P, Santagata S, Ligon A, Greulich H, Berhoukim R, Amani V, Goumnerova L, Eberhart CG, Lau CC, Olson JM, Gilbertson RJ, Gajjar A, Delattre O, Kool M, Ligon K, Meyerson M, Mesirov JP, Pomeroy SL (2011) Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol 29:1424–1430

    Article  PubMed  Google Scholar 

  38. Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S, Bouffet E, Clifford SC, Hawkins CE, French P, Rutka JT, Pfister S, Taylor MD (2011) Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 29:1408–1414

    Article  PubMed  Google Scholar 

  39. Remke M, Hielscher T, Northcott PA, Witt H, Ryzhova M, Wittmann A, Benner A, von Deimling A, Scheurlen W, Perry A, Croul S, Kulozik AE, Lichter P, Taylor MD, Pfister SM, Korshunov A (2011) Adult medulloblastoma comprises three major molecular variants. J Clin Oncol 29:2717–2723

    Article  PubMed  Google Scholar 

  40. Remke M, Hielscher T, Korshunov A, Northcott PA, Bender S, Kool M, Westermann F, Benner A, Cin H, Ryzhova M, Sturm D, Witt H, Haag D, Toedt G, Wittmann A, Schottler A, von Bueren AO, von Deimling A, Rutkowski S, Scheurlen W, Kulozik AE, Taylor MD, Lichter P, Pfister SM (2011) FSTL5 is a marker of poor prognosis in non-WNT/non-SHH medulloblastoma. J Clin Oncol 29:3852–3861

    Article  PubMed  CAS  Google Scholar 

  41. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, Eberhart CG, Parsons DW, Rutkowski S, Gajjar A, Ellison DW, Lichter P, Gilbertson RJ, Pomeroy SL, Kool M, Pfister SM (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123:465–472

    Article  PubMed  CAS  Google Scholar 

  42. Kool M, Korshunov A, Remke M, Jones DT, Schlanstein M, Northcott PA, Cho YJ, Koster J, Schouten-van Meeteren A, van Vuurden D, Clifford SC, Pietsch T, von Bueren AO, Rutkowski S, McCabe M, Collins VP, Backlund ML, Haberler C, Bourdeaut F, Delattre O, Doz F, Ellison DW, Gilbertson RJ, Pomeroy SL, Taylor MD, Lichter P, Pfister SM (2012) Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol 123:473–484

    Article  PubMed  CAS  Google Scholar 

  43. Geyer JR, Sposto R, Jennings M, Boyett JM, Axtell RA, Breiger D, Broxson E, Donahue B, Finlay JL, Goldwein JW, Heier LA, Johnson D, Mazewski C, Miller DC, Packer R, Puccetti D, Radcliffe J, Tao ML, Shiminski-Maher T (2005) Multiagent chemotherapy and deferred radiotherapy in infants with malignant brain tumors: a report from the Children’s Cancer Group. J Clin Oncol 23:7621–7631

    Article  PubMed  Google Scholar 

  44. Pizer BL, Weston CL, Robinson KJ, Ellison DW, Ironside J, Saran F, Lashford LS, Tait D, Lucraft H, Walker DA, Bailey CC, Taylor RE (2006) Analysis of patients with supratentorial primitive neuro-ectodermal tumours entered into the SIOP/UKCCSG PNET 3 study. Eur J Cancer 42:1120–1128

    Article  PubMed  Google Scholar 

  45. Timmermann B, Kortmann RD, Kuhl J, Meisner C, Dieckmann K, Pietsch T, Bamberg M (2002) Role of radiotherapy in the treatment of supratentorial primitive neuroectodermal tumors in childhood: results of the prospective German brain tumor trials HIT 88/89 and 91. J Clin Oncol 20:842–849

    Article  PubMed  Google Scholar 

  46. Li MH, Bouffet E, Hawkins CE, Squire JA, Huang A (2005) Molecular genetics of supratentorial primitive neuroectodermal tumors and pineoblastoma. Neurosurg Focus 19:E3

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors’ are indebted to the authors of articles, who provided the data to this study that otherwise would not have been accessible. In particular, the authors would like to thank the following researcher/clinicians for their help: Milo Puhan, Carolyn Russo, Wolfram Scheurlen, Barbara Schütz, Christine Haberler, Martin McCabe, and Hans-Hermann Dubben. The author would like to thank Klaus-Dieter Papke for assisting the literature search. The authors acknowledge the following sources of funding: German Children‘s Cancer Foundation/Deutsche Kinderkrebsstiftung (to A.O.V.B., S.R.). Haoyang Cai is supported through a grant from the China Scholarship Council.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André O. von Bueren.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Bueren, A.O., Gerss, J., Hagel, C. et al. DNA copy number alterations in central primitive neuroectodermal tumors and tumors of the pineal region: an international individual patient data meta-analysis. J Neurooncol 109, 415–423 (2012). https://doi.org/10.1007/s11060-012-0911-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-012-0911-7

Keywords

Navigation