Skip to main content
Log in

Organic layers favor phosphorus storage and uptake by young beech trees (Fagus sylvatica L.) at nutrient poor ecosystems

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The accumulation of organic layers in forests is linked to decreasing nutrient availability. Organic layers might represent a source of phosphorus (P) nutrition of trees in forests. Our aims were i) to test if the fate of P in a tree sapling-soil system differs between nutrient-poor and nutrient-rich sites, and ii) to assess the influence of organic layers on the fate of P in a tree sapling-soil system at either site.

Methods

We conducted a 33P labeling experiment of mesocosms of beech (Fagus sylvatica) saplings.

Results

Recovery of 33P in the organic layer was greater under nutrient-poor than under nutrient-rich conditions likely caused by the abundance of microorganisms and roots. Under nutrient-poor conditions, we found that the mobilization of P followed by efficient uptake promoted tree sapling growth if the organic layer was present. The presence of organic layers did not significantly influence P uptake by beech saplings under nutrient-rich conditions suggesting mechanisms of P mobilization in addition to organic matter mineralization.

Conclusions

Our results highlight the importance of organic layers for P nutrition of young beech trees growing on nutrient-poor soils in temperate forest ecosystems. The role of organic layers should be considered for sustainable forest management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aber JD (1992) Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Trends Ecol Evol 7:220–224

    Article  CAS  Google Scholar 

  • Achat DL, Bakker MR, Morel C (2009) Process-based assessment of phosphorus availability in a low phosphorus sorbing forest soil using isotopic dilution methods. Soil Sci Soc Am J 73:2131–2142

    Article  CAS  Google Scholar 

  • Achat DL, Bakker MR, Augusto L, Derrien D, Gallegos N, Lashchinskiy N, Zeller B (2013) Phosphorus status of soils from contrasting forested ecosystems in southwestern Siberia: effects of microbiological and physicochemical properties. Biogeosciences 10:733–752

    Article  Google Scholar 

  • Audi G, Wapstra AH, Thibault C (2003) The Ame2003 atomic mass evaluation. Nucl Phys 729:337–676

    Article  Google Scholar 

  • Augusto L, Achat DL, Jonard M, Vidal D, Ringeval B (2017) Soil parent material-a major driver of plant nutrient limitations in terrestrial ecosystems. Glob Chang Biol 23:3808–3824

    Article  Google Scholar 

  • Baligar VC, Fageria NK (2015) Nutrient use efficiency in plants: an overview. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency from basics to advances. Springer, New Delhi

    Google Scholar 

  • Berg B, McClaugherty C (2003) Plant litter: decomposition, humus formation, carbon sequestration. Springer Verlag, Heidelberg

    Book  Google Scholar 

  • Bergkemper F, Scholer A, Engel M, Lang F, Kruger J, Schloter M, Schulz S (2016) Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems. Environ Microbiol 18:1988–2000

    Article  CAS  Google Scholar 

  • Brandtberg P-O, Bengtsson J, Lundkvist H (2004) Distributions of the capacity to take up nutrients by Betula spp. and Picea abies in mixed stands. For Ecol Manag 198:193–208

    Article  Google Scholar 

  • Carey ML, Hunter IR, Andrew I (1982) Pinus radiata forest floors: factors affecting organic matter and nutrient dynamics. N Z J For Sci:36–48

  • Chen CR, Condron LM, Davis MR, Sherlock RR (2003) Seasonal changes in soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand. For Ecol Manag 177:539–557

    Article  Google Scholar 

  • Di HJ, Condron LM, Frossard E (1997) Isotope techniques to study phosphorus cycling in agricultural and forest soils. A review. Biol Fertil Soils 24:1–12

    Article  CAS  Google Scholar 

  • Duquesnay A, Dupouey JL, Clement A, Ulrich E, Le Tacon F (2000) Spatial and temporal variability of foliar mineral concentration in beech (Fagus sylvatica) stands in Northeastern France. Tree Physiol 20:13–22

    Article  CAS  Google Scholar 

  • Fisher RF, Binkley D (2000) Ecology and management of forest soils. Wiley, New York

    Google Scholar 

  • Grigal DF, Vance ED (2000) Influence of soil organic matter on forest productivity. N Z J For Sci:169–205

  • Gurpal ST, Hunger SJ, Peak DJ, Sims T, Sparks DL (2006) Advances in the characterization of phosphorus in organic wastes. Environmental and agronomic applications. Acta Scientiarum Agronomy 89:1–72

    Google Scholar 

  • Hallsby G (1994) The influence of different forest organic matter on the growth of one-year old planted Norway spruce seedlings in a greenhouse experiment. New For:43–60

  • Haußmann T, Lux W (1997) Dauerbeobachtungsflaechen zur Umweltkontrolle im Wald: Level II. BMELF. Erste Ergebnisse, Bonn, p. 148

  • Hedley MJ, Stewart JWB, Chauhan BS (1982) Changes in inorganic and organic soil-phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46:970–976

    Article  CAS  Google Scholar 

  • Heinrichs H, Brumsack HJ, Loftfield N, König N (1986) Verbessertes Druckaufschlußsystem für biologische und anorganische Materialien. Z Pflanzenernähr Bodenkd 1986:350–353

    Article  Google Scholar 

  • Hofmann K, Heuck C, Spohn M (2016) Phosphorus resorption by young beech trees and soil phosphatase activity as dependent on phosphorus availability. Oecologia 181:369–379

    Article  Google Scholar 

  • Ilg C, Foeckler F, Deichner O, Henle K (2009) Extreme flood events favor floodplain mollusc diversity. Hydrobiologia 621:63–73

    Article  Google Scholar 

  • IUSS Working Group WRB (2015) World Reference Base for Soil Resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps. FAO, Rome

    Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    Article  CAS  Google Scholar 

  • Jonard M, Misson L, Ponette Q (2006) Long-term thinning effects on the forest floor and the foliar nutrient status on Norway spruce stands in the Belgian Ardennes. Can J For Res 36:2684–2695

    Article  CAS  Google Scholar 

  • Jonard M, Augusto L, Morel C, Achat DL, Saur E (2009) Forest floor contribution to phosphorus nutrition. Experimental data. Ann For Sci 66:510

    Article  Google Scholar 

  • Jonard M, Furst A, Verstraeten A, Thimonier A, Timmermann V, Potocic N, Waldner P, Benham S, Hansen K, Merila P, Ponette Q, de la Cruz, Ana C, Roskams P, Nicolas M, Croise L, Ingerslev M, Matteucci G, Decinti B, Bascietto M, Rautio P (2015) Tree mineral nutrition is deteriorating in Europe. Glob Chang Biol 21:418–430

    Article  Google Scholar 

  • Kang J, Hesterberg D, Osmond DL (2009) Soil organic matter effects on phosphorus sorption. A path analysis. Soil Sci Soc Am J 73:360

    Article  CAS  Google Scholar 

  • Kimmins JP (1997) Forest ecology a foundation for sustainable development. Prentice-hall, Inc., Upper Saddle River, New Jersey. 596 p

  • Kuo S (1996) Phosphorus. In: Sparks DL (ed) Methods of soil analysis: chemical methods, Part 3. Soil Science Society of America, Madison, pp 869–919 SSSA No. 5

    Google Scholar 

  • Lang F, Bauhus J, Frossard E, George E, Kaiser K, Kaupenjohann M, Krüger J, Matzner E, Polle A, Prietzel J, Rennenberg H, Wellbrock N (2016) Phosphorus in forest ecosystems. New insights from an ecosystem nutrition perspective. J Plant Nutr Soil Sci 179:129–135

    Article  CAS  Google Scholar 

  • Lang F, Krüger J, Amelung W, Willbold S, Frossard E, Bünemann EK, Bauhus J, Nitschke R, Kandeler E, Marhan S, Schulz S, Bergkemper F, Schloter M, Luster J, Guggisberg F, Kaiser K, Mikutta R, Guggenberger G, Polle A, Pena R, Prietzel J, Rodionov A, Talkner U, Meesenburg H, von Wilpert K, Hölscher A, Dietrich HP, Chmara I (2017) Soil phosphorus supply controls P nutrition strategies of beech forest ecosystems in Central Europe. Biogeochemistry 127:255–229

    Google Scholar 

  • Leuschner C (1998) Water extraction by tree fine roots in the forest floor of a temperate Fagus-Quercus forest. Ann For Sci 55:141–157

    Article  Google Scholar 

  • Marin CT, Bouten IW, Dekker S (2000) Forest floor water dynamics and root water uptake in four forest ecosystems in Northwest Amazonia. J Hydrol 237:169–183

    Article  Google Scholar 

  • McLaren TI, McLaughlin MJ, McBeath TM, Simpson RJ, Smernik RJ, Guppy CN, Richardson AE (2016) The fate of fertiliser P in soil under pasture and uptake by subterraneum clover – a field study using 33P-labelled single superphosphate. Plant Soil 401:23–38

    Article  CAS  Google Scholar 

  • Minotta G, Pinzauti S (1996) Effects of light and soil fertility on growth, leaf chlorophyll content and nutrient use efficiency of beech (Fagus sylvatica L.) seedlings. For Ecol Manag 86:61–71

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for determination of phosphate in natural waters. Anal Chim Acta 26:31–36

    Article  Google Scholar 

  • Pare D, Bernier B (1989) Origin of the phosphorus deficiency observed in declining sugar maple stands in the Quebec Appalachians. Can J For Res 19:24–34

    Article  Google Scholar 

  • Polglase PJ, Attiwill PM, Adams MA (1992) Nitrogen and phosphorus cycling in relation to stand age of Eucalyptus regnans F. Muell. Plant Soil 142:177–185

    Article  CAS  Google Scholar 

  • Porder S, Ramachandran S (2012) The phosphorus concentration of common rocks—a potential driver of ecosystem P status. Plant Soil 367:41–55

    Article  Google Scholar 

  • Saggar S, Parfitt RL, Salt G, Skinner MF (1998) Carbon and phosphorus transformations during decompositions of pine forest floor with different phosphorus status. Biol Fertil Soils 27:197–204

    Article  CAS  Google Scholar 

  • Salifu KF, Timmer VR (2001) Nutrient retranslocation response of Picea mariana seedling to nitrogen supply. Soil Sci Soc Am J 65:905–913

    Article  CAS  Google Scholar 

  • Spohn M, Ermak A, Kuzyakov Y (2013) Microbial gross organic phosphorus mineralization can be stimulated by root exudates – a 33P isotopic dilution study. Soil Biol Biochem 65:254–263

    Article  CAS  Google Scholar 

  • Talkner U, Meiwes KJ, Potočić N, Seletković I, Cools N, de VB, Rautio P (2015) Phosphorus nutrition of beech (Fagus sylvatica L.) is decreasing in Europe. Ann For Sci 72:919–928

    Article  Google Scholar 

  • Vitousek P (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119:553–572

    Article  Google Scholar 

  • Vogt KA, Grier CC, Vogt DJ (1986) Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests. Adv Ecol Res 15:303–377

    Article  Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19

    Article  CAS  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Van Der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  Google Scholar 

  • Wood T, Bormann FH, Voigt GK (1984) Phosphorus cycling in a northern hardwood forest: biological and chemical control. Science 223:391–393

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne Oelmann.

Additional information

Responsible Editor: N. Jim Barrow.

Electronic supplementary material

ESM 1

(DOCX 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hauenstein, S., Neidhardt, H., Lang, F. et al. Organic layers favor phosphorus storage and uptake by young beech trees (Fagus sylvatica L.) at nutrient poor ecosystems. Plant Soil 432, 289–301 (2018). https://doi.org/10.1007/s11104-018-3804-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3804-5

Keywords

Navigation