Skip to main content
Log in

Comparison of different extraction methods for the determination of essential oils and related compounds from aromatic plants and optimization of solid-phase microextraction/gas chromatography

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Different extraction methods for the subsequent gas chromatographic determination of the composition of essential oils and related compounds from marjoram (Origanum majorana L.), caraway (Carum carvi L.), sage (Salvia officinalis L.), and thyme (Thymus vulgaris L.) have been compared. The comparison was also discussed with regard to transformation processes of genuine compounds, particularly in terms of expenditure of time. Hydrodistillation is the method of choice for the determination of the essential oil content of plants. For investigating the composition of genuine essential oils and related, aroma-active compounds, hydrodistillation is not very useful, because of discrimination and transformation processes due to high temperatures and acidic conditions. With cold solvent extraction, accelerated solvent extraction, and supercritical fluid extraction, discrimination of high and non-volatile aroma-active components as well as transformation processes can be diminished, but non-aroma-active fats, waxes, or pigments are often extracted, too. As solid-phase microextraction is a solvent-free fully automizable sample preparation technique, this was the most sparing to sensitive components and the most time-saving method for the rapid determination of the aroma compounds composition in marjoram, caraway, sage, and thyme. Finally, solid-phase microextraction could be successfully optimized for the extraction of the aroma components from the plants for their subsequent gas chromatographic determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GC:

gas chromatography

MS:

mass spectrometry

ASE:

accelerated solvent extraction

SFE:

supercritical fluid extraction

SPME:

solid-phase microextraction

References

  1. Blum C (1999) Analytik und Sensorik von Gewürzextrakten und Gewürzölen. Dissertation, Institute for Pharmacy, University of Hamburg, Germany

  2. De Castro MDL, Jimenez-Carmona MM, Fernandez-Perez V (1999) Trends Anal Chem 18:708–716

    Article  Google Scholar 

  3. Fischer N, Nitz S, Drawert F (1987) Flavour Fragr J 2:55–61

    Article  CAS  Google Scholar 

  4. Fischer N, Nitz S, Drawert F (1988) J Agric Food Chem 36:996–1003

    Article  CAS  Google Scholar 

  5. Jiménez-Carmona MM, Ubera JL, Luque de Castro MD (1999) J Chr A 855:625–632

    Article  Google Scholar 

  6. Cornwell CP, Leach DN, Wyllie SG (1999) J Essent Oil Res 11:49–53

    CAS  Google Scholar 

  7. Tietz U, Thomann R, Förstner S (1991) Die Nahrung 35:1013–1021

    Article  CAS  Google Scholar 

  8. Nitz S, Kollmannsberger H, Punkert M (1992) Chem Mikrobiol Technol Lebensm 14:108–116

    CAS  Google Scholar 

  9. Oszagyan M, Simandi B, Sawinsky J (1996) Flavour Fragr J 11:157–165

    Article  CAS  Google Scholar 

  10. Maldao-Martins M, Palavra A, da Costa B, Bernardo-Gil MG (2000) J Supercrit Fluids 18:25–34

    Article  Google Scholar 

  11. Maldao-Martins M, Bernardo-Gil MG, da Costa B (2002) Eur Food Res Technol 214:207–211

    Article  CAS  Google Scholar 

  12. Länger R, Mechtler C, Jurenitsch J (1996) Phytochem Anal 7:289–293

    Article  Google Scholar 

  13. Ronyai E, Simandi B, Veress T, Lemberkovics E, Patiaka D (1999) J Essent Oil Res 11:499–502

    CAS  Google Scholar 

  14. Rodrigues MRA, Caramao EB, dos Santos JG, Dariva C, Oliviera JV (2003) J Agric Food Chem 51:453–456

    Article  CAS  Google Scholar 

  15. Stahl E, Quirin KW, Glatz A, Gerard D, Rau G (1984) Ber Bunsenges Phys Chem 88:900–907

    CAS  Google Scholar 

  16. Sovova H, Komers R, Kucera J, Jez J (1994) Chem Eng Sci 49:2499–2505

    Article  CAS  Google Scholar 

  17. Baysal T, Starmans DAJ (1999) J Supercrit Fluids 14:225–234

    Article  CAS  Google Scholar 

  18. Vas G, Vékey K (2004) J Mass Spectrom 39:233–254

    Article  CAS  Google Scholar 

  19. O’Reilly J, Wang Q, Setkova L, Hutchinson JP, Chen Y, Lord HL, Linton CM, Pawliszyn J (2005) J Sep Sci 28:2010–2022

    Article  CAS  Google Scholar 

  20. Bicchi C, Drigo S, Rubiolo P (2000) J Chr A 892:469–485

    Article  CAS  Google Scholar 

  21. Rohloff J (1999) J Agric Food Chem 47:3782–3786

    Article  CAS  Google Scholar 

  22. Rohloff J, Skagen EB, Steen AH, Iversen T-H (2000) J Agric Food Chem 48:6205–6209

    Article  CAS  Google Scholar 

  23. Coleman WM, Lawrence BM (2000) J Chr Sci 38:95–99

    CAS  Google Scholar 

  24. Namiesnik J, Górecki T (2000) J Planar Chrom 13:404–413

    CAS  Google Scholar 

  25. Jorgensen EE (2000) Am Midl Nat 145:419–422

    Article  Google Scholar 

  26. Schäfer B, Hennig P, Engewald W (1995) J High Resol Chromatogr 18:587–592

    Article  Google Scholar 

  27. Ligor M, Szumski M, Buszewski B (2000) Int Lab 1:22–25

    Google Scholar 

  28. Cornu A, Carnat A-P, Martin B, Coulon J-B, Lamaison J-L, Berdagué J-L (2001) J Agric Food Chem 49:203–209

    Article  CAS  Google Scholar 

  29. Czerwinsky J, Zygmunt B, Namiesnik J (1996) Fresenius J Anal Chem 356:80–83

    Article  Google Scholar 

  30. Mindrup RF (2000) Food Test Anal 2:17–19

    Google Scholar 

  31. Adams RP (1995) Identification of essential oil components by gas chromatography/mass spectroscopy. Allured, Illinois, USA

    Google Scholar 

  32. Komaitis ME (1992) Food Chem 45:117–118

    Article  CAS  Google Scholar 

  33. Vera RR, Chane-Ming J (1999) Food Chem 66:143–145

    Article  CAS  Google Scholar 

  34. Barazandeh MM (2001) J Essent Oil Res 13:76–77

    CAS  Google Scholar 

  35. Tarjan G, Bitter I, Strasser B, Szatmary M (2002) Chromatographia Supplement 56:155–163

    Article  Google Scholar 

  36. Hudaib M, Speroni E, Di Petra AM, Cavrini V (2002) J Pharm Biomed Anal 29:691–700

    Article  CAS  Google Scholar 

  37. Pereira SI, Santos PAG, Barroso JG, Figueiredo AC, Pedro LG, Salgueiro LR, Deans SG, Scheffer JJC (2000) Phytochemistry 55:241–246

    Article  CAS  Google Scholar 

  38. Kubeczka K-H, Formácek V (2002) Essential oils analysis by capillary gas chromatography and carbon-13 NMR spectroscopy, 2nd edn. Wiley, Chichester, England

    Google Scholar 

  39. Bailer J, Aichinger T, Hackl G, de Hueber K, Dachler M (2001) Ind Crops Prod 14:229–239

    Article  CAS  Google Scholar 

  40. Sedlakova J, Kocourkova B, Kuban V (2001) Czech J Food Sci 19:31–36

    CAS  Google Scholar 

  41. Perry NB, Anderson RE, Brennan NJ, Douglas MH, Heaney AJ, McGimpsey JA, Smallfield BM (1999) J Agric Food Chem 47:2048–2054

    Article  CAS  Google Scholar 

  42. Sagareishvili TG, Grigalova BL, Gelashvili NE, Kemertelidze EP (2000) Chem Nat Compd 36:360–361

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The investigations have been performed within the research project FKZ 03i0618B. The authors thank the German Federal Ministry of Education and Research for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Schellenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, J., Schellenberg, I. Comparison of different extraction methods for the determination of essential oils and related compounds from aromatic plants and optimization of solid-phase microextraction/gas chromatography. Anal Bioanal Chem 387, 2207–2217 (2007). https://doi.org/10.1007/s00216-006-1045-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-1045-6

Keywords

Navigation