Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

All roads lead to the motor cortex: psychomotor mechanisms and their biochemical modulation in psychiatric disorders

Abstract

Psychomotor abnormalities have been abundantly observed in psychiatric disorders like major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SCH). Although early psychopathological descriptions highlighted the truly psychomotor nature of these abnormalities, more recent investigations conceive them rather in purely motor terms. This has led to an emphasis of dopamine-based abnormalities in subcortical–cortical circuits including substantia nigra, basal ganglia, thalamus, and motor cortex. Following recent findings in MDD, BD, and SCH, we suggest a concept of psychomotor symptoms in the literal sense of the term by highlighting three specifically psychomotor (rather than motor) mechanisms including their biochemical modulation. These include: (i) modulation of dopamine- and substantia nigra-based subcortical–cortical motor circuit by primarily non-motor subcortical raphe nucleus and serotonin via basal ganglia and thalamus (as well as by other neurotransmitters like glutamate and GABA); (ii) modulation of motor cortex and motor network by non-motor cortical networks like default-mode network and sensory networks; (iii) global activity in cortex may also shape regional distribution of neural activity in motor cortex. We demonstrate that these three psychomotor mechanisms and their underlying biochemical modulation are operative in both healthy subjects as well as in MDD, BD, and SCH subjects; the only difference consists in the fact that these mechanisms are abnormally balanced and thus manifest in extreme values in psychiatric disorders. We conclude that psychomotor mechanisms operate in a dimensional and cross-nosological way as their degrees of expression are related to levels of psychomotor activity (across different disorders) rather than to the diagnostic categories themselves. Psychomotor mechanisms and their biochemical modulation can be considered paradigmatic examples of a dimensional approach as suggested in RDoC and the recently introduced spatiotemporal psychopathology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neuronal correlates of motor vs. psychomotor function.
Fig. 2: Biochemical and neural modulation of subcortical-cortical and cortico-cortical mechanisms of psychomotor phenomena.
Fig. 3: Inverted U-shape curves for the continuum of different neural mechamisms underlying psychomotor activity.

Similar content being viewed by others

References

  1. Berrios GE, Markova IS. Historical and conceptual aspects of motor disorders in the psychoses. Schizophr Res. 2017;200:5–11.

    PubMed  Google Scholar 

  2. Griesinger W. Pathology and therapeutics of mental disorders (1845). Vertex. 2011;22:74–9.

    PubMed  Google Scholar 

  3. Kraepelin E. Dementia praecox and paraphrenia. Edinburgh, UK.: E & S Livingstone; 1919.

  4. Hirjak D, Kubera KM, Wolf RC, Northoff G. Going back to Kahlbaum’s psychomotor (and GABAergic) origins: is catatonia more than just a motor and dopaminergic syndrome? Schizophr Bull. 2019;46:272–85.

  5. Northoff G. What catatonia can tell us about “top-down modulation”: a neuropsychiatric hypothesis. Behav Brain Sci. 2002;25:555–77.

    PubMed  Google Scholar 

  6. Northoff G. Brain imaging in catatonia: current findings and a pathophysiologic model. CNS Spectr. 2000;5:34–46.

    CAS  PubMed  Google Scholar 

  7. Hoch A. Benign stupors. New York: McMillan; 1921.

  8. Lajonchere C, Nortz M, Finger S. Gilles de la Tourette and the discovery of Tourette syndrome. Includes a translation of his 1884 article. Arch Neurol. 1996;53:567–74.

    CAS  PubMed  Google Scholar 

  9. Charcot JM, Hysteria MP. Reaction-time in the sane. In Tuke E, editor. Dictionary of psychological medicine. Philadelphia: Blakiston; 1892.

  10. Krahl A, Schifferdecker M, Beveridge A. Carl Wernicke and the concept of ‘elementary symptom’. Hist Psychiatry. 1998;9:503–8.

    CAS  PubMed  Google Scholar 

  11. Wernicke C. Grundriss der Psychiatrie in klinischen Vorlesungen. 1st ed. Leipzig: Thieme, 1900.

  12. Foucher JR, Gawlik M, Roth JN, de Crespin de Billy C, Jeanjean LC, Obrecht A, et al. Wernicke-Kleist-Leonhard phenotypes of endogenous psychoses: a review of their validity. Dialogues Clin Neurosci. 2020;22:37–49.

    PubMed  PubMed Central  Google Scholar 

  13. Kleist K. Fortschritte der Psychiatrie. Frankfurt: Kramer; 1947.

  14. Hirjak D, Meyer-Lindenberg A, Fritze S, Sambataro F, Kubera KM, Wolf RC. Motor dysfunction as research domain across bipolar, obsessive-compulsive and neurodevelopmental disorders. Neurosci Biobehav Rev. 2018;95:315–35.

    PubMed  Google Scholar 

  15. Jabs BE, Pfuhlmann B, Bartsch AJ, Cetkovich-Bakmas MG, Stober G. Cycloid psychoses—from clinical concepts to biological foundations. J Neural Transm. 2002;109:907–19.

    CAS  PubMed  Google Scholar 

  16. Leonhard K. Classification of endogenous psychoses and their differentiated etiology. Vienna: Springer Vienna; 1999. p. 104–12.

  17. Leonhard K. Classification of endogenous psychoses and their differentiated etiology. Vienna, Austria: Spinger; 1999. p. 75–81.

  18. Leonhard K. Aufteilung der endogenen Psychosen und ihre differenzierte Ätiologie. Vol. 8. Stuttgart: Thieme; 2003. 444 pp.

  19. Homburger A. Motorik. In: Bumke O, editor. Handbuch der Geisteskrankheiten V. Vol 9. Springer: Berlin; 1932.

  20. Yin Y, Wang M, Wang Z, Xie C, Zhang H, Zhang H, et al. Decreased cerebral blood flow in the primary motor cortex in major depressive disorder with psychomotor retardation. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018;81:438–44.

    Google Scholar 

  21. Kirby GH. The catatonic syndrome and its relation to manic-depressive insanity. J Nerv Ment Dis. 1913;40:694–704. https://doi.org/101097/00005053-191311000-00002.

    Google Scholar 

  22. Herniman SE, Allott K, Phillips LJ, Wood SJ, Uren J, Mallawaarachchi SR, et al. Depressive psychopathology in first-episode schizophrenia spectrum disorders: a systematic review, meta-analysis and meta-regression. Psychological Med. 2019;49:2463–74.

    Google Scholar 

  23. Herniman SE, Cotton SM, Killackey E, Hester R, Allott KA. Co-morbid depressive disorder is associated with better neurocognitive performance in first episode schizophrenia spectrum. J Affect Disord. 2018;229:498–505.

    PubMed  Google Scholar 

  24. Halligan PW, David AS. Cognitive neuropsychiatry: towards a scientific psychopathology. Nat Rev Neurosci. 2001;2:209–15.

    CAS  PubMed  Google Scholar 

  25. David AS, Halligan PW. Cognitive neuropsychiatry: potential for progress. J Neuropsychiatry Clin Neurosci. 2000;12:506–10.

    CAS  PubMed  Google Scholar 

  26. Walther S, Strik W. Motor symptoms and schizophrenia. Neuropsychobiology. 2012;66:77–92.

    PubMed  Google Scholar 

  27. Mittal VA, Bernard JA, Northoff G. What can different motor circuits tell us about psychosis? An RDoC perspective. Schizophr Bull. 2017;43:949–55.

    PubMed  PubMed Central  Google Scholar 

  28. Walther S, Bernard JA, Mittal VA, Shankman SA. The utility of an RDoC motor domain to understand psychomotor symptoms in depression. Psychol Med. 2019;49:212–6.

    CAS  PubMed  Google Scholar 

  29. Sanislow CA, Ferrante M, Pacheco J, Rudorfer MV, Morris SE. Advancing translational research using NIMH research domain criteria and computational methods. Neuron. 2019;101:779–82.

    CAS  PubMed  Google Scholar 

  30. Walther S, Mittal VA. Motor system pathology in psychosis. Curr Psychiatry Rep. 2017;19:97.

    PubMed  Google Scholar 

  31. Northoff G, Kotter R, Baumgart F, Danos P, Boeker H, Kaulisch T, et al. Orbitofrontal cortical dysfunction in akinetic catatonia: a functional magnetic resonance imaging study during negative emotional stimulation. Schizophr Bull. 2004;30:405–27.

    PubMed  Google Scholar 

  32. Martino M, Magioncalda P, Conio B, Capobianco L, Russo D, Adavastro G, et al. Abnormal functional relationship of sensorimotor network with neurotransmitter-related nuclei via subcortical-cortical loops in manic and depressive phases of bipolar disorder. Schizophr Bull. 2020;46:163–74.

    PubMed  Google Scholar 

  33. Martino M, Magioncalda P, Huang Z, Conio B, Piaggio N, Duncan NW, et al. Contrasting variability patterns in the default mode and sensorimotor networks balance in bipolar depression and mania. Proc Natl Acad Sci USA. 2016;113:4824–9.

    CAS  PubMed  Google Scholar 

  34. Conio B, Martino M, Magioncalda P, Escelsior A, Inglese M, Amore M, et al. Opposite effects of dopamine and serotonin on resting-state networks: review and implications for psychiatric disorders. Mol Psychiatry. 2020;25:82–93.

    PubMed  Google Scholar 

  35. Han S, He Z, Duan X, Tang Q, Chen Y, Yang Y, et al. Dysfunctional connectivity between raphe nucleus and subcortical regions presented opposite differences in bipolar disorder and major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2019;92:76–82.

    PubMed  Google Scholar 

  36. Anand A, Jones SE, Lowe M, Karne H, Koirala P. Resting state functional connectivity of dorsal raphe nucleus and ventral tegmental area in medication-free young adults with major depression. Front psychiatry. 2018;9:765.

    PubMed  Google Scholar 

  37. Wohlschlager A, Karne H, Jordan D, Lowe MJ, Jones SE, Anand A. Spectral dynamics of resting state fMRI within the ventral tegmental area and dorsal raphe nuclei in medication-free major depressive disorder in young adults. Front Psychiatry. 2018;9:163.

    PubMed  PubMed Central  Google Scholar 

  38. Han S, Cui Q, Guo X, Fan YS, Guo J, Zong X et al. Disconnectivity between the raphe nucleus and subcortical dopamine-related regions contributes altered salience network in schizophrenia. Schizophr Res. 2019;216:382–8.

  39. Magioncalda P, Martino M, Conio B, Lee HC, Ku HL, Chen CJ et al. Intrinsic brain activity of subcortical-cortical sensorimotor system and psychomotor alterations in schizophrenia and bipolar disorder: a preliminary study. Schizophr Res. 2020.

  40. Selvaraj S, Arnone D, Cappai A, Howes O. Alterations in the serotonin system in schizophrenia: a systematic review and meta-analysis of postmortem and molecular imaging studies. Neurosci Biobehav Rev. 2014;45:233–45.

    CAS  PubMed  Google Scholar 

  41. Martino M, Magioncalda P, Yu H, Li X, Wang Q, Meng Y, et al. Abnormal resting-state connectivity in a substantia nigra-related striato-thalamo-cortical network in a large sample of first-episode drug-naive patients with schizophrenia. Schizophrenia Bull. 2018;44:419–31.

    Google Scholar 

  42. Richter A, Grimm S, Northoff G. Lorazepam modulates orbitofrontal signal changes during emotional processing in catatonia. Hum Psychopharmacol. 2010;25:55–62.

    CAS  PubMed  Google Scholar 

  43. Northoff G, Koch A, Wenke J, Eckert J, Boker H, Pflug B, et al. Catatonia as a psychomotor syndrome: a rating scale and extrapyramidal motor symptoms. Mov Disord: Off J Mov Disord Soc. 1999;14:404–16.

    CAS  Google Scholar 

  44. Hirjak D, Kubera KM, Wolf RC, Northoff G. Going back to Kahlbaum’s psychomotor (and GABAergic) origins: is catatonia more than just a motor and dopaminergic syndrome? Schizophr Bull. 2020;46:272–85.

    PubMed  Google Scholar 

  45. Hirjak D, Rashidi M, Kubera KM, Northoff G, Fritze S, Schmitgen MM, et al. Multimodal magnetic resonance imaging data fusion reveals distinct patterns of abnormal brain structure and function in catatonia. Schizophr Bull. 2020;46:202–10.

    PubMed  Google Scholar 

  46. Carroll BT, Thomas C, Tugrul KC, Coconcea C, Goforth HW. GABA(A) versus GABA(B) in catatonia. J Neuropsychiatry Clin Neurosci. 2007;19:484.

    PubMed  Google Scholar 

  47. Carroll BT, Goforth HW, Thomas C, Ahuja N, McDaniel WW, Kraus MF, et al. Review of adjunctive glutamate antagonist therapy in the treatment of catatonic syndromes. J Neuropsychiatry Clin Neurosci. 2007;19:406–12.

    CAS  PubMed  Google Scholar 

  48. Northoff G, Lins H, Boker H, Danos P, Bogerts B. Therapeutic efficacy of N-methyl d-aspartate antagonist amantadine in febrile catatonia. J Clin Psychopharmacol. 1999;19:484–6.

    CAS  PubMed  Google Scholar 

  49. Nahar A, Shanker Reddy MS, Subramaniyam BA, Thippeswamy H, Chandra PS, Chaturvedi SK. Baclofen overdose presenting as psychosis with catatonia. Indian J Psychol Med. 2017;39:695–7.

    PubMed  PubMed Central  Google Scholar 

  50. Perez-Esparza R, Onate-Cadena N, Ramirez-Bermudez J, Espinola-Nadurille M. Valproate-induced hyperammonemic encephalopathy presenting as catatonia. Neurologist. 2018;23:51–2.

    PubMed  Google Scholar 

  51. Kruger S, Braunig P. Intravenous valproic acid in the treatment of severe catatonia. J Neuropsychiatry Clin Neurosci. 2001;13:303–4.

    CAS  PubMed  Google Scholar 

  52. Bowers R, Ajit SS. Is there a role for valproic acid in the treatment of catatonia? J Neuropsychiatry Clin Neurosci. 2007;19:197–8.

    PubMed  Google Scholar 

  53. McDaniel WW, Spiegel DR, Sahota AK. Topiramate effect in catatonia: a case series. J Neuropsychiatry Clin Neurosci. 2006;18:234–8.

    PubMed  Google Scholar 

  54. Kritzinger PR, Jordaan GP. Catatonia: an open prospective series with carbamazepine. Int J Neuropsychopharmacol. 2001;4:251–7.

    CAS  PubMed  Google Scholar 

  55. Nair PC, McKinnon RA, Miners JO, Bastiampillai T. Binding of clozapine to the GABAB receptor: clinical and structural insights. Mol Psychiatry. 2020.

  56. Lander M, Bastiampillai T, Sareen J. Review of withdrawal catatonia: what does this reveal about clozapine? Transl Psychiatry. 2018;8:139.

    PubMed  PubMed Central  Google Scholar 

  57. Plevin D, Mohan T, Bastiampillai T. The role of the GABAergic system in catatonia-Insights from clozapine and benzodiazepines. Asian J Psychiatr. 2018;32:145–6.

    PubMed  Google Scholar 

  58. Bastiampillai T, Forooziya F, Dhillon R. Clozapine-withdrawal catatonia. Aust N. Z J Psychiatry. 2009;43:283–4.

    PubMed  Google Scholar 

  59. Waddington JL. Psychosis in Parkinson’s disease and parkinsonism in antipsychotic-naïve schizophrenia spectrum psychosis: clinical, nosological and pathobiological challenges. Acta Pharmacol Sin. 2020; 41:464–70.

  60. Whitty PF, Owoeye O, Waddington JL. Neurological signs and involuntary movements in schizophrenia: intrinsic to and informative on systems pathobiology. Schizophr Bull. 2009;35:415–24.

    PubMed  Google Scholar 

  61. Vegas-Suarez S, Paredes-Rodriguez E, Aristieta A, Lafuente JV, Miguelez C, Ugedo L. Dysfunction of serotonergic neurons in Parkinson’s disease and dyskinesia. Int Rev Neurobiol. 2019;146:259–79.

    CAS  PubMed  Google Scholar 

  62. Wilson H, Dervenoulas G, Pagano G, Koros C, Yousaf T, Picillo M, et al. Serotonergic pathology and disease burden in the premotor and motor phase of A53T alpha-synuclein parkinsonism: a cross-sectional study. Lancet Neurol. 2019;18:748–59.

    CAS  PubMed  Google Scholar 

  63. Pasquini J, Ceravolo R, Brooks DJ, Bonuccelli U, Pavese N. Progressive loss of raphe nuclei serotonin transporter in early Parkinson’s disease: a longitudinal (123)I-FP-CIT SPECT study. Parkinsonism Relat Disord. 2019.

  64. Qamhawi Z, Towey D, Shah B, Pagano G, Seibyl J, Marek K, et al. Clinical correlates of raphe serotonergic dysfunction in early Parkinson’s disease. Brain. 2015;138(Pt 10):2964–73.

    PubMed  Google Scholar 

  65. Hall SD, Barnes GR, Furlong PL, Seri S, Hillebrand A. Neuronal network pharmacodynamics of GABAergic modulation in the human cortex determined using pharmaco-magnetoencephalography. Hum brain Mapp. 2010;31:581–94.

    PubMed  Google Scholar 

  66. Hall SD, Stanford IM, Yamawaki N, McAllister CJ, Ronnqvist KC, Woodhall GL, et al. The role of GABAergic modulation in motor function related neuronal network activity. Neuroimage. 2011;56:1506–10.

    CAS  PubMed  Google Scholar 

  67. Biary N, Koller W. Kinetic predominant essential tremor: successful treatment with clonazepam. Neurology. 1987;37:471–4.

    CAS  PubMed  Google Scholar 

  68. Hall SD, Prokic EJ, McAllister CJ, Ronnqvist KC, Williams AC, Yamawaki N, et al. GABA-mediated changes in inter-hemispheric beta frequency activity in early-stage Parkinson’s disease. Neuroscience. 2014;281:68–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Isaacson SH, Fahn S, Pahwa R, Tanner CM, Espay AJ, Trenkwalder C, et al. Parkinson’s patients with dyskinesia switched from immediate release amantadine to open-label ADS-5102. Mov Disord Clin Pr. 2018;5:183–90.

    Google Scholar 

  70. Fahn S, Isgreen WP. Long-term evaluation of amantadine and levodopa combination in parkinsonism by double-blind corssover analyses. Neurology. 1975;25:695–700.

    CAS  PubMed  Google Scholar 

  71. Marjama-Lyons J, Koller W. Tremor-predominant Parkinson’s disease. Approaches to treatment. Drugs Aging. 2000;16:273–8.

    CAS  PubMed  Google Scholar 

  72. Wolf RC, Rashidi M, Fritze S, Kubera KM, Northoff G, Sambataro F et al. A neural signature of parkinsonism in patients with schizophrenia spectrum disorders: a multimodal MRI study using parallel ICA. Schizophr Bull. 2020.

  73. Esmaiel NN, Ashaat EA, Mosaad R, Fayez A, Ibrahim M, Abdallah ZY, et al. The potential impact of COMT gene variants on dopamine regulation and phenotypic traits of ASD patients. Behav Brain Res. 2020;378:112272.

    CAS  PubMed  Google Scholar 

  74. Hwang BJ, Mohamed MA, Brasic JR. Molecular imaging of autism spectrum disorder. Int Rev Psychiatry. 2017;29:530–54.

    PubMed  Google Scholar 

  75. Yang CJ, Liu CL, Sang B, Zhu XM, Du YJ. The combined role of serotonin and interleukin-6 as biomarker for autism. Neuroscience. 2015;284:290–6.

    CAS  PubMed  Google Scholar 

  76. Muller CL, Anacker AM, Rogers TD, Goeden N, Keller EH, Forsberg CG, et al. Impact of maternal serotonin transporter genotype on placental serotonin, fetal forebrain serotonin, and neurodevelopment. Neuropsychopharmacology. 2017;42:427–36.

    CAS  PubMed  Google Scholar 

  77. Al-Otaish H, Al-Ayadhi L, Bjorklund G, Chirumbolo S, Urbina MA, El-Ansary A. Relationship between absolute and relative ratios of glutamate, glutamine and GABA and severity of autism spectrum disorder. Metab Brain Dis. 2018;33:843–54.

    CAS  PubMed  Google Scholar 

  78. Essa MM, Braidy N, Vijayan KR, Subash S, Guillemin GJ. Excitotoxicity in the pathogenesis of autism. Neurotox Res. 2013;23:393–400.

    CAS  PubMed  Google Scholar 

  79. Marotta R, Risoleo MC, Messina G, Parisi L, Carotenuto M, Vetri L, et al. The neurochemistry of autism. Brain Sci. 2020;10:E163.

  80. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65.

    Google Scholar 

  81. Northoff G, Heinzel A, Bermpohl F, Niese R, Pfennig A, Pascual-Leone A, et al. Reciprocal modulation and attenuation in the prefrontal cortex: an fMRI study on emotional-cognitive interaction. Hum Brain Mapp. 2004;21:202–12.

    PubMed  PubMed Central  Google Scholar 

  82. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA. 2005;102:9673–8.

    CAS  PubMed  Google Scholar 

  83. Northoff G, Magioncalda P, Martino M, Lee HC, Tseng YC, Lane T. Too fast or too slow? Time and neuronal variability in bipolar disorder—a combined theoretical and empirical investigation. Schizophr Bull. 2018;44:54–64.

    PubMed  Google Scholar 

  84. Murphy K, Fox MD. Towards a consensus regarding global signal regression for resting state functional connectivity MRI. Neuroimage. 2017;154:169–73.

    PubMed  PubMed Central  Google Scholar 

  85. Scholvinck ML, Saleem AB, Benucci A, Harris KD, Carandini M. Cortical state determines global variability and correlations in visual cortex. J Neurosci. 2015;35:170–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu TT, Nalci A, Falahpour M. The global signal in fMRI: nuisance or information? Neuroimage. 2017;150:213–29.

    PubMed  PubMed Central  Google Scholar 

  87. Qing Z, Dong Z, Li S, Zang Y, Liu D. Global signal regression has complex effects on regional homogeneity of resting state fMRI signal. Magn Reson Imaging. 2015;33:1306–13.

    PubMed  Google Scholar 

  88. Yang GJ, Murray JD, Glasser M, Pearlson GD, Krystal JH, Schleifer C, et al. Altered global signal topography in schizophrenia. Cereb Cortex. 2017;27:5156–69.

    PubMed  Google Scholar 

  89. Zhang J, Magioncalda P, Huang Z, Tan Z, Hu X, Hu Z, et al. Altered global signal topography and its different regional localization in motor cortex and hippocampus in mania and depression. Schizophr Bull. 2019;45:902–10.

    PubMed  Google Scholar 

  90. Yang GJ, Murray JD, Repovs G, Cole MW, Savic A, Glasser MF, et al. Altered global brain signal in schizophrenia. Proc Natl Acad Sci USA. 2014;111:7438–43.

    CAS  PubMed  Google Scholar 

  91. Yang GJ, Murray JD, Wang XJ, Glahn DC, Pearlson GD, Repovs G, et al. Functional hierarchy underlies preferential connectivity disturbances in schizophrenia. Proc Natl Acad Sci USA. 2016;113:E219–228.

    CAS  PubMed  Google Scholar 

  92. Argyelan M, Ikuta T, DeRosse P, Braga RJ, Burdick KE, John M, et al. Resting-state fMRI connectivity impairment in schizophrenia and bipolar disorder. Schizophr Bull. 2014;40:100–10.

    PubMed  Google Scholar 

  93. Wang X, Liao W, Han S, Li J, Zhang Y, Zhao J, et al. Altered dynamic global signal topography in antipsychotic-naive adolescents with early-onset schizophrenia. Schizophr Res. 2019;208:308–16.

    PubMed  Google Scholar 

  94. Rosenthal R, DiMatteo MR. Meta-analysis: recent developments in quantitative methods for literature reviews. Annu Rev Psychol. 2001;52:59–82.

    CAS  PubMed  Google Scholar 

  95. Hirjak D, Wolf RC, Northoff G. GABA and negative affect-catatonia as model of RDoC-based investigation in psychiatry. Schizophr Bull. 2019;45:1168–9.

    PubMed  PubMed Central  Google Scholar 

  96. Northoff G. Spatiotemporal psychopathology I: No rest for the brain’s resting state activity in depression? Spatiotemporal psychopathology of depressive symptoms. J Affect Disord. 2016;190:854–66.

    PubMed  Google Scholar 

  97. Northoff G. Spatiotemporal Psychopathology II. How does a psychopathology of the brain’s resting state look like? Spatiotemporal approach and the history of psychopathology. J Affect Disord. 2016;190:867–79.

    PubMed  Google Scholar 

  98. Northoff G, Huang Z. How do the brain’s time and space mediate consciousness and its different dimensions? Temporo-spatial theory of consciousness (TTC). Neurosci Biobehav Rev. 2017;80:630–45.

    PubMed  Google Scholar 

  99. Northoff G. The brain’s spontaneous activity and its psychopathological symptoms - “Spatiotemporal binding and integration”. Prog Neuropsychopharmacol Biol Psychiatry. 2018;80(Pt B):81–90.

    PubMed  Google Scholar 

  100. Northoff G, Tumati S. “Average is good, extremes are bad” - Non-linear inverted U-shaped relationship between neural mechanisms and functionality of mental features. Neurosci Biobehav Rev. 2019;104:11–25.

    PubMed  Google Scholar 

  101. Bernard JA, Mittal VA Updating the research domain criteria: the utility of a motor dimension. Psychol Med. 2015;45:2685–9.

  102. Sarkheil P, Odysseos P, Bee I, Zvyagintsev M, Neuner I, Mathiak K. Functional connectivity of supplementary motor area during finger-tapping in major depression. Compr Psychiatry. 2020;99:152166.

    PubMed  Google Scholar 

  103. Barroilhet SA, Ghaemi SN. Psychopathology of mixed states. Psychiatr Clin North Am. 2020;43:27–46.

    PubMed  Google Scholar 

  104. Kessing LV, Andersen PK. Evidence for clinical progression of unipolar and bipolar disorders. Acta Psychiatr Scand. 2017;135:51–64.

    CAS  PubMed  Google Scholar 

  105. Northoff G. Psychopathology and pathophysiology of the self in depression—neuropsychiatric hypothesis. J Affect Disord. 2007;104:1–14.

    PubMed  Google Scholar 

  106. Northoff G, Wiebking C, Feinberg T, Panksepp J. The ‘resting-state hypothesis’ of major depressive disorder-a translational subcortical-cortical framework for a system disorder. Neurosci Biobehav Rev. 2011;35:1929–45.

    PubMed  Google Scholar 

  107. Teo WP, Muthalib M, Yamin S, Hendy AM, Bramstedt K, Kotsopoulos E, et al. Does a combination of virtual reality, neuromodulation and neuroimaging provide a comprehensive platform for neurorehabilitation? A narrative review of the literature. Front Hum Neurosci. 2016;10:284.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Georg Northoff, Paola Magioncalda or Matteo Martino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Northoff, G., Hirjak, D., Wolf, R.C. et al. All roads lead to the motor cortex: psychomotor mechanisms and their biochemical modulation in psychiatric disorders. Mol Psychiatry 26, 92–102 (2021). https://doi.org/10.1038/s41380-020-0814-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-0814-5

This article is cited by

Search

Quick links