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Kurzfassung 
Probenahme, -vorbereitung und Partikeldetektion sind die Eckpunkte der Analyse von 

Mikroplastik (MP). Um diese zu harmonisieren, ist das Befolgen strenger Maßnahmen zur 

Qualitätssicherung und –kontrolle (QS/QK) notwendig.  Diese wurden jedoch bisher 

insbesondere für die Analyse von Hyperspektralen MP-Datensätzen vernachlässigt. Um diese 

Lücke zu schließen wird eine transparente, detaillierte Methode zur QS/QK basierend auf der 

automatisierten Evaluierung eines Referenzdatensatzes vorgestellt.  

Des Weiteren wurden Protokolle zur Vorbereitung von Proben pflanzlicher Lebensmittel und 

Getränke entwickelt und optimiert. Schlussendlich wurden die Haupteintragspfade für MP in 

ausgewählte Lebensmittel und Getränke untersucht. Beispielsweise wurde gezeigt, dass MP 

in abgefülltem Mineralwasser mehrheitlich durch Abrieb am Flaschendeckel entsteht. 

 

Executive Summary 
Sampling, sample preparation and particle detection are the key steps in microplastics (MP) 

analysis. In order to harmonize MP analysis, implementing strict measures for quality 

assurance and control (QA/QC) for all steps is key. However, especially QA and QC for the 

analysis of hyperspectral MP data has remained widely neglected. To fill this gap, a transparent 

and detailed QA/QC method for data analysis based on the automated evaluation of a ground 

truth reference image is presented. 

Moreover, sample preparation protocols for plant-based food and drinks were elaborated and 

optimized. Lastly, the main entry paths of MP into selected foods and beverages were 

investigated. For instance, it was shown that the majority of MP particles in bottled mineral 

water are generated through abrasion from bottle caps.  
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1. Introduction 
In order to introduce the reader to the topic, section 1.1 summarizes the theoretical background 

knowledge about microplastics, its occurrence in beverages and food and concerns connected 

therewith. The challenges in harmonizing MP research and progress made therein are outlined 

in section 1.2. Focusing on the methods applied, sections 1.3 to 1.5 describe the analysis of 

microplastics as carried out during the experimental part of this thesis. Concluding with section 

1.6, the measures taken for quality assurance and quality control are described, which are 

crucial for pushing forward the harmonization of MP analysis.  

 

1.1. Microplastics – an emerging pollutant of the environment, 

beverages, and food 
Life in 2022 is unthinkable without plastic – the probably most versatile material ever invented 

is used for the production of vehicles, electronics, food packaging, and much more. Whilst 

plastic has become essential for us, it is cheap and thus often treated carelessly as soon as it 

is no longer needed. Out of the estimated 367 Mt produced in 2020, at least 23% did not end 

up in recycling facilities or incineration, but in landfills or in the environment (Plastics Europe's 

Market Research and Statistics Group 2021). It is estimated that at least 8 Mt of plastic enter 

the world’s oceans each year, where it accumulates (Ritchie and Roser 2018). 

While plastic pollution of the oceans is a long-known problem, early reports on millimeter-sized 

plastic pieces by Carpenter and Smith (1972) did not receive much attention. In 2013, however, 

a report was published about alleged findings of small plastic pieces in honey and sugar 

(Liebezeit and Liebezeit 2013), followed by a report on so-called ‘microplastic’ in beer 

(Liebezeit and Liebezeit 2014). This was the starting point for intensive research, revealing 

that microplastic (MP) is present all across the globe, not only in the sea, but also in rivers and 

lakes, and even in remote areas with sparse human activity (Wang, Lai et al. 2021). This shows 

that plastic items in the oceans are not only the result of on-sea littering, but are also land-

based and that they are transported by the currents of water and wind. Moreover, mulching 

films or contaminated compost and sewage sludge, used as fertilizers, release MP into 

agricultural soils. Rainfall can then wash the particles out and into aquatic systems (Yang, 

Zhang et al. 2021). Even snow and bird feces contribute to the distribution of MP (Abbasi, 

Alirezazadeh et al. 2022; Bourdages, Provencher et al. 2021). 

Animals can mistake MP particles for food, as was first shown for copepods and other 

zooplankton by Cole, Lindeque et al. (2013). Meanwhile, MP has been detected in the guts of 

fishes (Rochman, Tahir et al. 2015), avifauna (Bourdages, Provencher et al. 2021), and 

mammals (Eriksson and Burton 2003) who ingested it either directly or indirectly with their 

prey. Furthermore, plants were shown to take up plastic particles in the nanometer range via 

their roots (Li, Gao et al. 2021). The potential impacts of MP uptake on living organisms has 

been and still is subject of intensive research, which probably is illustrated best by the fact that 

a new scientific journal, called ‘Microplastics’, was founded in July 2021 (Kalogerakis 2022). 

Plastic is capable of adsorbing chemicals, especially hydrophobic substances such as 

phenanthrene. Because of their high surface-to-volume ratio, MP particles can adsorb 

relatively high amounts. The impacts of which on aquatic organisms, however, remain disputed 

(Tang 2021). Further, it has been observed that biofilms can form on MP particles, turning 

them into potential vectors for pathogenic germs (Bowley, Baker-Austin et al. 2021).  

While it has become clear that MP is abundant, the exact concentrations, its behavior, and its 

effects remain only partially understood to date. This is the case also because the methods for 
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MP analysis are yet to be standardized. In fact, highly specialized methods for sampling, 

sample preparation, instrumental analysis, and data evaluation had to be established, 

stretching further to new experimental design for assessing sorption, uptake by animals and 

plants, and (eco-) toxicological effects. The methods are continuously refined by researchers 

across the globe and first steps have been made towards a standardization of methods in 

national and international boards. 

1.1.1. Microplastic particles: definition 
MP particles in the environment can be distinguished based on their origin: ‘Primary MP’ are 

MP particles that were intentionally produced in the size range of 1 to 1,000 µm, such as pellets 

that serve as raw materials for the production of plastic items, or microbeads for cosmetics. 

Their usage, however, has meanwhile been banned in Canada (Microbeads in Toiletries 

Regulations 2017) and the European Union is planning to forbid intentionally added MP in any 

kind of product (European Chemicals Agency 2018). ‘Secondary’ MP, in turn, are the result of 

plastic items breaking down into smaller fragments under the influence of UV radiation, thermal 

and mechanical stress. They make up for the largest part of MP in the environment (Hale, 

Seeley et al. 2020). While primary MP are mostly spherical, secondary MP particles have 

irregular shapes: fragmental structures can be found as well as fibers (length : width ≥ 3 : 1, 

(Vianello, Jensen et al. 2019)).  

Reflecting the broad variety of plastic materials in various sizes and shapes, MP are a very 

heterogeneous group of analytes as shown exemplarily in Figure 1. MP types reflect the broad 

variety of plastic materials, including polyolefins, polyesters and rubbers as well as so-called 

‘bioplastics’. In fact, the distribution of MP types in the environment reflects the plastic types’ 

production shares (Huppertsberg and Knepper 2018). While some definitions include even 

water-soluble artificial polymers, these are excluded in this thesis according to Braun (2021), 

DIN/TS 10068 and ISO/NP 16094-1 (draft stage).  

Early research classified MP as particles and fibers < 5 mm, however, it soon became clear 

that even nano-scaled plastic particles existed, so the term ‘nanoplastics’ (NP) was introduced 

for particles sized 1-1000 nm (Hartmann, Hüffer et al. 2019). The definition most probably seen 

as a consensus in the debate on MP size categories can be found in Braun (2021), DIN/TS 

10068 and ISO/NP 16094-1 (draft stage), all of which define plastic particles between 1 and 

5 mm as ‘large MP’ and plastic particles between 1 and 1000 µm as ‘MP’. Typically, MP particle 

numbers increase exponentially with decreasing particle sizes (Kooi and Koelmans 2019). 

Figure 1. Most important plastic types and an exemplarily illustration of target variables of MP analysis: plastic 
types, particle concentrations, and particle size distributions. 
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1.1.2. Occurrence of microplastics in beverages and food 

Even though the very first reports of MP findings in honey and sugar (Liebezeit and Liebezeit 

2013, 2015), and in beer (Liebezeit and Liebezeit 2014) have faced harsh criticism 

(Lachenmeier, Kocareva et al. 2015), the case has become one of the hot topics of food safety. 

Especially consumers are worried about potential health impacts of MP when ingested: in the 

latest ‘Verbrauchermonitor’, published by the German Federal Institute for Risk Assessment, 

55% of consumers stated that they were ‘(very) worried’ about MP in food. Leaving behind 

concerns such as antibiotic resistance in meat or coronavirus particles on food, MP is the most 

worrying food safety issue for German consumers (BfR 2022a).  

Until today, a broad variety of beverages and food has been analyzed for MP. Out of which, 

drinking water is the best-studied sustenance as it contains very few solids that can disturb the 

analysis, making it comparably easy to analyze. The first peer-reviewed study in 2018 dealt 

with mineral water in glass and polyethylene terephthalate (PET) bottles. Particles ≥ 5 µm were 

analyzed by means of Raman microspectroscopy (RM). With 118 ± 88 MP particles L-1, 

returnable PET bottles showed the highest MP concentrations. Opposed to this, results from 

single-use PET did not differ from the blank values. As 84% of the MP in returnable PET bottles 

was identified as PET, it was assumed that these were generated during bottle usage and 

cleaning. In glass bottles, a broader variety of plastic types, summing up to 50 ± 52 MP L-1 

were present, hinting at the bottle cleaning process as the main entry path (Schymanski, 

Goldbeck et al. 2018). Similar findings were made in another study, detecting MP 

concentrations of 6,292 ± 10,521 MP L-1 for glass bottles and 4,889 ± 5,432 MP L-1 for 

returnable PET bottles. The concentrations were significantly higher in this study because 

particles down to a size of 1 µm were analyzed. Along with the MP particles, pigmented 

particles were found, potentially originating from the bottle labels (Oßmann, Sarau et al. 2018). 

Note the high standard deviations of the findings, the reasons for which may lie in sample 

heterogeneity, sampling and analysis methods, or a combination of all three. Thus, general 

statements about MP concentration in bottled water are not possible to date.  

When sourcing drinking water from rivers or lakes that are contaminated with MP, water 

treatment (such as flocculation and/or filtration, for instance) cannot completely remove the 

particles. Depending on the treatment process, between 40 and 88% of MP can be removed 

(Pivokonský, Pivokonská et al. 2020). In contrast, ground water was shown to be nearly free 

of MP particles (Mintenig, Löder et al. 2019). This shows that the contamination of natural 

mineral water sold in the European Union (which needs to be sourced from ground water by 

law (2009/54/EC)) must occur during bottling. Winkler, Santo et al. (2019) showed that 

repeated twisting of polypropylene (PP) caps on the necks of PET bottles caused abrasion. To 

finally answer the question of how the majority of MP gets into bottled water, the bottling 

process was analyzed step-by-step during this thesis (see section 3.4.).  

In beer, no MP could be detected by means of RM (Wiesheu, Anger et al. 2016), contradicting 

the findings by Liebezeit and Liebezeit (2014). In another study, an average of 28 ± 5 MP L-1 

was identified in beer (Shruti, Pérez-Guevara et al. 2020). None of these studies, however, 

conducted a fully quantitative analysis but instead analyzed subsamples or manually chosen 

particles and fibers only, indicating that MP particles potentially were overlooked (Pérez-

Guevara, Roy et al. 2022). The variance between the studies may result from the different 

methodologies, but also from variations in the bottle manufacturing and filing processes.  

Originating from the oceans, sea salt can contain up to 19,800 MP kg-1 (Renzi and Blašković 

2018). Salt, however, is not consumed in large amounts, making it less relevant for human 

exposure to MP. Like sea salt, fish and seafood seem to be a very likely source of MP at first 

glance. In fish, however, MP have mostly been identified in the digestive tracts, which are 
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usually not consumed. Similarly, MP in crustaceans seem to be present predominantly in their 

digestive tract, however, their guts are not always removed before consumption. Lastly, 

mollusks have been shown to contain 1 ± 3 MP g-1 tissue, which would be ingested when the 

mollusk is eaten as a whole. Depurating them before consumption, however, lowers the MP 

concentration to < 1 MP g-1 (Dawson, Santana et al. 2021).  

Packaging materials pose another potential source of MP contamination. Opening a package, 

using scissors, or simply tearing, can generate MP. The amount of MP generated seems to 

depend on the plastic’s material properties such as stiffness or density (Sobhani, Lei et al. 

2020). Meat packaged in polystyrene (PS) trays was found to be contaminated with up to 19 

PS particles kg-1 (Kedzierski, Lechat et al. 2020). As only particles ≥ 300 µm were analyzed, 

higher numbers are to be expected when including lower size ranges. A report on MP 

generation from PET and nylon teabags claimed that per cup of tea, billions of MP and NP 

were released during brewing (Hernandez, Xu et al. 2019). This study, however, was broadly 

criticized concerning the methods applied that possibly over-estimated the number of MP 

particles (Busse, Ebner et al. 2020). Furthermore, plastic kitchenware may be another source 

of MP in food. Cutting meat on plastic boards, for instance, can cause up to 7 ± 5 MP g-1 

(Habib, Poulose et al. 2022). This result, however, is to be seen with caution because the blank 

values were not reported.  

This short summary shows that even though until today dozens of studies on MP in beverages 

and food have been published, they need to be interpreted with care. The methods applied are 

often questionable (Oßmann 2021; Koelmans, Mohamed Nor et al. 2019; Oßmann, 

Schymanski et al. 2019; Busse, Ebner et al. 2020), stressing the urgent need for a 

harmonization of MP research methods. 

1.1.3. Potential impacts of micro- and nanoplastics on (human) health 
To date, there is no doubt that humans ingest MP, but also egest it at least partly, as analyses 

of MP ≥ 50 µm in stool samples have shown (Schwabl, Köppel et al. 2019). In general, it is 

estimated that only particles smaller than 10 µm can be taken up by human intestinal cells, 

making small MP and NP the most relevant for potential toxic effects (Paul, Stock et al. 2020). 

Indeed, the presence of NP has been confirmed in samples from human placenta (Braun, 

Ehrlich et al. 2021; Ragusa, Svelato et al. 2021) and human blood (Leslie, van Velzen et al. 

2022), showing the bioavailability of NP. Note that NP in blood do not necessarily stem from 

oral uptake but may have been translocated from lung tissue after inhalation (Fournier, D’Errico 

et al. 2020).  

In small organisms such as zooplankton, MP particles may block guts and physically damage 

intestinal tissues (Wright, Thompson et al. 2013). For larger organisms such as humans, this 

is not the case. However, it is known that the smaller an orally delivered PS particle is (sizes 

50 nm to 3 µm), the more likely is its uptake into the liver of rats (Jani, Halbert et al. 2011). In 

vitro studies with human colorectal cells (Caco-2) showed that PS particles between 25 and 

500 nm were taken up and that specifically the uptake of 100 nm PET particles increased over 

time (Magrì, Sánchez-Moreno et al. 2018).  

The first conclusion that can be drawn is that particle sizes seem to drive MP and NP uptake 

into cells. Uptake alone, however, does not per se cause damage. In fact, MP and NP toxicity 

is still disputed as studies contradict each other and/or were conducted under doubtful 

conditions (Paul, Stock et al. 2020). One reason for this ambiguity lays in the lack of 

standardized testing materials. As a recent study shows, testing material from different 

suppliers can have different impacts on cells, even though they are nominally identical, based 

on their specifications. Using PS beads with 3 µm diameter from two suppliers, Ramsperger, 

Jasinski et al. (2022) showed that murine cell metabolism and proliferation decreased for 
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particles with lower zeta potential and higher content of styrene monomers. Recently, plastic 

monomers from ingested polyethylene (PE) MP were shown to be bioaccessible in 

standardized tests (Lopez-Vazquez, Rodil et al. 2022). Acute exposure to PE MP further 

seems to impair the growth of water fleas and insects (Castro, Bernegossi et al. 2022). 

Altogether, it is to date not possible to draw a conclusion about the toxicity or harmlessness of 

MP and NP. Nevertheless, under the precautionary principle, research should be pushed 

ahead further (Leslie and Depledge 2020; Ramsperger, Jasinski et al. 2022). Especially 

because we can expect rising MP and NP concentrations in the environment (Hale, Seeley et 

al. 2020), and therefore also in beverages, food, and in the air we breathe.  

 

1.2. Harmonizing and standardizing microplastics research 
Methods for MP analysis need to be harmonized in order to gather reliable and comparable 

data on the occurrence of MP in the environment, in beverages, and in food. Especially for the 

implementation of future legal regulations, standard methods are a prerequisite. 

Early MP research was often done with simplistic methods, such as light microscopy, 

considering colored particles to be plastic (Liebezeit and Liebezeit 2013). Unsurprisingly, this 

method can lead to high error rates (Song, Hong et al. 2015). Consequently, more reliable 

methods were developed that enabled to identify a particle’s chemical composition, and are 

meanwhile in the process of becoming standard for MP analysis (ISO/DIS 24187, ISO/NP 

16094-2 and -3 (draft stage). To date, the most important methods are RM, Fourier-transform 

Infrared microspectroscopy (µFTIR) (more details in section 1.4), and thermo-analytical 

methods; the latter is an umbrella term for pyrolysis-gas chromatography-mass spectrometry 

(Pyr-GC-MS) and thermal extraction desorption (TED)-GC-MS. While all these methods are in 

principle capable of determining plastic types in a sample, they complement each other in 

some aspects. In contrast to the microspectroscopic methods, thermo-analytical methods 

destroy MP samples during the analysis and therefore, particle sizes and shapes of the 

analyzed sample cannot be determined. Size-fractionating the samples beforehand can partly 

solve this problem (Bannick, Szewzyk et al. 2019). The limit of detection, in theory, is one 

particle within the analyzable particle size range for the spectroscopic methods (~ 1 µm for RM 

and ~10 µm for µFTIR). For thermo-analytical methods, the limit of detection, however, 

depends on the plastic type and ranges from 0.06 µg for styrene butadiene rubber up to 2.2 

µg for PE, corresponding to a minimum of, for example, 10 PE particles with 75 µm diameters. 

The strength of the thermo-analytical methods in turn, is their speed and capability of analyzing 

the polymer type simultaneously with additives and adsorbed substances (Braun 2021). For 

both method families, however, non-plastic sample matrix constituents can pose a major 

challenge, making sample preparation before the analysis indispensable (Primpke, Fischer et 

al. 2020). 

Much effort has been put into sample preparation methods, yielding multi-step chemical and 

enzymatic digestion protocols, tailored for many different sample types (see sections 1.3 and 

3.1.1) and with enhanced quality assurance (Al-Azzawi, Kefer et al. 2020; Schymanski, 

Oßmann et al. 2021). Because there is no ‘one-fits-all’ solution, it is inherently necessary to 

have a variety of methods at hand. The aspect of harmonization here lays rather in the 

evaluation of the sample preparation methods (Schymanski, Oßmann et al. 2021) than in the 

methods themselves. Thus, the harmonization committees have agreed that any method 

applied must be tested for compatibility with the plastic types targeted to avoid particle damage 

or even destruction (ISO/DIS 24187, DIN/TS 10068). A series of measures for quality 

assurance (QA) and quality control (QC) should be followed as outlined in section 1.6. 
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Even though the harmonization of sampling, sample preparation, and instrumental analysis 

methods has made progress, inter-laboratory comparisons show that there is still a ‘substantial 

lack of inter-laboratory reproducibility’ (Belz, Bianchi et al. 2021). One reason may be the 

challenge in preparing homogeneous test samples, as becomes evident in the report of an 

inter-laboratory study initiated by the European Union’s Joint Research Centre, where a rather 

large indicative range of the test samples provided to the participants is given with 500-1,100 

PET particles L-1 (Belz, Bianchi et al. 2021).  

While progress in the development of standard MP particles is undoubtedly urgent, this thesis 

aims to draw attention to the method gap that remains at the end of the analysis pipeline: the 

interpretation of data gained through instrumental analysis. Especially the hyperspectral 

imaging techniques (here RM, FTIR and Near infrared (NIR) microspectroscopy) produce large 

amounts of data, the interpretation of which is not trivial and requires automated data analysis 

routines (DARs). Database matching and machine learning techniques have been shown to 

be capable of this task (Primpke, Cross et al. 2020; Hufnagl, Steiner et al. 2019). Yet, method 

harmonization at this point suffers two-fold: First, methods often are not reported in full 

transparency, as shown through a literature review during this thesis, summarized in Figure 2. 

Focusing only on studies using FTIR, about a quarter of studies did not report how spectra 

were interpreted. From the 62% using database matching, where a substance is identified by 

comparing its spectrum with a known reference, again about a quarter did not report which 

database was used. Concerning the algorithm that computes the similarity between a query 

and a reference spectrum, three quarters of studies failed to deliver this information (Weisser, 

Pohl, Heinzinger et al. 2022).  

 

Figure 2. Summary of an assessment of 100 studies on microplastic utilizing Fourier-transform Infrared 
spectroscopy regarding A) spectra identification methods, B) databases and C) similarity metrics used (Reprint from 
Weisser, Pohl, Heinzinger et al. (2022) with permission from the publisher).  

The second issue hampering method harmonization is the inconsistency in DAR evaluation. If 

DARs are evaluated in the literature (which is not always the case), arbitrary methods and 

metrics are used to do so, see section 1.6.4. Consequently, the evaluation remains superficial, 

incomplete, biased, or all three combined. In ISO/NP 16094-2 (draft stage), the importance of 

ensuring accuracy of database matching for MP identification is mentioned, and that a 

maximum of 20% false positive and 20% false negative results should be aimed for. Further, 

in DIN/TS 10068, the importance of tailoring DARs for the respective sample type and 

laboratory conditions is stressed. However, clear definitions are lacking, as well as a 

description of how this can be achieved. A more detailed explanation can be found in the annex 

A of ISO/DIS 24187, where the importance of separate test data sets is highlighted and basic 

metrics for DAR evaluation are proposed. Nevertheless, some questions remain unanswered 

as discussed extensively in section 4.3. 
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1.3. A pipeline for the analysis of microplastics 
The fact that MP analysis deals with a group of solid analytes instead of soluble substances 

leads to some challenges for sampling and sample preparation. Crucially, MP particles need 

to be isolated from the sample matrix to avoid interferences during instrumental analysis. 

Depending on the presence or absence of inorganic and organic substances, different 

strategies can be pursued as described in section 1.3.2.  

After sample preparation, the remaining particles were concentrated on an analysis filter as 

described in section 1.3.3 to undergo FTIR imaging, followed by data analysis. During all steps 

(summarized in Figure 3), measures for quality assurance and quality control were followed, 

see section 1.6. 

MP concentrations were determined during this thesis for bottled mineral water, bread, tea, 

and fruit purees, including raw materials. 

 

1.3.1. Sampling of microplastics in food and beverages  
For the analysis of MP in beverages and food, preferably a whole unit of consumption, such 

as one whole bottle of mineral water, was sampled. However, for samples with a higher content 

of solids, for example fruit purees, the analysis of a whole container was not possible. Despite 

the multi-step degradation process, matrix residues would have covered potential MP particles. 

In such cases, the sample was homogenized through stirring before sampling. 

Homogenization was necessary for a second reason: in contrast to water-soluble analytes, MP 

particles cannot be considered to be homogeneously distributed in a sample (Braun 2021). For 

instance, low-density polymers such as PE (0.92 g cm-3) float at the water surface, while others, 

such as polyvinyl chloride (PVC, 1.36 g cm-3), tend to sink (Domininghaus 2012). Moreover, 

MP particles tend to aggregate in water (Eitzen, Paul et al. 2019). Both causes inhomogeneous 

distribution of MP.  

The sample volume or mass further depends on the expected number of MP particles in the 

targeted size range. For instance, Schymanski, Goldbeck et al. (2018) found that mineral water 

from reusable PET bottles contained ~50 ± 30 MP particles ≥ 10 µm L-1 , while another 68 ± 

58 MP particles between 5 and 10 µm were present. Hence, even when only the size range ≥ 

10 µm is targeted, a considerable amount of MP particles can be expected in a 1 L-bottle. In 

contrast, MP (≥ 50 µm) concentrations below 1 L-1 are to be expected in ground water 

(Mintenig, Löder et al. 2019), making it necessary to sample at least 1 m3 in order to gain a 

representative sample (Braun 2021). For reasons of practicability, groundwater was filtered  in-

situ through stainless steel cartridge filters (see Figure 4 A; mesh sizes 5 and 50 µm to avoid 

clogging (Lenz and Labrenz 2018)) to reach a sample size of ~1,000 L. All particles > 5 µm 

thereby were concentrated on the filters. 

Bottled water did not require any sample pretreatment, but could be filtered directly through an 

analysis filter. Empty bottles were flushed twice with a 0.02% sodium dodecyl sulfate (SDS) 

solution and once more with 30% ethanol to extract as many particles as possible. 

Figure 3. Schematic representation of a microplastic analysis pipeline, Illustrations created by Teresa Pohl 
with kind permission to use here. 
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When having the goal of identifying the sources of MP contamination into a (food) product, it 

is advisable to assess the end product and to take additional samples step-by-step along the 

production process as is described in Weisser, Beer et al. (2021). To account for the high 

variances typical in MP research, at least triplicate samples are required (Schymanski, 

Oßmann et al. 2021).  

1.3.2. Sample preparation 
Depending on the sample’s physical state (solid/liquid), water content, and content of organic 

and inorganic substances, the preparation steps described in the following are suitable to 

isolate MP from the sample matrix. The success of sample matrix degradation here was 

evaluated first by determining the sample’s dry mass reduction. This was necessary for all 

sample types, except for water samples. Dry mass was determined after 24 h drying at 60°C 

to avoid thermal damaging of the polymers (Löder, Imhof et al. 2017). Importantly, dry mass 

reduction was determined in relation to the filtered, but untreated sample, instead of in relation 

to the unfiltered sample to avoid misinterpretation caused by dissolved substances. Sample 

treatments were tested using model food matrices (e.g. fruit puree, flour, and cellulose). 

Solid-liquid separation and size classification 

Filtering through stainless-steel filters allows to remove the liquid share of a sample or to 

fractionate it into particle size categories. Fractionation can be relevant either to exclude 

particles below the analytical method’s detection limit in terms of particle size, or, when a 

sample contains large particles that might superimpose smaller MP particles. For example, in 

the present work, particles < 5 µm were discarded by filtering through stainless steel sieves 

while particles > 1 mm were analyzed with Attenuated Total Reflection-FTIR spectroscopy 

instead of FTIR imaging (see section 1.4).  

For size fractionation and sample volume reduction, a customized filtering device (see Figure 

4 B) was commissioned using 2” Tri-Clamp ferrules enabling up to three samples to be 

vacuum-filtered in parallel through cascades of up to four stainless steel sieves each. The 

sieve mesh sizes (5, 10, 50, and 100 µm, Rolf Körner GmbH, Germany) were chosen 

depending on the sample’s solids content to avoid filter clogging. Black Viton® gaskets were 

used because black materials are hardly analyzable with FTIR. This way, confusion with 

sample MP particles was avoided. 

Density separation 

To separate inorganic substances from a sample, density separation in a 60% (w/w) zinc 

chloride (ZnCl2) solution with a density of 1.75 g cm-3 for 24 h at room temperature was 

Figure 4. Sampling, fractionation and separation methods for MP. A. Stainless steel cartridge filters for in-situ filtration 
of groundwater samples. B. Customized filtering device, stainless steel sieves and Viton gasket. C. Particulate matter 
from a g ground water sample (left) and corresponding blank sample (right) undergoing density separation. Photos 
by Jana Weißer. 

B C A 
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employed. The settled particles were discarded through the valve at the lower end of the 

separation funnel. The floating particles, including MP particles with densities <1.75 g cm-3, 

were processed further. As can be seen in Figure 4 C, inorganic particles, mostly ferric oxides, 

were separated from the sample this way. During the work on this thesis, density separation 

was necessary only for sea salt (Hubin 2020) and ground water samples (Weisser, Beer et al. 

2021). 

Enzymatic sample preparation for plant-based samples 

After successful enzymatic matrix degradation described by Löder, Imhof et al. (2017), their 

protocol was adapted. Enzymes summarized in Table 1 were acquired from ASA 

Spezialenzyme GmbH, Germany, and tested for their suitability to degrade high 

polysaccharides in plant-based beverages and food. Enzymes were chosen that yield soluble 

products, like mono- or disaccharides.  

Table 1. Enzymes tested for beverage and food matrix degradation. 

Product name Function 
Enzyme Commission 

number 

Cellulase TXL endo-1,4-β-glucanase EC 3.2.1.4 

Amylases Thermo and TXL 1,4-α-D-glucanohydrolases EC 3.2.1.1 

Pektinase L-40 endo-polygalacturonase EC 3.2.1.15 

Xylanase 2x  
(mixed preparation) 

endo-1,4-β-D-xylanase and 
endo-1,3-β-D-xylanase 

EC 3.2.1.8 and EC 3.2.1.32 

 

Cellulase TXL was tested as it was expected to be versatile for the degradation of any plant-

based beverages and food. It breaks down the insoluble cellulose into soluble β-D-glucose as 

shown in Figure 5 (Je Yoo, Feng et al. 2017).  

For degradation of starch-containing samples, both Amylase Thermo and Amylase TXL were 

tested, yielding dextrins and maltose. Amylases play a major role during the saccharification 

of malt during beer brewing, for example (Je Yoo, Feng et al. 2017). Adding 100 ppm of calcium 

was recommended by the supplier for stabilizing the enzyme at temperatures >60°C. For the 

degradation of pectin in fruit purees, Pektinase L-40 was tested. In the food industry, 

pectinases play a role in liquefaction and viscosity decrease of fruit mashes and juices (Je 

Yoo, Feng et al. 2017). Lastly, Xylanase 2x was tested for the degradation of plant and yeast 

cell walls as it comprises the hemicellulase activities of mannanase, xylanase, and β-

glucanase. It is used, for example, to enhance the availability of complex substrates in 

industrial fermentation processes (Hu, Arantes et al. 2011).  

First experiments resulted in denaturing of the enzymes despite usage of buffer systems and 

reaction temperatures as described by Löder, Imhof et al. (2017) who followed the 

manufacturer’s recommendations. Therefore, suitable reaction systems had to be established 

for each enzyme, aiming to keep the enzymes stable. For reasons of practicability, a reaction 

Cellulase 

+  H2O 2 

Figure 5. Hydrolytic cleavage of 1,4-β-D glucosidic bonds in cellulose by cellulase. 

Cellulose β-D-glucose Water 
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time of ≥ 24 h was targeted. Four buffer systems (sodium-acetate, sodium hydroxide-citric acid, 

sodium-phosphate, and trisodium citrate-citric acid) were tested at concentrations of 0.1, 0.5, 

and 1.0 M. Further, the influence of temperature (40 to 80°C) and pH (5.0, 6.0, and 7.0) were 

investigated. For Amylase Thermo and Xylanase 2x, the addition of 100 ppm Ca2+ as a 

stabilizing agent was tested, following the enzyme manufacturer’s suggestion (Dunkel 2018). 

Chemical sample preparation 

Usage of aggressive chemical reactants was kept at a minimum to avoid degradation of MP 

particles. The chemical digestion methods described below were tested towards their effects 

on MP particles and found to not cause any significant effects as is described in section 3.1.2.  

Residual mineral precipitates after density separation of ground water samples were dissolved 

in 30 mL of citric acid (0.55 M) at room temperature for 24 h.  

Fenton’s reaction (Fenton 1894), was employed for degradation of all samples except water. 

It is a relatively mild, yet effective method for the degradation of organic compounds (Tagg, 

Harrison et al. 2017; Al-Azzawi, Kefer et al. 2020; Bolobajev, Trapido et al. 2015; Hou, Huang 

et al. 2018), where ferric ions (Fe2+) catalyze the formation of hydroperoxyl (HO2) and hydroxyl 

(OH) radicals from hydrogen peroxide (H2O2) as described in formulae 1 and 2. Formula 3 is 

the net outcome: 

𝐹𝑒2+ +  𝐻2𝑂2  
 

→ 𝐹𝑒3+ + 𝐻𝑂• + 𝑂𝐻− 
 

(1) 

𝐹𝑒3+ +  𝐻2𝑂2  
 

→ 𝐹𝑒2+ + 𝐻𝑂𝑂• + 𝐻+ 
 

(2) 

2 𝐻2𝑂2  
 

→ 𝐻𝑂• +  𝐻𝑂𝑂• +  𝐻2𝑂 
 

(3) 

The formed radicals act as reductants for organic compounds present in the sample, thereby 

cleaving molecular bonds. While first experiments followed a protocol proposed by Masura, 

Baker et al. (2015), adaptions were necessary after the formation of iron precipitates was 

observed. To avoid this, the relation between H2O2 (30%) and FeSO4 (0.05 M) was increased 

from 1:1 to 40:5, and the reaction temperature was kept between 20 and 30°C in a water bath, 

following Simon, van Alst et al. (2018). This procedure further considerably reduced the 

formation of foam and overflowing of vessels. Depending on the sample amount (up to 

6.500 mg), usually 100 mL of H2O2 were needed for a satisfying result. 

Aiming to quench the formation of radicals before starting the next degradation step as 

recommended by Martin Elsner (Institute of Hydrochemistry and Chair of Analytical Chemistry 

and Water Chemistry, TUM), a solution of ascorbic acid (AAH, 200 g L-1) was added after two 

hours in a ratio of 10:40 to H2O2.  

Method assessment with model foods 

To assess the suitability of enzymatic and Fenton + AAH treatments, tests were conducted 

with approximately 6 g of a) an apple puree with strawberry, banana, and raspberry added (10, 

9, and 4%, respectively) and b) a mixed pear and apple puree (ratio 70 to 30%). These model 

foods will in the following be referred to as ‘strawberry puree’ and ‘pear puree’, respectively. 

Both purees were dissolved in 300 mL of demineralized water, vacuum-filtered through a 

cascade of stainless steel filter disks (100, 50, 10, and 5 µm). Next, they underwent treatment 

with Fenton’s reagent for three hours in triplicates. The samples were re-filtered and their dry 

mass determined. The experiment was repeated, but after two hours, AAH was added. To 

determine the samples’ initial dry mass, they were dissolved in 300 mL of water and filtered 

through the stainless steel filters without further treatment.  
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1.3.3. Suitable filters for microplastics analysis 

The final sample preparation step was the deposition of the remaining particles on a substrate 

suitable for the analysis by means of FTIR imaging (described in detail in section 1.4).  

As shown by Löder, Kuczera et al. (2015), FTIR imaging in transmission mode poses a quick 

and reliable method for identifying MP particles ≥ 10 µm. This requires to deposit the particles 

on a substrate that is infrared (IR) transparent, i.e. that does not interfere with IR light. For this 

purpose, IR-transparent filters are available that are made from inorganic compounds (Löder, 

Kuczera et al. 2015). When choosing filters with a pore size similar to the analysis method’s 

detection limit (~10 µm for FTIR imaging), smaller particles pass the filter and cannot form a 

filter cake that interferes with potentially present MP particles. Finally, targeting an analysis 

time of e.g. maximum 4 h per sample, the filters’ diameter should not be too big. A sample area 

of approximately 10 × 10 mm2 to be measured by FTIR imaging was found acceptable here. 

The filter of choice for samples with low contents of suspended solids, i.e. drinking water, was 

Anodisc (Whatman, Buckinghamshire, UK), made from aluminum oxide with a diameter of 

25 mm and a pore diameter of 0.2 µm. Anodisc membranes are available with a PP support 

ring, which considerably eases their handling. Without the ring, the membranes tend to break 

easily. No remarkable number of PP particles was found in blank samples, indicating that no 

or only very few contamination through the support ring occurred. Filtration took place under 

vacuum in a glass filtration unit. To concentrate the sample particles in a squared area of 

approximately 100 mm2, a spacer made from the paper interlaying the filters in their box was 

used. 

Similarly, for reflection FTIR imaging experiments, particle suspensions were filtered through 

gold-coated polycarbonate (PC) membrane filters (Analytische Produktions-, Steuerungs- und 

Controllgeräte GmbH, Germany) with diameters of 25 mm and a pore size of 0.8 µm.   

For FTIR imaging, samples on both Anodisc and PC membranes were placed on BaF2 

windows and into custom-made filter holders (Figure 6 A) to hold them flat and even as 

proposed by Primpke, Dias et al. (2019). Its influence on filter flatness was kindly evaluated by 

Elisabeth von der Esch, TUM (section 3.1.1). 

For samples where even after multi-step matrix digestion too many solids were left to yield a 

particle monolayer on the Anodisc membrane, silicon filters with pore sizes of 5-10 µm 

(SmartMembranes GmbH, Germany) were used. Moreover, they are transparent for a wider 

range of IR light than Anodisc membranes (4,000-600 cm-1 vs. 3,800-1,250 cm-1 (Käppler, 

Windrich et al. 2015)). The silicon filters required some modifications of the filtration set-up 

because they are square-shaped and relatively thick (~300 µm). Following the descriptions 

from Käppler, Windrich et al. (2015), a filter adapter was designed (Autodesk® Inventor, 

Autodesk Inc., CA, USA) and 3D-printed (Rapidobject GmbH, Germany) as shown in Figure 6 

Figure 6. Tools for analysis filter handling. A. Holder for Anodisc membranes and PC membranes (Beer 2019). 
B. 3D-model of the adapter. C. Schematic filtration set-up, adapted from Lerch (2020).  
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B. Different materials were tested and ‘Clear CL03’, a photopolymer resin, was found to be 

ideal. Its walls are smooth, minimizing sticking of particles to it. The material is clear, making 

it possible to check for a proper fit of the filter. To avoid sample loss, a silicone gasket was 

placed on the upper and lower end of the adapter, as illustrated in Figure 6 C. 

1.4. Fourier-transform infrared imaging for the analysis of microplastics 
Infrared (IR) spectroscopy is a vibrational spectroscopy technique that allows to determine the 

chemical composition of a solid, liquid, or gaseous sample through its interaction with 

electromagnetic radiation in the infrared range (wavelength λ = 780 nm to 1 mm). Depending 

on the sample’s composition, a part of the light is absorbed before reaching a detector. The 

detector is coupled to a computer that outputs the corresponding IR spectrum. In spectroscopy, 

‘wavenumbers’ are used rather than wavelengths (wavenumber = λ-1), corresponding to the 

number of waves passing through 1 cm. The wavenumber is directly proportional to the light 

energy, which eases the interpretation of spectra. For the identification of plastics and other 

polymers, the mid IR (MIR) range (4,000 - 400 cm-1) is suitable (Löder, Kuczera et al. 2015). 

As an example, Figure 7 shows the FTIR spectrum of PS. The bands of the spectrum reflect 

molecular vibrations or rotations induced by the absorbed light energy. In general, absorption 

happens when a photon that hits an atom lifts its electrons into a higher energy level. Most of 

the time, electrons are uplifted one energy level. However, at a lower probability, one or more 

levels can be skipped (overtone vibration). Changing electron energy levels disturbs the 

equilibrium of interactions between atoms of a molecule (steric effects) that are responsible for 

their spatial arrangement. Consequently, the atoms start to vibrate in relation to their 

equilibrium state, as shown on the right side of Figure 7. Rotations are possible as well, but 

take place mostly in the far IR region (λ ≥ 50 µm). Because the energy levels of electrons are 

quantized, only very specific wavelengths, i.e. photons containing exactly the right amount of 

energy, can induce vibration or rotation of a molecule, depending on the strength of interactions 

between its atoms.  

Caused by the electrons’ movement, the molecule’s charge distribution, or its dipole moment, 

shifts and becomes asymmetric (Günzler and Gremlich 2003a). The frequency of the 

molecular vibration equals the light frequency that induced the vibration (Stuart 2004). Vice 

versa, no absorption of light energy takes place in molecules, whose dipole moments would 

remain symmetric upon irradiation. Consequently, IR spectra only exhibit bands representing 

vibrations of the functional groups of polymers, but not their symmetrical C-C backbone 

(Günzler and Gremlich 2003a). Based on the characteristic bands of its spectrum, a sample’s 

Figure 7. left: Absorbance Infrared spectrum and molecular structure of polystyrene; characteristic bands: a, 2,800-
3,060 cm-1, aromatic C-H stretch; b, 2,800 – 3,000 cm-1, aliphatic C-H stretch; c, 1,650 – 2,000 cm-1, aromatic C-H 
bend (overtone); d, 1,450 – 2,000 cm-1, aromatic ring stretch; e, 1,450 cm-1, alkane CH2 bend (Jung, Horgen et al. 
2018; Al-Kadhemy, Rasheed et al. 2016). Right: Modes of molecular vibration; ‘+’ and ‘-‘ signs indicate forward and 
backward movement, respectively (adapted from Günzler and Gremlich (2003a)). 
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chemical composition can be deduced. The range from 1,500 to 600 cm-1 typically shows a 

more complex band pattern than the range > 1,500 cm-1, as bands here originate from the 

coupled vibrations across the molecule, the skeletal vibrations. This so-called fingerprint region 

is highly specific for a substance, but also more complex to interpret (Stuart 2004).  

Using early spectrometers, only one wavelength could be emitted and recorded at once. 

Interferometers and computers capable of resolving the interferograms into wavenumber-

resolved spectra via Fourier transform were developed in the 1960s and 1980s. With these 

inventions, it became possible to irradiate a sample with light of a range of wavenumbers at 

once, considerably speeding up the measurements (Günzler and Gremlich 2003c).   

Figure 8. Simplified Michelson interferometer and signal processing, adapted from Günzler and Gremlich (2003b). 
One mirror constantly moves over a distance x. 

Modern spectrometers usually employ a Michelson-interferometer, schematically shown in 

Figure 8. In brief, the IR beam hits a beamsplitter, where half of it is reflected to a fixed mirror 

and the other half passes to a mirror that constantly moves backwards and forwards over the 

distance x. After being reflected again, both beams are recombined at the beamsplitter and 

proceed towards the sample. For λ = 2x, constructive interference occurs, while all other 

wavelengths experience destructive interference, which enhances the signal-to-noise ratio. 

The interferogram output by the detector is consequently the intensity of the IR radiance as a 

function of the moving mirror’s position. It is mathematically resolved to wavenumbers via FT. 

The FTIR spectrum is then corrected for the background to yield the sample spectrum. Figure 

8 shows a transmission FTIR experiment. Reflection and Attenuated Total Reflection (ATR) 

experiments are possible, as well. For ATR-FTIR experiments, the sample is pressed onto an 

optically dense crystal, usually diamond or Germanium. The IR beam is reflected at the 

interface between the crystal and the sample, thereby penetrating the sample slightly 

(evanescent wave). This is possible only when the critical angle of incidence, which depends 

on the refractive indices of the sample and the crystal, is exceeded. The depth of penetration 

increases with increasing the angle of incidence and with decreasing wavenumbers. The latter 

causes ATR spectra to typically exhibit lower absorbance values in the higher wavenumber 

range (e.g. the C-H stretch region in 2,800-3,000 cm-1) than transmission or reflection IR 

spectra (Günzler and Gremlich 2003d). ATR-FTIR experiments can only be conducted for 

samples big enough to be placed on the crystal one-by-one, restricting the technique to MP 

particles ≥ 500 µm (Käppler, Windrich et al. 2015). 

For the analysis of small sample compartments or particles < 500 µm, FTIR spectrometers can 

be coupled to a microscope. The procedure is then called FTIR microspectroscopy or µFTIR. 

For larger sample areas or large numbers of particles, manual selecting, focusing and 

measuring is cumbersome and bears the risk of overlooking particles. Usage of Focal Plane 



1 - Introduction 

 
14 

 

Array (FPA) detectors, however, enables to record spatially resolved IR spectra in the 

detector’s complete field of view (also called tile), creating an artificial IR image of the sample, 

where each pixel contains one IR spectrum (see Figure 9) (Löder, Kuczera et al. 2015). This 

is termed ‘FTIR imaging’ and currently is one of the most-used techniques for MP analysis 

(Cowger, Gray et al. 2020). Each pixel corresponds to a projected area on the sample, the size 

of which depends on the objective’s magnification. 

FPA detectors can comprise up to 

256 × 256 mercury cadmium 

telluride (MCT) detector elements, 

recording up to 65,536 IR spectra 

simultaneously. Depending on the 

sample area to be measured, 

several tiles can be stitched 

together. This way, a typical MP 

sample with approximately 10 × 

10 mm2 can be measured within 3 

to 4 hours, depending on the FPA 

detector’s size and the objective 

chosen (Schymanski, Oßmann et al. 2021). The resulting IR image can then be analyzed, for 

example, for MP particles. The here-used  method for data analysis is described in section 1.5. 

Particle sizes can be determined by grouping of neighboring pixels that were assigned to the 

same substance. Moreover, particle shapes can be determined, which are relevant for 

(eco-)toxicity of the particles (Gray and Weinstein 2017). 

The spatial resolution in FTIR imaging, i.e. the minimum distance between two points to be 

resolved, Δx, is restricted by the diffraction limit n of the surrounding medium (i.e. air) and the 

objective’s numerical aperture (NA) as can be deduced from Rayleigh’s criterion (Lasch and 

Naumann 2006): 

∆𝑥 = 0.61 ∙  
𝜆

𝑛 ∙ 𝑁𝐴
 (4) 

For MIR light, the theoretical maximum spatial resolution achievable is therefore approximately 

2.5 µm in air with NA = 0.62 at a wavenumber of 4,000 cm-1. In practice, MP particles above 

sizes between 10 and 20 µm can be analyzed (Xu, Thomas et al. 2019), because the image 

contrast decreases with decreasing distance between two objects, resulting in blurriness 

(Lasch and Naumann 2006). Moreover, the signal-to-noise ratio of small particles is often poor 

because of scattering effects at the particle surface (Renner, Schmidt et al. 2017). 

With FTIR spectroscopy, plastic additives such as plasticizers, flame retardants, or colorants 

present in small concentrations compared to the bulk plastic are not analyzable. This is, in turn, 

possible with RM. Additionally, RM can analyze MP particles down to a size of approximately 

300 nm under ideal conditions. Yet, FTIR imaging provides a powerful balance between spatial 

resolution and analysis speed, detecting MP particles down to sizes of 10 to 20 µm. Plastic 

types can be determined by inspecting the characteristic IR bands in the range 3,800 to 

1,250 cm-1. The use of FPA detectors enables to analyze a whole sample area, minimizing the 

risk of overlooking particles (Schymanski, Oßmann et al. 2021).  

For this thesis, IR experiments were performed using a Cary 670 FTIR spectrometer (Agilent 

Technologies, Inc., CA, USA). For ATR-measurements, an ATR unit with a Germanium crystal 

was used (MIRacleTM, PIKE Technologies, WI, USA). For imaging experiments, a Cary 620 

FTIR microscope was coupled to the spectrometer. The microscope was equipped with a 15× 

Figure 9. FTIR imaging with a focal plane array (FPA) detector. 
Image Source: Poster Cary 620 imaging system, Agilent 
Technologies, Inc. 
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objective, corresponding to a projected pixel size of 5.5 µm. Moreover, it comprised a 

128 × 128 pixels MCT FPA detector that was cooled to 79 K using liquid nitrogen for the 

analyses. An automated stage enabled mosaicking of sample areas larger than the FPA’s 

detector field of view (~700 × 700 µm). Typically, a sample image comprised 12 × 12 tiles. 

Samples on silicon or gold-coated PC filters were scanned in the range from 3700 to 810 cm-1. 

For Anodisc membranes, the range was restricted to 3700 to 1250 cm-1 due to the self-

absorption of the material (Käppler, Windrich et al. 2015). The spectral resolution was 8 cm-1 

(Löder, Kuczera et al. 2015) and 30 co-added scans were recorded per sample. Prior to each 

sample scan, 120 co-added background scans were recorded on a clean spot of the filter to 

maximize the signal-to-noise ratio.  

1.5. Random Decision Forest Classifiers for machine-learning assisted 

microplastic identification in FTIR images 
FTIR imaging produces large amounts of data in which MP particles and fibers can to be 

identified. To illustrate this, measuring a 10 mm x 10 mm sample filter results in 3.3 millions of 

spectra with the instrumental set-up described before. Clearly, computer-assisted, automatic 

data analysis routines (DARs) are necessary to cope with this amount of data. However, data 

volume is only one out of several challenges: transmission µFTIR spectra of microparticles 

typically suffer from bad quality, reflected for example in a low signal-to-noise ratio. Typical 

causes are light scattering, mixed spectra resulting from overlaying MP particles and matrix 

residues or aging of particles (Renner, Schmidt et al. 2017). In addition, IR spectra of some 

polymers look alike or may be confused with natural polymers, when they possess the same 

IR-active functional groups. The most prominent example for this are PA and protein spectra, 

that are hard to distinguish (Schymanski, Oßmann et al. 2021).  

Consequently, a DAR must not only be fast, but also needs to be robust enough to cope with 

the above-listed challenges. Database matching, as well as supervised and unsupervised 

machine learning methods have been proposed for this task. A detailed discussion is given in 

Weisser, Pohl, Heinzinger et al. (2022), which is summarized in section 3.2. Like the other 

steps of the MP analysis pipeline, the DAR should be evaluated thoroughly, as is described in 

sections 1.6.4 and 3.3. 

As has been proposed by Hufnagl, Steiner et al. (2019), Random Decision Forest (RDF) 

classifiers pose a swift and robust option for MP identification in hyperspectral images. The 

method belongs to the family of supervised machine learning (ML) and was employed for data 

analysis in this thesis. In supervised ML, the algorithm is provided with a set of labelled training 

data, that is, for example, spectra of MP particles, which were assigned to their classes or 

polymer types by a human expert. If pictured like a school lesson, in which the algorithm is the 

student, it ‘learns’ how to distinguish the classes based on the teacher’s exercises and 

examples, the training data. To distinguish the classes, a set of features, or spectral 

descriptors, is identified either by the model itself or, as is the case for RDF classifiers, is 

provided by the user. An example for a spectral feature is the presence of a band at a certain 

position (i.e. most plastic IR spectra possess C-H stretch bands between 2,980 and 

2,780 cm-1), or the ratio of two bands’ heights. Using the training data and features, decision 

trees are ‘grown’, in which the ‘root and branch’ nodes represent the features and the ‘leaf’ 

nodes represent the classes or polymer types (see Figure 10). Random Decision Forests are 

an ensemble of decision trees that cast a majority vote on the classification of a sample. In 

contrast to single decision trees, this leads to a strongly enhanced classification performance 

(Back, Vargas Junior et al. 2022). The reason for this is that each decision tree is grown 
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independently on a unique subset of training data and features, gained through ‘bagging’ 

(bootstrap aggregating) (Breiman 2001) and the ‘random subspace method’ (Tin Kam 1998), 

respectively, as schematically shown in Figure 10. This way, a common problem in ML, over-

fitting, is minimized (Hufnagl, Steiner et al. 2019). Over-fitting occurs when a model has learned 

the training data ‘by heart’, but is not able to generalize its knowledge to previously unknown 

data (Ertel 2017). This leads to another 

important factor for setting up ML models: 

the training data need to reflect real 

samples as closely as possible. This 

means that a), the training spectra need to 

be acquired in the same way as the 

samples, i.e. a model that has been trained 

using ATR-FTIR spectra cannot be 

expected to work well on transmission 

µFTIR spectra; b), the factors impairing 

spectral quality as listed before need to be 

represented in the training data, meaning 

they should reflect a certain diversity of 

spectral qualities (Hufnagl and Stibi 2019; 

Weisser, Pohl, Ivleva et al. 2022); c), all 

classes to be modelled should be included 

in the training data in balanced ratios as 

under-representation of a class can lead to 

poor performance in classifying it 

(Japkowicz and Stephen 2002). 

A similar advice can be given for the design of the spectral features: while they can be tailored 

very specifically for certain classes, such as the C-H stretch band pattern of PS, it is this 

specificity that can lead to poor performance when spectra are distorted or their quality is 

impaired in another way (e.g. baseline drifts). Providing more general features instead, such 

as band heights, or band height ratios across the spectral range can be more suitable.  

In the family of supervised ML, RDF classifiers are relatively easy to interpret. Other models 

such as Artificial Neural Networks (ANNs) or Support Vector Machine (SVM) remain a ‘black 

box’ to the user to a much greater extent. For any ML model, however, the choice of training 

data is key for its success. Importantly, the fact that human operators are in charge of labelling 

the training data makes it evident that human bias of the model cannot be fully excluded 

(Bender, Gebru et al. 2021; Weisser, Pohl, Ivleva et al. 2022). The necessity for feature input 

poses another source of bias; however, tools are available to automatize feature design 

(EPINA ImageLab documentation). 

For this work, RDF models were set up using EPINA ImageLab (Epina Softwareentwicklungs- 

und Vertriebs-GmbH, Austria). The software enables to combine training data sourced from 

various samples into one set and allows manual and automatized feature design. Further, the 

number of trees can be optimized using the tree scan function. The number of trees here was 

set between 40 and 60, depending on the model. The software further provides some basic 

model evaluation by splitting a proportion R off the training data set to serve as test data. This 

way, confusion matrices were created showing true and false assignments for each class. At 

this point, falsely labelled training spectra could be identified by the operator and kicked out 

easily. Further, the variable importance illustrated which features were most valuable for the 

model, allowing to narrow down the feature set, thereby streamlining it without impairing the 

model performance. Aiming for a compromise between a high amount of training data and a 

Figure 10. 'Growing' a decision tree with a subset of features 
gained by the random subspace method and a subset of 
training data, gained through bootstrap aggregating 
(‘bagging’); grey boxes represent root and branch nodes, the 

green box represents a leaf node. 
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not too small test set, R was set to 0.67 and the model optimized using the described 

functionalities. To assess the model further, Monte Carlo cross evaluation (see 1.6.4) was 

conducted, using a script kindly provided by Benedikt Hufnagl, Technical University of Vienna. 

Measures for quality assurance and quality control of the DAR are further given and discussed 

in section 1.6.4. 

1.6. Quality assurance and quality control in microplastics research 
Employing holistic quality assurance (QA) and quality control (QC) measures is a prerequisite 

on the way to harmonized and standardized MP analysis pipelines. However, they both pose 

major challenges to the field: First, MP particles are a collective of analytes that possess a 

broad variety of features and are heterogeneously distributed. Second, MP is ubiquitous, 

implying the risk of sample contamination. Third, particles may get lost during sample 

preparation, or, fourth, be overlooked during instrumental analysis. Lastly, an insufficient DAR 

can cause erroneous results. This section describes measures for QA and QC that are 

substantial for method harmonization along the whole MP analysis pipeline (Koelmans, 

Mohamed Nor et al. 2019; Schymanski, Oßmann et al. 2021; Primpke, Christiansen et al. 2020; 

Lusher, Munno et al. 2020), as summarized in Figure 11. Note that inter-laboratory comparison 

tests, the ‘gold standard’ of method standardization are not discussed further here. There is 

still a substantial lack of realistic MP reference particles < 500 µm. Furthermore, preparing 

homogeneous samples for the participating labs remains a major challenge (Belz, Bianchi et 

al. 2021; Eitzen, Paul et al. 2019), lowering the expressiveness of these tests.   

1.6.1. Contamination prevention and assessment 
To prevent sample contamination during sampling and sample preparation as part of the QA 

measures, the rules listed below were followed during the experimental part of this thesis (see 

also Schymanski, Oßmann et al. (2021); (2018); Braun (2021)): 

 Avoidance of plastic materials, except for natural rubber and Viton® for tubes and gaskets 

 Working in a HEPA H14 clean air bench (V1300, Alpina Polska Sp. Z o.o, Konin, Poland), 

whenever possible 

Figure 11. Summary of factors known to influence the quality of MP analysis and measures to assure analysis 
quality (QA) and to control it (QC). LOD = Limit Of Detection; DAR = Data Analysis Routine. 
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 Covering samples with watch glasses, glass petri dishes or aluminum foil when not in use  

 Wearing purple cotton laboratory coats and green PP hairnets 

 Usage of gloves only when necessary for safety reasons 

 Strict cleaning protocols including manual scrubbing and ultrasonic cleaning (20 minutes, 

45 kHz) for all equipment  

 Filtering of all reagents, including demineralized water, through glass microfiber or mixed 

cellulose fiber ester membranes with 1.2 µm pores 

 Regular wiping down all surfaces in the laboratory with cotton cloth 

 Flushing the funnel used for filtration with EtOH until no particles came off anymore 

(checked under stereomicroscope) 

As contamination with MP can never be fully avoided, blank samples were prepared in parallel 

with each set of samples. Blank samples were treated exactly as samples were treated, 

starting with cleaning of all equipment, sampling, sample preparation and the final analysis. 

The limit of detection (LOD) for each type of sample was calculated from the corresponding 

blank values as follows (Schymanski, Oßmann et al. 2021; Weisser, Beer et al. 2021):  

LOD = meanblanks + 3 × standard deviationblanks 

 

(5) 

Blank values are expressed as absolute numbers of MP particles per sample rather than as 

concentrations, because they do not comprise a sample whose volume or mass they can be 

related to. If the results needed to be extrapolated (e.g. from 1 g to 1 kg of sample), the blank 

values were also extrapolated. If a sample’s MP concentration was lower than or equal to the 

LOD, it was considered free from MP. Further, a series of air blanks was conducted to assess 

airborne MP contamination. For this purpose, wetted Anodisc membranes were placed into 

the laminar flow bench during sample preparation. 

1.6.2. Particle loss assessment 
While on one hand, reducing the risk of contaminating samples is vital for MP analysis, on the 

other hand, there is also a high risk for losing particles during sample preparation. Potential 

reasons for particle loss are adhesion to parts of the equipment (Dimante-Deimantovica, 

Suhareva et al. 2022; Eitzen, Paul et al. 2019), getting stuck in filter pores and sieve meshes 

(Dimante-Deimantovica, Suhareva et al. 2022), as well as dissolution of particles by chemical 

reagents (Hurley, Lusher et al. 2018). The latter was tested by exposing reference MP particles 

to a variety of chemical treatments and determine their sizes before and after the treatment 

(see Al-Azzawi, Kefer et al. (2020)). In addition, chemical alterations of the particles were 

examined by reflectance µFTIR. To do so, the treated particles were washed with filtered 

demineralized water and deposited on gold-coated PC membranes. µFTIR in reflectance 

mode, in contrast to transmission mode, gathers information about the particle surface rather 

than the bulk, allowing to search for modifications in the polymer spectra such as newly formed 

bands in the region around 1,700 cm-1 that hint at the formation of C=O bands (von der Esch, 

Lanzinger et al. 2020). 

To account for particle losses not caused by chemical reagents but during sample handling, 

recovery rates were determined for each sample preparation step using pink PS particles. The 

particles were cryo-milled (Simone Kefer, Chair of Brewery and Beverage Technology, TUM) 

and treated as reported in von der Esch, Lanzinger et al. (2020) to make their surfaces more 

hydrophilic, thereby easing their handleability and suspensibility. One hundred particles with 

sizes about 63-125 µm were counted using a single-haired brush under a stereomicroscope 

and spiked into, for example, a bottle. This procedure was found to yield more reproducible 

results than preparing a particle suspension for spiking. Then, sample preparation was 
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conducted as usual, e.g. the bottle was flushed with SDS and ethanol (EtOH). All liquids were 

filtered through a PC membrane filter (diameter 25 mm) or a silicon filter, depending on which 

filter should be used for the respective sample type, and the reference particles counted again. 

The recovery rate (RR) is expressed as the percentage of recovered particles. RRs were 

assessed in triplicates, and are given alongside the MP findings to illustrate the level of 

potential underestimation of MP counts due to particle losses. 

1.6.3. Sample analyzability  
In the beginning, dry mass reduction was chosen to evaluate the success of MP isolation from 

a sample matrix. However, FTIR analysis of some samples was impaired by matrix residues 

despite dry mass reduction > 90%. Therefore, sample analyzability was tested by spiking the 

food or beverage in question with an arbitrary number of cryo-milled PS reference particles 

< 200 µm. After the digestion, the sample underwent FTIR imaging and was checked for 

detectability of the spiked-in particles. Only if the particle spectra were not impaired by matrix 

spectra, the digestion protocol was considered suitable. 

1.6.4. Data analysis routine performance evaluation 
An often-neglected aspect in QA/QC of the MP analysis pipeline is the very last step, the 

evaluation of spectroscopic data. While the often-insufficient reporting transparency has been 

outlined in section 1.2, the basics of data analysis routine (DAR) evaluation and its current 

state in the literature are summarized in the following. 

A DAR’s purpose is to assign the sample spectra to the correct classes, i.e. substances, 

automatically. This process is also called ‘prediction’ or ‘classification’. Even though these 

termini stem from the ML context, they are used here for both, ML and database matching. 

Regardless of the type of DAR, a test data set should be prepared and used to assess the 

DAR’s performance (Skansi 2018). The ground truth of the test data is defined by manual 

assignment of the spectra, which is considered the ‘gold standard’ (Renner, Nellessen et al. 

2019). This assessment should comprise true positive, false positive, false negative, and true 

negative results (TP, FP, FN, and TN, respectively). Importantly, the test data must be 

separated from the training data or database, respectively, because tests on (parts of) the 

training data will result in over-optimistic performance evaluation. It is advisable to determine 

the ground truth in advance, rather than checking the DAR’s assignments after classification. 

This contributes to minimizing human bias during DAR evaluation. Confusion matrices are a 

simple method of summarizing the results while giving insight into the performance of each 

class as shown in Figure 12 (ISO/DIS 24187, Hufnagl et al. 2019; Ballabio, Grisoni, and 

Todeschini 2018)  . To evaluate ML-based DARs, bias can be reduced further through cross-

validation (CV), where test data are subsampled from a data set repeatedly, while the 

remaining data serve as training data. This procedure further reduces the risk of over-fitting, 

especially in cases where training data is scarce. A variant of CV is Monte Carlo CV (MCCV), 

Figure 12. Example of a 3-class confusion matrix; grey boxes highlight true positive (Reprint from 
Weisser, Pohl, Heinzinger et al. (2022) with permission from the publisher). 
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where the test data are split off iteratively from the whole, original dataset (Xu and Liang 2001). 

Importantly, training, test, and evaluation data should reflect realistic sample data as much as 

possible (Back, Vargas Junior et al. 2022). 

If this advice for bias minimization is followed, the confusion matrix can serve as the basis for 

QA of the DAR. First, it reveals class confusions. Second, based on the confusion matrix, 

class-specific and global performance metrics can be calculated as in formulae 6-11 for each 

class g = {1, 2, …, G}, where G is the total number of classes (adapted from Ballabio, Grisoni 

et al. (2018)). All metrics can take values between 0 and 1, where 0 represents the poorest 

possible performance and 1 would be a perfect classification result. 
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Sensitivity: 𝑆𝑛𝑔 =  
𝑇𝑃𝑔

𝑇𝑃𝑔 + 𝐹𝑁𝑔

 
(6) 

Specificity: 𝑆𝑝𝑔 =  
𝑇𝑁𝑔

𝑇𝑁𝑔 + 𝐹𝑃𝑔

 
(7) 

Precision: 𝑃𝑟𝑔 =  
𝑇𝑃𝑔  

𝑇𝑃𝑔 +  𝐹𝑃𝑔

 
(8) 
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Accuracy: 𝐴𝑐𝑐 =  
∑ (𝑇𝑃𝑔 +  𝑇𝑁𝑔)𝐺

𝑔=1

∑ (𝑇𝑃𝑔 +  𝑇𝑁𝑔 +𝐺
𝑔=1 𝐹𝑃𝑔 +  𝐹𝑁𝑔)

 
(9) 

Average sensitivity or 

Non-Error-Rate: 
𝑁𝐸𝑅 =  

∑ 𝑆𝑛𝑔
𝐺
𝑔=1

𝐺
 

(10) 

Average precision 𝑃𝑟 =  
∑ 𝑃𝑟𝑔

𝐺
𝑔=1

𝐺
 

(11) 

Accordingly, sensitivity (Sng) represents the ability of a model to correctly identify samples 

belonging to the gth class; specificity (Spg) expresses the ability to correctly reject samples 

belonging to others than the correct class g; precision (Prg) reflects the avoidance of FP 

predictions for the gth class. Accuracy (Acc) corresponds to the share of correct classifications 

over all classifications. Together with Average Precision (Pr) and average Sng, also called Non-

Error-Rate (NER), a model’s performance can be assessed on a global level. The global 

metrics should be used with care if the number of test data points is imbalanced across the 

classes, as this causes bias in favor of the highly represented classes (Ballabio, Grisoni et al. 

2018).  

With these evaluation tools at hand, DARs can be assessed concisely, but they are still 

scarcely used in the context of MP research. In addition, there is some confusion about them, 

as they are often named arbitrarily and are not always clearly defined in the literature. For 

example, Morgado, Palma et al. (2020) used ‘TP’ as abbreviation for ‘true positive result rate’, 

calculated equal to Acc. Similarly, Primpke, Lorenz et al. (2017) calculated a ‘TP rate’ to 

illustrate their results. In turn, Renner, Sauerbier et al. (2019) used ‘TP rates’, which 

supposedly are equal to Sng, to evaluate their DAR. Kedzierski, Falcou-Préfol et al. (2019) 

evaluated their DAR based on the ‘difference’ between the DAR’s and a human expert’s 

results, which can be assumed to reflect 1-Acc. 

Another issue is that DARs are usually evaluated on sets of individual spectra, but not on whole 

hyperspectral images. Such evaluations, however, do not cover the full complexity of a DAR 

as described and shown in section 3.3. If FTIR images were used for DAR evaluation, this did 

not go beyond ‘visual inspection’ (Hufnagl, Steiner et al. 2019) or qualitative comparison of 

particle false color images (Wander, Vianello et al. 2020).  
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2. Aims of the project 
This doctorate project was started with the intend of gaining clarity about the main entry paths 

of MP into beverages and plant-based foods. It quickly became clear that this was only feasible 

with a high-throughput analysis pipeline; however, no suitable standard methods were 

established at that time. Consequently, the first goal was to test and optimize sample-matrix 

dependent methods for sampling and sample preparation. Second, for the instrumental 

analysis, a good compromise between analysis speed and exactness was required, leading to 

the implementation of FTIR imaging at the chair. The high amounts of data to be interpreted, 

however, posed another, third challenge to be solved and led to establishing a ML-based 

method. 

In the second half of the project, efforts were made to complement the measures of QA/QC 

that meanwhile had been established for sampling, sample preparation, and instrumental 

analysis for the last part of the pipeline, the data analysis. Especially, the validity of evaluating 

a data analysis routine on single, isolated spectra was questioned. 

Moreover, a strategy for the estimation of typical error types occurring during MP recognition 

in FTIR images, such as over-segmentation and overlooking of particles, was elaborated. In 

this context, fully evaluated datasets were published, pushing forward the comparability and 

harmonization of automated MP recognition techniques. 

Lastly, MP concentrations in beverages and food were to be analyzed. The most important 

sustenance, drinking water, was analyzed in detail for MP entry paths by means of a stepwise 

sampling campaign along the process of mineral water bottling. Similarly, entries of MP during 

the production of a variety of foods, such as bread, fruit purees, and tea were assessed.  

Having the goal of a fast and versatile MP analysis pipeline in mind, all methods and workflows 

were chosen and adapted to be quick and cost-efficient, as illustrated in Figure 13. This 

included a robust QA/QC system for all steps of the analysis pipeline, thereby contributing to 

the ongoing harmonization of MP analysis.  

 

  

Figure 13. Summary of this thesis' aims. Illustrations created by Teresa Pohl with kind permission to use here. 
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3. Results  
This section summarizes the experimental results for MP-specific sample preparation and the 

success of QA/QC measures taken (section 3.1). Next, proposed methods for MP recognition 

in hyperspectral images are summarized (section 3.2), and a novel method for their evaluation 

is presented (section 3.3). Lastly, entry paths for MP into bottled mineral water and a selection 

of other beverages and foods are shown (sections 3.4 and 3.5). Most of the results presented 

here have already been published elsewhere. Whenever this is the case, this is indicated at 

the beginning of the respective subsection. Some results were gained during students’ theses 

under Jana Weißer’s supervision. These are cited accordingly. 

A discussion of all results presented here can be found in section 4.  

 

3.1. Sample preparation of beverages and plant-based food products for 

microplastic analysis 
As described in section 1.3.2, chemical and enzymatic methods were tested for the isolation 

of MP particles from their surrounding food matrix to avoid interference during the 

spectroscopic analysis. Their effectiveness is presented in the following, as well as their 

impacts on MP particles.  

3.1.1. Sample matrix-dependent degradation methods and analysis filters 
Food matrices were to be degraded to yield analyzable samples. The first measure to evaluate 

the goodness of a degradation method was dry mass reduction. Secondly, sample 

analyzability by FTIR imaging was assessed, see 1.6.3. 

Improved Fenton reaction by combination with ascorbic acid 

The effectiveness of the adapted Fenton protocol for the degradation of food was tested and 

evaluated based on the decrease of dry mass of the ‘strawberry’ and ‘pear’ purees (as 

described in the experimental part in section 1.3.2).  

In general, higher dry mass reduction was achieved for the strawberry puree than for the pear 

puree, as can be seen in Figure 14. For both, however, it was observed that the addition of 

ascorbic acid (AAH) increased the degradation. The pear puree reached 88.62 ± 0.24% dry 

mass reduction without AAH and 92.01 ± 0.36% with AAH. The degradation of strawberry 

puree increased from 91.61 ± 0.41% to 97.24 ± 0.31% when AAH was added. Despite these 

high degradation rates, residues of the matrices were still present after the Fenton + AAH 

treatment of all foods and beverages tested, except for water and a Pilsner style, filtered beer. 

This showed that more specific treatments were necessary and consequently, technical grade 

enzymes were tested for the model foods.  

Enzymatic degradation 

First, a suitable reaction system regarding the buffer type, pH, and temperature had to be 

established for each enzyme employed. In contrast to other reports (Löder, Imhof et al. 2017), 

buffer concentrations of > 0.1 M were found to flocculate all enzymes tested within one hour. 

Instead, a sodium hydroxide-citric acid buffer with 0.1 M was found suitable for all enzymes 

tested. When pH and temperature were set to the enzyme optima as recommended by the 

manufacturers and reported by Löder, Imhof et al. (2017), the enzymes denatured. When 

choosing milder conditions, i.e. a pH of 6 and a temperature of 40-50°C, a stability of at least 

24 h for all enzymes was reached, except for Xylanase 2x, for which a stabilization longer than 

3.5 h could not be achieved. 
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Figure 14. Dry mass reduction for pear and strawberry fruit purees for Fenton treatment with and without addition 

of ascorbic acid (AAH), cellulase and xylanase.  

Adding Ca2+ did not bring any advantage after optimization of the other reaction conditions and 

was therefore not considered further (Dunkel 2018). The optimized conditions are summarized 

in Table 2. To keep the processes as simple as possible, it was decided to use Amylase FL 

rather than Amylase Thermo, so all enzymes could be incubated at 40°C, allowing the 

parallelization of experiments in one single water bath. Another advantage of using one buffer 

for all enzymes is that it allows to further facilitate workflows in the laboratory.  

Having the most suitable reaction conditions identified, the degradation of pear and strawberry 

purees by cellulase and xylanase were tested. While experiments with xylanase had to be 

terminated after the first run because the filters clogged, the samples treated with cellulase 

reached dry mass reductions similar to the Fenton + AAH treatment. Again, higher degradation 

rates were yielded for the strawberry sample. A slightly higher degradation rate 

(+0.56% ± 0.08%) was achieved with Fenton + AAH than with cellulase for the strawberry 

puree. For the pear samples, the opposite was the case (+0.51% ± 0.13%).  

Table 2. Reaction conditions for enzymatic degradation of food matrices, optimized for long enzyme stability. 

Results from Dunkel (2018) under Jana Weißer’s supervision. 

Technical grade enzyme 
Buffer 

concentration 
Buffer pH Temperature Stable for 

Cellulase TXL 

0.1 M 6.0 

40°C 
> 24 h 

Amylase FL 

Pektinase L-40 

Amylase Thermo 50°C 

Xylanase 2x 40°C 3.5 h 

 

In the curse of this thesis, it became clear that a high dry mass reduction does not guarantee 

a sample to be analyzable with FTIR imaging (section 4.2). By assessing the analyzability with 

µFTIR instead, it was found that apple puree was degraded best with cellulase. Pectinase, in 

turn, did not give any advantage compared with cellulase (Eberl 2020). 
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For rye and wheat flours and the bread dough (made from a mixture of both flour types), a 

combination of cellulase and amylase was necessary (Hubin 2020). Wheat beer and cloudy 

lemonade were most successfully degraded with xylanase (Lerch 2020), and peppermint tea 

required a combination of xylanase and cellulase (Müller 2020). It is important to note, 

however, that all final matrix degradation protocols included Fenton + AAH for both the first 

and last step of the protocol, with one or more enzymatic treatment steps in between as is 

summarized in Figure 15. Further, a filtration through stainless steel sieves was necessary 

after each treatment step (not shown in Figure 15) to remove any reagents from the previous 

step that may impair the next step, especially when an enzymatic treatment followed a 

chemical treatment. 

 

Analysis filters 

When Anodisc membranes or PC membranes were used, FTIR imaging suffered from the 

filters’ unevenness causing only parts of it to be in the microscope’s focal plane. To 

compensate for this, the filters were placed into a custom-made 

filter holder (see Figure 6 A). Flatness with and without the holder 

was assessed by Elisabeth von der Esch (Institute of 

Hydrochemistry and Chair of Analytical Chemistry and Water 

Chemistry, TUM), resulting in a height difference (lowest versus 

highest spot) of 360 µm without and 132 µm with the holder.  

The silicon filters, in turn, were innately very flat and even. No 

instrumental assessment of their flatness was undertaken as 

their flatness was evident when focusing the microscope and 

moving the stage. Occasionally, the silicon filters broke during 

handling, when not placed correctly into the adapter. Moreover, 

particle loss was observed because particles were stuck 

Figure 15. Summary of final sample matrix-dependent degradation protocols; not shown are filtrations between the 
treatment steps and the final filtration through the analysis filter. Results gained under Jana Weisser’s supervision 
by Eberl (2020), Hubin (2020), Lerch (2020), and Müller (2020). AAH = Ascorbic Acid; SDS = Sodium Dodecyl 

Sulfate. 

Figure 16. Pink polystyrene 
particles accumulated at the rim 
of and adhered to a silicon filter 
adapter. A piece of a broken 
membrane at the right. Photo: 

Lerch (2020).   
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between the filter and the adapter as can be seen in Figure 16. Both issues, breaking of the 

filters and particle loss, were significantly reduced after introducing the usage of silicone 

gaskets during filtration (see Figure 6 C). 

 

3.1.2. Quality assurance and quality control during sampling and sample 

preparation 
A broad variety of measures was taken to avoid MP contamination during sampling and sample 

preparation, see 1.6.1. The success of these measures was controlled by preparing blank 

samples along with each set of samples, using the same reagents and pieces of equipment.  

The air blank samples were nearly free of MP (3 MP particles in 10 air blanks in total), however, 

the procedural blanks were not; Table 3 summarizes the results from blank samples 

corresponding to eight different sample types, or sample preparation procedures, respectively, 

including the reagents utilized and the most abundant plastic types in the blanks. The LOD 

was calculated according to formula 5.  

All MP concentrations were rounded to integers. Most mean blanks ranged between 5 and 

19 MP, with outliers for the fruit puree assessment (73 MP ± 7 MP) and the flour and dough 

samples with 295 MP ± 134 MP. The most abundant plastic types in the blank samples were 

PS, PE, and polytetrafluoroethylene (PTFE). During sample preparation, especially the usage 

of chemical reagents may damage MP particles. For instance, potassium hydroxide (KOH) 

reportedly is an effective sample matrix degrader (Süssmann, Krause et al. 2021). However, 

KOH it can induce the formation of carbonyl groups on MP particle surfaces, thereby altering 

their IR spectra. While this mechanism can be beneficial for the production of suspensible, 

realistic reference particles (von der Esch, Lanzinger et al. 2020), it can hamper MP recognition 

(De Frond, Rubinovitz et al. 2021; Munno, De Frond et al. 2020). In the worst case, it can even 

lead to the complete dissolution of MP particles, as was experienced during the contribution to 

the work of Al-Azzawi, Kefer et al. (2020). In this study, changes of reflectance µFTIR spectra 

of PS, PE, PET, PP, polyamide (PA), polylactic acid (PLA), and PVC, induced by KOH (10%), 

Fenton (30% H2O2 + 20 g/L FeSO4), and H2O2 (30%) treatments were investigated. Results 

showed that the combination of KOH with PLA and PET led to dissolution of the particles, while 

for all other combinations, the particles remained stable. Interestingly, no significant changes 

of the IR spectra of KOH-treated PLA and PET particles were observed. Only the spectra of 

PVC treated with one of the three protocols showed a newly introduced band at 3,650 cm-1, 

hinting at the formation of OH groups. Further, the study showed that the reaction temperature 

plays a role, as well; it should be kept below 60°C to avoid melting and swelling of the particles 

(Al-Azzawi, Kefer et al. 2020). 
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Table 3. Blank and limit of detection (LOD) values for different sample types examined, including plastic types most 
abundant in blank samples; n = number of replicates, EtOH =  Ethanol; SDS = Sodium Dodecyl Sulfate; PEST = 
Polyester, PS = Polystyrene; PE = Polyethylene; PP = Polypropylene; PA = Polyamide; PTFE = 
Polytetrafluoroethylene; PVC = Polyvinyl Chloride; all experiments were conducted by Jana Weißer or under her 
supervision. *estimation from only one blank sample, see 3.5. 

Sample type Reference 
Chemicals and 

solvents 
employed 

Blank mean ± 
standard 

deviation [no. of 
MP per sample] 

Most 
abundant 

plastic 
types 

LOD 

Raw ground 
water (n=4) 

Weisser, 
Beer et al. 

(2021) 

EtOH, ZnCl2,  
citric acid 

12 ± 8 PS, PE 36 

Deferrized 
ground water 

(n=4) 
EtOH, citric acid 5 ± 5 PE, PEST 20 

Bottles (n=4) SDS, EtOH 13 ± 9 PS, PE, PP 47 

Caustic 
washing 

solution (n=3) 

Fenton, buffer, 
EtOH 

11 ± 2 PS,PE 18 

Fruit puree 
(n=2) 

Eberl 
(2020) 

Fenton, buffer, 
EtOH 

73 ± 7 
PTFE, PE, 

PP 
64 

Tea (n=2) 
Müller 
(2020) 

Fenton, buffer, 
EtOH 

15 ± 3 PTFE, PA 24 

Flour/dough 
(n=2) Hubin 

(2020) 

Fenton, buffer, 
EtOH 

295 ± 134 PE, PP 697 

Sea salt (n=1) 
ZnCl2, Fenton, 

EtOH 
19 PVC, PS, PE 33*  

 

Additionally, the above-mentioned reference particles were tested for their persistence against 

the protocols used in this thesis: Fenton reaction with AAH, enzymatic treatment in sodium 

hydroxide-citric acid buffer, citric acid, and density separation in ZnCl2 (details in section 1.3.2). 

While the first two did not cause any adverse effects on the particles, ZnCl2 lead to strong 

aggregation of PA particles, while their IR spectra remained unchanged. 

To assess potential losses of particles during sample preparation, recovery rates (RRs) were 

determined in triplicates by spiking a sample with a known number of pink PS particles.  

Table 4 shows the RRs determined, where using a PC membrane as the final filter mimicked 

the usage of Anodisc membranes. The highest RR was achieved for flushing water bottles with 

86 ± 8% of PS particles recovered (Weisser, Beer et al. 2021). The filtering through stainless 

steel sieves and suspending particles from them yielded a slightly lower RR of 83% ± 11% 

(Müller 2020). From density separation, 63% ± 8% of particles were recovered when filtering 

through a PC membrane lastly (Weisser, Beer et al. 2021). In contrast, only 54% ± 16% 

recovery was achieved for density separation when the final filter was a silicon filter (Hubin 

2020). 

The lowest RR, 58% ± 6%, was found for the process of extracting particles from the stainless 

steel cartridge filters used for in-situ filtration of ground water (Weisser, Beer et al. 2021). 
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Table 4. Recovery rates for different procedures of sample preparation, determined using polystyrene (PS) particles 

with a diameter of 63-125 µm. PC = Polycarbonate. Results gained by Jana Weißer or under her supervision. 

Process 

Extraction 
from stainless 
steel cartridge 

filters 

Bottle 
flushing 

Density separation 

Filtration through 
stainless steel 
sieves and re-
suspending 

Reference 
Weisser, Beer 
et al. (2021) 

Weisser, 
Beer et al. 

(2021) 

Weisser, 
Beer et al. 

(2021) 

Hubin 
(2020) 

Müller (2020) 

Final filter PC membrane 
PC 

membrane 
PC 

membrane 
Silicon 
filter 

PC membrane 

Mean recovery 
± standard 
deviation [%] 

58 ± 6 86 ± 8 63 ± 8 54 ± 16 83 ± 11 
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3.2. The identification of microplastics based on vibrational 

spectroscopy data – A critical review of data analysis routines 
 

This chapter refers to the publication ‘The identification of microplastics based on vibrational 

spectroscopy data - A critical review of data analysis routines’, authored by Weisser J, Pohl T, 

Heinzinger M, Ivleva NP, T Hofmann, and Glas K. The article was published in 2022 in Trends 

in Analytical Chemistry, Vol. 148, Pages 116535, DOI 10.1016/j.trac.2022.116535.  

Jana Weißer (Weisser) led the conceptualization of the review article and conducted the 

literature research. Teresa Pohl and Michael Heinzinger contributed through literature 

research, writing parts of the article and reviewing it. Michael Heinzinger prepared a figure for 

the article. The work was supervised and reviewed by Karl Glas, Natalia P. Ivleva, and Thomas 

Hofmann. 

A full copy of the article can be found in the appendix. In accordance with the publisher 

Elsevier, inclusion of the full article in the author’s dissertation is permitted as part of the 

author’s rights granted upon acceptance of the article.  

 

Despite large progress in the harmonization of MP analysis including scientific publications (Al-

Azzawi, Kefer et al. 2020; Schymanski, Oßmann et al. 2021; Primpke, Christiansen et al. 2020; 

Braun 2021; Pérez-Guevara, Roy et al. 2022) as well as national and international standards 

(DIN/TS 10068, ISO/DIS 24187, ISO/DIS 4484, ISO/NP 5667-27 (draft stage), ISO/NP 16094 

(draft stage), ISO/TR 21960), data analysis for the spectroscopic methods has seldom been 

discussed. While insufficient reporting of details is an issue (see section 1.2), the methods that 

are reported often have severe weaknesses. For instance, to the best of our knowledge, no 

assessment of overlooked particles has been reported, so far.  

Database matching is the most commonly used DAR, however, its performance strongly 

depends on the database and spectra similarity metric chosen. This becomes clear when 

looking at Table 5, where analysis results for the sample RefEnv1 (Primpke, Wirth et al. 2018) 

were summarized, showing that the database used and the spectral range of the FTIR 

measurement can have massive impact on the results.  

Table 5. Analysis results for sample RefEnv1 using different databases and spectral ranges (Reprint from Weisser, 
Pohl, Heinzinger et al. (2022) with permission from the publisher). MP = Microplastic. 

Reference  
Spectral range 
test FTIR image 

[cm-1] 
Database 

Total 
particles 
identified 

MP 
identified 

Certain 
assignments 

Mis-
assignments 

Primpke, 
Lorenz et 
al. (2017) 

3,200 – 1,250 
Löder, 

Kuczera et 
al. (2015) 

1,097 733 82.1% 3.1% 

Primpke, 
Wirth et 
al. (2018) 

3,200 – 1,250 
Primpke, 

Wirth et al. 

(2018) 
1,221 195 82.8% 1.6% 

Primpke, 
Wirth et 
al. (2018) 

3,600 – 1,250 
Löder, 

Kuczera et 
al. (2015) 

701 281 Not reported Not reported 

 

Several studies (Primpke, Wirth et al. 2018; Munno, De Frond et al. 2020; De Frond, Rubinovitz 

et al. 2021) have shown that in general, databases tailored specifically for MP research are 

more suitable than commercial databases. The reason for this is that the latter do not comprise 

spectra of aged plastics and usually lack spectra of typical matrix residues that can be 
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confused with MP spectra (PA and proteins, for instance). Looking at different similarity metrics 

proposed, Pearson correlation seems to be best suited, especially when a weighted 

combination of correlations of raw and derivative spectra is employed (Morgado, Palma et al. 

2020; Primpke, Cross et al. 2020). Adequate thresholds should be chosen separately for each 

database entry (Morgado, Palma et al. 2020; Weisser, Pohl, Ivleva et al. 2022). When applied 

correctly, database matching was shown to yield TP rates between 82% (Löder, Kuczera et al. 

2015) and 99% (Renner, Sauerbier et al. 2019).  

Unsupervised ML techniques like Principal Component Analysis (PCA) have been proposed 

for both data exploration and spectra classification (Hufnagl, Steiner et al. 2019; Wander, 

Vianello et al. 2020). It was shown that PCA is capable of separating potential MP spectra from 

a sample’s background, which reduces the amount of data to be classified in subsequent steps 

(Wander, Vianello et al. 2020). Further, the dimensionality reduction inherent to most 

explorative methods reduces the computation time of subsequent analyses. However, a sharp 

differentiation of all substances present in a sample could not be achieved in real-world 

samples (Wander, Vianello et al. 2020), but only in idealized reference data sets (Xu, Hassellöv 

et al. 2020).  

Classification, in turn, can be achieved by applying supervised ML models like Support Vector 

Machine (SVM), Artificial Neural Networks (ANN) or RDF classifiers (Back, Vargas Junior et 

al. 2022). RDF models, for instance, were found to work at a similar accuracy as database 

matching (95.45% (Weisser, Beer et al. 2021) to 97.66 % (Hufnagl, Stibi et al. 2022)), whilst 

classifying a sample within minutes compared to the often hours-long database matching 

(Hufnagl, Stibi et al. 2022). Adding new substance classes to a ML model, however, can 

require another training phase, whereas new references can easily be appended to existing 

databases.  

As any other analysis method, DARs should be thoroughly evaluated. Most studies report 

some sort of evaluation of their DAR, yet, there is no commonly agreed best practice for doing 

so. As such, comparability of the DARs is limited, with the exception of the work by Back, 

Vargas Junior et al. (2022) which compared the performance of seven ML techniques via 

MCCV. For the first time, this work holistically compared different DARs using always the same 

test and training data sets of ATR-FTIR spectra. SVM was found to be the algorithm providing 

the best cost-benefit ratio, taking into account the effort for training the model. A DAR 

comparison based on µFTIR or Raman spectra of MP particles < 100 µm, however, would 

reflect MP analysis at a more realistic stage, as ATR-FTIR spectra are typically less noise-

prone than transmission or reflection FTIR spectra (Comnea-Stancu, Wieland et al. 2017; 

Cowger, Gray et al. 2020). 
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3.3. Know what you don’t know: assessment of overlooked microplastic 

particles in FTIR images  
 

This chapter refers to the publication ‘Know what you don’t know: assessment of overlooked 

microplastic particles in FTIR images, authored by Weisser J, Pohl T, Ivleva NP, Hofmann T, 

and Glas K. The article was published in 2022 in microplastics Vol. 1, Issue 3, Pages 359-376. 

Jana Weißer (Weisser) led the conceptualization of the study and developed the methodology. 

Teresa Pohl contributed to both. Teresa Pohl wrote the code based on a concept developed 

by Jana Weißer. Jana Weißer validated the code and adapted it to bring it into its final stage. 

Formal analysis and investigations were conducted by Jana Weißer, as well as the preparation 

of the manuscript. All authors revised the manuscript. The work was under supervision by Karl 

Glas, Natalia P. Ivleva, and Thomas Hofmann.  

A full copy of the article can be found in the appendix. The article has been published under 

an open access Creative Commons CC BY license. Therefore, any part of the article may be 

reused without permission provided that the original article is clearly cited. 

 

As has been outlined in the previous section, there remains a gap in the harmonization of MP 

analysis at the last step of the pipeline, the data analysis. To enhance comparability of DARs, 

a ground truth Reference Image of MicroPlastics, RefIMP, was created and published. RefIMP 

reflects state-of-the-art FTIR imaging-based MP analysis, containing the most important plastic 

types and sample matrix residues in size ranges from 11 µm to 666 µm and 11 µm to 1,890 µm, 

respectively, see Figure 17. The performance of any DAR in classifying RefIMP can be 

automatically evaluated using the MatLab®-script MPVal, provided alongside with it. MPVal 

compares the list of particles found by a DAR to the ground truth, counting TP and FP results.  

Special attention was given to typical error types such as undetected and over-segmented 

particles, as well as the occurrence of ‘ghost particles’, i.e. particles detected in places where 

there is no particle, representing a special case of FP results. For such cases, the calculation 

of the evaluation metrics Acc, Sn, and Sp (see section 1.6.4) had to be adapted, as they 

originally base on the assumption that the number of samples, or particles, stays constant 

(Ballabio, Grisoni et al. 2018). The heatmaps (see Figure 27) created using MPVal give 

detailed and concise insight into correct predictions and into all error types.  

Figure 17. Left: Fourier-transform Infared image RefIMP, intensity filtered at 2,920 cm-1; right: color-coded particles; 
reprinted from Weisser, Pohl, Ivleva et al. (2022) under CC-BY license. PE = Polyethylene; PVC = Polyvinyl Chloride; 
PS = Polystyrene; PUR = Polyurethane; PMMA = Polymethyl Methacrylate; PET = Polyethylene Terephthalate; PA = 
Polyamide; PLA = Polylactic Acid; PC = Polycarbonate; PP = Polypropylene. 
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Testing the following three hypotheses illustrated the application of RefIMP and MPVal, 

demonstrating that  

I. using masks that filter out potential MP particles from the sample background bears the 

risk of overlooking MP;  

II. RDF models benefit from diverse training data, which becomes evident only when 

evaluating their performance on an FTIR image, but not on single spectra;   

III. tuning of the model’s hyperparameters cannot be done meaningfully on the level of 

isolated spectra, but only in combination with a reference image. 

In general, it can be said that when optimizing a model, a balance needs to be found between 

minimizing errors (overlooking of particles and false type assignments, for instance) and 

minimizing the time necessary for manual corrections of the model’s results (mostly ghost 

particles). Further, the study provided detailed insight into the behavior of RDF models: training 

data diversity, i.e., the inclusion of high- and low-quality spectra, was shown to substantially 

increase the number of TP results, while lowering the number of overlooked and ghost 

particles. Interestingly, a diversity of 25% (the remaining 75% were duplicates of high-quality 

spectra), already enhanced the model’s accuracy from 0.614 ± 0.007 to 0.855 ± 0.005, 

compared to 0% diversity.  

Moreover, it was found that using MCCV, the performance was severely over-estimated 

compared with the results derived from using MPVal and RefIMP, highlighting one more time 

the necessity for a reference image. 

All factors covered by the example hypothesis tests (background masks, training data diversity, 

and model hyperparameters) played a role for the overlooking of particles. The lowest rate of 

overlooked particles reached was 7.99%. The same model correctly assigned 86.97% of 

particles while 5.04% were assigned to wrong types.  
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3.4. From the Well to the Bottle: Identifying Sources of Microplastics in 

Mineral Water 
 

This chapter refers to the publication ‘From the Well to the Bottle: Identifying Sources of 

Microplastics in Mineral Water’, authored by Weisser J, Beer I, Hufnagl B, Hofmann T, 

Lohninger H, Ivleva NP, and Glas K. The article was published in 2021 in Water Vol. 13, Issue 

6, Pages 841. 

Jana Weißer (Weisser) led the conceptualization of the study and conducted most of the 

experiments. Irina Beer contributed to both. Software design and validation were conducted 

by Jana Weißer, Benedikt Hufnagl and Hans Lohninger. Jana Weißer was in charge of writing 

and revising the manuscript, with contributions from all authors. The work was supervised by 

Karl Glas, Natalia P. Ivleva, Hans Lohninger, and Thomas Hofmann. 

A full copy of the article can be found in the appendix. The article has been published under 

an open access Creative Commons CC BY license. Therefore, any part of the article may be 

reprinted without permission provided that the original article is clearly cited. 

 

To investigate the potential MP entry paths into bottled water, samples were taken along the 

process of bottling and bottle cleaning  at four water-bottling companies in Germany as shown 

in Figure 18. The investigation focused on glass bottles with aluminum screw caps.  

 

Figure 18. Illustration of the process of mineral water bottling including bottle cleaning. Roman numerals indicate 
sampling points. (Reprinted from Weisser, Beer et al. (2021) under CC-BY license). 

Inorganic substances were removed from the in-situ filtered groundwater and deferrized water 

samples using density separation and citric acid. Cleaned bottles, filled bottles, and filled and 

capped bottles were emptied (where applicable) and particles flushed out. Caustic cleaning 

soda samples underwent chemical and enzymatic digestion (see section 1.3.2). All samples 

were finally filtered through Anodisc membrane filters and underwent µFTIR imaging (see 

chapter 1.4). The µFTIR images were evaluated for MP particles ≥ 11 µm using an RDF model 

(see chapter 1.5), with 95.45% accuracy (based on MCCV). During all analysis steps, special 

attention was given to quality assurance and quality control as is described in section 1.6.  
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Expectedly, ground- and deferrized water contained very low numbers of MP ≥ 11 µm 

(97 MP m−3  ± 53 MP m−3 and 49 MP m−3 ± 3 MP m−3, respectively), while the bottle cleaning 

soda reached 1,826 MP L−1 ± 1,199 MP L−1. Cleaned bottles, however, were all below LOD, 

leading to rejection of the hypothesis that the bottle cleaning process was the main MP entry 

path. In the filled and capped bottles, however, a sharp rise in MP concentrations was observed 

with 317 MP L−1 ± 257 MP L−1 (LOD 40 MP) as shown in Figure 19. The analysis of three filled, 

but uncapped bottles resulted in values < LOD, hinting at the capping process to be the main 

source for MP, as well. This hypothesis was supported by the fact that between 57% to 96% 

of the MP particles were classified as PE and could be traced back to the PE-similar cap 

sealing material.  

The generation of MP through bottle cap twisting (opening and closing) is known from the 

literature (Winkler, Santo et al. 2019); therefore, it can be concluded that the MP particles found 

mostly stemmed from abrasion from the bottle cap sealing. According to the results presented, 

this poses the most important point of entry for MP particles ≥11 µm into bottled mineral water. 

 

  

Figure 19. MP concentrations detected from groundwater well to filled and capped water bottles and corresponding 
limit of detection (LOD). PP = Polypropylene, PS = Polystyrene, PE = Polyethylene, PA = Polyamide, PEST = 
Polyester, EvOH = Ethylene Vinyl Alcohol, PVC = Polyvinyl Chloride, PLA = Polylactic Acid, PTFE = 
Polytetrafluoroethylene. 

PTFE 
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3.5. Entry paths for microplastics during the production and preparation 

of selected foods  
Having the goal in mind to minimize MP entry into beverages and food, the identification of the 

entry paths clearly is essential. Model foods were chosen for these investigations based on 

their relevance regarding consumed amounts and consumer sensitivity. As such, bread was 

chosen because it is a staple food in the western world. Apple puree intended for infant feeding 

represents an example for sensitive foods. After reports on extraordinary high findings of MP 

and NP in tea and potential high intake rates associated therewith (Hernandez, Xu et al. 2019; 

Xu, Lin et al. 2021; Afrin, Rahman et al. 2022), tea filled in paper- and plastic-based filter bags 

was included, as well. All findings are summarized in the following and will be discussed in 

relation to the corresponding LODs and RRs in section 4.4. Raw data for the bread, flour and 

salt samples taken at a bakery stemmed from Hubin (2020) and raw data for homemade and 

industrial apple puree were acquired by Eberl (2020). Tea samples were examined by Müller 

(2020). MP types were determined through FTIR imaging and matrix-specific RDF models. At 

all time, the QA/QC measures as described in section 1.6 were followed. The above-mentioned 

works were conducted under Jana Weißer’s supervision and data were re-prepared for 

presentation here by her. 

Bread production 

At a Munich bakery, samples were taken from rye flour, bread dough, and sea salt from the 

French Atlantic coast. Triplicate samples of flour and dough were prepared as summarized in 

Figure 15 and analyzed using FTIR imaging and an RDF model. Determined MP 

concentrations are shown in Figure 20. Accordingly, 335 MP g-1
DW ± 93 MP g-1

DW (MP per g 

dry weight, DW) were determined in the rye flour samples and 1,091 MP g-1
DW ± 179 MP g-1

DW 

in the dough samples. The LOD for both flour and dough samples amounted 408 MP. 

Most MP particles in the dough were identified as PE, PP, and ethylene vinyl alcohol (EvOH) 

(318 MP g-1
DW ± 54 MP g-1

DW, 336 MP g-1
DW ± 141 MP g-1

DW, and 208 MP g-1
DW ± 49 MP g-1

DW, 

respectively). Most particles (~77%) were between 11 µm and 20 µm small. As is typical for 

MP, particle numbers decreased with increasing sizes, as Figure 21 illustrates. Size 

distributions were similar in the blank samples, while in the flour samples, only ~19% of MP 

fell into the smallest size category and ~38% were sized 20 µm to 50 µm. The size categories 

50 µm to 100 µm and 100 µm to 500 µm accounted for 17% and 22%, respectively. 

Figure 20. MP findings in rye flour and dough with corresponding LODs (limits of detection). PP = Polypropylene, 
PS = Polystyrene, PE = Polyethylene, PA = Polyamide, PEST = Polyester, EvOH = Ethylene Vinyl Alcohol, PVC 
= Polyvinyl Chloride, PLA = Polylactic Acid, PTFE = Polytetrafluoroethylene. 
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The sea salt sampled contained 270 MP kg-1 ± 10 MP kg-1. Because only one blank value 

(resulting in 19 MP) was employed due to time restrictions, the LOD was conservatively 

assumed as this blank × 1.75, corresponding to 33 MP. The most abundant polymer types 

were PE, PP, and PVC as shown in Figure 22. 

Apple puree production 

An investigation on plastic kitchen equipment as a possible MP source was carried out. For 

this purpose, apple puree was prepared in a technical scale using stainless steel equipment 

as is standard in the food industry (‘industrial apple puree’). Another batch was prepared in a 

Figure 22. MP findings in sea salt with corresponding LOD. PP = Polypropylene, PS = Polystyrene, PE = 
Polyethylene, PA = Polyamide, PEST = Polyester, EvOH = Ethylene Vinyl Alcohol, PVC = Polyvinyl Chloride, 
PLA = Polylactic Acid, PTFE = Polytetrafluoroethylene. 

Figure 21. Size distributions in percent of MP particles in bread dough. PP = Polypropylene, PS = Polystyrene, PE = 
Polyethylene, PA = Polyamide, PEST = Polyester, EvOH = Ethylene Vinyl Alcohol, PVC = Polyvinyl Chloride, PLA = 
Polylactic Acid, PTFE = Polytetrafluoroethylene. 
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private kitchen (‘homemade apple puree’) using a cutting board, a bowl, a sieve, and a funnel 

made of PP, a PVC sieve, a PA cooking spoon, and a PTFE spatula.  

Figure 23 shows the results from triplicate analyses after sample preparation as summarized 

in Figure 15. In the ‘industrial’ apple puree, 56 MP g-1
DW ± 27 MP g-1

DW were detected and 

82 MP g-1
DW ± 33 MP g-1

DW in the ‘homemade’ apple puree. Both batches contained mostly PE 

and PTFE, and PP, PS, PA, and PET were present in smaller amounts. In the homemade 

puree, EvOH and a small number of PVC particles were found in addition. The corresponding 

LOD was 92 MP and comprised mostly PTFE and PE. Particle sizes in both batches ranged 

from 60 µm to 2,750 µm.  

Tea preparation 

Peppermint tea was provided in standard filter bags made mainly from cellulose, and pyramid 

filter bags made from PLA. Tea was brewed according to the manufacturer’s instructions and 

the solids present in the extract after removing the bag were treated as is summarized in Figure 

15. While the blank samples did not contain PLA as shown in Figure 25, the tea prepared from 

PLA pyramid bags (n=3) contained on average 9 ± 6 PLA particles per cup (150 mL), i.e. per 

tea bag, most of which were fibers ranging from 100 µm to 500 µm in length. The only other 

polymer detected above LOD in the PLA bags was PET with 3 ± 1 MP per cup.  

The particle size distribution is shown in Figure 24. The MP particle numbers do not rise with 

decreasing particle sizes, but stay almost constant.  

No PLA was detected in the tea prepared from standard cellulose-based tea bags. The only 

plastic type above LOD was PP with 2 ± 2 MP. 

Figure 23. MP findings in apple puree prepared in a private kitchen (‘homemade’) and at a technical 
scale (‘industrial’) with corresponding LODs. PP = Polypropylene, PS = Polystyrene, PE = Polyethylene, 
PA = Polyamide, PEST = Polyester, EvOH = Ethylene Vinyl Alcohol, PVC = Polyvinyl Chloride, PLA = 
Polylactic Acid, PTFE = Polytetrafluoroethylene. 
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Figure 24. Size distributions in percent of MP particles in tea prepared from PLA tea bags. PP = 
Polypropylene, PS = Polystyrene, PE = Polyethylene, PA = Polyamide, PEST = Polyester, EvOH = 
Ethylene Vinyl Alcohol, PVC = Polyvinyl Chloride, PLA = Polylactic Acid, PTFE = Polytetrafluoroethylene. 

Figure 25. MP findings in tea prepared from standard paper-based and PLA tea bags with corresponding 
limit of detection (LOD). PP = Polypropylene, PS = Polystyrene, PE = Polyethylene, PA = Polyamide, PEST 
= Polyester, EvOH = Ethylene Vinyl Alcohol, PVC = Polyvinyl Chloride, PLA = Polylactic Acid, PTFE = 
Polytetrafluoroethylene. 
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4. Discussion 
By the start of this doctorate project, no standard methods for MP analysis were available. 

Meanwhile, progress has been made for all steps along the MP analysis pipeline. Section 4.1 

discusses the experimental results and success of matrix degradation for different food types. 

These results and QA/QC related results are discussed regarding their meaningfulness for 

method harmonization in section 4.2. Section 4.3 discusses QA/QC for the evaluation of DARs. 

Finally, section 4.4 discusses the knowledge gained on MP entry paths into processed food 

and beverages. 

 

4.1. Proceedings in matrix-dependent sample preparation for MP 

analysis 
Preparing a sample for MP analysis typically requires a series of digestion steps. As the results 

for the digestion of pear and strawberry puree (Figure 14) showed exemplarily, the efficiency 

of matrix digestion varies depending on the sample composition.  

Enzymatic matrix degradation 

Both strawberry and pear puree were degraded to more than 90% by cellulase. The 

degradation was higher for the pear puree, which may be attributed to the contents of dietary 

fibers of the two fruits: strawberries contain less insoluble dietary fibers compared to pears 

(27 g kg-1 and 29 g kg-1, respectively, Chareoansiri and Kongkachuichai (2009)). 

Consequently, the pear sample provided more cellulosic structures to be degraded by the 

cellulase. This result indicates that for foods with high contents of dietary fibers, sample 

preparation should include at least one cellulase step.  

Both flour and bread samples further required amylase in addition to cellulase because of their 

starch content.  

For breaking down the cell walls of the yeast Saccharomyces cerevisiae in wheat beer, 

cellulase was found unsatisfying. Being an endo-β-1,4-glucanase, it was incapable of cleaving 

the β-1,3-glucan bonds, which make up 50% of S. cerevisiae cell walls. The yeast cells, 

however, were well-degradable with Xylanase 2x, as this mixture comprises both an endo-1,4-

β-D-xylanase, and an endo-1,3-β-D-xylanase, the latter of which cleaves 1,3-β-D-glycosidic 

linkages in xylans. Moreover, it possesses a mannanase activity that can cleave the mannose 

structures of mannoproteins, which make up 40% of S. cerevisiae cell walls (Lipke and Ovalle 

1998). Because of this variety of enzymatic activities, Xylanase 2x was superior in the 

degradation of mixtures of complex high-polymeric matrices like yeast cells.  

Interestingly, using Xylanase 2x as the first degradation step for fruit puree led to poor 

filterability of the sample, while for tea leaves, this was not the case. Here, Xylanase 2x was 

found to yield slightly higher dry mass reduction rates for tea leaves than cellulase, however, 

only 43% degradation were achieved at maximum (Dunkel 2018). Combining two xylanase 

and one cellulase degradation step with a final Fenton + AAH reaction, ~60% matrix 

degradation were achieved, yielding analyzable tea samples (Müller 2020).  

In contrast to the other enzymes employed, Xylanase 2x was stable for only 3.5 h at 40°C in a 

citric acid-sodium hydroxide buffer (pH 6, 0.1 M). On one hand, this lowered the total time 

necessary for matrix degradation compared with the other enzymes used. On the other hand, 

this resulted in less flexibility in planning experiments compared with the other enzymes, which 

all were stable for at least 24 h under the same conditions. However, the advantages of 

Xylanase 2x for degradation of tea and yeast outweighed this.  
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In general, prolonging the incubation time for enzymatic degradation to over 24 h did not 

enhance the result as shown exemplarily in Figure 26 A+B. 

 

These examples show that enzymatic matrix degradation is an important tool for food matrix 

degradation; yet, suitable enzymes need to be chosen with care according to the target bonds 

to cleave. Even small-seeming differences in the composition of samples can have large 

influences on the degradation result, potentially leaving matrix residues that hamper the 

spectroscopic analysis.  

Fenton’s reagent for matrix degradation 

Less specific, but not less relevant than enzymatic sample digestion are approaches based on 

chemicals, such as Fenton’s reagent. When testing Fenton’s reaction as described in the 

literature (Masura, Baker et al. 2015), unwanted iron precipitates were formed. As proposed 

by Al-Azzawi, Kefer et al. (2020), concentrated sulfuric acid can be added to re-solve the 

precipitates without risking MP damages. However, it was shown that the formation of 

precipitates can be fully avoided through adapting the protocol as has been described in 

section 3.1.1. Further, adding AAH to the solution lead to strong decrease of the turbidity of 

the sample (visible upon visual inspection). Therefore, adding AAH was adapted as a standard 

for degrading sample matrices: most sample preparation procedures were started with a 

Fenton + AAH treatment to make the sample more accessible for the following enzymatic 

treatment(s). Further, Fenton + AAH was employed as a final ‘clean up’ step after enzymatic 

digestions. Comparing the residues from apple puree samples on a silicon filter with (Figure 

26 B) and without (Figure 26 C) an initial Fenton + AAH step, it can be seen that the latter left 

a lot more matrix residues on the filter. The cleaner the filter, the higher its analyzability. This 

way, the success of framing the sample preparation with Fenton + AAH becomes evident.  

Adding AAH has already been shown to enhance the degradation of organics in industrial and 

environmental remediation applications of Fenton’s reaction before. This is because AAH 

radicals (AA) act as reductant for Fe3+ to Fe2+, see equations 12+13 (Bolobajev, Trapido et 

al. 2015). This i) happens without requiring H2O2, therefore leaving more hydroxyl radicals for 

reacting with the sample matrix, and ii) further reduces the risk of Fe3+-based precipitates such 

as ferric oxyhydroxide (Bolobajev, Trapido et al. 2015).  

𝐻𝑂• + 𝐴𝐴𝐻 
 

→ 𝐴𝐴• +  𝐻2𝑂  (12)  

𝐴𝐴• +  𝐹𝑒3+  
 

→  𝐴𝐴+ + 𝐹𝑒2+  (13)  

Figure 26. Examples for residues of apple puree on silicon filters after treatment with: A, Fenton + AAH /96 h 
cellulase/Fenton + AAH; B, Fenton + AAH /24 h cellulase/Fenton + AAH; C, 24 h cellulase/24 h cellulase/Fenton + 
AAH. Photos by Eberl (2020). AAH = Ascorbic Acid. 
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It can be concluded that adding AAH enhanced the effectiveness of organic matrix 

degradation, yielding sample dry mass reductions between 92 and 97% (values for pear and 

strawberry purees, respectively). The varying effectiveness of the treatment depending on the 

type of sample may be attributed to its content of insoluble dietary fibers. Opposed to the 

effectiveness of cellulase as described before, Fenton + AAH seem to be more efficient for 

samples with lower contents of insoluble dietary fibers, as the results from strawberry and pear 

puree indicate. 

Final filtration 

The filter used for the final filtration step had some additional influence on the sample matrix 

residues finally present, as the pores of Anodisc membranes were much smaller than the pores 

of the silicon filters (0.2 µm vs. 5-10 µm, respectively). Thus, using silicon filters instead of 

Anodisc membranes lead to removal of particles too small to be analyzable with FTIR imaging. 

In addition, silicon filters are, unlike Anodisc membranes, resistant towards Fenton’s reagent, 

so no additional filtering for removing aggressive chemicals was necessary. Consequently, 

Anodisc membranes were used mainly for water samples, however, even for water samples, 

silicon filters can be preferred because of their higher filtration rates and flatness (see section 

3.1.1). In turn, the recovery rate may be smaller using silicon filters, due to the more 

complicated filtration set-up, see section 3.1.2.  

Success of sample matrix degradation 

When assessing sample degradation based on the sample analyzability in FTIR imaging (see 

next section), it became clear that enzymatic and chemical degradation steps had to be 

combined for most beverages and food (compare Löder, Imhof et al. (2017)), as summarized 

in Figure 15. For beverages (cloudy lemonade, Pilsner style beer, and wheat beer), the goal 

of making one unit of consumption, i.e., 330 to 500 mL, analyzable was fulfilled. However, 

other foods could only be analyzed in amounts between 150 and 6,500 mg (Eberl 2020; Hubin 

2020) to avoid overlaying of remaining particles on the sample filter. Across all sample types, 

cellulose and similar structures (identified via µFTIR) were the most persistent and impairing 

type of sample matrix residues. 

 

4.2. Quality assurance and quality control in sampling and sample 

preparation 
This section discusses the findings explained in sections 4.1 and 3.1.2 with regard to their 

significance for QA and QC of MP analysis. 

Analyzability of digested samples 

Initially, dry mass reduction was used to assess the success of sample preparation. During 

this thesis, however, it was experienced that this measure was not fully reliable. Even when 

degradation rates close to 100% were achieved, light-weight, yet voluminous matrix residues 

were still present that hampered the spectroscopic analysis. This applied to all foods examined 

except for drinking water, raising doubt on the suitability of dry mass reduction as a QA/QC 

measure. Instead, the spectra quality of spiked-in particles was used as a criterion for 

evaluating the success of matrix degradation.  

The drawback of this procedure is of course that it relies on the operator’s experience in 

spectra interpretation and remains somewhat subjective, while dry mass reduction is a more 

concise and scalable variable. In addition, the spiked-in particles may not fully reflect the 



4 - Discussion 

 
41 

 

complexity of MP particles present in a sample, neither concerning plastic types nor potentially 

built matrix films on the particles’ surfaces.  

It is concluded here that even though dry mass reduction is a scalable, objective indicator for 

the success of a sample preparation procedure, it should be complemented with assessing the 

sample’s analyzability. For this purpose, spiking with reference particles should be employed 

to make the procedure traceable and to qualify it as a QC method contributing to the ongoing 

harmonization. Spiking with known amounts of reference particles of all types and sizes 

targeted in the analysis would even make the process eligible as a QC measure for sample 

preparation, instrumental analysis, and data analysis combined, as is discussed further in 4.3. 

Contamination prevention and monitoring 

The measures taken to minimize airborne contamination (e.g. via working under a laminar flow 

workbench and wearing cotton lab coats) were assessed by preparing ‘air blanks’ as part of 

the study Weisser, Beer et al. (2021). With a total of 3 MP particles in 10 air blanks, mitigation 

of airborne contamination can be regarded successful. To make the analyses more time-

efficient, only combined sampling and process blanks were employed from there on. 

Sampling and process blanks, i.e., blanks mimicking sampling and sample preparation 

procedures, in turn, were confirmed to be an indispensable QA/QC tool, as they were never 

free from MP (see Table 3), indicating contamination via the reagents and/or the vessels used. 

Despite the strict cleaning protocols, it could not be guaranteed that all vessels were 

completely free of MP, as the particles tend to stick on glass walls (Eitzen, Paul et al. 2019). It 

can, however not be concluded that the cleaning protocol was completely ineffective as two 

sampling blanks of cartridge filters for volume-reduced sampling of ground water were free of 

MP. Nevertheless, they comprised high amounts of hemp fibers, stemming from the hemp 

sealing material used for the cartridge filters. Consequently, even though hemp fibers are non-

plastics, PTFE sealing tape should be used instead if PTFE is excluded from the target 

polymers. 

Contaminated glassware or other equipment for sample handling further most likely led to 

contamination of the filtered reagents stored in glass containers. The most abundant plastic 

type in the blank samples were PS, PE, and PTFE, the origins of which could not be cleared 

up ultimately. Possible sources may be the PE bags that the stainless steel filters were 

delivered in, the plastic box of the cellulose ester membrane filters, the PTFE coating of the 

forceps used for handling the silicon filters, or other inevitable plastic items in the laboratory. 

As was found by Witzig, Földi et al. (2020), disposable lab gloves can lead to false positive PE 

results. In the present work, gloves were worn only when inevitable for operator safety and 

contact between gloves and sample contact surfaces was avoided. Despite meticulous 

attention, it can not be fully excluded that the PE findings in the blank samples and 

consequently also a part of the PE findings in the samples derived from the gloves worn. 

In other works, very broad ranges of sample blank values have been reported, ranging from 

0 MP (Corami, Rosso et al. 2020) to 151 MP (Mintenig, Int-Veen et al. 2017). Only studies 

analyzing MP starting from 10 µm were considered here. Regarding the sample preparation 

protocols, no connection between blank values and the number of sample preparation steps 

or chemicals applied could be found, neither in the literature nor in this work. In most cases, 

no efforts were made to trace back the sources of contamination, with the exception of Löder, 

Imhof et al. (2017) who identified PP bottle screw caps as a source of PP contamination.  

It can thus be concluded that the blank values reached in this work are within the expectable 

range. Ideally, experiments should be conducted in a clean room free of any plastic items, 
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which, in practice, is hardly feasible, not only because some pieces of equipment cannot be 

replaced by non-plastics, but also due to restricted lab space and pecuniary resources. 

Particle loss assessment 

When assessing the stability of reference MP particles against the reagents used for sample 

preparation, most polymers were stable. The sole exception were PA particles, which 

aggregated in the ZnCl2 solution used for density separation. Consequently, PA numbers in 

ground water and sea salt samples may have been underestimated, while their sizes may be 

overestimated in this and other works using ZnCl2.  

As is apparent from Table 4, RRs declined with rising complexity of sample preparation 

procedures, where the flushing of bottles represents the easiest procedure and flushing from 

cartridge filters represents the most complex one. Not only, the risk of particles getting stuck 

is higher because of the cartridges’ high filtration area, but they are also more prone to 

splattering while rinsing them. Using a similar filtration device, Lenz and Labrenz (2018) 

reported an RR of 98.9% ± 0.89%, which is 1.7-fold higher than the recovery achieved here. 

However, they used cylindrical red PA pieces with 450 mm to 480 µm length to determine the 

RR. It can be argued that these rather big, regularly shaped particles were easier to recover 

than the smaller (~100-200 µm), irregularly formed particles used in Weisser, Beer et al. 

(2021). This assumption is supported by the findings of others (Wang, Taylor et al. 2018; 

Weber, Kerpen et al. 2020; Hurley, Lusher et al. 2018; Way, Hudson et al. 2022). Further, 

different types of plastics may yield varying RRs (Monteiro, Rocha-Santos et al. 2022), thus, 

comparisons are drawn here only to studies using PS particles. Note however, that first, PS 

properties may differ between manufacturers (Ramsperger, Jasinski et al. 2022) and second, 

the hydrophilization undertaken here may have positively influenced the RRs. It was, however, 

considered that hydrophilized particles behaved more like ‘natural’ MP than non-hydrophilized 

particles (von der Esch, Lanzinger et al. 2020). 

The third-highest RR was found for the density separation process, which was done in a 

conical separatory funnel, which is a standard laboratory equipment. Note that in order to clean 

the particles from the ZnCl2 solution, the particles had to be filtered through a stainless steel 

filter and flushed to remove residues of ZnCl2 before filtering them through a PC membrane to 

determine the RR. The RR reported thus reflects a combination of all these steps. Specialized 

devices like the Munich Plastic Sediment Separator (MPSS) were shown to yield RRs of 95.5% 

for particles < 310 µm of 10 different plastic types (Imhof, Schmid et al. 2012). It seems, 

moreover, that the ratio of sample volume to separatory funnel volume influences particle 

recovery, with lower ratios being favorable (Dimante-Deimantovica, Suhareva et al. 2022).  

For the filtration through stainless steel filters, the second-highest RR was determined. 

Because this procedure was used multiple times in some sample preparation protocols, it can 

be assumed that the recovery after a series of filtrations is much lower.  

According to Dimante-Deimantovica, Suhareva et al. (2022), vacuum filtration yields lower 

recovery than gravity-driven wet-sieving. In their experiments with 100 µm PS beads, this was 

most likely attributed to the detachable parts of the filtration device. Similar observations were 

made by Lerch (2020), showing that particles can get trapped in gaps between the parts of the 

vacuum filtration system.  

The adapter for the silicon membranes adds even more gaps that the particles can get into. 

This is supported by the finding that when assessing the RR for density separation using silicon 

filters for the last filtration step, only 54% ± 16% of particles were recovered (Hubin 2020), 

opposed to 63% ± 8% when using the PC membrane in the final filtration (Weisser, Beer et al. 

2021). Note that a dependency of the recovery rate from the operator cannot be ruled out. 
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As described before (section 3.1.1), particle loss was observed in gaps between the adapter 

and the filter. After introducing the usage of silicone gaskets (see Figure 6 C), no such particle 

accumulations were observed anymore, however, a mean RR of 83% was not surpassed. 

When looking at Figure 16, another issue becomes evident, which is the aggregation of 

particles, potentially leading to miscounting two or more particles as one. When counting under 

the stereomicroscope, however, particles in question were separated with the single-haired 

brush. Miscounting thus seems not as likely as actually losing the particles. For instance, it is 

possible that particles adhered to the filtration adapter even though it was rinsed thoroughly. 

To avoid cross-contamination between samples, the adapter and other filtration equipment 

was cleaned thoroughly as described in section 1.6.1.  

For sample preparation procedures comprising n filtration steps, it would be expected that the 

final RR would amount RRn. For instance, if 10% of particles get lost during each filtration step, 

the RR of three filtrations would amount 0.93 = 73%. However, it must be considered that the 

RRs determined during this thesis always comprise the final filtration on the analysis filter in 

addition to the studied sample preparation procedure. During a multi-step sample digestion, 

however, the filtration through the final filter is conducted only once at the very end. As the 

same set of filters was used from the first to the penultimate filtration, the accumulated recovery 

should thus be higher than RRn. The 84.5% ± 3.3% recovery rate (bright red PS beads 180 µm 

to 212 µm) achieved by Löder, Imhof et al. (2017) after a 7-step enzymatic and chemical 

treatment, however, surely was not reached with the methods employed in this work. Again, 

trapping of the irregularly shaped particles in filter meshes may explain the lower recovery. 

Further, Löder, Imhof et al. (2017) used one stainless steel filter only, while in this work, 

cascades of four filters needed to be used to avoid filter clogging. Consequently, more surface 

area that the particles could adhere to was present in comparison with their study, explaining 

the lower RR.  

The highest RR was achieved for the bottle flushing process with 86% ± 8%. In all conscience, 

the only other study that reported an RR for a similar process is Li, Shi et al. (2020), stating 

94.9% ± 0.4% recovery for 2 µm PS beads. The differences between the findings may be 

attributed to diverging bottle volumes, geometries, and materials. No further assumptions can 

be made as Li, Shi et al. (2020) did not report on size and geometry of the bottles examined.  

A meta-analysis of MP studies by Way, Hudson et al. (2022) came to the conclusion that based 

on the RRs reported, MP is underestimated by 14% on average. RRs for bottle flushing and 

filtration through stainless steel sieves determined in this work are very close to this value. 

However, the other RRs determined show that MP were most likely underestimated at a 

greater extent than in average studies. However, as pointed out by Way, Hudson et al. (2022), 

the RR is strongly influenced by particle size, shape, polymer type, and reagents used. In turn, 

the standard deviations determined here show that the processes applied were reproducible 

within certain boundaries, underlining their suitability. According to the results presented, 

particle loss because of sample handling is a bigger issue than chemical damage of particles, 

as has already been described elsewhere (Dimante-Deimantovica, Suhareva et al. 2022). 

Extraction efficiency may be improvable further by employing ultra-sonication of filters and 

sieves. This was not considered here after contributing to the study by von der Esch, Lanzinger 

et al. (2020), where reference particles were produced from larger plastic pieces by 

ultrasonication. Meanwhile, however, another study found that ultrasonication does not 

fragment MP particles under absence of aggressive chemicals (Büks, Kayser et al. 2021). 
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Ultrasonication of filters may consequently still be a meaningful technique to enhance the RR 

of experiments. 

Further, improved recovery is thinkable by spraying particles off with pressurized water-jets. It 

should be ensured, however, that splattering is avoided. Another possible procedure would be 

backwashing of filters, as employed here for the cartridge filters; yet, backwashing with EtOH 

may be more efficient than with air. When backwashing with air, particles need to be brought 

into suspension afterwards. In contrast, they would be suspended already when backwashing 

with a liquid. EtOH is especially suitable for this purpose because of its low polarity and low 

surface tension.  

Analysis filters 

Even in combination with the customized filter holder, a maximum offset of 132 µm was still to 

be expected when using Anodisc filters. This potentially led to overlooking of particles during 

FTIR imaging. In particular, results presented in Weisser, Beer et al. (2021) may underestimate 

MP concentrations because of the filters’ unevenness. An additional drawback of the Anodisc 

filters is that when placing them in the holder, particles may roll off. In addition, contamination 

during mounting the upper part of the holder could not be ruled out, even though the sample 

was kept covered as far as possible during mounting. 

Regarding filter flatness, the silicon filters were clearly preferable. Moreover, they can simply 

be placed on a BaF2 window, minimizing contamination risks. The only downside to be noted 

is that they break relatively easy when falling or not being placed correctly into the adapter for 

filtration (see Figure 16). 

To conclude, the silicon filters are favorable regarding QA of the FTIR measurements. If for 

some reason Anodisc or PC membranes are to be used, placing them in a holder is strongly 

recommended to minimize overlooking of particles outside of the microscope’s focal plane. 
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4.3. Quality assurance and quality control in data analysis 
The main strength of FTIR imaging for MP analysis is that a whole sample area can be 

measured relatively quickly. The identification of particles in the image, however, poses a major 

challenge because of the large amounts of spectra, their often-limited quality, and the diversity 

of target substances. The strengths and weaknesses of the DARs proposed until today were 

assessed on a theoretical level in Weisser, Pohl, Heinzinger et al. (2022) and are summarized 

in Table 6. The literature review reinforced the decision of choosing a supervised ML method 

for MP identification, but also revealed the worthiness of unsupervised ML (PCA, for example) 

for pre-filtering the data.  

Table 6. Summary of strengths and weaknesses of Data Analysis Routine categories. MP = Microplastic. 

Database / Library Matching 

 Machine Learning 

 unsupervised supervised 

+ High performance in class 

distinction 

+ Low to intermediate expert 

knowledge required 

+ Easy adding of new classes 

 

+ Explore unknown data 

+ Dimensionality reduction 

+ MP – background 

separation 

+ Fast application 

+ High performance in 

classification 

+ Little expert knowledge 

required for application 

+ Fast application 

- Careful selection of database, 

HQI calculation and HQI 

threshold 

- Rather slow on large datasets 

and large databases 

 

- Expert knowledge 

required 

- Limited suitability for class 

distinction 

- Expert knowledge 

required for model 

training and parameter 

tuning 

- Training can be time-

consuming 

- New classes usually 

require model re-training 

 

4.3.1. QA/QC in database matching programs 
Two other projects aimed to push forward the harmonization of DARs in the past years, called 

siMPle (Systematic Identification of MicroPLastics in the Environment, Primpke, Cross et al. 

(2020)) and OpenSpecy (Cowger, Steinmetz et al. 2021). Both are database matching 

programs and are summarized including their up- and downsides in Weisser, Pohl, Heinzinger 

et al. (2022) and the corresponding supplementary information. The database of OpenSpecy 

was originally identical with the one published by Primpke, Wirth et al. (2018), but is augmented 

by its users over time. Only spectra passing a transparent QA/QC process are added to the 

database, which is vital for method harmonization, thus posing a significant enhancement 

compared to commercial databases. The most prominent drawback of OpenSpecy, however, 

is that it can be used only for single spectra and not for hyperspectral image classification. 

The database by Primpke, Wirth et al. (2018) can be loaded in siMPle to be used for both, 

single spectra and image classification. However, it comprises mostly ATR-FTIR spectra, 

limiting its usability for transmission and reflection IR spectra. Users may add their own spectra. 

Similarity between reference and query spectra is calculated based on a weighted score. The 

three weights for raw, first and second derivative spectra need to be specified by the user. In 

addition, the user needs to set two thresholds for each database entry (Primpke, Cross et al. 

2020). Thresholds may depend on the type of sample and the quality of spectra, complicating 

the identification of the most suitable weights and scores. For the on-board database with 270 
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entries, this sums up to 540 thresholds to be set. The database is organized in 32 clusters 

(Primpke, Wirth et al. 2018), potentially reducing the number of thresholds to be set to 64. For 

the weights, 33 combinations are to be tested, at least (for weights of 0, 1, and 2). While this 

provides the user with high flexibility, they may be left overwhelmed as only few guidance is 

given on how to approach the optimization (Liu, Olesen et al. 2019). The program siMPle 

outputs a hit list for every particle identified, showing the similarity between the particle 

spectrum and the database entries, allowing to correct the assignments if necessary. This 

fulfills the basic requirements for QC. When launching siMPle, the assignment of 100 randomly 

selected spectra was rated by an expert, showing that > 90% of assignments were correct. 

This post-classification evaluation, however, may suffer from human bias. In contrast, 

specifying the ground truth before classification poses a less bias-prone approach. Moreover, 

it can be argued that a test dataset comprising 100 spectra is too small. 

 

4.3.2. Reference images for DAR evaluation 
Another important QA measure for DARs is CV, such as MCCV, performed on a set of labelled 

spectra. These single, isolated spectra, however, do not reflect the full complexity of FTIR 

images. For instance, the RDF model employed for the study by Weisser, Beer et al. (2021), 

was evaluated on a set of 6,036 spectra by means of MCCV, resulting in an accuracy of 0.9545, 

close to the optimum of 1. Note that during this thesis, the ground truth was specified prior to 

classification, ensuring a low-bias evaluation of the results. MCCV was considered state-of-

the art at that time (Hufnagl, Steiner et al. 2019) and the accuracy reached was comparable 

with accuracies achieved by others (0.9766 in Hufnagl, Stibi et al. (2022) and 1.00 in Vinay 

Kumar, Löschel et al. (2021)). When reviewing the results generated by the model trained 

during the work Weisser, Beer et al. (2021), manual corrections were necessary at a much 

higher extent than expected based on the results from MCCV. These corrections implied both 

the class assignments and particle sizes. Depending on the number of particles identified, 

corrections took one to three hours per sample. Especially the fact that some particles were 

larger than identified by the model led to the question if particles may have been overlooked 

completely. To address this question, a reference FTIR image to serve as the ground truth was 

necessary.  

Consequently, published FTIR images of MP were reviewed and assessed whether they were 

suitable to serve as a ground truth image. A summary is shown in Table 7. Xu, Hassellöv et al. 

(2020) allocated a reference transmission FTIR image comprising seven plastic particles made 

from polysulfone, PS, PP, PC, PET, and PE. The particles were rather large with sizes between 

~1 mm and 5 mm (estimated from Figure 4 of the publication) and were cut from larger sheets. 

Thus, they do not represent the distortion of spectra due to scattering on particle surfaces, 

which is one of the most important factors impairing spectra quality. However, the data set 

covers detector over-saturation and mixed spectra as the particles partly overlaid each other.  

Primpke, Wirth et al. (2018) published RefA to RefD, which are FTIR images comprising 33 

synthetic and natural polymer types. Particles and fibers are much more realistic than in Xu, 

Hassellöv et al. (2020) in terms of sizes and shapes. With the same study, an FTIR image 

called Ref7P was published. It comprises a mixture of PE, copolyamide, polyester, 

polyurethane (PUR), quartz sand, cellulose, and diatomaceous earth (sizes 0 to 80 µm). 
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Table 7. Overview on publicly available reference Fourier-transform Infrared images containing MP = Microplastic. 

FTIR image 

Number of 
intentionally 
added plastic 

types 

Includes 
natural 

particles? 

Approximate 
particle sizes 

No. of MP 
particles 
known? 

Xu, Hassellöv et al. (2020) 6 No 1 – 5 mm Yes 

RefA 

Primpke, 
Wirth et al. 
(2018) 

8 Yes 0.65 – 2.2 mm Yes 

RefB 7 Yes 0.33 – 2.6 mm Yes 

RefC 7 Yes 
0.18 – 0.93 

mm 
Yes 

RefD 11 No 0.47 – 2.5 mm Yes 

Ref7P 3 Yes 0-80 µm No 

RefEnv1 
0, but comprises 

‘natural’ MP 
Yes 11 – 275 µm No 

RefEnv2 
0, but comprises 

‘natural’ MP 
Yes ≥ 11 µm No 

RefIMP  
(Weisser, 
Pohl, Ivleva 
et al. 2022) 

10 Yes 11 – 1,890 µm Yes 

 

Additionally, the article was supplemented by RefEnv1, a real sample of marine sediments, 

and RefEnv2, a wastewater sample, both comprising natural matrix residues and weathered 

MP in environmentally relevant sizes. The dataset RefEnv1 has meanwhile been used as a 

reference for other studies (Hufnagl, Stibi et al. 2022; Primpke, Lorenz et al. 2017). A significant 

drawback is, however, that there no ground truth is available for Ref7P, RefEnv1, and RefEnv2, 

i.e., it is not known how many MP and non-MP particles are contained therein. Consequently, 

they can be used to compare the relative performance of DARs, however, they are not suitable 

to give insight into their absolute performance.  

 

4.3.3. DAR evaluation using RefIMP and MPVal 
Because the datasets available were unsuitable to adequately address the question ‘How 

many particles does my DAR overlook?’, RefIMP was created and published. RefIMP is a fully 

evaluated FTIR image containing over 1,290 MP and non-MP particles (Weisser, Pohl, Ivleva 

et al. 2022). Together with the MatLab® script MPVal, a DAR’s performance in classifying the 

particles of RefIMP can be evaluated, opening up a new standardized measure for the QA of 

DARs. This allows for both, intra- and inter-DAR evaluation. The concept can be applied to 

other imaging techniques and other analytes as well. Especially the normalized, modified 

confusion matrices, represented as heatmaps, provide class-specific details of the DAR’s 

performance. Crucially, this comprises overlooked, over-segmented, and non-existing (‘ghost’) 

particles, as well as false type assignments. An example heatmap is shown in Figure 27. Rows 

represent the classes that the model predicted as well as an additional class ‘overlooked’. 

Columns represent the ground truth classes with two extra columns for over-segmented and 

ghost particles. These extra row and columns added distinguish the heatmaps from standard 

confusion matrices that are symmetric, i.e., comprise as many rows as they comprise columns 

(see Figure 12). This way, the heatmaps can adequately illustrate a DAR’s performance based 

on particle class assignments and counts. 
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The values in the quasi-diagonal of the heatmap (excluding the row for overlooked and the 

columns for over-segmented and ghost particles) represent the share of correct assignments, 

based on the number of reference particles for the respective class. Importantly, the 

significance of high values in the quasi-diagonal raises with the size of the test set. For the 

best-performing model trained during the study Weisser, Pohl, Ivleva et al. (2022), the correct 

assignment rates range from 24% for varnish-like to 94% for PS when classifying RefIMP. 

Inspecting the last row, it becomes evident that even this best-performing model overlooked 

12% of PE particles, 12% of varnish-like particles, and 8% of protein particles. Moreover, most 

class confusions were attributed to PP, PLA, protein, and varnish-like, despite yielding values 

> 0.95 for Sng, Spg, and Prg (formulae 6-8) with MCCV (with the exception of Snvarnish-like), see 

Table 8.  

Table 8. Sensitivity = Sng, Specificity = Spg, and Precision = Prg for the classes PP = Polypropylene, Polyethylene 
= PE, Polylactic Acid = PLA, Polymethyl Methacrylate = PMMA, protein, varnish-like, and Polyurethane = PUR as 
determined through Monte-Carlo Cross Validation = MCCV on isolated spectra and through MPVal on RefIMP. 

Superscripts (, , , ) indicate confused classes, where the first-mentioned class is underestimated because of the 

confusion. MCCV values are means from 5-fold MCCV on the 100% training data diversity set. MPVal results are 
based on the optimized Random Decision Forest model as described in Weisser, Pohl, Ivleva et al. (2022). 

Class 
Sn Sp Pr 

MCCV MPVal MCCV MPVal MCCV MPVal 

PP 0.9854 0.9437 0.9992 0.9959 0.9889 0.9306 

PE 0.9873 0.8454 0.9986 0.8468 0.9818 0.3004 

PLA 0.9739 0.8675 0.9991 0.9787 0.9882 0.7347 

PMMA 0.9919 0.9516 0.9950 0.8966 0.9393 0.4876 

protein 0.9639 0.5783 0.9996 0.9556 0.9931 0.6531 

Varnish-like 0.5354 0.5000 1.0000 0.9961 0.9971 0.5000 

PUR, 0.9911 0.9223 0.9986 0.8307 0.9813 0.2978 

 

When basing the evaluation on RefIMP and MPVal, Sng, Spg, and Prg for these classes are 

lower. For instance, SnPLA reached 0.8675 opposed to 0.9739 based on MCCV, hinting at 

undetected PLA particles, either overlooked completely or falsely classified. The confusion of 

classes, importantly, is revealed only when additionally involving the classes that they were 

Figure 27. Heatmap of the results from evaluation of RefIMP with the best-performing model from Weisser, Pohl, 
Ivleva et al. (2022). 
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confused with, which are PE, polymethyl methacrylate (PMMA), and PUR. Especially for Sng 

and Prg, there is a large discrepancy between the MCCV- and MPVal-based evaluation results. 

For example, PrPE based on MPVal is very low (0.3004) because of the high number of FPs 

among the total number of predictions for PE, as can be seen from the list of TPs, FPs, FNs, 

and TNs in generated by MPVal. This high number of FPs is caused mostly by the confusion 

for PP as the heatmap shows. Similarly, Snprotein based on MPVal reaches only 0.5783, 

because of a combination of a high number of FNs and a low number of TPs for this class. 

This interconnectivity between metrics and classes makes the evaluation of DARs very 

complex. A careful inspection from different perspectives and thorough analysis of errors are 

vital for understanding a model’s behavior as the examples show. 

 

4.3.4. Potential reasons for class confusion 

The classes varnish-like and protein were underrepresented in the training data set. Therefore, 

it can be argued that this was the reason for the poor classification performance. This, 

however, is not the case for PE and PP, which were both well-represented in the training data. 

Nevertheless, 57% of PP particles were misclassified as PE. One reason for this may be the 

fact that the spectra quality of the training data cannot be guaranteed to perfectly represent 

the sample spectra. Training data were labelled manually and despite trying to label highly 

diverse spectra, this task remains somewhat subjective. In the case discussed here, however, 

training data diversity was assessed and the presence of high and low quality spectra assured 

(Weisser, Pohl, Ivleva et al. 2022).  

The second reason for poor classification by an RDF model is the composition of the set of 

spectral descriptors. From a human point of view, IR spectra of PE and PP (shown in Figure 

28) are well distinguishable, not only based on the height of the band at 1,373 cm-1, but also 

based on the CH-stretch band pattern (2,820 – 2,960 cm-1). For an RDF model, however, these 

differences become visible only when the set of spectral descriptors is designed adequately. If 

no descriptor describes a class’ specific region(s), the model cannot be expected to be capable 

of correctly identifying this class. The spectral descriptors used in Weisser, Pohl, Ivleva et al. 

(2022) were generated systematically over the complete spectral range. Nevertheless, it 

seems that they should be improved further.  

It could be expected that database matching does not suffer from overlooked spectral features, 

provided the matching is performed over the complete relevant spectral range. Surprisingly, 

class confusion is not unusual in database matching and related approaches, as outlined in 

the following.  

Kedzierski, Falcou-Préfol et al. (2019) tested a k-nearest neighbor model for MP classification. 

This technique often is categorized as supervised ML, even though it is an advanced database 

matching procedure (Weisser, Pohl, Heinzinger et al. 2022). It provides the user with the k 

most similar database entries for each query spectrum. 

Interestingly, the k-nearest neighbor model from Kedzierski, Falcou-Préfol et al. (2019) tended 

to confuse PE and PP (and related polymers), as well: their model falsely classified PP as PE, 

just like the RDF presented here. Based on the same dataset, the SVM by Back, Vargas Junior 

et al. (2022) was shown to confuse PE for PP, too.  



4 - Discussion 

 
50 

 

In Primpke, Godejohann et al. (2020), hierarchical cluster analysis of ATR-FTIR spectra 

resulted in confusing some PE spectra for PP (see supplementary information of the article). 

After augmenting the set with spectra generated by Quantum Cascade Laser-Based 

Hyperspectral Infrared Chemical Imaging, this confusion did not occur anymore. No 

explanation for this behavior was given as it was beyond the work’s scope.  

The risk of confusing PE and PP was further illustrated in Xu, Hassellöv et al. (2020), where 

spectral matching was performed using Pearson correlation. For both, PE and PP test spectra, 

the respective other received the second-highest hit. For spectra with worse quality, it can be 

assumed that the distance between the hits decreases further. Moreover, the matching 

procedure proposed by Morgado, Gomes et al. (2021) included three more steps to identify 

PE and PP than to identify PS and PET, showing that even though distinguishing their spectra 

seems simple, their computer-assisted interpretation is not.  

The reason for this may lay in the relative simplicity of PE and PP spectra: the few bands that 

they exhibit are also present in many other plastic spectra, as most plastics comprise aliphatic 

C-H backbones. It may thus be the absence of more unique features (such as the aromatic C-

H stretch of PS spectra, for instance, see Figure 7) that makes them hard to classify.  

This explanation does not hold true for the spectra of PMMA and PLA, however, which should 

be well distinguishable in the range below 1,800 cm-1 and based on the band at 3,500 cm-1 

that is present in the spectrum of PLA, but absent in the spectrum of PMMA. This is taken as 

another indicator that the set of spectral descriptors for the RDF model should be reassessed 

and augmented to enhance the distinction between PE and PP, but also between PLA and 

PMMA, and protein and PUR. Redesigning the spectral features may further reduce the 

number of ghost particles and overlooked particles.  

 

4.3.5. Up- and downsides of RefIMP and MPVal  
Besides its strengths, RefIMP comes with certain limitations that should not be neglected, see 

Table 9. First, it contains engineered MP particles only, which are not weathered. 

Figure 28. Normalized, dimensionless transmission IR spectra of PP = Polypropylene, PE 
= Polyethylene, PLA = Polylactic Acid, and PMMA = Polymethyl Methyacrylate. 

PP 

PE PMMA 

PLA 
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Consequently, it does not reflect all challenges inherent to environmental MP samples 

(Renner, Sauerbier et al. 2019). Second, only a chosen subset of plastic types and matrix 

residues is contained, limiting any evaluation to these types.  

Table 9. Summary of the strengths and weaknesses of RefIMP and MPVal. PE = Polyethylene; PVC = Polyvinyl 
Chloride; PS = Polystyrene; PUR = Polyurethane; PMMA = Polymethyl Methacrylate; PET = Polyethylene 
Terephthalate; PA = Polyamide; PLA = Polylactic Acid; PC = Polycarbonate; PP = Polypropylene; MP = Microplastic; 
Dar = Data Analysis Routine; FTIR = Fourier-transform Infrared. 

 Strengths Drawbacks 

RefIMP 

+ Represents a state-of-the-art MP 

analysis technique 

+ > 1,200 reference particles 

+ Contains the most important plastic 

types: PE, PP, PS, PET, PA, PVC, 

PUR, PC, PMMA, PLA 

+ Contains the most important types of 

sample matrix residues: cellulose, 

protein, quartz sand 

+ Reference particles in a relevant size 

range: 11-666 µm for MP, 11-1,890 µm 

for non-MP 

+ Adaptable for new FTIR image tiles 

+ Well-accessible data format (.spe) 

- Reference particles do not fully reflect 

the complexity of environmental MP, 

i.e., aging effects 

- Other matrix residues or plastic types 

may be relevant 

- Performance of a DAR on RefIMP 

does not necessarily equal the 

performance on other samples 

- Slight class imbalances 

MPVal 

+ Easy-to-use 

+ Fully documented 

+ Global and class performance 

evaluation 

+ Heatmaps provide detailed insights 

+ Adjustable with basic programming 

knowledge 

- Particle sizes and shapes are not 

assessed 

- Association of found particles to 

reference particles based on bounding 

boxes and centers can lead to 

pessimistic outcomes 

- Runs on a commercial program (but 

can be adapted to free programs, e.g., 

Python, with few effort) 

 

Finally, it is important to understand that a high performance of a DAR on RefIMP does not 

automatically mean that the performance on any other MP sample will be just as high. Instead, 

the intention of creating RefIMP was to provide the MP research community with a fully 

transparent ground truth image. This image can serve as a common basis for DAR evaluation, 

delivering for the first time a low-bias way of directly comparing different DARs with each other. 

For this reason, RefIMP and MPVal are seen as key steps towards enhanced QA of the data 

analysis step in the MP analysis pipeline, thereby contributing to MP analysis method 

harmonization. 

 

4.3.6. Advanced recovery rates for improving DAR QA/QC 
Once a computer-assisted DAR is established, it will yield reproducible results. This 

distinguishes computer-assisted DARs from manual data analysis (Esch, Kohles et al. 2020). 

Thus, it can be argued that the only QC measure necessary at this point is to manually assess 

the results for a given sample for their correctness. Doing so, it will very likely be experienced 

that a DAR performs differently on different sample types. Its performance can be expected to 
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be worse than on manually labelled reference data sets as the latter underlie human bias. 

Thus, it is proposed to employ advanced recovery rates for each type of sample as follows: 

1. Spike in known numbers of MP particles of all types and sizes targeted 

2. Prepare the sample as usual, e.g. enzymatic treatments 

3. Measure the sample as usual, e.g. FTIR imaging 

4. Detect MP as usual, e.g. with an RDF model 

5. Compare the result with the known number of spiked-in particles 

In contrast to classical recovery experiments, where usually brightly colored particles are 

counted under a visual microscope, this procedure would give a more realistic picture.  

A drawback of this approach is that no conclusion can be drawn whether non-recovered 

particles got lost during sample preparation or are not detected by the DAR, for example 

because they are covered up by sample matrix residues. Nevertheless, an undetected particle 

remains an undetected particle and this advanced recovery rate enables to estimate the overall 

MP underestimation.  

Importantly, a major challenge to be solved before conducting such experiments is the 

production of reference MP particles. In all conscience, no reproducible, clearly defined 

secondary MP particles of all relevant types and size classes are commercially available to 

date. Promising small-scale methods have been proposed, however (Seghers, Stefaniak et al. 

2021; von der Esch, Lanzinger et al. 2020). To the best of the author’s knowledge, the sole 

supplier for standardized MP particles is the German Bundesanstalt für Materialforschung und 

–prüfung (BAM); here, artificially aged PE and PS particles can be purchased. Moreover, even 

when commercially available, spiking a sample with decisive numbers of particles remains a 

challenge (see section 1.2 and Eitzen, Paul et al. (2019)).  

The gold standard of QC, inter-laboratory tests, cover the whole analysis pipeline and give the 

opportunity of comparing different approaches in a standardized manner. In addition, the most 

suitable methods, i.e. those with most representative sample volumes, lowest LODs, and 

highest recovery rates can be identified. However, the bottleneck that currently limits the 

meaningfulness of inter-laboratory tests is the availability of adequate reference materials and 

of methods for the reproducible preparation of test samples (see section 1.2). Nevertheless, 

data analysis and the corresponding QA/QC should be advanced further to generate versatile, 

even quicker and robust DARs for MP research. 

4.4. Entry paths for microplastics into beverages and food 
In the course of this thesis, beverages and a selection of foods were analyzed, aiming to 

identify the most important entry paths for MP. This included raw materials, processed foods, 

and packaged goods. Results were presented in section 3.5. The relevance of the entry paths 

identified is discussed in the following. 

4.4.1. Food preparation equipment 
The production of bread and fruit puree for infant feeding were chosen as examples for MP 

entry into processed foods.  

Bread production 

Rye flour, sea salt and dough from a bakery were sampled and examined. Compared with the 

corresponding LOD, the rye flour examined must be regarded free from MP, the dough, 

however, according to the results has experienced contamination during its fabrication. It was 

suspected that the sea salt added to the dough could be responsible for the high MP count. 

MP concentrations in the sea salt examined here were within the range reported elsewhere 
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(Peixoto, Pinheiro et al. 2019), so it can neither be classified as highly polluted nor as free from 

MP. Given the low amounts of salt used to prepare the dough (~1.0 to 1.5% (w/w)), however, 

its contribution can be neglected. Taking into account the RR of the density separation process 

that the salt samples underwent, however, the actual concentration may be twice as high. 

Nevertheless, the contaminated sea salt cannot explain the high MP concentration in the 

dough. 

Most MP particles in the dough were classified as PP, PE, and EvOH (30.8%, 29.1%, and 

19.1%, respectively). The PP dough scrapers used in the bakery seem to pose the most 

plausible source for the PP particles, as they need to be exchanged regularly because of high 

wear. The PE particles might stem from PE trays used in the bakery, but also from airborne 

particles. For example, opening of PE bags may generate particles that could get into the 

dough trays. Trays were open most of the time to allow the dough to rise (Hubin 2020). EvOH, 

in turn, is used as an oxygen barrier in food packaging (Domininghaus 2012) and thus might 

be present in the bakery in form of packaging materials, as well.  

Some insecurity remains, however, due to the high blank values. They indicate that substantial 

contamination took place during sample preparation in the laboratory. The MP concentration 

in the dough was only 60% higher than the corresponding LOD. There are, however, no binding 

rules for acceptable blank or LOD values other than that they should be as low as possible 

(Schymanski, Oßmann et al. 2021). 

Fruit puree production 

The MP concentrations determined in homemade and industrial apple puree were both below 

LOD. Note that the puree samples underwent a multi-step preparation process including four 

filtration steps. Taking into account the RR for sample  filtration, the total RR for the process is 

approximately 47%. Therefore, the actual MP concentrations in both samples and the blanks 

may have been twice as high. The LOD here was relatively high, indicating non-negligible 

contamination during sample preparation. However, concluding that the samples were free of 

MP because they were below LOD, would be premature as a look at the plastic types reveals. 

While most plastic types detected in the samples were present in similar or higher amounts in 

the blank samples, as well, PS, EvOH, and PVC were more abundant in the samples than in 

the blanks. Among them, PVC is the only plastic type that may have its origin in the kitchen 

equipment used. More precisely, it might stem from a PVC sieve used to mash the cooked 

apples. During this process, the sieve experiences mechanical forces such as friction that can 

cause the generation of MP particles (Winkler, Santo et al. 2019). The origin of PS and EvOH 

could not be traced back (Eberl 2020). Especially the cutting board was expected to pose a 

source of MP contamination as found by others (Habib, Poulose et al. 2022). However, the 

results indicate that the PP cutting board did not contribute significantly to the MP 

contamination. It should not be forgotten, that airborne contamination can play a major role, as 

well (Vianello, Jensen et al. 2019). It can thus be assumed that the PS and EvOH particles, 

and potentially also the PVC particles, were airborne rather than equipment-sourced. 

It can be argued that the results presented here are of limited expressiveness because the 

sample sizes were rather small (3 × 6.5 g wet weight for each batch). In fact, only subsamples 

of 50-75% could be analyzed to avoid overloading the analysis filters. Using more or larger 

filters, however, would have led to disproportional high measurement and analysis times. 

Assessing larger samples would require further optimization of the sample preparation 

process, as especially cellulose-like structures were still present.  
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Concluding remark 

According to the results presented here, kitchen equipment could neither be confirmed as a 

source of MP in food, nor could it be excluded. It seems that a certain level of diffuse 

background contamination, most likely airborne MP, plays a major role (Vianello, Jensen et al. 

2019). While the usage of a plastic cutting board and other plastic kitchen utensils did not result 

in noteworthy rises in MP contraptions in a so-produced apple puree, the results from dough 

analysis suggest that wear from PP scrapers was present in it. Moreover, sea salt can be a 

source for MP, but its contribution is negligible due to the low amounts consumed. 

4.4.2. Food packaging 
In 2021, packaging accounted for 40.5% of the European demand for plastics (Plastics 

Europe's Market Research and Statistics Group 2021). The majority of food and beverages 

available for end consumers are packaged in plastic. The contribution of plastic packaging to 

human MP consumption, however, is not fully cleared yet. 

Tea bags 

Tea bags may pose a potential source for MP. Some tea bags on the market are completely 

made from plastic, usually PET, PA, or PLA, also known known as ‘pyramid bags’ because of 

their shape. Examining tea prepared from plastic tea bags, (Hernandez, Xu et al. 2019) claim 

to have detected billions of MP and NP particles. The results gained during this doctoral project 

differ substantially from their results. In the tea brewed in PLA bags, a maximum of 15 PLA 

items (≥ 11 µm) were detected. The PLA detected was always fibrous and larger than 100 µm. 

This lead to an atypical particle size distribution, where the number of particles did not rise with 

decreasing particle sizes, as is mostly the case. Instead, the class 100-500 µm is the most 

represented with 35% of MP particles, while each of the other classes makes up for 20-23% 

of particles. All other MP types ranged in very low numbers (≤ 5) or were below LOD.  

The preparation of tea samples included four filtration steps. Consequently, the RR for this 

process amounts approximately 0.834 ≙ 47%. The findings thus may underestimate MP 

concentrations by about half.  Considering this, and even though more MP is to expected when 

choosing an analysis method that is able to identify particles < 11 µm, it is doubted whether 

such enormously high numbers as reported by Hernandez, Xu et al. (2019) would be reached. 

Their study faced strong criticism because they assumed that all particles visible in scanning 

electron microscopic images were MP or NP, respectively. The chemical analysis, however, 

did not support this assumption. Instead, the particles found may be crystallized oligomers, 

which are water-soluble and therefore do not fall into the definition of MP/NP (Busse, Ebner et 

al. 2020). In this doctoral project, in contrast, the chemical composition of each particle was 

assessed, ensuring that no non-MP particles were counted as MP. In fact, non-MP particles, 

mostly cellulose, were numerous. 

In addition to the PLA tea bags, standard ‘paper’ bags were examined. Even though perceived 

as ‘paper bags’ by consumers, they contain plastic fibers, for example polyacrylamide, to make 

them stable during steeping in hot water (BfR 2022b). The German federal institute for risk 

assessment (Bundesinstitut für Risikobewertung, BfR) recommends to use paper additives 

based on vinyl chloride-vinyl acetate copolymers, PE, PP, or PEST. Depending on the additive 

chosen, between 0.015% and 6.1% can be used.  

In the standard tea bags examined, PP was present in low numbers, potentially stemming from 

paper additives. Assessing the bags directly using µATR-FTIR, however, only cellulose was 

detected. It is, however, possible that the cellulose covered other substances present in the 
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tea bag paper. The origin of the PP particles in the tea could thus not be resolved fully. No PLA 

was detected, indicating that no cross-contamination between the samples occurred. 

Bottles for beverages 

While the presence of MP particles in bottled mineral water has been confirmed by others 

(Schymanski, Goldbeck et al. 2018; Oßmann, Sarau et al. 2018), the project presented here 

aimed to shed light on the origin of these (see section 3.4). As ground water was already known 

to be nearly free of MP (Mintenig, Löder et al. 2019), the cleaning process of reusable bottles 

was suspected to be the main entry path. However, MP findings in cleaned bottles from all four 

companies were < LOD. Cleaned and filled, but uncapped bottles were free of MP, as well. 

This shows that the bottle cleaning and fresh water jetting was successful at all four companies. 

It should be stressed that analyses of particles < 11 µm may have led to a different result. For 

instance, Oßmann (2020) detected up to 487 ± 257 MP L-1 > 10 µm in cleaned glass beer 

bottles. A comparison between their and our results remains difficult, as different methods for 

instrumental analysis and data analysis were pursued. For instance, the study by (Oßmann 

2020) included phenoxy resin and styrene-butatiene-copolymer, which together accounted for 

up to 59% of MP particles detected.  

The sharp rise of MP concentrations after bottle capping (see Figure 19) strongly indicates that 

the capping process was responsible for MP in bottled mineral water. With 317 ± 257 MP L-1, 

the concentrations were relatively high when compared with studies employing spectroscopy 

and corrected for the particles > 10 µm (28 ± 29 MP L-1 (Schymanski, Goldbeck et al. 2018) to 

212 ± 175 MP L-1 (Oßmann, Sarau et al. 2018)). This may be because in Weisser, Beer et al. 

(2021), bottles were flushed three times after emptying them, which was not done in the other 

studies. The RR for the bottle flushing process was 86 ± 8%. Without flushing, some MP may 

have remained in the bottle, so it can be argued that MP findings in both above-mentioned 

studies may be underestimated. They both did not report any RRs.  

When inspecting the plastic types in (Weisser, Beer et al. 2021), PE dominated with 51-96% 

across samples from all four manufacturers. PE was among the most-represented plastic types 

in similar studies mentioned before, as well. As is known from Winkler, Santo et al. (2019), 

twisting of PE caps on PET bottles causes abrasion of plastic particles. They detected between 

120 and 2,150 particles per mm2 inner surface of bottle caps. As this statement was based 

only on the carbon content of the particles found, there remains some risk that the PE numbers 

were overestimated. Nevertheless, wear and abrasion of the caps can be seen clearly in their 

scanning electron microscope images. Most of the particles observed were smaller than 5 µm, 

however, particles > 10 µm were present, as well. In Weisser, Beer et al. (2021), glass bottles 

with aluminum screw caps were examined, however, the aluminum caps had a polymeric 

sealing layer on the inside. ATR-FTIR revealed that this sealing was made from a polymer 

whose spectrum was very similar to PE. Only a small additional band distinguished it from the 

reference PE spectrum, see Figure 29. This band at 1,648 cm-1 hints at the presence of C=O 

groups in the sealing substance (Stuart 2004). Inspecting the spectra of MP particles classified 

as PE revealed that most of them comprised this band, as well. Yet, the spectra were similar 

enough to PE to be identified as such by the RDF model. The similarity between the cap sealing 

spectra and the PE-like MP spectra strongly indicated that the particles stemmed from the 

sealings and were most likely generated during opening the bottles in the laboratory.  
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When trying to unravel the material precisely, the cap manufacturers did not give any 

information except that all sealings were made from a ‘PVC-free polyolefin’. Interestingly, the 

mineral water brands with the highest MP concentrations were both supplied by the same cap 

manufacturer. This indicates that different additives in the sealings may influence the abrasion-

proneness of the material.  

Even though this study was conducted with mineral water, similar findings are to be expected 

for other bottled beverages. The findings in Shruti, Pérez-Guevara et al. (2020) seem to 

contradict the finding that bottle caps were responsible for most MP in bottled drinks, as the 

majority of MP identified were PA. The authors admit, however, that the pigments in colored 

particles masked the polymer spectrum in their RM analyses. As this was the case for 20-45% 

(estimated from Figure 3 in their publication), it can be suspected that these potentially 

stemmed from colored bottle caps. 

The presence of other MP types, like PS, in Weisser, Beer et al. (2021), showed that the bottle 

caps are not the only source for MP contamination in bottled beverages. The caps seem to be, 

however, the most important one. Twisting the cap is, of course, inevitable to consume water 

from a bottle, meaning that MP in bottled drinks cannot be fully mitigated. Importantly, this does 

not only concern the bottles and caps used for commercial drinks, but also refillable bottles for 

private use. To minimize MP ingestion via drinks, bottles and especially their caps would need 

to be completely plastic-free. Natural materials, such as cork, in turn, may be problematic in 

terms of hygiene, especially when used over a long period of time.  

Concluding remark 

Based on the data available to date, it seems hardly evitable to ingest MP with bottled drinks. 

There is, however, no proof for human health hazards caused by orally ingested MP (see 

section 1.1.3). Everybody therefore must evaluate the advantages and potential disadvantages 

of consuming bottled drinks for themselves.   

Figure 29. Example of transmission spectrum of a PE(polyethylene)-like particle from 
a filled and capped water bottle compared to Attenuated Total Reflection-Infrared 
spectra of cap sealing and PE reference material (reprinted from Weisser, Beer et al. 

(2021) under CC-BY license). 
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5. Conclusions and future perspectives 
Microplastics (MP) analysis is a challenging task and the methods applied are only partly 

harmonized until today. Strict measures for quality assessment (QA) and quality control (QC) 

during each step of the analysis pipeline are the cornerstones of harmonizing MP analysis as 

is summarized in Figure 30. Obeying to already established and developing new QA/QC 

measures, a high-performance pipeline for the analysis of MP in beverages and plant-based 

food was established during this doctoral research project. The main entry paths of MP into 

food and beverages were assessed. A special focus was put on the analysis of the data derived 

from spectroscopic imaging of MP samples. 

 

Harmonization of MP sample preparation methods 

Starting with sampling and sample preparation, blank samples and thereof deduced sample-

specific limits of detection (LOD), MP chemical resistance tests and recovery rates (RR) were 

crucial for controlling the effectiveness of QA measures taken to avoid sample contamination 

and particle loss. The LODs and RRs achieved were compatible with other works and MP 

particle damage by the applied chemicals was marginal, showing the adequacy of the applied 

methods.  

For isolating MP particles from various beverages and plant-based food matrices, the 

combination of chemical and enzymatic treatments is considered vital. According to the results, 

enzymes should be chosen carefully depending on the sample matrix and can be combined, 

when necessary. The well-established Fenton reaction was enhanced during this work by a) 

omitting the precipitation of iron oxides and b) by extending it with an ascorbic acid treatment, 

leading to increased matrix degradation. The enhanced Fenton protocol framed enzymatic 

degradations, enhancing the accessibility of complex structures for the enzymes and clearing 

up the products from enzymatic degradations.  

Providing a good balance between the smallest detectable particle and analysis speed, it was 

decided to employ Fourier-transform Infrared (FTIR) imaging for the instrumental analysis of 

MP. Being the currently most-used MP analysis technique, comparability to many other studies 

Figure 30. Quality Assurance (QA) and Quality Control (QC) measures as the cornerstones of method 
harmonization. All listed measures were applied during this doctoral research project, except for inter-laboratory 
tests (greyed out). Newly suggested measures within the scope of this thesis are highlighted in red. LOD = Limit 
Of Detection; DAR = Data Analysis Routine. 
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is complied with. As a prerequisite for successful imaging of a sample, it should be deposited 

on a flat filter with adequate pore widths. Silicon filters were found ideal for this purpose, and 

a 3D printed adapter for their usage with standard filtration devices was designed.  

Some samples were unanalyzable despite high dry mass reduction. Therefore, it is suggested 

to assess the analyzability of a sample by spiking it with MP reference particles. This is called 

‘advanced RR’. The advanced RR can serve as a QC tool covering all analysis steps from 

sampling to data analysis. 

The silver bullet in harmonizing MP analysis are inter-laboratory tests. However, the generation 

of adequate standard materials and methods to generate reproducible test samples still pose 

major challenges and hampers these tests. 

Harmonization of MP detection in hyperspectral images 

Despite the advantages of FTIR imaging, the analysis of the thereby generated data posed a 

major challenge. The employed Random Decision Forest (RDF) model (a supervised machine 

learning, ML, technique) was fast in classifying MP particles and yielded high accuracies 

determined through the QA tool Monte Carlo cross validation (MCCV). However, during QC 

(manual evaluation of the classification), a discrepancy was experienced between the MCCV-

based performance and the necessary extent of manual corrections of the results. Moreover, 

it remained unclear whether the model had overlooked any MP. This led to introducing a new 

QA measure, based on a reference FTIR image called RefIMP that serves as the ground truth. 

It enables low-bias evaluation of data analysis routines (DARs) such as RDF models or 

database matching. Along with an automatized MatLab® script, MPVal, that compares the 

DAR’s results with the ground truth, a transparent and low-bias QA measure for DAR 

evaluation was created. MPVal provides access to all details of the DAR’s performance. The 

performance is visualized using classification heatmaps and concise single-class and global 

performance metrics are calculated. Thereby, it was shown that the performance of a DAR can 

be overestimated considerably by MCCV. This illustrates the bias-proneness inherent to 

MCCV, as it relies on manually labelled spectra. RefIMP, in turn, covers typical issues in MP 

analysis in a more holistic way and at lower bias.  

RefIMP of course cannot represent all conceivable sample types at once. Nevertheless, it can 

serve as a common baseline for evaluating DARs. Using RefIMP and MPVal, the question 

‘How many MP particles does my DAR overlook?’ can be answered precisely for the first time. 

Moreover, the results from MPVal revealed which classes were most vulnerable to being 

overlooked or confused with other classes. In addition, over-segmentation of particles was 

introduced as a new type of error in MP classification. This knowledge is vital for further 

improving a DAR. 

Three example hypotheses demonstrated how RefIMP (or an in-house reference image) and 

MPVal can be used for assessing the performance of a DAR. The first hypothesis pointed out 

to the danger of overlooking particles when using masks for filtering out background signals. 

The second hypothesis confirmed that RDF models benefit from training data that are highly 

diverse in terms of similarity to textbook-like reference spectra. Moreover, the importance of 

balanced classes was demonstrated. The third use case highlighted the role of model 

hyperparameters, an aspect that MCCV cannot cover as it does not include particle-level 

hyperparameters such as the correlation between neighboring pixels.  

RefIMP and MPVal are intended as an impulse towards harmonizing DARs for MP analysis. If 

already existing or newly developed DARs are evaluated using this baseline, the comparability 

of results from various studies is enhanced considerably. It is hoped that more research groups 
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publish MP reference images, representing different sample types, more MP types and sizes 

to further push forward the harmonization of DARs.  

Entry paths of MP into food and beverages 

Raw food ingredients, food preparation equipment, and packaging materials potentially pose 

sources of MP. Their relevance was examined based on the preparation of model foods. Flour, 

sea salt, and ground water were chosen as examples for raw food ingredients. Only in sea 

salt, relevant MP concentrations were detected. Nevertheless, its significance to human MP 

consumption is rather low because it is consumed in very small amounts.  

During the industrial production of fruit purees, no MP contamination occurred, as the 

examined subsamples suggested. Samples of homemade fruit puree were not free from MP, 

but the plastic types identified did not match the plastic types of the kitchen equipment used. 

Accordingly, it seems that it is rather diffuse background contamination (e.g. airborne particles) 

than the kitchen equipment that contributes to MP in homemade foods.  

Usage of plastic cutting boards and other plastic equipment commonly used in private kitchens 

paltry contributed to the overall MP concentration. It seems, however, that a certain 

background contamination was more relevant, potentially stemming from airborne 

contamination.  

PLA fibers in tea could be traced back to the PLA tea bags. Concentrations were, however, 

very low. Standard ‘paper’ tea bags seemed to have leached small amounts of MP. They 

potentially stemmed from additives that enhance the paper’s stability.  

For mineral water and other beverages, the most important source for MP are the bottle caps, 

according to the findings presented here. The friction that the caps experience during twisting 

results in MP particles. Lamentably, cap twisting is inevitable for consummation. 

Outreach of this work and future perspectives 

The harmonization of MP analysis has made large progress in the past five years. In 2017, no 

standards dealing with MP were available. As of today, ISO/DIS 24187 and ISO/TR 21960 

describe the analysis of MP in the environment. ISO/NP 16094 and ISO/NP 5667-27 describe 

MP analysis in drinking and surface water. ISO/DIS 4484 deals with MP from textile sources. 

Lastly, DIN/TS 10068, a technical standard dealing explicitly with food samples, has been 

established. Experience and knowledge gained during this doctoral research project have 

contributed to the latter, aiming to give attention to suitable QA/QC measures for all steps of 

the analysis. 

Additional contributions were made to joint projects aiming at harmonizing MP analysis in clean 

water samples (Schymanski, Oßmann et al. 2021) and sample preparation of complex 

matrices (Al-Azzawi, Kefer et al. 2020). 

Entry paths of MP into food, such as kitchen equipment and packaging materials could partly 

be resolved: abrasion from kitchen equipment plays a role, as well as packaging materials. 

Especially, the work presented here has shed light on the previously unknown entry paths for 

MP particles into bottled mineral water. Accordingly, abrasion from bottle caps is responsible 

for 57-96% of MP particles therein.  

Much progress has been made, but there is more to come in MP research: the development 

of enclosed devices for sample preparation that can be back-flushed could further minimize 

contamination and enhance recovery rates. Testing more enzymes and chemical sample 

matrix degrading agents may allow to scale up sample amounts.  
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Concerning the DARs, sweeping developments can be expected in the near future. Assessing 

the applicability of transfer learning could ease adding new classes to ML models. Moreover, 

techniques that do not require feature input from the user, like convolutional neural networks, 

seem promising to further reduce human bias. Ideally, future DARs can deal with a broad 

variety of sample types reaching from clean waters to complex environmental or biological 

samples. The here-presented MP reference image hopefully enhances the comparability and 

harmonization of upcoming DARs.  

To conclude with, it is hoped that the suggestions made in this thesis for improving QA and 

QC will be picked up and help making methods for MP analysis more comparable in the future, 

ultimately leading to harmonized MP analysis methods. Once this is achieved, we can finally 

assess MP abundance in the environment, beverages, and food, which is crucial for 

meaningful risk assessments.  
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7. Appendix A: Raw Data of unpublished data presented 
 

  Dry mass on filters [g]      

Initial 
sample wet 
weight [g] Process 5 µm 10 µm 50 µm 100 µm 

Sum 
(g) 

Dry mass 
after 

Treatment 
[g/g]     

0.209 des.H2O 100ml/3,5h 0.0000 0.0000 0.0010 0.0050 0.0060 0.0287 

Initial 
Dry 

mass [g] 
Degraded 

[%] 
Mean 

[%] 

Standard 
deviation 

[%] 

5.905 
Dest. H2O (300)/12h/Fenton(100/12,5)/2h/20-
30C+Ask.S(25)/1h/cooled 0.0001 0.0030 0.0145 0.0645 0.0821 0.0139 0.1695 91.80% 

92.01% 0.004 

6.142 
Dest. H2O (300)/12h/Fenton(100/12,5)/2h/20-
30C+Ask.S(25)/1h/cooled 0.0006 0.0024 0.0101 0.0680 0.0811 0.0132 0.1763 92.51% 

6.1832 
Dest. H2O (300)/12h/Fenton(100/12,5)/2h/20-
30C+Ask.S(25)/1h/cooled 0.0002 0.0034 0.0073 0.0801 0.0910 0.0147 0.1775 91.71% 

6.026 Dest. H2O (300)/2h/Fenton(100/12,5)/3h/20-30C 0.0000 0.0121 0.0166 0.0890 0.1177 0.0195 0.1730 88.71% 

88.62% 0.002 
6.0222 Dest. H2O (300)/2h/Fenton(100/12,5)/3h/20-30C 0.0003 0.0097 0.0112 0.0947 0.1159 0.0192 0.1729 88.87% 

5.9275 Dest. H2O (300)/2h/Fenton(100/12,5)/3h/20-30C 0.0003 0.0101 0.0132 0.0945 0.1181 0.0199 0.1702 88.29% 

6.0032 Dest. H2O (300)/2h/buffer(100)&Cellulase(1)/24h/40C 0.0025 0.0066 0.0024 0.0630 0.0745 0.0124 0.1723 92.80% 

92.52% 0.005 
6.0057 Dest. H2O (300)/2h/buffer(100)&Cellulase(1)/24h/40C 0.0016 0.0075 0.0034 0.0607 0.0732 0.0122 0.1724 92.93% 

6.0109 Dest. H2O (300)/2h/buffer(100)&Cellulase(1)/24h/40C 0.0014 0.0097 0.0043 0.0694 0.0848 0.0141 0.1726 91.82% 

Appendix Table 1. Raw data of chemical and enzymatic degradation of pear puree (see sections 1.3.2, 3.1.1, and 4.1). All numbers rounded to integers. 
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  Dry mass on filters [g]      

Initial 
sample wet 
weight [g] Process 5 µm 10 µm 50 µm 100 µm Sum (g) 

Dry mass 
after 

Treatment 
[g/g]     

0.2085 des.H2O 100ml/3,5h 0.0008 0.0002 0.0004 0.0027 0.0041 0.0197 

Initial 
Dry 

mass [g] 
Degraded 

[%] 
Mean 

[%] 

Standard 
deviation 

[%] 

6.0389 
Dest. H2O (300)/12h/Fenton(100/12,5)/2h/20-
30C+Ask.S(25)/1h/cooled 0.0004 0.0015 0.0057 0.0138 0.0214 0.0035 0.1188 97.02% 

97.24% 0.003 
6.0804 

Dest. H2O (300)/12h/Fenton(100/12,5)/2h/20-
30C+Ask.S(25)/1h/cooled 0.0003 0.0016 0.0073 0.0077 0.0169 0.0028 0.1196 97.68% 

6.208 
Dest. H2O (300)/12h/Fenton(100/12,5)/2h/20-
30C+Ask.S(25)/1h/cooled 0.0000 0.0016 0.0049 0.0160 0.0225 0.0036 0.1221 97.03% 

5.956 Dest. H2O (300)/2h/Fenton(100/12,5)/2h/20-30C 0.0002 0.0104 0.0156 0.0321 0.0583 0.0098 0.1171 91.64% 

91.61% 0.004 
5.9612 Dest. H2O (300)/2h/Fenton(100/12,5)/2h/20-30C 0.0000 0.0096 0.0144 0.0313 0.0553 0.0093 0.1172 92.09% 

5.9824 Dest. H2O (300)/2h/Fenton(100/12,5)/2h/20-30C 0.0000 0.0058 0.0126 0.0443 0.0627 0.0105 0.1176 91.09% 

6.0772 Dest. H2O (300)/2h/buffer(100)&Cellulase(1)/24h/40C 0.0015 0.0076 0.0048 0.0125 0.0264 0.0043 0.1195 96.36% 

96.68% 0.002 
5.9744 Dest. H2O (300)/2h/buffer(100)&Cellulase(1)/24h/40C 0.0026 0.0065 0.0057 0.0074 0.0222 0.0037 0.1175 96.84% 

5.9884 Dest. H2O (300)/2h/buffer(100)&Cellulase(1)/24h/40C 0.0026 0.0066 0.0051 0.0079 0.0222 0.0037 0.1178 96.85% 

6.0086 Dest. H2O (300)/2h/buffer(100)&Xylanase(1g)/3,5h/40C 0.0030 0.0193 0.0123 0.0078 0.0424 0.0071 0.1182 94.03%     

Appendix Table 2. Raw data of chemical and enzymatic degradation of strawberry puree (see sections 1.3.2, 3.1.1, and 4.1). All numbers rounded to integers. 
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 Flour (dry mass content: 90.17%) Dough (dry mass content: 50.31%) blanks  

 flour 1 flour 2 flour 3 

flour 
mean, 
extrapola
ted to 1 g 
dry 
weight 

flour 
standard 
deviation 

dough 
1 

dough 
2 

dough 
3 

dough 
mean, 
extrapolated 
to 1 g dry 
weight 

dough 
standard 
deviation 

blank from 
flour 
examination 

blank from 
dough 
examination 

LOD 
(extrapolated 
mean of 
blanks + 3* 
standard 
deviation) 

sample mass (wet) [g]  0.1500 0.1500 0.1500     0.1500 0.1500 0.1500     0.1500 0.1500  

examined subpart 100% 100% 100%     100% 100% 100%     100% 100%  

PP 6 0 9 37 28 15 21 40 336 141 4 8 114 

PS 0 0 0 0 0 7 0 0 31 44 0 0 0 

PE 13 11 18 104 22 24 19 29 318 54 5 13 199 

PA 9 24 12 111 48 8 15 8 137 44 5 0 95 

PET 0 0 0 0 0 0 0 0 0 0 0 3 57 

EvOH 7 0 5 30 22 11 20 16 208 49 2 6 95 

PVC 0 0 12 30 42 0 9 5 62 49 7 0 133 

PLA 3 0 4 17 13 0 0 0 0 0 0 3 57 

PTFE 0 0 3 7 10 0 0 0 0 0 0 0 0 

sum 38 35 63 335 93 65 84 98 1091 179 23 33 408 

Appendix Table 3. Raw data from examination of flour and dough (see sections 3.5 and 4.4) from Hubin (2020). All numbers rounded to integers. 
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 sea salt blank 

LOD 
(estimated as 
blank * 1.75) 

 salt 1 salt 2    
sample mass (wet=dry) [g]  1000 1000 1000  
examined subpart 100% 100% 100%  
PP 32 56 1 2 

PS 8 28 4 7 

PE 52 88 3 5 

PA 32 16 0 0 

PET 24 16 1 2 

EvOH 20 24 4 7 

PVC 56 32 6 11 

PLA 36 20 0 0 

PTFE 0 0 0 0 

sum 260 280 19 33 

Appendix Table 4. Raw data from examination of flour and dough (see sections 3.5 and 4.4) from Hubin (2020). All numbers rounded to integers. 
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 homemade apple puree (dry mass content 9.57%) industrial apple puree (dry mass content 11.72%) blanks 

 

homemade 
1 (AM10) 

homemade 
2 (AM11) 

homemade 
3 (AM12) 

mean 
homemade, 
extraploated 
to 1 g dry 
weight 

standard 
deviation 
homemade 

industrial 
1 (AM13) 

industrial 
2 (AM14) 

industrial 
3 (AM15) 

mean 
industrial, 
extrapolated 
to 1 g dry 
weight 

standard 
deviation 
industrial 

blank 
P1 

blank 
P2 

LOD 
(extrapolated 
mean of blanks 
+ 3* standard 
deviation) 

sample 
mass 
(wet) [g]  6.5003 6.5005 6.5007  n/a  n/a 6.5002 6.5004 6.5002  n/a  n/a 6.5005 6.5004 n/a 

examined 
subpart 
(see page 
24 of BT) 64% 75% 82%  n/a n/a  50% 70% 50%  n/a  n/a 100% 100% n/a 

PP 3 4 0 5 4 0 3 4 4 3 10 9 16 

PS 2 2 3 5 1 6 3 0 5 4 0 0 0 

PE 23 10 23 41 15 30 29 0 32 22 19 11 39 

PA 1 0 0 1 1 0 0 0 0 0 3 2 6 

EvOH 17 1 0 15 20 0 0 0 0 0 0 0 0 

PVC 2 0 0 2 2 0 0 0 0 0 0 0 0 

PTFE 3 5 7 11 3 2 15 7 13 9 11 31 74 

PET 0 1 2 2 2 5 0 0 3 4 3 2 6 

sum 51 23 35 82 33 43 50 11 56 27 46 55 92 

Appendix Table 5. Raw data from examination of homemade and industrially made apple puree (see sections 3.5 and 4.4) from Eberl (2020). All numbers rounded to integers. 
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 PLA tea bags  standard tea bags 
blanks  

 PLA 1 PLA 2 PLA 3 mean 
standard 
deviation standard 1 standard 2 standard 3 mean 

standard 
deviation 

blank 
PLA bags 

blank 
standard 
bags 

LOD (mean 
blanks + 3* 
standard 
deviation) 

teabags 
examined 1 1 1     1 1 1     1 1  

examined 
subpart 100% 100% 100%     100% 100% 100%     100% 100%  

PP 1 5 1 2 2 2 3 6 4 2 0 1 2 

PS 0 1 0 0 0 0 1 0 0 0 0 0 0 

PE 4 1 1 2 1 2 2 0 1 1 0 1 2 

PA 4 5 0 3 2 1 0 0 0 0 4 3 5 

PET 2 4 4 3 1 0 4 3 2 2 1 1 1 

EvOH 0 0 0 0 0 0 0 0 0 0 0 0 0 

PVC 3 0 0 1 1 0 0 0 0 0 0 0 0 

PLA 7 2 17 9 6 0 0 0 0 0 0 0 0 

PTFE 1 3 4 3 1 5 5 6 5 0 6 6 6 

sum 22 21 27 23 3 10 15 15 13 2 11 12 13 

Appendix Table 6. Raw data from examination of tea in PLA and standard ‘paper’ tea bags (see sections 3.5 and 4.4) from Müller (2020). All numbers rounded to integers. 
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8. Appendix B: Peer-reviewed publications 

 

Appendix Figure 1. One publication from this project was chosen as the cover story by the editorial board of water 


