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Abstract

Observation modeling is required in order to make use of slant path delay data, processed
from ground-based Global Positioning System (GPS) measurements, for verification pur-
poses and numerical weather prediction. A rigorous ray-tracing algorithm based on the
Euler-Lagrange equation derived from Fermat’s principle is developed to simulate the
propagation of GPS radio signals in a mesoscale model. The ray-tracing algorithm is
based on a finite difference scheme and allows the direct numerical simulation of GPS
slant path delays. A statistical intercomparison of simulated and observed data for a
large network of continuously operating ground-based receivers in Germany indicates a
good agreement over the entire elevation range. The estimated RMS of the integrated
water vapor is 1.3 mm.

The sensitivity of simulated slant path delays with respect to forecast model components
of the Mesoscale Model 5 (MM5) is studied. It is demonstrated that the model minus
observation statistics of the slant path delay data crucially depends on the parameteriza-
tion of deep convection and the implementation of horizontal diffusion. The experiment
indicates that slant path delay observations are potentially useful for the verification of
forecast model components.

The development of tools for 4-dimensional variational assimilation (4DVAR) of slant
path delay data in the framework of the MM5 system is described. A computational
fast forward model and its adjoint were implemented into the message passing interface
environment, such that assimilation of slant path delay data became routinely possible. A
set of modifications to the existing non-linear, tangent-linear and adjoint forecast model
is presented. They include an improvement of the horizontal diffusion scheme and the
implementation of the Grell cumulus scheme in order to eliminate the observed systematic
deviation in the model minus observation statistics of the slant path delay data and
precipitation.

A single assimilation experiment was conducted and is analyzed in detail. The impact is
area wide and reaches 1 gkg™' in the water vapor mixing ratio, +0.5 K in the temper-
ature and £0.5 ms~! in the wind field. Slant path delay data of an independent network
of receivers and radiosonde measurements confirm the results gained by 4DVAR. An as-
similation experiment over a period of two weeks indicates that the impact in observation
space of an independent network of receivers is positive. The experiment reveals, that, the
impact in the humidity content lasts for about 12 h. Finally, an assimilation experiment
over a period of one month was performed. The impact of the assimilation of slant path

delay data indicates a positive impact on the precipitation forecast.



Zusammenfassung

Slant Path Delay-Daten, die aus bodengestiitzten Global Positioning System (GPS)-
Messungen abgeleitet werden, konnen zur Verifikation von mesoskaligen Modellen und
zur numerischen Wettervorhersage verwendet werden. Dazu ist die Entwicklung eines
Vorwéartsmodells notwendig. Ein rigoroser Ray Tracing-Algorithmus basierend auf den
Euler-Lagrange-Gleichungen abgeleitet aus Fermat’s Prinzip wurde entwickelt, um die
Ausbreitung von GPS Radiosignalen in einem mesoskaligen Modell zu simulieren. Der
Ray Tracing-Algorithmus basiert auf einem Finite Differenzen-Verfahren und erlaubt die
direkte numerische Simulation von GPS Slant Path Delay-Daten. Ein statistischer Ver-
gleich simulierter und beobachteter Daten fiir ein kontinuierlich operierendes Netzwerk
von bodengestiitzten Empfiangern in Deutschland zeigt eine gute Ubereinstimmung iiber
den gesamten Elevationsbereich. Der abgeschatzte RMS im integrierten Wasserdampf ist
1.3 mm.

Die Sensitivitit simulierter Slant Path Delay-Daten in Abhéngigkeit von Modellkompo-
nenten des mesoskaligen Modells 5 (MM5) wird untersucht. Es wird demonstriert, dass
die Modell-minus-Beobachtungs-Statistik der Slant Path Delay-Daten entscheidend von
der Konvektionsparameterisierung und der Implementierung der horizontalen Diffusion
abhangt. Das Experiment zeigt, dass Slant Path Delay-Daten zur Verifikation von Mod-
ellkomponenten geniitzt werden konnen.

Die Entwicklung von Werkzeugen zur 4-dimensionalen variationellen Assimilation (4ADVAR)
von Slant Path Delay-Daten in das MM5 System wird beschrieben. Ein effizientes Vorwarts-
modell und das adjungierte Modell wurden in die Message Passing Interface-Umgebung
implementiert, sodass eine routineméfige Assimilation von Slant Path Delay-Daten moglich
wurde. Ein Satz von Modifikationen des existierenden nicht-linearen, tangent-linearen
und adjungierten Modells wird prasentiert. Ein verbessertes horizontales Diffusionschema
wurde entwickelt und das Konvektionsschema von Grell wurde implementiert, um die
systematische Abweichung in der Modell-minus-Beobachtungs-Statistik der Slant Path
Delay-Daten und im Niederschlag zu eliminieren.

Ein einzelnes Assimilationsexperiment wurde durchgefiihrt und wird im Detail analysiert.
Der Einfluss ist flichendeckend und erreicht 1 gkg ™' im Wasserdampf-Mischungsverhélt-
nis, 0.5 K in der Temperatur und £0.5 ms~! im Windfeld. Slant Path Delay-Daten eines
unabhangigen Netzwerkes von Empfangern und Radiosondenmessungen bestatigen den
positiven Einfluss der 4DVAR. Ein Assimilationsexperiment iiber eine Periode von zwei
Wochen zeigt, dass der Einfluss im Beobachtungsraum eines unabhangigen Netzwerkes
von Empfiangern positiv ist. Das Experiment zeigt, dass der Einfluss im Wasserdampfge-
halt 12 Stunden anhélt. Ein Assimilationsexperiment iiber eine Periode von einem Monat
wurde durchgefithrt. Der Einfluss der Assimilation der Slant Path Delay Daten auf die
Niederschlagsvorhersage ist positiv.
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4 1 INTRODUCTION

1 Introduction

The interest of atmospheric science in observations derived from the Global Position-
ing System (GPS) is caused by their sensitivity to water vapor. Water vapor is of key
importance in weather prediction (Crook, 1996; Weckwerth, 2000) and climate research
(Solomon et al., 2007). It is coupled to cloud and rain formation, and solar and terrestrial
radiative transfer. Currently there is lack of knowledge about the actual humidity field,
both due to a shortage of observations and a sub-optimal handling in data assimilation
systems being used to estimate the state of the atmosphere. Knowledge of the state
of the atmosphere is required to initialize numerical weather prediction (NWP) models,
which provide the basis for modern weather forecasting. The availability of precise and
continuous observations in data assimilation systems is crucial.

In variational assimilation, the model background field, which is typically a short-range
model forecast from a previous analysis, is updated with observations in a statistically
optimal way. Observations can be divided into conventional, in-situ observations, and
non-conventional, remote sensing observations. The latter can be done in two different
ways: passive and active. The various observation types have different characteristics,
such as resolution, spatial and temporal coverage, which determines their ability to affect
the analysis. Conventional observations, such as radiosonde observations, surface observa-
tions, ship and buoy observations or aircraft observations provide useful in-situ measure-
ments. Radiosonde observations for example directly provide pressure, temperature, wind
and water vapor information at specific locations. To date, radiosonde observations are
one of the most important information sources for NWP models. Nevertheless, the net-
works of conventional observations are spatially and temporally sparse, e.g. radiosondes
are launched typically only twice a day. On the other hand, remote sensing observations
such as those from satellites have a very good spatial and temporal coverage. Although
satellite data is slightly less accurate than conventional observations, their great advan-
tage is their broad geographical coverage. Consequently there is a strong benefit from
satellite observations and the influence of conventional observations becomes less critical
(Persson and Grazzini, 2005).

However, remote sensing observations are usually not equal to model variables, and there-
fore observation modeling can be a difficult task. Observation modeling is required to
determine the model equivalents of observations, i.e. it allows to simulate the observed
quantity in the model. For in-situ measurements observation modeling is less of an un-
dertaking. Typically it consists of interpolation from the gridded model field to the ob-
servation location, and conversion from model variables to the observed quantities. The
implementation of conventional observations in a variational assimilation frame work is
straight forward. For remote sensing measurements, observation modeling can be very
complex.



Initially designed as a navigation aid for the military service, the number of high precision
civilian applications of the GPS has grown with time and includes remote sensing of the
atmosphere using ground-based (Bevis et al., 1992) and spaceborne techniques (Kursinski
et al., 1996). The GPS space segment consists of 32 satellites distributed in 6 orbital
planes about the globe. The satellites orbit the Earth at an altitude of 20200 km with a
circulation time of about 12 h. Figure 1 provides a sketch of the satellite constellation.
Each satellite continuously transmits radio signals at two frequencies, which are received
by suitably equipped low earth orbit satellites and ground-based stations. The radio
signals are changed in a characteristic way when they pass through the atmosphere. The
phase delays, caused by the signal refraction in the neutral atmosphere, contain signatures
of the atmospheric humidity field and can be considered as meteorological observations.
The ability to use the GPS to perform accurate measurements related to the atmospheric
humidity has led to the development of a promising new active remote sensing system.
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Figure 1: The GPS satellite orbits (URL http://www.kowoma.de/en/gps/orbits.htm).
The inclination angle of the orbital planes towards the equator is 55°, the orbital planes
are rotated in the equatorial plane by 60° against each other.

The first application of ground-based GPS meteorology involved the measurement of
integrated water vapor in the atmosphere above receiver stations (Bevis et al., 1994).
This technique has several advantages over conventional water vapor observing systems
including low cost, high measurement accuracy, all weather operability, and long-term
measurement stability. In addition, it requires no external calibration and operates unat-
tended for long periods. One distinct advantage of GPS measurements compared to other
satellite observations is that it provides data in all weather conditions, i.e. the measure-
ments are not affected by clouds. As water vapor is often under-observed both in time
and space during active weather, this capability of the GPS data is expected to improve
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the skill of short range predictions of medium to heavy rainfall systems. To date, most of
the ground-based data assimilation studies have been conducted using the so called zenith
total delays or integrated water vapor estimates. It was found that their assimilation has
a weak, but mainly positive impact on the NWP forecasts of precipitation (Vedel and
Huang, 2004; Poli et al., 2007).

Processing techniques had to be developed to determine slant path delays, i.e. phase
delays between ground-based receivers and each of a number of satellites in view (Alber
et al., 2000; Braun et al., 2001). Compared with zenith total delays, slant path delays con-
tain azimuthally asymmetric information and near-horizon slant path delays potentially
contain atmospheric profile information (Sokolovskiy et al., 2001; Lowry et al., 2002). It
may be possible to recover a significant amount of information about the horizontal and
vertical structure of the atmosphere from slant path delays. However, the processing tech-
niques developed so far are at an early stage. In addition, it has been recently recognized
that accurate observation modeling, i.e. a ray-tracing algorithm, is required in order to
completely utilize slant path delay observations (Eresmaa et al., 2008; Hobiger et al.,
2008). Ray-tracing is necessary to simulate the propagation of the radio signals through
the model atmosphere. So far, the proposed ray-tracing algorithms contain partly numer-
ous simplifying assumptions. All of them can essentially be considered as being solvers
for initial value problems. However, one is concerned with a boundary value problem,
determined by the position of the satellite and the receiver, rather than with an initial
value problem.

Partly due to a number of unsolved questions concerning processing of slant path delays
and possibly due to the complexity concerning observation modeling, the assimilation
experiments conducted so far have focused on the use of hypothetical observations (Mac-
Donald et al., 2002; Ha et al., 2003). These case studies showed that the assimilation
of hypothetical slant path delays have the potential to improve the retrieval of the hu-
midity field compared to the assimilation of hypothetical zenith total delays. Jarvinen
et al. (2007) analyzed the data assimilation of hypothetical and real slant path delays for
a limited number of ground based receivers. Since one of the benefits of slant path de-
lays is their ability to capture asymmetric humidity structures present in the atmosphere
(Eresmaa et al., 2007), the assimilation system was able to reproduce the asymmetric
information content in the hypothetical observations. Real slant path delay observations
were assimilated for an arbitrary single case and the resulting humidity analysis increment
was found to have a similar structure as the humidity analysis increment obtained with
a comparable radiosonde network.

While the results presented so far indicate that the measurements from ground-based net-
works are potentially valuable for short-range prediction of precipitation, it is important
to recognize that the assimilation of observations related to water vapor in a convective
and/or pre-convective environment is highly challenging. One major difficulty is the ac-
curacy of model physics and numerics. In particular, the convection parameterization can



be regarded as an issue. Besides model physics, deficiencies in model numerics can be
substantial (Zangl, 2002, 2004). Prior to any data assimilation efforts, systematic errors
must be identified, quantified and removed. However, it is not trivial to separate the
contribution of errors due to initial fields, errors in model physics and numerics, errors
in observation modeling and errors inherent in the observations. A close inspection of a
long time series of the model minus observation statistics and sensitivity analysis are one
strategy to identify errors. Corresponding research is subject of several ongoing projects
of the World Weather Research Program (WWRP) such as the Research and Develop-
ment Project Convective and Orographically-induced Precipitation Study (COPS). This
study provides a comprehensive set of observations for testing hypothesis on the improve-
ment of Quantitative Precipitation Forecasting (QPF) in regions with complex terrain
(Wulfmeyer et al., 2008).

Improvements of NWP can only be expected if progress is made on three research areas
simultaneously: Handling of problems related to model numerics such as the treatment of
the governing equations in complex terrain, the improvement of parameterization schemes
and the optimization of initial conditions. All three research areas require the availability
of reliable observations with good spatial and temporal coverage and sophisticated algo-
rithms in observation modeling. This thesis is intended to make a step in this direction,
taking advantage of slant path delay data provided by a large and continuously operating
network of ground-based receivers.

Figure 2 shows a block diagram illustrating the research strategy. The first step consists
of monitoring the observational data against their model equivalents. Therefore the back-
ground (a previous analysis) is mapped to observation space using the forward model. The
monitoring can be used to study the sensitivity of simulated data with respect to forward
model components and/or components in the processing of the observational data. The
verification follows the monitoring and can be used to study the sensitivity of simulated
data with respect to forecast model components. The strategy is to a) identify and b) to
remove forecast model errors prior to any data assimilation effort by statistical compar-
isons of simulated and observed data. The last step consists of assimilating observational
data. This step provides the analysis which is used for NWP. The feedback allows to
study the sensitivity of the analysis with respect to forward/forecast model components.
Following this resaerch strategy, this thesis is organized as follows:

In chapter 2, a brief description of three-dimensional variational assimilation (3DVAR)
and four-dimensional variational assimilation (4DVAR) is provided. The basic steps to
incorporate slant path delays into the MM5 4DVAR are described.

In chapter 3, the basic principles of GPS ground-based observation processing are pro-
vided. The phase pseudorange observation equation is introduced, the definition of the
slant path delay is provided and the relation to atmospheric quantities is described. In-
formation on current activities at GPS processing centers in Europe is provided and the
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Figure 2: Block diagram illustrating the research strategy. The first step consists of
monitoring, the second step includes verification and the final step is the assimilation.

GPS products processed at the German Research Center for Geosciences (GFZ) Potsdam
are described.

In chapter 4, the basic equations determing the signal path form the satellite to the ground
based receiver are derived from electromagnetic wave propagation in an inhomogeneous
medium. A rigorous ray-tracing algorithm, based on a global approach, is described which
allows the direct numerical simulation of the signal path and the determination of the slant
path delay in a mesoscale model. As an alternative to the rigorous computational model
for the slant path delay, a fast computational model is described. Potential applications
of the ray tracing algorithm are discussed.

In chapter 5, the MM5 configuration and the GPS network used in this thesis are de-
scribed. The proposed ray-tracing algorithm is validated using an alternative ray-tracing
algorithm and an analytical solution. The main features of slant path delays are discussed,
and the potential azimuthally asymmetric information content is estimated. A statistical
intercomparison of simulated and observed slant path delays is performed. The sensitivity
of simulated slant path delays with respect to forward model components is investigated.

In chapter 6, the sensitivity of simulated slant path delays with respect to two forecast
model components, namely the horizontal diffusion scheme and the parameterization of
deep convection, is investigated. A modified horizontal diffusion scheme is presented. A
statistical intercomparison of simulated and observed slant path delays is performed.

In chapter 7, a description of basic principles of tangent linear and adjoint code con-
struction is given. Tangent linear and adjoint code construction are illustrated for the



forward model and a forecast model component. The impact of a single slant path delay
in variational assimilation is estimated analytically. The effect of an error in a forecast
model component in 4DVAR is illustrated.

In chapter 8, a description of the implementation in the MM5 4DVAR Message Passing
Interface (MPI) environment is provided. Problems encountered in model physics and
model numerics are discussed and a set of modifications to the existing MM5 4DVAR
system is presented. The forward model error and the observation error are estimated.
A single case study is discussed in detail. The impact of the assimilation in observation
and model space is analyzed. An assimilation experiment over a period of two weeks is
performed and the impact in the humidity content is studied. An assimilation experiment
over a period of one month is performed to study the performance on the precipitation
forecast. The main conclusion and a summary of the results are provided at the end of
this thesis.
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2 Data assimilation

Data assimilation is an analysis technique in which information from observations is in-
corporated into the model state. The basic information that can be used to produce an
analysis is a collection of observations y. In most cases the analysis is under-determined
because observations are sparse and only indirectly related to variables of the model state
X. In order to make it a well-posed problem, it is necessary to rely on some background
information in the form of an a priori estimate of the model state, called the background
state x;. To use observations in the analysis procedure it is necessary to be able to com-
pare them with the model state. This is accomplished through the use of a projection
from model space to observation space called the observation operator H. Neither the
background state x;, nor the observations y are perfect which is accounted for through
the background errors €, = X, — x; and the observations errors ¢, = y — H|[x;], where x;
denotes the true state.

2.1 Three-Dimensional Variational Assimilation (3DVAR)

The principle of the variational assimilation consists in solving for the most probable
model state x, defined both by the background state x;, and the observations y. Bayes
theorem states that (Bouttier and Courtier, 1999)

ply[x) p(x)

o) o p(y[x) p(x) (1)

p(xly) =

where p(x) denotes the a priori probability of the model state x, p(y) the a priori proba-
bility of the observations y, p(y|x) the conditional probability of the observations y given
the model state x and p(x|y) the conditional probability of the model state x given the
observations y. Assuming that both background errors and observation errors have the
Gaussian statistics and are independent on each other, the conditional probability p(x|y)
explicitly reads as

plady) e (3 x =) B (i x) - 5y~ )Ry - HR)) )

where R is the observation error covariance matrix and B is the background error covari-
ance matrix, determined through the covariances
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R = <505(7;>
B (evey) (3)

where the brackets () denote the expectation value. The most probable model state is
given by the minimum of the cost function

T = Sxw) B (x-x) 4oy - HR)TR (- A (4)

The determination of the minimum of the cost-function requires knowledge of its gradient

VJlx] = B (x—x) - H[x]"R™" (y - H[x]) (5)

Here H denotes the derivative of H with respect to x. The most propable model state x,
is determined through

VJixd = 0 (6)

Equation (4) and (5) are the basis for 3DVAR.

2.2 Four-Dimensional Variational Assimilation (4ADVAR)

4DVAR is a generalization of 3DVAR for observations that are distributed in time. The
underlying equations are the same. The mapping from model to observation space is
generalized to include the forecast model that will allow a comparison between the model
state and the observations at the appropriate time. The minimum of the following cost
function

m

Tbd = S0 x)"B (x %) + 5 D (i~ Kl Ry~ Hilx) ()

i=1

is determined where the subscript ¢ denotes the time step. The model state x; is deter-
mined from the initial state x through the forecast model M
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X; = M()_,i [X] (8)

The forecast model can be expressed as a sequence of forecast model steps. If xg = x so
that My is the identity, then by denoting M; the forecast model step form i — 1 to ¢ we
have x; = M;[x;_1] and by recurrence

X; = Mz Mi_l...Ml[X] (9)

The gradient of the cost function can be derived by rigorous application of the chain rule
of differential calculus

Here H; denotes the derivative of H; with respect to x; and M, denotes the derivative of
x; with respect to x;_1. Equation (7) and (10) are the basis for 4ADVAR.

2.3 The computation of the cost function and its gradient

The evaluation of the cost function and the gradient of the costfunction requires one
forward integration and one suitably arranged backward integration. The forward inte-
gration consists of computing the forecast model state x;

X; = Mz Mi_l...Ml[X] (11)
the normalized departure d;

d; = R, (y; — Hilxi)) (12)
and the contribution to the cost function .J;

Ji = (yi - Hi[xi])T d; (13>

for i = 1,...,m. Finally, the cost function is computed according to



2.3 The computation of the cost function and its gradient 13

J[x] = %(x ) B x - x) + % S (14)

i=1

The backward integration consists of a recursive algorithm. Let 0%; for ¢ = 0, ..., m denote
a set of vectors where 0x,, = 0. With

0X;_1 = Mi[xifl]T (0x; + H; [Xi]T d;) (15)

for i = m, ..., 1 the gradient of the cost function can be written as

VJx] = B (x—x;)— 6% (16)

Due to the non-linearity of the forecast model and/or the forward model, the gradient of
the cost function can be a highly non-linear function of the model state x. The minimum of
the cost-function must be determined iteratively, starting from a first guess. This is usually
done using gradient descent algorithms or quasi-Newton methods. The limited memory
quasi-Newton method L-BFGS (Liu and Nocedal, 1989) is widely used in minimization
problems, because it is useful for optimization problems with a large number of unknowns
and provides fast convergence. The L-BFGS is implemented in the MM5 4DVAR (Zou
et al., 1997).

4DVAR has the following benefits over 3DVAR: (i) the observations are assimilated at
appropriate time and (ii) the dynamics and physics of the forecast model are considered in
assimilating data. As a result, observational data are optimally used in a meteorologically
consistent way. However, it is important to recognize that 4DVAR works only under the
assumption that the forecast model is close to perfect. Problems can be expected if
forecast model errors are large (Bouttier and Courtier, 1999). For further discussion the
reader is referred to section 7 of this thesis.

The principles of assimilation of slant path delays are the same as those of any other
kind of observations. Three model components are required if a new observation type
is to be incorporated into the MM5 4DVAR system: (i) the observation operator H
(ii) the gradient of the observation operator H, also referred to as the tangent linear
observation operator and (iii) the transpose of the gradient of the observation operator
HT, also referred to as the adjoint of the tangent linear observation operator. In addition,
interfaces must be implemented to perform the relevant computations at the appropriate
time step in the forward integration and the backward integration, following Equation
(11) to Equation (16).
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3 GPS observations

3.1 The phase pseudorange observation

In this section a brief description on the determination of ground-based GPS tropospheric
delays from raw measurements is provided. Each GPS satellite continuously transmits
radio signals at two frequencies f; = 1575.42 MHz and f; = 1227.60 MHz, corresponding
to wavelengths of L; = 19.0 cm and Ly = 24.4 cm respectively. The atmospheric effect on
GPS signal propagation stems from the ionosphere on the one hand, and from the neutral
atmosphere on the other. These two phenomena are known as ionospheric delay and
tropospheric delay, respectively. The tropospheric delay is referred as the slant path delay.
The phase pseudorange observation equation can be written as (Hofmann-Wellenhof et al.,
1992)

©O=R+ Ao —¢@s) +c(d —0s) —AN; + S+ 1 (17)

where O is the phase pseudorange, i.e. the phase difference, in length units, between the
received carrier wave and the referencing wave created by the receiver, R is the distance
between the satellite and the receiver, A is the wavelength of the carrier wave, ¢, and
s are the initial phases of the referencing wave and the carrier wave, respectively, ¢ is
the vacuum speed of light, d, and J, are the clock errors of the receiver and the satellite,
respectively, IV; is the integer ambiguity, i.e. the number of full wavelengths between the
satellite and the receiver, S denotes the slant path delay an I denotes the ionospheric
delay. The ionospheric delay is dispersive and depends on the frequency of the radio
signal. A linear combination of dual-frequency measurements (f; and f5) allow to a large
extent to eliminate the ionospheric delay. In the GPS observation processing the unknown
parameters of the phase pseudorange observation equation, including the slant path delay,
are solved using a least square adjustment.

3.2 The slant path delay

The slant path delay is proportional to the difference between the travel time of a signal
from a satellite to a ground-based receiver and the travel time that would occur if there
was no atmosphere affecting the signal propagation (Hofmann-Wellenhof et al., 1992).
The slant path delay is expressed as the time difference multiplied by the vacuum speed

of light and can be written as
S = /nds—/ dsg (18)
s S0
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where n is the atmospheric refractive index, s is the signal path through the atmosphere,
and sg is the geometrical path, i.e. the hypothetical signal path that would occur without
the atmosphere. The slant path delay can be written as

S:/S(n—l)der/sds—/sdso (19)

The refractivity N is related to n through

N=10% (n—1) (20)

In the microwave range N is related to atmospheric quantities through

N = Ny;+ N,
P e

= ki-=+k = 21
1T+2T2 (21)

where P is the total pressure of air (hPa), e is the partial pressure of water vapour
(hPa) and T is the temperature (K). The empirically-determined constants are given by
ky = 77.6 KhPa™' and ky = 3.73 - 10> K*hPa™' (Ware et al., 1997). Even though N, is
usually referred to as the dry refractivity, the first term on the right hand side contains
water vapor effects through pressure. It is referred to as dry to differentiate it from the
wet refractivity N, which includes the effects of water vapor only. The slant path delay
can be written in terms of N; and N, as

S = 10_6-/Ndds+10_6-/Nwds+/ds—/ dsg (22)
N s L s s S0 J
S Su s,

The first term on the right hand side is referred to as the slant dry delay Sy, the second
term on the right hand side is referred to as the slant wet delay S,, and the third term
on the right hand side is referred to as the slant geometric delay S;. The slant wet delay
contributes to about 5 percent to the slant path delay. In the zenith case, the slant path
delay is referred to as Zenith Total Delay (ZTD). The magnitude of the ZTD is of the
order of 2.5 m for a receiver located at mean sea level. Note that all three contributions
to the slant path delay, i.e. S4, S, and Sy, depend on the total refractivity N through the
signal path s. It is the dependency of the signal path s on the refractivity N which makes
the simulation of the slant path delay in a mesoscale model not trivial. Ray-tracing is
necessary to simulate the signal path from the satellite to the ground-based receiver.
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3.3 Derived quantities

The slant wet delay 5, can be roughly related to Slant Water Vapor SWV according to

SWV = II-8, (23)

where the conversion parameter II is a function of the weighted mean temperature of the
atmosphere (Davis et al., 1985). Bevis et al. (1994) showed that IT ~ 1/6, which implies
that 1 mm of integrated water vapor corresponds to a slant wet delay of about 6 mm.
However, the actual value of Il can vary due to the dependency on the weighted mean
temperature and it is therefore not recommended to use SWV for verification or assim-
ilation purposes. In the zenith case, SWV is referred as Integrated Water Vapor IWV.
Since IWV is closely related to Precipitable Water PW, ground-based GPS observations
are tightly coupled to precipitation.

3.4 GPS observation processing

Several data processing centres in Europe have shown that the processing and delivery of
tropospheric delay estimates is possible in near-real time. An overview of data processing
centers providing ZTD estimates can be found at the EUMETNET GPS water vapour
programme (E-GVAP) website (egvap.dmi.dk). E-GVAP was set up to provide its EU-
METNET partners with ZTD estimates for operational usage. Currently data from more
than 400 GPS receivers are being sent hourly to a common ftp-server at the UK Met
Office. Figure 3 shows the GPS network status in Europe on July 14, 2009. The data are
intended for operational and scientific purposes. Implementation of ground based GPS
data in operational NWP has certain requirements regarding quality, homogeneity and
stability. A key goal of E-GVAP is to gradually bring the ground based GPS near-real
time data to meet those requirements.

The GFZ Potsdam is one of the data processing centers in Europe. The GPS network
analyzed in near real-time at the GFZ consists presently of about 200 receivers in Germany
and neighboring countries. The data analysis is performed on an hourly basis with a delay
of about 30 minutes using the GFZ Earth Parameters and Orbit determination System
(EPOS) software (Gendt et al., 1999a,b) which is based on a least squares adjustment
of undifferenced phase measurements. The GPS data are processed in a sliding window
mode with a window length of 12 hours and a forward step of one hour. The technique
of parallel analysis of station clusters with the Precise Point Positioning (PPP) strategy
(Zumberge et al., 1997) is implemented. The high quality orbits and clocks required
by the PPP analysis are determined by further refining the International GNSS (Global
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Navigation Satellite System) Service (IGS) routine products. All GPS data are taken
with a sampling period of 2.5 minutes. The E-GVAP website shows the performance of
the GFZ data analysis in relation to other processing centres and a NWP model.

The GFZ provides two products for atmospheric applications: ZTDs and slant path de-
lays. The ZTD is a combined quantity based on all data taken during one hour by each
station. The available GPS observations are analyzed in order to find an optimal param-
eter estimation for the ZTD data in 15 minutes steps. In addition, the IWV is obtained
from the ZTD and surface observations (Dick et al., 2001). Another result of the GPS
analysis are slant path delays, obtained using a least square adjustment. The least squares
solution considers all individual slants path delays of a given station and makes use of
the full temporal resolution of 2.5 minutes. During 2006 the GFZ started to analyze slant
path delays operationally for about 130 GPS stations leading to about 1 million slant
path delays per day. Data used in this thesis is based on the output of an operational
version of EPOS during COPS in summer 2007.

Figure 3: The GPS network status in Europe on July 14, 2009 (URL
http://egvap.dmi.dk/). The geographical locations of the ground-based receivers are in-
dicated by green and red dots.
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4 Observation modeling

4.1 Propagation of radio signals in the Earth’s atmosphere
In this section the basic equations governing the ray trajectory are derived from elec-
tromagnetic wave propagation in an inhomogeneous medium. The wavelengths of GPS

signals (L; and L) are small compared to the characteristic scale lengths of atmospheric
inhomogeneities which allows for the usage of geometrical optics.

4.1.1 The eikonal equation

An electromagnetic wave can be described by a complex valued function F varying over
space and time. To simplify the description the wave function is assumed to be of the
form

E(r,t) = U(r) exp(—iwt) (24)
where U denotes the amplitude, w denotes the angular frequency, r denotes location in
space and t denotes time. In this description, the effects of diffraction and polarization are
neglected. From Maxwell’s equations it follows that the spatial component of the wave is
given by a Helmholtz equation:

AU(r) + k*n*(r)U(r) = 0 (25)
where n is the refractive index of the medium, & = 27/\ is the free-space wave number
and A is the wave length. We seek for a solution in the following form

U(r) = A(r) exp(ik®(r)) (26)
where A is amplitude and @ is phase. Substituting Equation (26) in the Helmholtz
equation (25) and retaining only the dominant terms, i.e. the ones multiplied by k2,
yields an equation for the phase

(V®)? =n? (27)

This equation is also known as the eikonal equation (Kravtsov and Orlov, 1990).
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4.1.2 The ray trajectory equation

The surfaces of constant phase, the phase fronts, define the shape of the radiation field.
The eikonal equation therefore corresponds to a geometric description of the propagation
of the wave. A curve r = r(s) is normal to the phase front if

dr
— =V 2
i \V4 (28)

where ¢ is the ray trajectory parameter. Differentiating this equation with respect to ¢
and using the eikonal equation yields

d2
d_gg = nVn (29)

The ray trajectory parameter ¢ can be readily determined from

dr ds

—_—— —_ —_— @:
ds d¢ Ve[ =n

to be d¢ = ds/n. Hence, the ray trajectory equation becomes

d dr

4.1.3 The Euler Lagrange equation

An interesting representation of the ray trajectory equation can be derived as follows: For
a curve parameterized with u, i.e. r = r(u), the ray trajectory equation reads as

d du dr ds

which can be recast to yield
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dof of
duor " or, " (32)
for i =1,...,3 where
dr
f=nlg (33)

The set of Equations (32) are known as the Euler Lagrange equations.

4.1.4 Fermat’s principle

Since the Euler Lagrange equation appear in calculus of variation, an alternative deriva-
tion of the ray trajectory equation is obvious; namely the derivation of the ray trajectory
equation from Fermat’s principle: The path taken by a ray between two points A and B
is the path that can be traversed in the least time. The optical path length L is defined

as
B b
L:/ nds:/n-
A a

and from the fundamental lemma of calculus of variation it follows that the ray trajectory
minimizes the optical path length if and only if the integrand verifies the Euler-Lagrange
equations.

dr

—Id 34
7o | du (34)

Another representation of the optical path length can be derived using the relation be-
tween the tangent vector of the ray trajectory and the gradient of the phase. Multiplying
Equation (28) with the tangent unit vector and taking into account that d¢ = ds/n leads
to

dr
= d. — 35
n \V4 R (35)
which allows for the conclusion that
L=3®&,—d, (36)

Thus, the optical path length is entirely determined by the phase difference. This repre-
sentation of the optical path length makes the appearance of the slant path delay in the
phase pseudorange observation equation (17) more obvious.
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4.1.5 The slant path delay in the context of geometrical optics

In terms of the optical path length L and the geometric path length G the slant path
delay reads as

S=L-G (37)

According to Fermat’s principle, the signal path from the satellite to the receiver is such
that the optical path length, and therefore the slant path delay, takes a minimum value.
In order to simulate the slant path delay, at least two strategies exist: (i) solve the eikonal
equation for a given field of the refractivity index or (ii) solve the ray trajectory equation
(the characteristic equation of the eikonal equation) and integrate the refractivity index
along the ray trajectory. In this thesis the latter task is performed. Since a mesoscale
model does not provide the dependency of the refractivity index on the location in ana-
lytical form, an interpolation routine which allows to compute the refractivity index at
an arbitrary location is needed. The gradient of the refractivity index can be computed
by differentiation of the interpolation routine.

4.2 Geometrical description of the problem

Figure 4 provides a sketch of the geometry in a two dimensional plane for simulating slant
path delays. The satellite S transmits a signal to the ground based receiver R. Due to the
bending effect of the atmosphere on the signal path, the apparent elevation angle (arriving
elevation angle) of the signal at the receiver is different from the geometric elevation angle
at the receiver. The signal path, indicated by the dotted line, obeys the ray trajectory
equation. The geometric path corresponds to the straight line connecting the receiver and
the satellite. The bending angle, defined as the angle between the tangent vector at the
receiver and the tangent vector at the satellite, is introduced to measure the discrepancy
between the signal path and the geometric path. The orthonormal system located at
Earth’s center will be referred as the global frame of reference. The orthonormal system
located at the receiver will be referred as the local frame of reference.

From Figure 4 the close relation to GPS radio occultation (RO) is evident. A GPS radio
occulation occurs when a transmitting GPS satellite, setting or rising behind the Earth’s
limb, is viewed by a Low Earth Orbit (LEO) satellite. The relative motion between the
GPS and LEO satellite, provides a scanning of the atmosphere. The ray passing through
the atmosphere is refracted and delayed due to the gradient in refractivity. For details

on remote sensing of the Earth’s atmosphere using GPS RO the reader is referred to
Kursinski et al. (1997).



22

4  OBSERVATION MODELING

Figure 4: Sketch of the geometry for simulating slant path delays. The location of the
receiver is marked with R, the location of the satellite is marked with S and Earth’s center
is marked with M. Rg denotes the radius of Earth. € denotes the geometric angle at the
receiver, ¢’ denotes the apparent elevation angle at the receiver and o denotes the bending
angle. The signal path from the satellite S to the receiver R is indicated by the dotted
line.
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4.3 The governing system of differential equations in 3D

The method most suited to the problem consists in applying Fermat’s principle, that is, in
looking for the curve with cartesian coordinates (x,y(x), z(z)) between the receiver with
coordinates (a,y(a), z(a)) and the satellite with coordinates (b, y(b), (b)) which minimizes
the optical path length:

L= / n(e, y(@), 2(2) VI + 5 (@) + 7 (@) da (39)

This condition is satisfied if and only if the integrand f = n(z,y, z) \/1 + y? + 2’2 verifies
the Euler-Lagrange equation

d of Of
dzdy Oy
dof of _
dx 0z 0z

Inserting f and expanding the partial derivative with respect to 3’ and 2’ leads to

d /
- ny — ny /1+y/2+2/2
dx /1 +y? + 272

i nz ~ /1+y’2+z’2
dx /14 2 + 22

where n, and n, denote the partial derivative of n with respect to y and z respectively.
Evaluating the total derivative with respect to x leads to

ny" _ny Wyt n'y N T
1+ y?2 + 272 (14 y?+ 2’2)3/2 1+ y?2 + 272

! 0 v/

" / .
R T W A
1+ y?+ 27 (1+y’2+2/2)3/2 /1+ y?2 + 272

where n’ denotes the total derivative of n with respect to x. Rearranging the system of
equations leads to

ny//<1 4 Z/2> _ nz//y/ - n, (1 +y/2 4 2/2)2 _ n'y’(l +y/2 4 2/2)
nz”(l + y/2) _ ny// 5! y/ = n, (1 + y/2 + 2/2)2 —n Z/(l + y/2 + Z/2)



24 4 OBSERVATION MODELING

which is a system of two linear equations for the two unknowns y” and z”. Solving for y”
and 2" and keeping in mind that n' = n, + n,y’ + n.2’ leads to

ny// — (1 + y/Q)(ny (1 + 2/2) — Ny y/ —n, y/ Z/) + y/ Z, (nz (1 + y/2) — Ny Z/ —n, y/ Z/)
nZ" = 1+2%Mn.(1+y?) —n. 2 —n, v 2)+9 2 (n, 1+ 2% —n,y —n.y 2

which can be further simplified to yield

y// — (@_Ey/) (1+y/2+212)
n n
" Nz Ny /) /2 12
- (=_ = 1 39
2= (Z-2) A4y (39)

This coupled system of ordinary differential equations (ODE) is the basis of the numerical
algorithm. With explicit boundary conditions according to

Yo = yla)
2z, = z(a)
v = y(b)
z = z(b) (40)

it represents a nonlinear two point boundary value problem (BVP). The system of ODEs is
exact; that is, no approximations are involved in their derivation from Fermat’s principle.
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4.3.1 The method of solution

The nonlinear two point BVP can be solved numerically using either a shooting method,
a finite difference scheme or a collocation method, see e.g. Ascher et al. (1995). The first
method is referred to as a local method, the two latter methods are referred to as global
methods.

The shooting method consists of formulating the BVP as an initial value problem (IVP)
with a priori unknown initial values. The unknown initial values together with the so-
lution over the integration interval are determined iteratively. This approach requires
the solution of the IVP for the ODEs for each initial value. The success of the shooting
method depends on a number of factors, the most important of which is the stability of
the IVP that must be solved at each iteration. An ODE is stable if a small change to the
ODE and/or the initial or boundary conditions leads to a small change in the solution.
In fact, it is the case that for many stable BVPs the corresponding IVPs (beginning from
either endpoint and integrating towards the other endpoint) are insufficiently stable for
shooting to succeed. In particular this can be the case on very long integration intervals.
In addition, the shooting method is computational expensive. The inherent problems of
local methods can be overcome using global methods.

Global methods for solving BVPs fall into two related categories. The first global approach
is a finite difference scheme where a sequence of nodes is defined and the derivatives in the
ODEs are approximated by finite differences at the sequence of nodes. The resulting dif-
ference equations plus the boundary conditions give a set of non-linear algebraic equations
for the solution at the sequence of nodes. The second global approach is to approximate
the solution defined in terms of a basis of splines defined piecewise at the sequence of
nodes and to collocate this approximate solution. In collocation the approximate solution
is substituted in the system of ODEs. The ODE system is required to be satisfied exactly
at each collocation point. The number of collocation points plus the number of boundary
conditions must equal the number of unknown coefficients in the approximate solution.
The spline basis for collocation leads to a non-linear algebraic system of equations which
must be solved iteratively. At each iteration a structured linear system of equations must
be solved. A similarly structured system arises from the finite difference method.

For the BVP discussed in this thesis the method of choice is a global method. Since the
end points of the integration interval, i.e. the location of the receiver and the satellite, are
automatically part of the over all solution, and the algorithm does not rely on any other
source of information, this approach will be referred to as the direct numerical simulation.
A finite difference scheme, to be prescribed hereinafter, is developed.
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4.3.2 The governing system of algebraic equations

Let x; for i = 0,...,n + 1 denote a non-uniform sequence of nodes at which the solution
y; and z; is sought. The derivatives of y and z with respect to x at the sequence of nodes
x; are approximated as

1
y/(xj> = Z L]kx] " Yk
k=j—1
1
Z(x;) = Z L () - 2,
k=j—1
j+1
y”(xj> = Z L]k:L‘] " Yk
k=j—1
j+1
S = S L) (a1)

k=j—1

where L, (z) denote Lagrange basis polynomials according to

Lute) = J[ =% (12

for j = 1,...,n. Inserting the finite differences into the ODEs leads to a system of 2n
non-linear algebraic equations for the 2n unknowns y; and z;

h ny (2,95, %) na(®, Y5, % ch ]
Z Liw(zi)ye — S 3295 %) Z Lj . (x5)y

g1 n(x;, yj, 2;) n(x;,v;,2;) h—j1
j+1 2 Jj+1
(ZLM% )+< Jkr% > =0
k=j—1 k=j—1
h (x5, 25)  ne(z), 95, 24) ch
" 2\ J])r 7] T\~ I <]
k:zj:ng,k(xj)zk [n(xj,yj,zj) n(z, ;%) (_j 1 L (5)2 >
j+1 2 j+1
(ZLJ/&% ) +< gk:IJ > =0 (43)
k=j—1 k=j—1
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for j =1,...,n with

Y = Ya
20 — Za
Yn+1 = Up
Znil = 2 (44)

Note that a uniform sequence of nodes with step size Az implies

) = 0.5 (Yj41 —yj-1) /A

) = 05-(zj41— z-1)/Az
2;) = (Y1 — 2y +y51)/Aa?

) (211 — 22 + 2j1)/ Az

for j = 1,...,n, i.e. the first and second derivatives are discretised by second order
accurate central differences. The Ansatz represents a second order accurate non-uniform
finite difference scheme.

4.3.3 The numerical solution of the system of algebraic equations

The system of Equations (43) is written in terms of the residuals RY and R; as
R?(:Uj—h Zj-1,Yjs 2, Yit1, Zi+1) = 0
R]%(yjfla 215 Y55 %55 Yj+1; Zj+1) =0 (45)

for j =1,...,n. In short term notation the system of Equations (45) reads as

F(Z)=0 (46)

where Z = (y1, 21, ..., Un, 2n) denotes the solution vector. Newton’s iteration is applied
to solve the non-linear system of equations. Let Z, denote the solution vector at the
iteration step r. The solution vector Z,,; at the iteration step r+ 1 is obtained by solving
the following system of linear equations
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J(Zr)<Zr+1 - Zr) = _F(Zr> (47)

where J denotes the Jacobian

J=— (48)
and explicitly reads as

ORY ORY ORY ORY

0y1  O0z1  Oy2 Oz 0 0
OR; ORi ORi ORL |
Oy1 Oz Oya O0z2
ORY ORY ORY ORY ORY ORY 0 0
0y1 0z1 Oy2 Oz  Oyz  Oz3
OR; OR; OR; OR3 OR; OR; 0
oy 021 oy2 Ozo oys3 Oz3
ORY ORY ORY ORY ORY ORY
J= 0 0 oy2 Ozo oys3 Oz3 O0ya Oz4 0 0
OR: OR: OR; OR; OR;  ORj
0 0 Oy2 Oz  Oyz  Oz3 Oy4 0z 0 0
0 0 L 0 0 ORY ORY ORY, ORY
Oyn—-1 Ozy-_1 Oyn  Ozn
0 0 ... ... 0 0 OB OBy ORy 0Rg

Oyn—1 Ozy_1 Oyn  Ozn

The non-zero entries of the Jacobian are provided in Appendix A. Since the Jacobian is
a band matrix (bandwidth seven), the linear system of equation can be efficiently solved
by LU-Decomposition. There is no need to store the entire Jacobian. The Jacobian can
be stored in condensed form represented in a [ + u + 1 times n matrix for its [ = 3 lower

and u = 3 upper co-diagonals. The Newton iteration is stopped if a predefined number
of iterations is performed.

The ray trajectory equation and the derived system of algebraic equations is form in-
variant, i.e. the formulation is independent of the coordinate system. It is convenient
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to solve the governing system of algebraic equations in the local frame of reference. The
first guess vector Z; in the Newton iteration is chosen to be equal to the coordinates of
points along the straight line connecting the first and the last node. In fact, this choice is
an approximate zero, i.e. it provides fast and safe convergence in Newtons iteration. It is
advantageous to rotate the local frame of reference such that the x-axis points from the
receiver to the satellite in question (the y- and z-axis remain perpendicular to the x-axis).
In the rotated local frame of reference the first guess vector in the Newton iteration is the
null vector, i.e. Zy = 0, which in turn does not only represent an approximate zero but
also greatly simplifies the computation in the first Newton iteration.

4.3.4 The computation of the refractivity and its derivatives

In MM5, the pressure, the temperature and the water vapor mixing ratio, are stored at
gridpoints, specified by longitude, latitude and height (Grell et al., 1995). In the very
first step, the gridded dry, wet and total refractivity are computed at each model grid
point. To compute the refractivity N at an arbitrary point in the local frame of reference
a coordinate transformation and an interpolation is needed. The Earth is assumed to be
a perfect sphere with radius Rg being equal to the local curvature radius of the reference
ellipsoid at the center point of the mesoscale model domain. Similarly, the gravitational
acceleration at mean sea level g, is computed at the center point of the mesoscale model
domain. The variation of the gravitational acceleration g with respect to height h is
accounted for through

9m R?E

g(h) Ry 1 h)?

(49)

The algorithm to compute N at a point with cartesian coordinates (z,y, z) in the local
frame of reference consists of four steps:

1) The cartesian coordinates (x,y, z) in the local frame of reference are transformed to
the cartesian coordinates (z4,y,, 2,) in the global frame of reference:

Ty = a1 -T+ap-yt+asz-z+a
Yg = Qo1 T+ ag-y+as-z+uy
Zg = a31-x+a32-y+a33-z+zl

where aj;, for j =1,..3 and k =1, ..., 3 denote the cartesian coordinates of the unit basis
vectors of the local frame of reference in the global frame of reference and (z;, y;, 2;) denote
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the cartesian coordinates of the origin of the local frame of reference in the global frame
of reference.

2) The cartesian coordinates (z,,y,, z,) in the global frame of reference are transformed
to spherical coordinates (A, ¢, h):

A = arctan(y,/x,)

¢ = arctan(z,/4/22 + y2)

h = \Jz2+y:+2; — Rg

3) The longitude A and the latitude ¢ are converted to the cross point coordinates & and g
in the uniform model grid. For details on this coordinate conversion the reader is referred
to Grell et al. (1995) Appendix 3.

4) The refractivity N at model grid point coordinates (Z, g, h) is computed according to
the following algorithm:

a) Floor towards the largest integers I and J less then or equal to Z and ¢, i.e. [ = | ]
and J = |§], compute the increments X and Y according to

X = &— Xy
Y = @—YIJ

and the bilinear interpolation coefficients X7, X5, X3, Xy:

X, = (1-X)-(1-Y)
X, = (1-X)-(047Y)
X; = (0+X)-(1-Y)
Xy = (04X)-(04Y)

The two dimensional arrays X;;and Yy, for I = 1,...,M; and J = 1,..., M; denote the
grid point coordinates of the uniform model grid. The integers M; and M; denote the
horizontal dimensions of the model grid.

b) Determine at the neighboring grid points the adjacent grid point indices with re-
spect to height A, B, C, D by binary search, and compute the interpolation coefficients
Ly, Lo, L3, Ly:
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Ly (h — Hrro5404)/ (Hryos404 — Hrros404-1)
Ly = (h—Hiyosm18)/(Hivoss18 — Hivos+18-1)
Ly = (h—Hrpi00)/(Hrvri40c — Higir400-1)
Ly (h— Hpy15410)/(Hrsi41p — Hrpr711p-1)

¢) Perform logarithmic interpolation to compute the refractivity values Ny, Ny, N3, Ny at
appropriate height:

Ny = Nriosoa - (Nrossoa/Nrsosroa—1)™
No = Nryossin - (Nivoss18/Nriosrip-1)"
Ny = Nrsvoo - (Nrsisroc/Nisisvoo-1)"
Ny = Nrysin s (Nesirin/Nisisip—1)™

d) Compute N according to

4
N = ZXZ-NZ
=1

The three dimensional arrays H;jx and Nyji for I =1,...,M;, J =1,..., M; and K =
1,..., Mg store the gridded model height and the gridded model refractivity respectively.
The integer M} denotes the vertical dimension of the model grid. Since the MM5 is a
limited area model, caution is needed at lateral model boundaries and above the finite
model top. At lateral model boundaries the integers [ and J are limited in step a)
according to:

I = min(max(/,1), My — 2)
J = min(max(J, 1), M; — 2)

Above the finite model top hydrostatic equilibrium is enforced and the variation of gravity
with respect to height is accounted for. The wet refractivity above the finite model top is
neglected. This approximation is justified as long as the model top has sufficient altitude.
With the aid of the perfect gas law and the hydrostatic equation the refractivity above
the model top reads as
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where R; = 287.05 Jkg 'K~ is the gas constant of dry air and P, denotes the partial
derivative of pressure with respect to height. The pressure P is computed in a similar
manner as the refractivity N through

4
P =) X-P
=1

where

P. = Priosroa- (Priosioa/Priosroa—1)™
Py = Priosiis - (Prrossis/Priosiin-1)"
Py = Pragtoc (Prisvoc/Pritsioc—1)"
Py = Prigip - (Prywsin/Priisein-1)™

denote pressure values at appropriate height. The three dimensional array Pjjx for

I=1,..M;, J=1,...M;and K =1, ..., Mk stores the gridded model pressure. Differ-
entiation with respect to height yields to

4
Py = Y XDy
=1

where

Pl,h = P - 1Og(PI+OJ+0A/PI+OJ+OA71)/(HI+0J+OA - HI+OJ+0A71)
Py, = Py-log(Pryost18/Priossis—1)/(Hiros+18 — Hivos+18-1)
Py = P3-log(Privsyoc/Privsvoc—1)/(Hivisroc — Hivisr00-1)
P4,h = Py log(PI+1J+1D/PI+1J+1D71)/(HI+1J+1D - HI+1J+1D71)
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denote the derivatives of pressure values with respect to height at appropriate height.
Note that the derivative of the pressure with respect to height is extrapolated from the
two upper most model levels.

As a smooth alternative to bilinear interpolation, bicubic interpolation is implemented.
Bicubic interpolation can be accomplished using either Lagrange polynomials, cubic splines
or cubic convolution algorithm. A cubic convolution algorithm (Keys, 1981) is applied
since bicubic spline interpolation requires the solution of a linear system of equations at
each point where the refractivity is to be computed. The cubic convolution algorithm is
provided in Appendix B.

The computation of the partial derivative of N with respect to z,y or z is performed by
rigorous application of the chain rule of differential calculus. The relevant computations
in the last step are provided in detail. The computations in the former steps are carried
out in a similar manner. Hereinafter the subscript £ denotes the partial derivative with
respect to x,y or z:

Step a) reads as:

Xe = ¢
Ye = ¥
Xig = 0-Xe) - 1-Y)+(1—-X) (0-Y)
Xoe = (0-Xe) - (0+Y)+(1—-X) (0+7Y)
Xge = (0+X5)~(1—Y)+(0+X) (O—Y§)
Xuge = (O+X§) 0+Y)+(0+X) (O—i-Yg)
Step b) reads as:
Lie = he/(Hrror40a — Hrjor404-1)
Lye = he/(Hrros1 — Hivor418-1)
Lse = he/(Hrpisv0c — Hryri100-1)
Lig = he/(Hryisp — Higi41p-1)
Step ¢) reads as:
Nig = Ni-log(Nisosroa/Nisostoa—1

( ) Lig
Nog = No-log(Nrross18/Nivosrip—1) - Lag
N3¢ = Ns-log(Nit1s10c/Nis1stoc-1) - Lag

( ) - L4s

log NI+1J+1D/NI+1J+1D 1
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Step d) reads as:

4
N = Z(Xl,g N+ X, - Nig)

=1

The partial derivatives Z¢, 9¢ and he are provided by differentiation of step 3. Higher order
and mixed partial derivatives are computed in the same manner. For completeness, the
final step of the computation is provided. Hereinafter the subscript 7 denotes the partial
derivative with respect to x,y or z.

Step a) reads as:

Xigg = (0=Xgy)-(1-Y)+(1—-X) (0—Ye)
(0—=X¢e)- (0-Y;) +(0—X;) - (0—Y)
(0—Xey) - (0+Y) + (1 - X) - (0+Ye)
(0—Xe)- (04+Y) 4+ (0—Xp) - (0+Y)

X3,£n = (0+X£n)'(1_y>+(0+X)'(0_Y£77)
0+ Xe) - (0-Y) +(0+X;) - (0-Y)
0+ Xe) - (04+Y)+ (0+X)-(0+Yg,)
0+ Xe)- (0+Y,) +(0+X,) - (0+Y)

s
L
+

Step b) reads as:

Ligy = hey/(Hrros40a — Hryorpoa-1)
Lygy = hey/(Hrros418 — Hrrori18-1)
Ligy = hey/(Hrirsroc — Hriirroc-1)
Lyey = hey/(Hry1410 — Hivis410-1)

Step c) reads as:
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Niey (N1 - Lig+ Ny - Ligy) -10g(Nivos+04/Nitos+04-1)
Nogy = (Nay - Lag+ No- Lagy) - log(Nrios+18/Nrvos+18-1)
Nsgy = (Nsy- Lae+ N3- Lyg,) - log(Nri1sroc/Niyisvoo-1)
Niyen = (Nay-Lag+ Ny Lygy) - 10g(Nry17410/Nrj17410-1)

Step d) reads as:

4
Ney = Z(Xl,fn “Ni+ Xie - Ny + Xiy - Nig + X - Nigy)
=1

Again, the partial derivatives Z¢,, e, and hg, are provided by differentiation of step 3.

4.3.5 The sequence of nodes

So far the sequence of nodes for which the solution is sought was not specified. Roughly
speaking, the sequence of nodes can be chosen arbitrary and a successive refinement of
nodes can be performed. For example, one may chose a uniform sequence of nodes and
double the number of nodes until the solution at the nodes which coincide reaches a
predefined accuracy. Once the solution is sought on the uniform sequence of nodes, the
slant path delay can be evaluated by a standard numerical routine, e.g. the trapezoid or
the Simpson’s rule. Then the number of nodes is doubled, the computation of the ray
trajectory is repeated, and another estimate of the slant path delay is computed. This
procedure is repeated until the relative difference of the current and previous computed
slant path delay is smaller than some prescribed error tolerance. In principle, (provided
that the algorithm converges) this procedure allows to compute the slant path delay
with a predefined error tolerance. However, a uniform sequence of nodes turns out to be
computationally expensive. It appears to be convenient not to use a uniform sequence of
nodes but a non-uniform sequence of nodes that automatically minimizes the numerical
error associated to the computation of the slant path delay. A convenient (ad hoc)
choice of nodes are Legendre-Gauss-Lobatto nodes (Abramowitz and Stegun, 1972) since
(i) the nodes are densified close to the endpoints of the interval where it is expected
to be important and (ii) the slant path delay can be readily evaluated with aid of the
Gauss-Lobatto quadrature rule, which, compared to other numerical integration formulas,
provides an outstanding accuracy. The Legendre-Gauss-Lobatto nodes x; and weights w;
for i = 0,...,n + 1 are provided in Appendix C. The number of Legendre-Gauss-Lobatto
nodes is increased until a predefined error tolerance is reached.
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4.4 The computation of the slant path delay

In the rotated local frame of reference the slant path delay reads as

S = 107°. / Na(z,y(2), 2(x)) /1 + ¢/ (2)2 + /() da

b
+ 10 [ Nofoy(o), 2(a)) VIT S0P + (e da

+ / (V1+y'(z)2+ 2 ()2 —1)da (50)

Two computational models for the slant path delay are implemented.

4.4.1 The rigorous computational model for the slant path delay

Once the coordinates of the ray trajectory (z;,v;, 2;) for ¢ = 0,...,n + 1 are determined,
the slant path delay can be readily numerically evaluated with aid of the Gauss-Lobatto
quadrature rule

n+1
S = 107%. ZNd(:Ui,yi, z2) V1 ()2 4 2 ()2 w;
i—0
n+1
+ 1076 Z N6, i, 20) V1 + 9/ (25)% + 2/ (2;)2 w;
=0
n+1
£ WY )R - D, (1)
=0

The derivatives y'(x;) and 2/(z;) for j = 1,...,n are provided by Equation (41). The
derivatives at the first and last node are approximated by second order accurate one-
sided finite differences
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2
y(xo) = Y Lia)-u
k=0

2
o) = YLl
k=0

n+1

Y(Tnt1) = Z Ly, (0) -y
k=n—1
n+1

o) = > Lould) = (52)
k=n—1

With the numerical integration along the ray trajectory, the numerical algorithm to simu-
late the slant path delay is completed. Equation (51) provides the rigorous computational
model for the slant path delay.

4.4.2 The fast computational model for the slant path delay

A fast computational model for the slant path delay can be derived, if the signal path is
approximated by the geometric path and the slant path delay below the model top and
above the model top is calculated separately (Zus et al., 2008).

The contribution to the slant path delay below the model top 5, is computed with the
aid of the Gauss-Lobatto quadrature rule

I+1
Sy = 1070 N(&, G, &) @ (53)

=0

where (Z;,9;, 2;) for i = 0,...,0 + 1 denote the Legendre-Gauss-Lobatto nodes along the
geometric path and w; for ¢ = 0, ...,1 + 1 denote corresponding weights.

The contribution to the slant path delay above the model top S; is computed by transfor-
mation of the integration variable. The derivative of the geometric path sy with respect
to height h can be computed with the law of cosine

(k) = (1 - % smwo?) E (54)



38 4 OBSERVATION MODELING

where h; denotes the height at the model top point and v; denotes the angle between the
tangent vector of the geometric path and the radial vector at the model top point. The
contribution to the slant path delay above the model top S; is now determined with the
hydrostatic equation and the extended first mean value theorem of integral calculation

»

ht ot !
S, =10"% ki Ry /Oo ;(%) - P'(h)dh =107% - k; - Ry 5;((5) - P, (55)

where P’ denotes the derivative of pressure with respect to height and P, denotes the
pressure computed at the model top point. The height &, for which Equation (55) holds,
is now approximated by the height &, which results from the assumption of the Stan-
dard Atmosphere (1976) above the model top

50(&s)
9(&s)

For elevation angles close to the zenith, Equation (56) is equivalent and turns out to be
as accurate as the well known formulation of Saastamoinen (1972).

S, =10"% k- Ry

Y (56)

The slant path delay reads as

I+1 !
_ o - _ 50(&s O
S = 10 6. Z N(xlu Yi, Zi) w; + 10 6. kl * Rd go((é-s)) : P<xl+17 Yr+1, Zl+1) (57)
=0

Since the slant path delay in this approximation does not require the solution of the ray
trajectory equation, i.e. the numerical solution of a non-linear system of equations, the
computation of the slant path delay is very efficient. However, this approximation of the
slant path delay is inaccurate for low elevation angles.

4.5 The governing system of differential equations in 2D

In the two-dimensional case the single ODE derived from the Fuler-Lagrange equation
reads as

With explicit boundary conditions according to
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2, = z(a)

z = z(b) (59)

it represents a non-linear two point BVP.

4.5.1 Numerical solution of the boundary value problem (BVP) in 2D

The method of solution in the two-dimensional case is the same as in the three-dimensional
case: The non-linear two point BVP is transformed to a system of non-linear algebraic
equations which are solved by Newton iteration. Since the Jacobian is a tridiagonal matrix
(a consequence of using low order Lagrange basis polynomials) the system of equations
can be very efficiently solved by LU-Decomposition. There is no need to store the entire
Jacobian. Only non-zero entries must be stored, i.e. the lower, the main and the upper
diagonal.

The two-dimensional BVP can be solved in a three-dimensional refractivity field. For
example, the two-dimensional BVP can be solved in the plane defined by the center of
the Earth, the receiver and the transmitter. In the rotated local frame of reference this
corresponds to the x-z plane. In fact, it is convenient to seek for a solution in the x-z
plane since the refractivity is more or less stratified with respect to height. It is evident
that in terms of computational efficiency solving the two-dimensional BVP is superior
compared to solving the three-dimensional BVP (the number of equations is reduced by
a factor of two).

4.5.2 Numerical solution of the initial value problem (IVP) in 2D

Alternatively the single ODE can be solved as an IVP. The single second order ODE is
transformed to a system of two first order ODEs. With 7 = z and v = 2’ the system of
first order ODEs explicitly reads as

With initial conditions according to
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7. = 7(a)
v, = v(a) (61)

the IVP can be readily solved by a standard numerical routine, i.e. a Runge-Kutta
formula. In contrast to the numerical solution of the BVP, the numerical solution of the
IVP requires the tangent of the ray trajectory at the initial point. Since the tangent of
the ray trajectory at the initial point is not known, the numerical solution of the IVP can
not be regarded as an efficient alternative to the numerical solution of the BVP. Though
a shooting method allows to determine iteratively the tangent of the ray trajectory at
the initial point such that the final ray traced point coincides with the second boundary
condition, the solution of the IVP is computational expensive. The solution of the BVP
always guarantees that the first and last node, i.e. the location of the receiver and the
transmitter, are part of the overall solution. On the other hand, provided that the tangent
of the ray trajectory at the initial point is a priori known, the numerical solution of the
IVP can be applied to study whether it is possible to solve the BVP by the proposed
numerical algorithm with high accuracy.

4.6 Snell’s law for a spherically layered atmosphere

For a spherically layered atmosphere a remarkably simple analytic relation can be derived.
Since the atmosphere is assumed to be spherically layered, it is sufficient to consider polar
coordinates. Let (¢,7) denote the polar coordinates of a point in the global frame of
reference. For a curve with polar coordinates (¢, 7(¢)) between two points with polar
coordinates («,r(a)) and (3, 7(f)) the optical path length L to be minimized reads as

8
L= / n(6,7(8)) V(@2 T (@2 do (62)

According to the fundamental lemma of calculus of variation, the integral takes an ex-
treme value if and only if the integrand f = n(¢,r)v/r? + 2 verifies the Euler-Lagrange
equation

A well known identity of calculus of variation, namely Beltrami’s identity, states that the
Euler Lagrange equation is equivalent to
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For a spherically layered atmosphere the refractivity index depends on the radial distance
only, i.e. n =n(r), and therefore

d AN
i (1) ¢

which immediately gives
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where p denotes the so called impact parameter, a constant along the ray trajectory.
Inserting f in the above expression and evaluating the partial derivative with respect to
r’ leads to

nr?

N

Keeping in mind that the angle 1) between the tangent vector and the radial vector at an
arbitrary point on a curve in polar coordinates is given by ¢ = arctan(r/r’) results in

nrsin(y) =p (63)

which is Snell’s law for a spherically layered atmosphere. Alternatively, Snell’s law can
be derived from Equation (58), i.e. the underlying equation of the numerical algorithm
to solve the BVP, under the assumption of a spherically layered atmosphere.

One may think that the direct (piecewise) application of Snell’s law is an alternative to
the numerical solution of the BVP. This is not the case since (i) the tangent vector of the
ray trajectory at any point is a priori not known and (ii) the refractivity field is generally
not spherically layered. However, this remarkable simple relation can be used to check
for correctness and to study the accuracy of the numerical solution obtained by solving
the BVP: Given a spherically layered atmosphere the impact parameter computed along
any simulated ray trajectory must be an invariant.
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4.7 Potential applications of the ray tracing algorithm

The proposed ray-tracing algorithm allows to simulate the propagation of electromagnetic
waves in an inhomogeneous medium (in the context of geometrical optics) given the loca-
tion of the receiver and the transmitter. It is foreseeable that the ray-tracing algorithm,
either in the proposed general form or with some simplifications, will have a number of
alternative applications. For example, an interesting application is the simulation of the
signal path of radar signals. In such applications the location of the transmitter, the
apparent elevation/azimuthal angle and the time delay between the emitted and received
signal is known. Thus, one is concerned with solving an IVP where the integration in-
terval (the location of the backscattered signal) is a priori not known. Two potential
applications, which are of particular interest for remote sensing of the atmosphere using
ground-based and spaceborne GPS technology, are shortly described in the following.

4.7.1 GPS radio occultation

An immediate by-product of the ray tracing algorithm are bending angles. The bending
angle «, defined as the angle between the tangent vector at the receiver u, and the tangent
vector at the satellite u,, can be computed according to

ul
(v = arccos (M> (64)

W] - ||

In the local frame of reference u, = (1,vy'(a),2'(a)), u, = (1,9'(b),2'(b)) and the first
derivatives at the first and the last node can be computed according to Equation (52).
Obviously, the proposed ray-tracing algorithm allows the direct simulation of bending an-
gles. Besides the ability to simulate slant path delays, the ray-tracing algorithm presented
in this thesis is believed to be an appropriate tool for simulating GPS RO observations,
e.g. the bending angle or the Doppler frequency shift. Formally a LEO satellite (receiver)
can be treated just as a ground based receiver and vice versa.

4.7.2 Direct mapping

In GPS observation processing mapping functions are used to map the a priori tropo-
spheric delay from the zenith direction to lower elevation angles under the assumption of
spherical symmetry. If T, denotes the tropospheric delay estimate in the zenith direction
and m denotes the mapping function the tropospheric delay estimate T at an elevation
angle ¢ is determined by
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T(e) = mle) - T (65)

Marini (1972) showed that the elevation dependency of the mapping function can be
approximated by a continued fraction expansion according to

where the parameters ¢; are determined by curve fitting.

To date various parameterized mapping functions using a continued fraction expansion
similar to equation (66) exist (Davis et al., 1985; Niell, 1996; Boehm et al., 2006). In
atmospheric science there is an increasing interest in near-horizon GPS observations be-
cause they contain atmospheric profile information (Sokolovskiy et al., 2001; Lowry et al.,
2002). To process such near-horizon GPS observations, very accurate mapping functions
are required. At low elevation angles parameterized mapping functions, in particular the
parameterized dry mapping function, can introduce significant errors. Therefore Rocken
et al. (2001) introduced a concept known as direct mapping. Direct mapping differs from
parameterized mapping in that it requires an atmospheric profile of temperature, pressure
and humidity for a specific location and time. Such a profile can be obtained from radio
soundings or from NWP analysis fields. Direct mapping functions are determined by
evaluating ray integrals under the assumption of spherical symmetry for a given apparent
elevation angle. The geometric elevation angle is then determined from the apparent ele-
vation angle. However, the mapping function must provide a delay correction for a given
geometric elevation angle. This task can be accomplished using the ray-tracing algorithm
presented in this thesis.
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5 The simulation of slant path delays

5.1 The MMSJ5 configuration and the GPS network

The MM5 is a limited-area, non-hydrostatic, terrain-following sigma-coordinate model
designed to simulate or predict mesoscale and regional-scale atmospheric circulation. It
is the latest in a series developed from a mesoscale model used by Anthes at Penn State
in the early 70’s that was later documented by Anthes and Warner (1978). Since that
time, it has undergone many changes designed to broaden its usage (Grell et al., 1995).

The MMB5 version used in this thesis is based on version 3 (MM5v3). The MM5 allows the
user to specify the model grid configuration and the selection of different parameterization
schemes for various physical processes. Table 1 summarizes the MM5 grid configuration
and the basic state variables. Table 2 summarizes the MM5 forecast configuration and the
corresponding namelist parameter. The selected parameterization schemes are believed to
be the most comprehensive schemes available in the MM5v3. The non-hydrostatic MM5
version is used. For details on the dynamical core and the parameterization schemes the
reader is referred to Grell et al. (1995). The horizontal diffusion scheme was modified by
the author and is described in detail in an upcoming section. The modified horizontal
diffusion scheme can be activated by setting the namelist parameter ITPDIF=3.

MMS5 grid Selected option
Projection type Lambert conformal
Horizontal resolution 18 km
Center longitude 5.7E
Center latitude 48.9N
Mesh size 64x70x36
Ref. model top pressure 100 hPa
Ref. sea level pressure 1000 hPa
Ref. sea level temperature 275 K

Table 1: Table summarizing the MM5 grid configuration and basic state variables.

Since MM5 is a limited area research model, it requires initial conditions as well as lat-
eral boundary conditions. Gridded data from the European Centre for Medium-Range
Weather Forecasts (ECMWF) operational analysis is interpolated to the MMS5 grid config-
uration and the standard MMS5 initialization is performed. Hydrometeors, i.e. cloud water
and cloud ice, are reset in the initial state. Ground based GPS data are not assimilated
at the ECMWF.

The MM5 domain and an overview of the geographical locations of the receivers used in
this thesis is given in Figure 5. The receivers are assembled into two networks, hereinafter
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MMS5 physics Selected option Namelist parameter
Coriolis force Full 3D Coriolis force ICOR3D=1
Upper boundary condition Radiative IFUPR=1
Lateral boundary condition Relaxation IBOUDY=3
Cloud microphysics Reisner IMPHYS="7
Planetary boundary layer MRF IBLTYP=5
Ground temperature Simulated ITGFLG=1
Heat/Moist fluxes Simulated ISFFLX=1
Soil model 5-layer soil model ISOIL=1
Radiation RRTM LW /Dudhia SW IFRAD=4
Deep convection Grell ICUPA=3
Horizontal diffusion Modified ITPDIF=3

Table 2: Table summarizing the MM5 forecast configuration and the corresponding

namelist parameter.

— — .
g 10° 12° 14

Figure 5: The MM5 domain and the geographical locations of the ground-based receivers

(indicated by green and red dots).
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referred to as network red and network green. The location of the receivers are indicated
by red and green dots. The membership of a specific receiver to one of the networks is
more or less randomly chosen. Each receiver is simultaneously tracking several satellites
with different azimuth and elevation angels. Notably, the number of receivers used in this
study is less then the number of receivers which are actually available. The reason for the
selection of a subset of receivers is that the model topography does not match the actual
topography in the entire model domain. Though interpolation/extrapolation of model
grid point variables to the receiver locations is performed, receivers are not believed
to be represented by the model if located far below or above the model topography.
Therefore, only receivers are considered which are located at an adequate distance to the
model topography: The magnitude of the difference between a bilinear interpolation of
adjacent model terrain heights and the receiver height does not exceed a threshold of
50 m. In addition, receivers located close to lateral boundaries are not used. Note that
the coordinates of the receivers are provided with respect to the IGb2000 reference frame
(www.ngs.noaa.gov/CORS). The ellipsoidal heights of the receivers are converted to the
geoidal heights during the preprocessing. For details the reader is referred to Lemoine
et al. (1998).

In order to measure the discrepancy between two sets of data a set of statistical quantities
is introduced in Appendix D.

5.2 Intercomparison of the BVP solution and the IVP solution

The numerical algorithm to solve the BVP in 2D has been implemented in MATLAB to
allow the computation of the ray trajectory and the simulation of the slant path delay. The
IVP is solved using the ode45 algorithm available in the MATLAB ODE suite (Shampine
and Reichelt, 1997). The ode45 is based on an explicit fourth-order Runge-Kutta formula
with adaptive stepsize control. Once the ray trajectory is determined the trapezoidal rule
is applied to compute the slant path delay. The solution obtained by the ode45 algorithm
deals as the reference solution.

The dry refractivity Nz and the wet refractivity N, are assumed to be functions of the
height A only

Ny = Dy-exp(—h/H,)
N, Wy - exp(—h/Hy) (67)

where Dy = 260 and W, = 120 denote the dry and wet refractivity at sea level respectively,
and H; = 8000 m and H,, = 2700 m denote the scale height of the dry and wet refractivity
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(Melbourne et al., 1994). The individual refractivity profiles are shown in Figure 6. The
Earth’s radius is chosen to be R = 6369 km in this simulation. The partial derivatives
of the refractivity with respect to the cartesian coordinates in the local frame of reference
are computed by rigorous application of the chain rule of differential calculus.
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Figure 6: The wet/dry and total refractivity profile according to equation (67).

In the first step the ray trajectory is computed by solving the IVP. A hypothetical ground
based receiver is located 100 m above sea level. The explicit numerical integration is
carried out to about 20200 km above sea level in order to mimic the approximate orbit of
a hypothetical satellite. The tangent of the ray trajectory at the initial point is calculated
from a given apparent elevation angle at the receiver. The apparent elevation angle is
varied from 5 to 90 degree. As a matter of the bending effect, the apparent elevation
angle is different from the geometric elevation angle. Once the final ray traced point is
computed, the geometric elevation angle can be determined. For each apparent elevation
angle the first and the final ray trace point are fixed. These two points determine the
boundary values for solving the BVP in the second step. The number of Legendre-Gauss-
Lobatto nodes is chosen to be equal to the number of nodes obtained by the solution
of the IVP. The first guess vector in the Newton iteration is chosen to be equal to the
coordinates along the geometric path. Over the entire elevation range a single Newton
iteration is performed.

Figure 7 shows the altitude of points along the geometric path versus the difference in
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altitude of points along the signal path and the geometric path. Each line represents the
differences in altitude for a specific elevation angle. According to Figure 7 the agreement
of the ray trajectory computed by solving the IVP and the BVP is excellent over the
entire elevation range. In fact, this is not suprising since in both cases the underlying
ODE is the same. However, the numerical algorithm to solve the ODE is very different.
It is remarkable that a single Newton iteration is sufficient for elevation angles down to
5°. This can be explained by the fact that the nonlinear system of equations is well-
conditioned and the first guess vector in the Newton iteration is an approximate zero.

HASL geometric path [km]

50 100 150 200 250
HASL signal path - geometric path [m]
Figure 7: Altitude of points along the geometric path versus the difference in altitude of
points along the signal path and the geometric path. The red crosses correspond to the
solution of the IVP, the blue solid line corresponds to the solution of the BVP. Each line
corresponds to a specific apparent elevation angle (ranging from 5 to 90 degree).

The agreement of the simulated slant path delay computed from the solution of the IVP
and the BVP is on a sub-millimeter level over the entire elevation range (not shown). The
simulation reveals that the number of nodes increases from about 350 close to the zenith
to about 550 for low elevation angles. In the following, the main features of the slant path
delay are analyzed. Since the numerical solution of the IVP and the BVP is practically
identical, the discussion is restricted to the numerical solution of the BVP.

According to Figure 7, the bending of the ray trajectory is increasing with decreasing
elevation angles. The apparent elevation angle is larger then the geometric elevation



5.2 Intercomparison of the BVP solution and the IVP solution 49

angle. Therefore the signal from the satellite to the receiver traverses higher altitudes,
corresponding to lower refractivities, when ray-tracing is applied. At the same time the
bending effect increases the curvature of the ray trajectory and thus increases the path
length. The former effect decreases the slant path delay, where as the latter effect increases
the slant path delay. However, these two complementary effects do not compensate, since,
according to Fermat’s principle, the ray traced solution is the one which minimizes the
optical path length and therefore the slant path delay.
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Figure 8: The slant path delay versus the elevation angle. The blue dots correspond to

the solution obtained by numerical integration along the geometric path, the red circles

correspond to the solution obtained by numerical integration along the signal path.

Figure 8 shows the slant path delay versus the geometric elevation angle. The blue dots
correspond to the solution obtained by numerical integration along the geometric path, the
red circles correspond to the solution obtained by numerical integration along the signal
path. For both options the slant path delay varies from about 2.5 to 25 m for elevation
angles from 90 to 5 degree. The elevation dependency of the slant path delay almost obeys
a cosecant law. For low elevation angles, the curvature of the Earth and to lesser extent
the bending effect lead to significant deviations from a simple cosecant law. In fact, an
accurate description of the elevation dependency of the slant path delay is given through
the continued fraction expansion provided by Equation (66) for an appropriate set of
parameters. According to Figure 8, the slant path delay computed along the signal path
is slightly reduced when compared to the slant path delay computed along the geometric
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path. The difference between the slant path delay computed along the geometric path and
the slant path delay computed along the signal path versus the elevation angle is shown
in Figure 9. The systematic differences in the slant path delay at elevation angles of 30,
20, 10 and 5 degree are about 1, 4, 30 and 230 mm respectively. Though the differences
are small, they are not negligible. The computation of the slant path delay along the
geometric path is of limited value for elevation angles below 30°, if a reasonable accuracy
constraint of 1 mm is set.
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Figure 9: The difference in the slant path delay versus the elevation angle.

Figure 10 shows the slant geometric delay versus the geometric elevation angle. The
differences at elevation angles of 30, 20, 10 and 5 degree are about 1, 3, 25 and 220 mm
respectively. It is concluded that at elevation angles below 30° degree the slant geometric
delay can not be neglected.

Finally, Figure 11 shows the bending angle versus the geometric elevation angle. As
expected, the bending angle rapidly increases with decreasing elevation angles.
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Figure 10: The slant geometric delay versus the elevation angle.
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Figure 11: The bending angle versus the elevation angle.
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5.3 Intercomparison of the BVP solution and an analytic solu-
tion

The numerical algorithm to solve the BVP in 2D as well as in 3D was implemented in
FORTRAN to allow the computation of the ray trajectory and the simulation of the slant
path delay in the MM5 environment. In order to check the implementation for correctness,
Snell’s law for a spherically layered atmosphere, is used.

The refractivity at each grid point of the MM5 domain is computed according to the
Standard Atmosphere (1976). The MM5 grid configuration is given in Table 1. An hypo-
thetical ground based receiver is located in the center of the MM5 domain at an altitude
of 300 m. Hypothetical satellites are distributed in circular orbits at an altitude of 20200
km. The elevation angle at the receiver varies from 1 to 90 degree. The azimuthal angle
at the receiver varies from 0 to 270 degree with a stepsize of 45°. Over the entire elevation
and azimuthal range 550 nodes are used. The first guess vector in the Newton iteration
is chosen to be equal to the geometric path. Two Newton iterations are performed. For
a given elevation and azimuthal angle at the receiver the ray trajectory and the impact
parameter at each point along the ray trajectory are computed. The BVP is solved in 2D
and 3D.

The results of this simulation are summarized as follows: At first, no differences in the
simulated ray trajectory obtained by solving the BVP in 2D and 3D are found. This is
expected, since the atmosphere is spherically layered. Any difference in the simulated
ray trajectory would indicate a problem in either one or both implementations. Second,
no azimuthal dependency on the quality of the solution is found. That is, the numerical
algorithm works equally well over the entire azimuthal range. Third, along each simulated
ray trajectory the numerical solution of the BVP almost exactly obeys Snell’s law. For
example, at an elevation angle of 85° the impact parameter evaluated at the receiver is
of the order of 10° m and varies along the ray trajectory on a centimeter level. Likewise,
at an elevation angle of 5° the impact parameter evaluated at the receiver is of the order
of 10° m and varies along the ray trajectory on a meter level. This is the case if either
one or two Newton iterations are performed. If the ray trajectory is approximated by
the geometric path, i.e. no Newton iteration is performed, the variation of the impact
parameter at an elevation angle of 85° is of the order of 102 m and the variation in the
impact parameter at an elevation angle of 5° is of the order of 10* m. In other words, the
impact parameter computed along a straight line does not obey Snell’s law.

Table 3 summarizes the impact parameters computed at the receiver and the satellite for
a variety of elevation angles. The variation of the impact parameter is on a meter level
for elevation angles above 3° if one/two Newton iterations is/are performed. No clear
tendency in the variation of the impact parameter with respect to the elevation angle is
visible, indicating that the variation of the impact parameter is due to numerical noise.
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For elevation angles below 5°, the simulation with two Newton iterations performs best,
i.e. the agreement in the impact parameter remains on a meter level. A single Newton
iteration is sufficient as long as the elevation angle is not below 5°.

Iteration 0 1 2

eldeg]  pam]  p[m]  pam]  pym]  pa[m]  py[m]
1 6369980 6368285 6369228 6369192 6369214 6369213
3 6362219 6360526 6360940 6360930 6360932 6360933
5 6346707 6345018 6345234 6345229 6345232 6345229
7 6323462 6321779 6321904 6321905 6321903 6321905
9 6292513 6290838 6290918 6290921 6290917 6290921
11 6253898 6252233 6252298 6252291 6252297 6252291
21 5947795 5946211 5946231 5946229 5946231 5946229
41 4808217 4806937 4806950 4806942 4806950 4806942
61 3088698 3087876 3087884 3087877 3087884 3087877
81 996636 996371 996371 996371 996371 996371
85 555264 555117 555117 555117 555117 555117
89 111188 111158 111158 111158 111158 111158

Table 3: The impact parameter at the receiver p, and the satellite p, for a variety of
elevation angles € at the receiver and number of Newton iterations.

5.4 Accuracy and speed

The previous simulation confirms that both implementations in the MM5 environment,
i.e. the numerical algorithm to solve the BVP in 2D and 3D, work as intended, and
are sufficiently accurate under standard atmospheric conditions. However, the standard
refractivity field differs considerably to the refractivity field simulated by a mesoscale
model. It is natural to assume that for a given refractivity field the accuracy of simulated
slant path delays depends on the number of nodes, the interpolation scheme involved in
the computation of the refractivity and the number of Newton iterations.

In order to estimate the accuracy and the speed of the numerical algorithm, an experiment
was conducted for a particular day and hour. A short-range forecast from 0-6UTC is
performed for the 7 of August, 2007. The MMS5 configuration is given in Table 1 and
2. This particular day is chosen since strong gradients in the refractivity with respect
to longitude, latitude and height are present in the model atmosphere. Figure 12 shows
the IWV field and Figure 13 shows the vertical cross sections of the water-vapor mixing
ratio at constant latitude/longitude valid at 3UTC. Hypothetical ground-based receivers
are located at model terrain grid points and hypothetical satellites are evenly distributed
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in circular orbits at an altitude of 20200 km. The elevation angle varies from 5 to 90
degree and the azimuthal angle varies from 0 to 270 degree with a step size of 45° at each
receiver. The number of simulated slant path delays is 54180.
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Figure 12: The IWV field [mm] at 3UTC on August 7, 2007. The black dot indicates
the location of a hypothetical receiver (10E 50N).
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Figure 13: Vertical cross section of the water vapor mixing ratio [g/kg] at latitude 10E
(left panel) and longitude 50N (right panel) at 3UTC on August 7, 2007.
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Table 4 summarizes the configuration for three selected simulations A, B and C. The
simulations differ by the type of the BVP being solved, i.e. the two dimensional BVP or
the three dimensional BVP, the number of Netwon iterations, the number of nodes and
the interpolation scheme. The speed is measured in terms of the number of simulated
slant path delays per second. The simulations are performed with a single CPU. The
simulation A, which solves the BVP in the three dimensional case using 2000 nodes, 2
Newton iterations and bi-cubic interpolation deals as the reference simulation. Increasing
the number of nodes to 3000 and the number of Newton iterations to 3 does not alter
simulated slant path delays significantly, i.e. the magnitude of maximal differences in the
computed slant path delays are < 1 mm.

Configuration BVP type Iteration Nodes Interpolation No. delays/second

A 3D 2 2000 bi-cubic 1.5
B 2D 1 1500 bi-cubic 10.0
C 2D 1 1500 bi-linear 45.0

Table 4: Table summarizing the configuration for three selected simulations A, B and C.
The configurations differ by the number of Newton iterations, the number of nodes and
the interpolation method. The computational speed is defined as the number of simulated
slant path delays per second using a single CPU.

The differences of simulated slant path delays versus the elevation angle are shown in
Figure 14. The red line indicates the RMS, the cyan line indicates the MD and the green
line indicates the zero MD versus the elevation angle. The magnitudes of differences in-
crease with decreasing elevation angles. The magnitude of maximal differences between
the simulation B and A are on a millimeter level over the entire elevation range. The
magnitude of maximal differences between the simulation C and A reach at low elevation
angles the centimeter level. Apparently, the differences are due to the different interpo-
lation schemes. No systematic difference is obvious. The RMS and the magnitude of the
MD are on a sub-millimeter level close to the zenith. Both configurations B and C are
concluded to be sufficiently accurate.

The experiment reveals that the accuracy of simulated slant path delays depends primarily
on the number of nodes, the interpolation scheme for the refractivity and the number of
Newton iterations. Slant path delays simulated in the refractivity field of a mesoscale
model do not deviate significantly if the BVP is solved in the two-dimensional or three-
dimensional case. This can be explained by the fact that the refractivity is more or less
stratified with respect to height. At an arbitrary location the refractivity gradient in
the x-z plane is much larger then the refractivity gradient in the x-y plane. Though it
is observed that the projection of the ray trajectory in the x-y plane is not a straight
line, the variations in the x-y plane are too small to be significant in the computation of
slant path delay. A number of additional simulations in a variety of refractivity fields were
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Figure 14: Differences of simulated slant path delays versus the elevation angle for the
simulation B and A (upper panel) and the simulation C and A (lower panel). The red line
indicates the RMS, the cyan line indicates the MD and the green line indicates the zero
MD versus the elevation angle.
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performed and supported this finding. Nevertheless, it is not precluded that under certain
atmospheric conditions, e.g. if the ray trajectory is simulated in the vicinity of a deep
low pressure system, this conclusion holds. A similar conclusion was drawn by Hobiger
et al. (2008) who analyzed the differences of simulated slant path delays in the vicinity
of a typhoon. In the remaining simulations performed in this thesis the configuration B
is used, unless otherwise explicitly noted.

5.5 Asymmetry

In this section the potential asymmetric information content of slant path delays is esti-
mated. Simulated slant path delays are analyzed for a hypothetical ground based receiver
located in the vicinity of a strong IWV gradient. The particular day and hour in this
experiment is the same as in the previous simulation. The receiver is located at 10E 50N
at an altitude of 280 m. The elevation angle varies from 5 to 50 degree and the azimuthal
angle varies from 0 to 355 degree at the receiver. Figure 12 shows the IWV field in the
vicinity of the receiver. A moisture front ranging from south to north located at about
10E separates moist from dry air. The vertical cross sections of the water vapor mixing
ratio indicate that the water vapor mixing ratio increases form east to west and north to
south in the vicinity of the receiver. How does the asymmetry present in the model space
convert to the asymmetry in observation space? The relative asymmetry in observation
space A can be defined as

S(E7¢) _S(€7¢+7T)
S(e, )

Ale, ¢) = (68)

where the slant path delay S is computed for the elevation angle ¢ and the azimuthal
angle ¢.

Figure 15 shows the relative asymmetry of the slant path delay in a sky plot. The plot
is oriented such that the northern (eastern) horizon is on top (right) and the zenith is in
the middle of the panel. The magnitude of the relative asymmetry of the slant path delay
increases with decreasing elevation angles and takes a maximum value at an elevation
angle of about 5° and an azimuthal angle of about 90°. Even for low elevation angles
the magnitude of the relative asymmetry of the slant path delay is small. This can be
explained by the fact that the relative asymmetry in the dry slant delay is fairly small
(not shown). However, the gradient in the wet refractivity with respect to longitude and
latitude is relatively large. Indeed, the main contribution to the asymmetry of the slant
path delay stems from the asymmetry of the slant wet delay. Figure 16 shows the relative
asymmetry of the slant wet delay in a sky plot. Virtually, the relative asymmetry in
Figure 15 and 16 is the same. However, the magnitude of the relative asymmetry of the
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slant wet delay reaches values of up to 30 percent at low elevation angles. The sign of the
relative asymmetry of the slant wet delay changes from negative at an azimuthal angle of
about 90° to positive at an azimuthal angle of about 180°. This finding agrees very well
with the water vapor distribution in the vicinity of the receiver as shown in Figure 13.
Noteably, the magnitude of the relative asymmetry of the slant wet delay at an elevation
angle of 5° is about 10 times larger then at an elevation angle of 30°.

Relative asymmetry STD [%)]

Figure 15: Sky plot of the relative asymmetry of the slant path delay in percent at the
hypothetical receiver located at 10E 50N. The elevation angle varies from 5° (boundary
of the panel) to 50° (middle of the panel).

The simulation suggests, that in particular slant path delays at low elevation angles can
contain valueable asymmetric information. However, in the case of realistic satellite orbits
it is not possible to recover asymmetry in observation space with such great detail. In
the current satellite constellation maximal 10 satellites are simultaneously in view at a
time. Elevation and azimuthal angels at a receiver are unevenly distributed and there are
segments in the sky plot, depending on the geographical location of the receiver, where
satellits are never in view of the receiver. For a comprehensive analysis on the information
content provided by slant path delays from a network of receiver stations in Germany the
reader is referred to (Bender et al., 2009).
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Relative asymmetry SWD [%]

Figure 16: Sky plot of the relative asymmetry of the slant wet delay in percent at the
hypothetical receiver located at 10E 50N. The elevation angle varies from 5° (boundary
of the panel) to 50° (middle of the panel).
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5.6 Statistical intercomparison of simulated and observed data:
Part 1

In this section a statistical intercomparison of simulated and observed data is provided.
The time period under investigation is 18-31 of August 2007. In order to minimize errors
associated to the forecast model, short-range forecasts from 0-6UTC are performed for
each day. The MM5 configuration is given in Tables 1 and 2. The forecast model output
frequency is 15 minutes. Slant path delay observations collected at all receiver locations
indicated in Figure 5 enter the intercomparison. The full time resolution of 2.5 minutes
is used. In case the time of the observation does not match the forecast model output
time, the nearest available model output time is used. With this setup, 732668 slant path
delay observations enter the intercomparison. Hereinafter, the model prediction, i.e. the
simulated slant path delays at appropriate time, will be referred to as the background.
Thus, the background is obtained by integrating the initial state in time using the forecast
model and mapping the forecast model prediction to observation space using the forward
model. Background minus Observation (BmO) differences are therefore a composite of
forward model errors, forecast model errors, errors in the initial state and observation
errors. In this description, remaining error sources, i.e. representative errors in space
and time, are not considered. In the following, the BmO differences are computed and
compared for two different backgrounds L. and R, which are generated using two different
forward models. The forward models differ by the number of Newton iterations which
are performed in the signal path determination. The background L is generated using no
Newton iteration and the background R is generated using one Newton iteration. Since
the same observations, the same forecast model and the same initial state is used in both
cases, the BmO differences that are revealed are due to differences in the forward model.

Figure 17 shows the BmO differences versus the elevation angle for the background L and
R. The red line indicates the RMS, the cyan line indicates the MD and the green line
indicates the zero MD versus the elevation angle. The RMS and the MD are computed
from the BmO differences with a sliding average of 4°. The magnitudes of BmO differences
for both options are small close to the zenith and become progressively larger for lower
elevation angles. The relative level of agreement of simulated and observed slant path
delays, i.e. the normalized deviation, is independent of the elevation angle. For elevation
angles above 30° the BmO differences for both options are practically identical. For
elevation angles below 30° however the BmO differences for both options start do deviate
from each other considerably. Whereas the MD of the BmO differences for the background
R remains close to zero, the MD of the BmO differences for the background L rapidly
increases with decreasing elevation angles. This is expected: Since the forward model
used to determine the background L does not account for the bending effect of the signal
path, simulated slant path delays at low elevation angles are overestimated relative to the
observations.
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According to Figure 17 the BmO differences are on a centimeter level over the entire
elevation range. Since slant path delays range from about 2.5 m close to the zenith to
about 25 m at an elevation angle of 5° degree, the correlation of simulated and observed
slant path delays is high. This is not too surprising, since the main contribution to the
slant path delay stems from the slant dry delay Sy, which is believed to be well represented
in both, the model prediction and the observation. From its definition the BmO statistics
does not allow for a strict separation of BmO differences of individual contributions, e.g.
BmO differences of the slant wet delay S,,. However, assuming that the main contribution
to the BmO differences stem from the BmO differences of the S, allows one to estimate
the MD and the RMS of the S,. In addition, the conversion factor II allows one to
estimate the MD and the RMS of the slant water vapor SWV. Close to the zenith the
MD and the RMS of the S,, are —3 mm and 8 mm. Therefore, the MD and the RMS of the
IWV are about —0.5 mm and 1.3 mm. That is, the estimated agreement of simulated and
observed IWV is good. Noteably, the RMS of IWV, estimated from the BmO statistics of
the slant path delays, is consistent with statistical intercomparisons of the IWV estimates
processed at the GFZ Potsdam and the Lokal Model (LM) of the German Weather Service
(DWD) (Dick et al., 2001).

From the RMS of the slant wet delay the variation of the water vapor mixing ratio in the
planetary boundary layer (PBL) can be estimated. In the zenith case the variation of the
slant wet delay S,, with respect to the wet refractivity NV, reads as

n+1

5Sw = 1076'26]\[10(1’1',:[]1‘,2@') W;

1=0

The variation of the wet refractivity N, with respect to the water vapor mixing ratio ¢
is given by

0.622 - N,,

Ny = ———mM8M—
q-(q+0.622) 1

Assuming that the water vapor mixing ratio is 6.5 gkg™' throughout the PBL of depth
2500 m and zero above and that the temperature and the pressure are given by the
Standard Atmosphere (1976), leads to a slant wet delay of about 110 mm. Therefore, the
variation of the slant wet delay of =8 mm corresponds to a variation of the water vapor
mixing ratio throughout the PBL of 0.5 gkg .
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Figure 17: BmO differences versus the elevation angle for the background L (upper
panel) and the background R (lower panel). The red line indicates the RMS, the cyan line
indicates the MD and the green line indicates the zero MD versus the elevation angle.
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6 Sensitivity study

The MMS5 is an open source research model. It differs to operational NWP models in
that it allows the user to specify the model grid configuration and to select one of dif-
ferent parameterization schemes. As an open source research model, it offers the unique
possibility to study the sensitivity of physical processes with respect to individual model
components. In addition, the continuously operating GPS receiver network in Germany
provides data, which can be used for validation purposes. In this section the sensitivity of
simulated slant path delays with respect to two forecast model components, namely the
horizontal diffusion scheme and the parameterization of deep convection, is investigated.

6.1 Horizontal diffusion
6.1.1 The current horizontal diffusion scheme

In the MM5, two types of horizontal diffusion are used to control non-linear instability:
second-order diffusion is used for the row and column of the grid points next to the lateral
boundaries, while the more scale-selective fourth-order diffusion is used in the interior of
the domain (Grell et al., 1995). In analytical form, the fourth-order diffusion F' reads:

(69)

4 4
F:_Kh(a& 804)

a1 T o

where « is any prognostic variable and K} denotes the horizontal diffusion coefficient.
The horizontal diffusion is applied on constant sigma levels and not on constant height
levels. Therefore serious errors over complex terrain, particularly for atmospheric variables
having a strong vertical gradient, like water vapor and temperature, are introduced (Li
and Atkinson, 1999).

In the MM5 version used in this thesis, two options for calculating the horizontal dif-
fusion of temperature are available. In the first option, actual temperature is used for
computing the diffusion on constant sigma levels. In the second option, the perturbation
temperature, i.e. the difference between the actual temperature and a given reference tem-
perature, is used for computing the diffusion on constant sigma levels. The first option
tries to equalize the temperature differences on the terrain following model surfaces, and
therefore tends to cool valleys and to heat mountains. The second option tries to estab-
lish a vertical temperature gradient within valleys leading to warmer valleys as compared
to the first option. The second option effectively suppresses the erroneous temperature
tendency introduced by the first option. However, both options have deficiencies (Zangl,
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2002): Above mountainous terrain, a strange and noisy pattern appears in the temper-
ature that is reminiscent of breaking gravity waves. This is explained by the fact that
diffusion on constant sigma levels induces horizontal temperature gradients over moun-
tainous topography. As a result, pressure gradients occur and gravity waves are excited.
In both options, diffusion is computed along sigma levels for water vapor. Therefore, in
both options, a spurious moisture tendency exists.

To prevent spurious temperature or moisture tendencies, diffusion should be computed
truly horizontally as suggested by Zéngl (2002). At high elevations, this can be done by
simply interpolating between vertical coordinate surfaces. The vertical interpolation is
performed linearly with height for the temperature and an exponential interpolation is
used for the water-vapor mixing ratio. At lower elevations, truly horizontal computation
may be impossible without intersecting the ground. Solutions are either to switch back to
diffusion along sigma surfaces, using one-sided truly horizontal diffusion or to apply the full
coordinate transformation to the horizontal diffusion operator. From an analytical point
of view, the latter method is superior to vertical interpolation but it is computationally
expensive. Since the first options retains some error in complex terrain, the second option,
a modified horizontal diffusion scheme similar to the one proposed by Zéngl (2002) was
implemented.

6.1.2 The modified horizontal diffusion scheme

The focus is on the approximation of the fourth partial derivative of the water vapor
mixing ratio. The approximation of the fourth partial derivative of the temperature is
treated in a similar manner except that the vertical interpolation is linear. Let I,.J and
K denote the grid point indices of a point in the model grid with coordinates y,z and z
at which the fourth partial derivative of water vapor with respect to y is to be computed.
The second-order accurate discretization of the fourth partial derivative on sigma levels
is altered to be:

Qp = (Qa—4-Qp+6-Qux—4-Qc+Qp) /Ay

where Ay denotes the grid increment,

La
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and ) denotes the gridded water-vapor mixing ratio. The vertical interpolation coeffi-
cients are computed as

Ly (Hrsx — Hryoga)/(Hpyoga — Hipo5a-1)
Ly = (Hyx — Hiss)/(His1 — Hrviy-1)
Le = (Hrx —Hie)/(Hr-150 — Hi—150-1)
Lp = (Hpjx — Hrosp)/(Hr-25p — Hi—25p-1)

and the adjacent grid point indices with respect to height A, B,C' and D are determined
by binary search. Obviously, the expression for sigma diffusion is recovered in flat ter-
rain. The discretization scheme (2 is applied at all model grid points where the vertical
extrapolation does not intersect the model topography. At model grid points where the
vertical extrapolation intersects the model topography, i.e. the discretization scheme 2
is not applicable, the altered second order accurate discretization of the second partial
derivative on sigma levels

Qs = (Qp—2-Qux+Qc) /Ay

is applied. At model grid points where the discretization {2, is not applicable one of the
following discretization schemes is used

Q. = Qp—4-Qc+3-Quk) /Ay

(
(Qa—4-Qp+3-Qrxk) /Ay
Q- = (QB - QIJK) /AQQ
Qo = (Qc— Quik) /Ay2

where Qy_/Qp and Q,_/Q, can be derived from 2y and €, assuming a transparent
boundary. At model grid points where none of the discretization schemes introduced
above is applicable, i.e. at a model grid point located in a narrow valley, the second
order accurate discretization of the second partial derivative of the water vapor mixing
ratio/temperature perturbation on sigma levels is used. In a narrow valley, the discretiza-
tion scheme thus retains some error. Note that the right hand side of the horizontal
diffusion equation needs a negative/positive sign for the fourth-/second-order discretiza-
tion to damp noise. The same procedure is applied in the x direction. Once the partial
derivative with respect to y and x is computed, the update of the water vapor tendency
due to horizontal diffusion is straightforward.

Qf+ -
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Hereinafter, the modified horizontal diffusion scheme will be referred to as HD scheme,
sigma diffusion applied to the water vapor mixing ratio and the temperature will be
referred to as SD scheme and sigma diffusion applied to the water vapor mixing ratio and
the temperature perturbation will be referred to as PD scheme.

6.2 Sensitivity test 1: Horizontal diffusion

The results of three model simulations are presented for the 22 of August, 2007. Short-
range forecasts from 0-6UTC are performed, initialized from the same initial state valid at
OUTC. The forecast model configuration is given in Table 1. Instead of the Grell cumulus
scheme the Kuo cumulus scheme is used in all three simulations. The three simulations
differ by the horizontal diffusion scheme only. The simulation A, B and C use the SD, the
PD and the HD scheme respectively. To show the erroneous moisture tendency introduced
by the SD and the PD scheme, the focus is on complex terrain (south Germany).
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Figure 18: Vertical cross section of the water vapor mixing ratio [g/kg] at constant
latitude 48N valid at OUTC on August 22, 2007.

Figure 18 shows the vertical cross section at constant latitude 48N of the water vapor
mixing ratio of the initial state. The white shaded area close to the ground at 7E and S8E
represent the Vogues mountains to the west and the Blackforest to the east of the Rhine
valley, which is located at about 7.5E. The water vapor mixing ratio in the initial state
is more or less stratified with respect to height.
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Figure 19 shows the same vertical cross section valid at 2UTC for the three simulations.
The simulation A and B show a peak at 7E and 8E, i.e. above the mountains crests, and a
trough at 7.5E, i.e. the valley, in the water vapor mixing ratio. The peaks and the trough
in the water vapor mixing ratio in the simulation A and B appear instantly after model
initialization and vary only slightly over the entire model forecast range (not shown). The
peaks and the trough in the water vapor mixing ratio are absent in the simulation C.

The peak and trough in the water vapor mixing ratio appear in simulation A and B
due to the erroneous moisture tendency introduced by the SD and the PD schemes.
The erroneous moisture tendency is most pronounced using the SD scheme. A spurious
moisture tendency however is also present using the PD scheme. The difference is that
the SD scheme applies diffusion on sigma levels for both the water vapor mixing ratio and
the temperature whereas the PD scheme applies diffusion on sigma levels for the water
vapor mixing ratio only. Thus, there is not only a moistening but also warming effect on
mountain crests when the SD scheme is used. The moistening and the warming on the
mountain crests triggers deep convection, i.e. on top of the Vogues mountains and the
Blackforest convective rainfall is enhanced (see next section). The HD scheme behaves
more or less neutral to the stratification of the water vapor mixing ratio with respect to
height. In fact, under atmospheric conditions where the temperature and the water vapor
mixing ratio are uniformly stratified with respect to height the HD scheme will behave
neutral, whereas this will not be the case for the SD or the PD scheme.

It is interesting to note that the structure in the water vapor mixing ratio, visible in the
simulations A and B, is completely absent in the initial state. A very interesting detail,
with simple explanation: The initial state is obtained from an analysis generated at the
ECMWEF using the Integrated Forecast System (IFS). In the IFS, fourth order diffusion is
applied on hybrid vertical surfaces to moisture and on pressure surfaces to temperature.
The hybrid coordinate system of the IFS differs to the sigma coordinate system of the
MMS5 in that the vertical surfaces are not steeply sloped in regions where the terrain is
steeply sloped. The application of fourth order diffusion on hybrid vertical surfaces to
moisture is not too crucial. The horizontal diffusion scheme for temperature used in the
IF'S is very similar to horizontal diffusion scheme for temperature used in the HD scheme.
In this sense, the simulation C can be roughly regarded as the continuation of the IFS
integration.

6.3 Sensitivity test 2: Deep convection

Another issue in the application of the MM5 is related to the convection parameterization
scheme, which at best can be regarded as a crude representation of deep convection. The
MMS5 offers the user to select one of various more or less sophisticated convection param-
eterization schemes. A general recommendation does not exist. However, some comments
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Figure 19: Vertical cross section of the water vapor mixing ratio [g/kg] at constant
latitude 48N valid at 2UTC on August 22, 2007 for different model forecasts. a) SD
scheme b) PD scheme ¢) MD scheme.
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on the performance of individual convection parameterization schemes are provided. For
example, it is known that the Kuo cumulus scheme tends to produce much convective
rainfall and less resolved-scale precipitation. In particular the Kuo cumulus scheme is
mostly applicable to larger grid sizes > 30 km whereas the Grell cumulus scheme is es-
pecially usefull for smaller grid sizes 10 — 30 km and tends to allow a balance between
resolved-scale rainfall and convective rainfall (Grell et al., 1995).

To illustrate the differences between at least two convection parameterization schemes
an additional simulation for the 22 of August, 2007 from 0-6UTC were performed. The
simulation D uses the Grell cumulus scheme in conjunction with the HD scheme. To
outline the differences between the Grell cumulus scheme and the Kuo cumuls scheme, it
is sufficient to inspect by eye the 15 minutes accumulated precipitation pattern. For a
qualitative intercomparison with observed data, Figure 20 shows the measured reflectivity
of the DWD radar composite at 2 UTC. Figure 20 indicates two strong precipitation
events, i.e. a rainband covering large parts of north-western Germany and an isolated
strong precipitation event located over eastern Germany. A time series of the measured
reflectivity of the radar composite shows that the rainband is close to stationary and
the isolated strong precipitation event vanishes after a few hours. Southern Germany is
hardly effected by any precipitation.

Figure 20: Composite reflectivity of the DWD radar network at 2 UTC on August 22,
2007.

Figure 21 shows the 15 minutes accumulated precipitation for the model simulations
A, B, C and D valid at 2 UTC. Obviously the rainband covering large parts of north-
western Germany visible in Figure 20 is captured qualitatively by all model simulations.
The isolated strong precipitation event in east Germany is captured only by the model
simulations A, B and C, i.e. the model simulations using the Kuo cumulus scheme. The
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model simulation D, i.e. the model simulation using the Grell cumulus scheme does
not capture this precipitation event. The most striking differences between the model
simulations are however found in southern Germany. In the simulation A, B and C
convection is initiated instantly after model initialization and the 15 minutes accumulated
precipitation pattern does not change significantly in time (not shown). The ability of the
Kuo cumulus scheme to predict the isolated strong precipitation event in east Germany
has to be regarded with caution. The Kuo cumulus scheme predicts precipitation almost
in the entire model domain.

From Figure 21 the following conclusion can be drawn: Precipitation is enhanced if (i) the
Kuo cumulus scheme is used instead of the Grell cumulus scheme and (ii) the horizontal
diffusion is computed on sigma levels. The enhancement of precipitation when the Kuo
cumulus scheme is used is consistent with the general comment provided by Grell et al.
(1995). The enhancement of precipitation when horizontal diffusion is computed on sigma
levels can be explained by the fact that in complex terrain sigma diffusion transports moist
(and warm) air masses into the upper atmosphere which in turn triggers and/or enhances
convection. This finding is consistent with the conclusion drawn by Zéngl (2004). To
summarize, a precipitation forecast in mountainous terrain using the Kuo cumulus scheme
in conjunction with the SD or PD scheme is doubly penalized. The simulation using the
Grell cumulus scheme in conjunction with the HD scheme provides the most accurate
precipitation forecast, though the precipitation event in eastern Germany is not well
captured.

6.4 Statistical intercomparison of simulated and observed data:
Part 2

In this section, a statistical intercomparison of simulated and observed data is provided.
The forecast model output frequency is 15 minutes. Data collected at all receiver locations
indicated in Figure 5 enter the intercomparison. The full time resolution of 2.5 minutes
is used. In case the time of the observation does not match the forecast model output
time, the nearest available model output time is used. The BmO differences are computed
and compared for the model simulations A, B, C and D. Since the same forward model,
the same observations, and the same initial state are used in all cases, the revealed BmO
differences are concluded to be due to differences in the forecast model.

Figure 22 and 23 show the BmO differences versus the elevation angle for the background
A, B, C and D respectively. The red line indicates the RMS, the cyan line indicates the
MD and the green line indicates zero MD versus the elevation angle. The significant MD
of the BmO differences for the background A and B can be readily related to the erroneous
behavior of the Kuo cumulus scheme in conjunction with the SD and PD schemes. Since
in the model simulation A and B the IWV content (or equivalently the PW content)
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Figure 21: 15 min accumulated precipitation [mm] for different model forecasts valid
at 2 UTC on August 22, 2007. The arrows indicate 10 m horizontal wind field. a) Kuo
scheme in conjunction with the SD scheme b) Kuo scheme in conjunction with the PD
scheme c¢) Kuo scheme in conjunction with the HD scheme d) Grell scheme in conjunction
with the HD scheme.
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present in the initial state is immediately converted to precipitation, the simulated slant
path delays are underestimated relative to the observed slant path delays. The difference
between the magnitude of the MD of the BmO differences for the background C and D
can be explained by the tendency of the Kuo cumulus scheme to over predict convective
rainfall irrespectively of the used horizontal diffusion scheme.

Figure 13 and 14 reveal that the RMS and the magnitude of the MD become successively
smaller over the entire elevation range from background A to D. Table 5 provides the
RMS and the MD of the BmO differences for the background A, B, C and D for elevation
angles of 7 and 87 degree. The BmO statistics confirm the findings from the previous
section and thus demonstrate the ability to use the GPS data for verification purposes.

Statistics ¢ [deg] Model D Model C Model B Model A

RMS [mm] 87 9 11 13 17
RMS [mm] 7 60 68 78 97
MD [mm] 87 6 8 10 14
MD [mm] 7 9 25 36 61

Table 5: BmO statistics of the four different model simulations.

It is important to note that the particular day chosen for this experiment is not an
exceptional day. The discussed forecast model deficiencies are systematic; that is, the
main findings of this single case are valid for an arbitrary chosen day at an arbitrary
chosen time. This particular day was chosen in order to highlight the erroneous behavior
of forecast model components incorporated in the MM5.

From the sensitivity experiments the following conclusion can be drawn: A spurious ten-
dency present in the model minus observation statistics of the slant path delay data is
strongly related to the misplacement and/or the enhancement/suppression of precipita-
tion. Slant path delay observations are potentially useful for verification purposes. The
analysis of the model minus observation statistics of the slant path delay data can be used
to improve forecast model components.
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Figure 22: BmO differences (0-6UTC on August 22, 2007) versus the elevation angle
for the background A (upper panel) and the background B (lower panel). The red line
indicates the RMS, the cyan line indicates the MD and the green line indicates the zero
MD versus the elevation angle.
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Figure 23: BmO differences (0-6UTC on August 22, 2007) versus the elevation angle
for the background C (upper panel) and the background D (lower panel). The red line
indicates the RMS, the cyan line indicates the MD and the green line indicates the zero
MD versus the elevation angle.
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7 Tangent linear (TLM) and adjoint (ADJ) code con-
struction

Tangent linear and adjoint models are developed for inverse modelling of physical systems.
Among the applications of tangent linear and adjoint models in atmospheric science are
model tuning, sensitivity analysis, the determination of singular vectors and variational
assimilation. In model tuning data are used to optimize the model equations themselves.
Optimization is performed analogously to variational data assimilation, but the control
variables are parameters in the underlying equations. In sensitivity analysis, the tangent
linear model can be used to analyze the impact of small disturbances. The determination
of singular vectors allows to determine which initial perturbations amplify most rapidly.
In variational assimilation the control variables are initial conditions. The adjoint model
is used to determine the gradient of the cost function. From the diverse applications of
tangent linear and adjoint models it follows that data with good spatial coverage, such
as data provided from a continuously operating network of GPS receivers, can be useful
in many different ways. For example, in the previous section it was demonstrated that
simulated slant path delays are very sensitive to particular forecast model components.
It is therefore evident that slant path delays can be useful in model tuning.

7.1 Theory

In the following, a brief description of the basic principles of tangent linear and adjoint
code construction are given. The focus is on the forward model (a forecast model can
be treated in exactly the same manner). For details on tangent linear and adjoint code
construction the reader is referred to Giering and Kaminski (1998).

Incorporation of observations in a variational assimilation system requires the develop-
ment of three operators (i) The forward operator, which maps from model to observation
space (ii) the tangent linear operator, which is defined as the gradient of the forward
operator with respect to model variables and (iii) the adjoint operator, which is defined
as the transpose of the tangent linear operator. In the following, the non-linear operator
H represents all required operations to compute the slant path delay S from the gridded
temperature, water vapor mixing ratio and pressure fields of the model; that is

S = H[x] (70)

where x denotes the model state. The tangent linear operator H is defined as
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oH
H = — 1
o (71)
and the adjoint operator H* is defined as
H* = H (72)

A close inspection of the forward model H, i.e. the computation of the slant path delay,
reveals that the determination of H and H* is by no means trivial. To allow for a strict
(exact) and step-by-step derivation, it is convenient to view the computation of the slant
path delay as a composition of operators. The computation of the slant path delay consists
of two fundamental numerical procedures, the computation of the ray trajectory and the
integration along the ray trajectory. Therefore H can be viewed as a composition of two
operators H, and H,, that is

H = H,H,X (73)

Likewise, each operator can be seen as the composition of individual operators acting suc-
cessively on intermediate results. If m and n denote the numbers of individual operators
representing Hy and H, respectively, the non-linear operator reads as

H = Hsm---Hsl Hrn---Hrl[X] (74)

The tangent linear operator is obtained by rigorous application of the chain rule of dif-
ferential calculus

8}Ism aHsl aHrn . aHrl

aI—]’smfl aHrn aI—Irnfl ox

(75)

and the adjoint operator is obtained by the transpose of the tangent linear operator

T T T T
o= () (0Hw N (OHaT (O (76)
ox a[—Irn—l aHrn 8]—Ism—l
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Notice that in the tangent linear and adjoint model development the above matrices are
not explicitly determined. In fact, one is only concerned with obtaining the result of
a matrix/vector product Hdu or H* §v where du and ov denote vectors. Hereinafter
the entries of the vectors du and ov will be referred as the tangent-linear and the adjoint
variables respectively. The matrix/vector products are referred as the tangent linear model
(TLM) code and the adjoint (ADJ) code respectively. The forward model is referred as
non-linear model (NLM) code. In the remainder of this section, ér denotes the tangent
linear and 67 denotes the adjoint variable of an arbitrary variable 7.

7.2 Practice

The TLM code is developed directly from the NLM code. The ADJ code is developed
from the TLM code. As outlined before, the NLM code is an algorithm that can be viewed
as a composition of differentiable operators or functions, each representing a statement in
the numerical code. The order of evaluation of the individual functions is imposed by the
algorithm. Differentiation of the composition can be done by rigorous application of the
chain rule of differential calculus on a coding level. The numerical code can be interpreted
as a sequence of assignments. An assignment can be considered as an operator acting
on the vector of control variables. In general, not all control variables are involved in
an assignment. Hence, for the representation of the assignment it is sufficient to use a
restricted operator acting only on the subset of involved control variables. The restricted
vector of control variables consists of the left-hand side variable and all control variables
on the right-hand side. To construct the adjoint statement, the Jacobian of the operator is
determined. This is equivalent to constructing the tangent-linear assignment. The partial
derivatives are the entries of the Jacobian. The adjoint matrix is the transposed Jacobian.
From this matrix the adjoint assignments are formulated. For illustration, consider the
following assignment performing one arbitrary step of an numerical algorithm. Suppose
d is obtained by applying a nonlinear function on the control variables a, b and c.

d = fla,b,c)

As it stands, this statements can be seen as a function f with input variables and output
variables. The TLM code is obtained by differentiation of f

5d = fo-da+ fy-0b+ f.-dc

Here the subscripts denote the partial derivative with respect to a,b and c respectively.
To derive the ADJ code, we need to express the TLM code in matrix form. In order to
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define this expression, we need to consider all the input and output variables. It is likely
that the variables a, b, c and d will be used in other parts of the code. As a consequence,
these variables should be considered as input and output. In other words, the complete
expression of the TLM code is:

da = da
ob = 0b
dc = Jc

5d = f.-da+ fy-0b+ f.dc

In matrix notation we have

oa 1 0 0 0 oa
ol [0 1 0 0 0b
ocl O O 1 O dc
od fa fo fe O od

The ADJ code is obtained after transposition of the matrix

5a 100 f, oa
bl o1 0 f &b
s¢el oo 1 | |oée
5d 000 O 5d

or simply

da = da+ f,-od
6b = b+ fy-6d
6¢ = 0+ f.-od
6d = 0

Note that, the statements must be read from top to bottom and right to left. Adjoint
statements accumulate information, global adjoint variables need to be reset at the be-
ginning of the adjoint program, local adjoint variables need to be reset at the beginning
of the adjoint routines. The trajectory variables that enter in non-linear forward state-
ments, here a,b and ¢, need to be recomputed and passed to the adjoint statement. In
the following two sections TLM and ADJ code construction is illustrated for the forward
model and a specific component of the forecast model.
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7.3 The forward model
7.3.1 The TLM and ADJ code

The TLM and ADJ code construction is illustrated for the fast computational model for
the slant path delay. Hereinafter, D and W denote local variables and V' denotes a dummy
variable. In the very first step the refractivity is computed at each grid point according
to:

Dijk = ki-Prx/Tiix
Wik = ko Prx - Qrix/(0.622+ Qrix)/TE
Nijk = Dijx + Wik

for I =1,..,.M;, J=1,...M; and K =1, ..., M. Hereinafter, the index ¢ indicates the
location along the geometric path. The first statement in the NLM code computes the
refractivity along the geometric path:

= Niy+os)+0aG) - (N1@)+os)+0a6) /N1g)+05()+0AG0) -1

Nr@y+1a6)+006) / Ni(y+156)+00()-1

(1) ( )
(1) = Ni@y+os6)+186) - (Ni@)+0s6)+1B6)/ N1 +0()+1BG)-1)
(i) = Nrgyusyroct) - ( )
(2) (

= Ni@+156)+106) * (Ni@y+170)4106)/ N1 +156)+1D6) -1

for:=0,...,l + 1 followed by

fori=0,...,0+ 1.

The second statement in the NLM code computes the pressure at the model top point:

Pi = Prutiyrosasroairn) * (Prasnsosaensoaqen/Prasyrosarnroagey—1) = Y
Py = Prasnsosaen1sa+n) - (Prasnsosasn+1saen/ Prasnsosarnisaen—1) 2
Py = Prusnsiiaenocas) - (Prasnsen1ocas)/Prasn+ 1) socry—1) 20
Py = Proynsiasny e - (Prary ey sinarn/ Prasysisae) b - )L“UH)
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followed by

4
P =) Xy(l+1) B
k=1

The third statement in the NLM code computes the slant path delay:

I+1
S = 107N NG) i+ 1070 k- Ra- s(€0)/9(8) - P
=0

Due to the simplicity of the NLM code the construction of the TLM and ADJ code is
straight forward. The TLM code is omitted for sake of brevity. The ADJ code is provided
in detail.

The ADJ code is the transpose statement of the TLM code. This implies that the ADJ
code operates in reverse order. The trajectory variables that enter in NLM code need to
be recomputed and passed to the ADJ code. The first statement in the ADJ code reads
as:

6P = 6P+107° k- Ry~ sh(E,)/9(E,) - 65
ON(I+1) = ON(@+1)+10"% iy, - 88
SN(I+0) = 6N(I+0)+1075- -9
SN(I—1) = SN —1)+10"% -4y, - 65

ON(1) = 6N(1)+107° -, - 65
ON(0) = G6N(0)+107° -y - 65
55 = 0

The second statement in the ADJ code reads as:

6Py = 6P+ Xy(1+1)-6
0Py = 0P+ Xa(l+1)-0
5}32 = 5p2+X2(l+1)-5
6P, = 0P + X (1+1)
5P = 0

l+1)-9
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followed by the assignments

Vs (La(l+1)
Vo = (L4 1)
Vo = (La(l+1)
Ve = (Li(l+1)
Vi = L4(l+1)-
Vs Ls(l+1)-
Vo = Lo(l+1)-
Vi = Li(l+1)-

and the update of adjoint variables

8 Pras1y 170014100041

8 Pra1y 1704 1)400041)

S Priis1) 10004 1)+1B(141)

S Pr(i41)10(41)+0A(+1)

S Pr41) 41704 1) 410014 1)1
O Pr41) 41704 1) 40004 1) -1
O P11y £00 (1) 4184 1) -1
(5IADI(I+1)+0J(I+1)+0A(I+1)71
5P,

5P

5P,

5P,

+1)
+ 1) - Py/ Pras1)+17041)+0C(1+1)
+1)

.
~
AEUAA

- Py/ Pri41)+17(41)+1D(1+1)

) )
) )
- Py / P14 1)40J(141)+1B(1+1)
) )

+1) - Pt/ Priig1)+07(141)+0A(1+1)

I+1)4+1J(1+1)+1D(I+1)—1
IH+1)+1J(I+1)40C (I14+1)—1
141)40J (I+1)+1B(1+1)—1
(

14+1)40J (I4+1)+0A(I+1)—1

0Py 1)+ 17041+ 1)-1 — Va

= 0Py rosarn a1 — Vo

3 Prs1y 1oty roasny—1 — Vi

= 0

0
0
0

The third statement in the ADJ code reads as:

SN, (1) 4+ X4(i) - SN ()
SN5(i) 4+ X5(i) - 6N (i)
SN, (i) 4 Xo(i) - 6N (i)
SNy (i) 4+ X1(i) - ON ()
0

S Prs1y 100100y —1 — Vi -
6P,
6P

5p[(l+1)+1](l+1)+1D(l+1) + Vs 0P,
= 5PI(1+1)+1J(1+1)+00(1+1) + Vi 6P
5PI(Z+1)+OJ(1+1)+1B(Z+1) + Vs 0P
= 0Pgs1y s 10401y + Vs - 0P
0P,

5Py
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fori=1+1,...,0, followed by the assignments

Vg = (La(@) +1) - Na(i)/Nigy+150)+100)
Vo = (Ls(1) +1) - N3(i)/Nrgiy+156)+oc)
Vs (La(i) + 1) - No(4) /N1y +0s(:)+1B)
Vs = (Li(i) + 1) - N1(3)/N1()+05()+0Ax)
Vi = Lg(i) - Na(@)/Nig)+15()+1D6)-1
Vi = Ls(i) - N3(2)/Nigy+16)+0c()-1
Vo = La(i) - Na(i)/N1@)+osy+1B()-1
Vi Ly () - N1(3) /N1g)+05(:)+0AG)—1

and the update of adjoint variables

A~

SN1@y+1sy+106) = N1y +1i@+1pa) + Vi - ONy(i
5N1(i)+1J(i)+OC(i) = 5N1 ()+17@5)+oc() + V- 5N3(
SNrtiyrosay1186) = NG ros)11Ba) + Ve N (i
SN1tiyros)roat) = ON1G)ros6)roaq + Vs - ON1 (3

5NI(i)+1J(i)+1D(i)—1 = 5N1( )+1J(0)+1D(i)—1 — Va - 6N, (1)
5NI(i)+1J(i)+OC(i)—1 = SN1wys17) 001 — Va - ON3(i)
5N1(z’ )4+0J (i) +1B(i)—1 = 5]\71 (1)+0J())+1B(i)—1 — 2% 5N2(Z)
SN 1(3)+0.J() +0A ()1 S N1(syr05() oA 1 — Vi - ON1(4)

SN4(i) = 0

SNs3(i) = 0

SNy(i) = 0

SN1(i) = 0

fori=1014+1,...,0.
The very last step of the ADJ code reads as:

6Dy = 0Dk + 0Nk
Wik = Wik + 0Nk
Nk = 0
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for I = My,..,1, J = Mjy,...,1 and K = Mk, ..., 1, followed by

8Pk = 0P+ Wiik/Prik - Wik

0Qrix = 0Qrix +Wis/Qrir - Wik

0Tk = 0Tijk — Wik /Ty -2 - Wik

0Qrix = 0Qrix — Wiyi/(0.622 + Qi) - Wik
8Py = O0Pryx + Disi/Pryx - 6Dk

0Trse = 0Tk — Dryx/Trsk - 0D1k

Wik = 0

6Drjx = 0

for I = My,..,1, J = My,....,1 and K = Mg, ...,1. To understand the effectiveness of
the ADJ code in a variational assimilation framework, let us introduce the cost-function
C, depending on the model state x, measuring the difference between a single slant path
delay observation y and the model prediction H[x] in a least square sense

Clx] = = (y — Hix)) = (y — HIx) (77)

where o, denotes the observation error. The gradient of the cost function C' with respect
to the x reads as

If one performs the assignment

(y — H[x])

2
Oy

65 = — (79)

at the beginning of the ADJ code, it is not difficult to see that the gridded adjoint variables
5Q[JK,6TIJK and 5P]JK for I = 1, ceny M[, J = 1, ceey MJ and K = 1, ceny MK at the end of
the ADJ code store the gradient of the cost function C' with respect to the gridded control
variables Q[JK,T[JK and P]JK for I = 1, ...,M[, J = 1, ...,MJ and K = 1, ...,MK. The
computed gradient is exact. It is interesting to observe how information is accumulated in
the ADJ code: a single scalar, i.e. the normalized departure, is input, and three gridded
(though sparse) arrays are output.
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7.3.2 Impact of a single slant path delay in variational assimilation

Since the slant path delay is an integrated measurement, it is interesting to estimate the
impact in variational assimilation. Linearizing the cost function J in the vicinity of the
background state x; leads to

Jix] = % (x — x,)"B~! (x — x;) +
L = Hlo) ~ ) (= )" R (g — o]~ Hix) (x— %) (30)

The gradient of the cost function J with respect to the model state x reads as

VIx]=B ' (x—x) — Hx)J R (y — H[x;] — H[x] (x — x3))

The gradient of the cost function vanishes at the analysis x,, i.e. V.J[x,] = 0, and thus
the analysis increment reads as

X, —xp= (B '+ H[Xb]TPC1 H[x]) ™" H[xb]T R (y — H[xy))

A variant of the Sherman-Morrison-Woodbary formula states that (Bouttier and Courtier,
1999)

(B~ + H[x,)"R'H[x;)) 'H[x;) "R~ = BH[x,)" (H[x,)]BH[x,)" + R)™!

Hence, the analysis increment reads as

X, — xp = BH[x|" (Hpo/BH[x]" +R)™' (y — H([x))

For a single slant path delay the observation error covariance matrix R and its model
equivalent H[x,|BH[x;]7 are scalar quantities. Introducing ¢* = R + H[x,]BH|[x,]”
allows one to write the analysis increment as
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]T (y — H[Xb])

o2

x, — x, = BH[x, (81)

This expression reveals that the background error covariance matrix B determines to a
large extent which variable at which location is affected by the observation minus model
departure. In addition, the correlations in B perform the spatial information spreading
and smoothing.

Noteably, the algebra above holds in the case the observation time does not match the
initial time. The difference to the previous example is that the mapping from model
to observation space includes the forecast model that allows a comparison between the
model state and the observation at the appropriate time. However, the underlying ap-
proximation, i.e. the linearization of the cost function, must be viewed with caution (the
forward model and in particular the successive application of the forecast model on the
initial state are highly non-linear). For a single slant path delay observation at the time
step 7 the analysis increment at initial time can be written by rigorous application of the
chain rule of differential calculus as

2
0;

X, — Xy = BM[zp)7 ... M [wg 1) H[xp] " ( (82)

where 02 = R; + H[xp; | M [Xpi_1]... M1 [x) BM [23] ... M [m4;_1]TH[xy;]7. This expression
reveals that the background error covariance matrix B is evolved in time by the adjoint
of the tangent linear operator of the forecast model M.

7.4 The modified horizontal diffusion scheme in the forecast
model

7.4.1 The TLM and ADJ code

In this section, the focus is on the discretization scheme € of the water vapor mixing
ratio at a grid point with grid point coordinates I, J and K. The alternative discretization
schemes are treated in a similar manner. The control variables are () and K. The
horizontal diffusion coefficient K; appears to be a control variable since it is a function
of the local deformation of the wind field (Grell et al., 1995). The first statement in the
TLM code reads as:
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0Qa = (La+1)-Qa/Qri2sa-6Qri2ja — La-Qa/Qriaja1 - 0Qri2741
6QB = (LB + 1) . QB/Q[+1JB : 5Q1+1JB - LB : QB/Q]+1JB—1 : 5Q1+1JB—1
0Qc = (Lo+1)-Qc/Qr-1sc-6Q1-15c — Le - Qo/Qr-15c-1 - 0Qr-150-1
0Qp =(Lp+1)-Qp/Qr-2sp-0Q1-25p — Lp-Qp/Q1-27p-1-0Qr-2/D1

The second statement in the TLM code reads as:

50 = (6Qa—4-8Q5+6-0Qux —4-5Q0 +5Qp) [Ay*

and the TLM code of the third statement reads as:

oF = —Kh'(SQf—Qf%;Kh

The first statement of the ADJ code reads as:

0Q; = 0Q; — K, - 0F

0K, = 0K —Qf-0F
F = 0

The second statement of the ADJ code reads as:

6Qa = 0Qa+1-60;/Ay*
0Qp = 6Qp—4-60;/Ay*
0Qc = 6Qc —4-6Qs) Ay
6Qp = 6Qp+1-5Q0;/Ay’
0Qrik = 6QIJK+6'6QfAy4
0Q; = 0

and the third statement of the ADJ code reads as:
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0Qriosa = 0Qriaga+ (La+1)-Qa/Qriosa-0Qa
5Q1+1JB = 5QI+1JB +(Lp+1) - Qp/Qry1s8 - 0Qxp
0Qr-15c = 0Qr-1sc+ (Lo +1) - Qc/Qi-1c - 0Qc
0Qr2sp = 0Qrasp+ (Lp+1)-Qp/Qr2sp-Qp
0Qr127a-1 = 0Qriosa—1 — La-Qa/Qrizsa-1-0Qa
0Qr+18-1 = 0Qriip—1— Lp - Qp/Qriisp-1-0Qp
0Qr-150-1 = 0Qr-150-1— Lo Qc/Qr-150-1 - 6Q¢
5Q172JD:1 = 0Qr-2sp-1— Lp - Qp/Qr-27p-1 - 6Qp

Q4 = 0
Qs = 0
Qc = 0
6Qp = 0

7.4.2 Impact of a forecast model component in variational assimilation

Similar to the forward model, the forcast model can be viewed as a composition of forecast
model components, e.g. horizontal diffusion, vertical diffusion, advection etc. If m denotes
the numbers of individual forecast model components, a single forward model step from
time step ¢ — 1 to ¢ can be written as

According to equation (82) the analysis is affected by a forecast model component twice:
(i) through the observation minus model departure and (ii) through the background error
covariance which is evolved in time. It is obvious that in case of a large error in a forecast
model component, variational assimilation leads to an erroneous analysis. The error in a
forcast model component is accumulated into the analysis. Minimizing the discrepancy
between the observation and the model prediction through the 4DVAR does not imply
that the analysis is optimal. On the contrary, if a model component incorporated in the
4DVAR is far from being perfect, minimizing the discrepancy between the observation
and the model prediction leads to an erroneous analysis. In other words, variational
assimilation works if and only if the forecast model is sufficiently accurate (Bouttier and
Courtier, 1999).
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7.5 Check for correctness

The TLM and ADJ code construction of the forward model, including the simulation of
the ray trajectory, is relatively laborious but there is no intrinsic difficulty. Some caution is
needed in the LU-decomposition, since it consists of a forward and backward substitution.

TLM and ADJ routines are tested for correctness using the standard comparison of the
TLM and finite difference-derived NLM gradients to check correctness of the TLM

lim H(u+o0u) — H(u) = Hodu (84)

du—0

and the definition of the adjoint

(Hou,ov) = (du,H"év) (85)

to check for consistency of the TLM and the ADJ (Zou et al., 1997). The check for
correctness is applied to individual forward model components, i.e. the interpolation
routines, the computation of the ray trajectory, the numerical integration along the ray
trajectory, as well as to the entire forward model.

The check for consistency of the TLM and the ADJ using FORTRAN double precision
for a slant path delay with an elevation angle of 5° and an azimuth angle of 0° (computed
at a receiver located at the center point of the MM5 domain) results in

(H, 6u, 6v)/(5u, H* §v) = 1.00000000000000

for the ray-tracing and

(H éu,dv)/(du, H* §v) = 1.00000000000000

for the entire forward model.
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8 Four-dimensional variational assimilation

8.1 The MM5 4DVAR system

A description of the MM5 4DVAR system used in this thesis can be found in Ruggiero
et al. (2002). Though the 4DVAR system is based on MM5v3, the tangent linear and
adjoint model only contains the same set of physics that are in the serial 4DVAR based
on MMbv1. This includes the Kuo cumulus scheme, a moist stable precipitation scheme,
a simple radiative cooling scheme and a bulk PBL parameterization. To allow the use of a
greater number of vertical levels than is practical with the single-level bulk PBL scheme,
the user is given the option to run the MRF (Medium Range Forcast) PBL scheme of
Hong and Pan (1996).

The analysis vector of the MM5 4DVAR system consists of the following control variables:
the horizontal wind components, the temperature, the water-vapor mixing ratio, the pres-
sure perturbation and the vertical velocity. Cloud water, cloud ice, surface variables, and
the variables at lateral boundaries are not included. The MM5 4DVAR only constructs
diagonal background error covariance matrices. This approximation has proven to work
well for assimilation studies conducted with the system (Wulfmeyer et al., 2006; Grzeschik
et al., 2008). This can be explained by the ability of 4DVAR to self-generate physically
consistent structure functions during model integration. For each control variable, the
diagonal elements of the background error covariance matrix are specified by constructing
the differences between a short-range model forecast of 15 minutes and the initial values
at each grid point. At each vertical level, the maximum value of the difference is found
and assigned to all grid points on that level. This creates a vertical profile of background
errors valid at all geographical locations of the model. The forecast errors are then squared
and assigned to the diagonal elements of the background error covariance matrix B.

8.2 The implementation in the MM5 4DVAR

The forward operator and the adjoint operator implemented in the MM5 4DVAR MPI
environment are based on the fast computational model for the slant path delay. It can
be used as long as the elevation angle is not below 30°. Therefore, slant path delay
observations with elevation angles below 30° are not assimilated. As a consequence, the
potential asymmetric information content present in the GPS data can not be completely
utilized. The implementation of the fast computational model for the slant path delay
was motivated by the requirements to run the MM5 4DVAR in an operational mode for a
period of six months during COPS (Wulfmeyer et al., 2008) and the demonstration project
Probabilistic Hydrological and Atmospheric Simulation of flood Events in the alpine region
(D-PHASE) (Rotach et al., 2009). The results of this assimilation experiment are not
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discussed in this thesis. The implementation of the rigorous computational model for the
slant path delay in the MM5 4DVAR MPI environment and simulations over a period of
at least one month together with a statistical evaluation of the results goes far beyond
the scope of this thesis. Instead, the author attaches great importance to the model
physics/numerics incorporated in the MM5 4DVAR. To date, two serious deficiencies in
the MM5 4DVAR were identified, which became obvious during COPS and D-PHASE,
namely the deep convection scheme and the implementation of the horizontal diffusion.
Noteably, these deficiencies could be identified by screening the model minus observation
departure of the GPS data.

To bypass the tendency introduced by the Kuo cumulus scheme, the Grell cumulus scheme
and its adjoint were implemented into the the MM5 4DVAR. The forward and adjoint
model of the Grell cumulus scheme already existed in an advanced version of the serial
4DVAR based on MM5v2 (Zou et al., 1997), so that only minor changes were necessary to
include it in the parallel 4ADVAR based on MMb5v3. In addition, the modified horizontal
diffusion scheme and its adjoint were implemented.

The MM5 grid configuration and the basic state variables in the following assimilation
experiments remain unchanged, see Table 1. Table 6 summarizes the MM5 forecast con-
figuration and the configuration in the MM5 4DVAR.

MM5 physics Forecast MMbv3.7 Assimilaton MMb5v3.4
Coriolis force Full 3D Coriolis force Full 3D Coriolis force
Upper boundary condition Radiative Rigid top
Lateral boundary condition Relaxation Relaxation
Cloud microphysics Reisner 2 not simulated
Planet boundary layer MRF MRF
Ground temperature Simulated fixed
Heat/Moist fluxes Simulated not simulated
Soil model 5-layer soil model not simulated
Radiation RRTM LW /Dudhia SW  simple radiative cooling
Convection Kain Fritsch Grell*
Horizontal diffusion Zangl Modified*

Table 6: Table summarizing the parameterization schemes used in the forecast and the
assimilation. The Grell cumulus scheme and the modified horizontal diffusion scheme were
implemented by the author as an alternative to the Kuo cumulus scheme and the sigma
diffusion scheme.

To speed up computation, mesoscale models are implemented for parallel computers such
that each processor handles only a geographical sub-area. The parallelization was im-
plemented such that the same source architecture for the serial and parallel versions of
the code was maintained (Ruggiero et al., 2006). In principle, the parallelization involves
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spatial domain decomposition where the horizontal analysis domain is partitioned into
smaller subdomains or patches. A separate processor is dedicated to the computation for
a specific subdomain. During the execution of the 4DVAR code, each patch requires only
the boundary information from its neighboring patches. Communication between various
patches is accomplished with the use of the standard MPI environment. The signal from
the receiver to the satellite can intersect two or more subdomains. Some additional logic
is required in the routines when compared to the single processor version: In the forward
integration, the contributions to the slant path delay determined by the processors in
question are gathered to compute the total slant path delay and the corresponding nor-
malized departure. In the backward integration, the update of the adjoint variables is
restricted to the processors in question. The forward model and the adjoint model were
implemented into the MPI environment of the 4DVAR system, such that speedy assimi-
lation of GPS data became routinely possible. With a horizontal domain size of 64 times
70 grid points and 30 processors the speed up factor is about 10 compared to a single
processor configuration.

8.3 The observation screening in the 4DVAR

The BmO differences used for validation purpose include all GPS data. In the 4DVAR
some medium filtering of the GPS data based on an estimate of the relative departure
of the slant wet delay is applied in order to reject questionable data and to avoid prob-
lems in the minimization due to large differences between the model prediction and the
observations. Assuming that the slant dry delay is well represented in both, the model
prediction and the observation, allows to estimate the relative departure of the slant wet
delay R through

(86)

where S and S, denote the simulated and the observed slant path delay respectively, and
S, denotes the simulated slant wet delay. In the first forward integration of the 4DVAR
an observation is rejected if [R| > 0.2. As can be seen in the following simulations, this
threshold is located at the tail of the Gaussian distribution of the relative departure of
the slant wet delay and thus removes potential outliers in the assimilation. These data is
also not considered in the following forward and backward integrations and is therefore
permanently black listed during minimization.

8.4 The forward model error and the observation error

The forward model error is estimated as follows: The number of Legendre-Gauss-Lobatto
nodes in the numerical integration of the contribution to the slant path delay below the
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model top is fixed and chosen to be 42, which leads to sub-millimeter accuracy over the
elevation range from 30 to 90 degree. Note, that the number of nodes is considerably
smaller than the number of nodes used in the rigorous computational model for the slant
path delay. This is due to the fact that the integration interval is much smaller. In the
zenith case the error associated to the mean gravity computed above the model top can
be readily neglected, see e.g. Elgered et al. (1991). Since the numerical integration below
the model top has sub-millimeter accuracy, the overall error of the forward model in the
zenith case is estimated to be 1 mm. In the slant case, the numerical integration below
the model top and the assumptions made above the model top (spherical symmetry of
the atmosphere) suggest that the error of the forward model is roughly proportional to
the cosecant of the elevation angle at the receiver.

Several studies were undertaken to determine the error of GPS data by means of intercom-
parison with independent observations like water vapor radiometers (Bender et al., 2008)
However, it remains difficult to estimate the error of the GPS data. An initial comparison
of GPS stations in Germany with the local model of the German Weather Service (DWD)
gives a standard deviation of about 1 mm in the IWV (Dick et al., 2001) which converts
to a standard deviation of about 6 mm in the ZTD. Noteably, the determination of both
the IWV and the ZTD data from the raw measurement contains numerous assumptions.
Further studies using different methods are required. In the absence of more accurate
estimates and on the basis of the error of ZTD data provided by the GFZ Potsdam, the
overall error of a slant path delay is estimated to be of the order of a few millimeters
(about 1 to 6 mm) times the cosecant of the elevation angle at the receiver. An elevation
dependent observation error o, according to

or(e) = sin(e) (87)

is used where ¢ = 3 mm. Due to insufficient knowledge of error correlation in the PPP
algorithm, the correlation of the GPS data is disregarded. Therefore, the observation
error covariance matrix R is strictly diagonal.

8.5 Assimilation experiment 1

The chosen day for this assimilation experiment was 14 of August, 2007. The network
red provides GPS data for the assimilation. On the contrary, the network green is the
observing network, meaning that GPS data provided by this network was not assimilated.
The assimilation window was 3 hours, ranging from 0-3UTC. The assimilation frequency
was 30 minutes. For validation purposes, GPS data were evaluated every 15 minutes.
The forecast range is 0-6UTC. Two simulations are performed, one with assimilation of
the GPS data, the other one without. Since it is of interest whether independent upper
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air measurements support the results gained by the GPS data assimilation, radiosonde
measurements are used for intercomparison. The model equivalents of the radiosonde
observations at a specific location are computed by the same interpolation routine that is
also used in the forward model of the slant path delay.

To emphasize the erroneous behavior of the former physics incorporated in the MMS5
4DVAR, two model simulations starting from the same initial state valid at OUTC were
performed. The first simulation uses the Kuo cumulus scheme in conjunction with the
SD scheme and the second simulation uses the Grell cumulus scheme in conjunction with
the HD scheme. The frequency histogram of the relative departure of the slant wet delay
is shown in Figure 24 and confirms the finding from the previous section. Again, the
systematic model error introduced by the Kuo cumulus scheme in conjunction with the
SD scheme is obvious: The distribution of the relative departure of the slant wet delay
is far from being Gaussian. The IWV content present in the initial state is immediately
converted to precipitation such that simulated slant path delays are underestimated rel-
ative to observations. On contrary, if the Grell cumulus scheme is used in conjunction
with the HD scheme the distribution of the relative departure of the slant wet delay is
almost Gaussian. This simple example already indicates that the physics incorporated
in 4DVAR plays a fundamental role. The Grell cumulus scheme in conjunction with the
HD scheme is preferable for the use in 4DVAR (there is no indication that this is not the
case), however, it is not clear whether this configuration is accurate enough for meaningful
assimilation of observations linked to water vapor.

The following questions regarding 4DVAR are addressed:

1. Does the 4DVAR algorithm work properly?

2. Is there a detectable and significant impact of the GPS data in the assimilation
window as well as after the assimilation window?

3. Is there any indication that the humidity content is better represented with assimi-
lation than without assimilation?

4. Is it possible to easily validate the results with independent upper air measurements?

5. Is there an impact in precipitation?

In connection question 1, it is noted that the 4DVAR works properly from a technical
point of view. The incorporated TLM and ADJ routines were tested for correctness
using the standart comparison of the TLM and finite difference-derived NLM gradients
to check correctness of the TLM and the definition of the adjoint to check for consistency
of the TLM and the ADJ. For details on the nature of those tests the reader is referred to
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Figure 24: Network red (0-6UTC on August 14, 2007): Frequency histogram of the
relative departure of the slant wet delay. The different panels show the different time
intervals of the model integration. The overall statistics is shown in the upper most
panel. The left panel shows the performance of the old physics incorporated in the MM5
4DVAR, the right panel shows the performance of the new physics incorporated in the
MM5 4DVAR.
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Ruggiero et al. (2002). The cost function and the norm of the gradient of the cost function
versus the iteration number are shown in Figure 25. The decrease in both quantities
confirm that the minimization in the 4DVAR works as intended. A sharp decrease of the
cost function and the gradient is visible in the first few iterations, which in fact is typical
for the quasi-Newton method.
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Figure 25: The cost function and the norm of the gradient versus the iteration number.

In order to address question 2, the BmO differences for the red network are computed
for the control experiment and the assimilation experiment. Figure 26 shows the BmO
differences versus the time for the red network. The small bias showing up in the control
experiment is reduced to zero in the assimilation experiment. The RMS is significantly
reduced in the assimilation window as well as after the assimilation window. However, the
impact seems to fade away quickly. This is due to the fact that air masses are advected
above receivers with the ambient wind direction from the west. Figure 27 shows the BmO
differences versus the elevation angle for the red network. The RMS is reduced over the
entire elevation range in the assimilation experiment. For elevation angles from 90 to
25 degree the small bias showing up in the control experiment is reduced to zero in the
assimilation experiment. At lower elevation angles the reduction of the bias is smaller.
This can be explained by the fact that the forward model used in this experiment is
strictly not applicable at elevation angles as low as 20°.

The frequency histogram of the relative departure of the slant wet delay for the red
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Figure 26: Network red (0-6UTC on August 14, 2007): BmO differences versus the time.
Control experiment (upper panel), assimilation experiment (lower panel). The red line

indicates the RMS, the cyan line indicates the MD and the green line indicates the zero
MD.
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Figure 27: Network red (0-6UTC on August 14, 2007): BmO differences versus the
elevation angle. Control experiment (upper panel), assimilation experiment (lower panel).

The red line indicates the RMS, the cyan line indicates the MD and the green line indicates
the zero MD.
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network is shown in Figure 28 and confirms that the assimilation has a detectable and
significant impact in the assimilation window as well as after the assimilation window in
observation space.
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Figure 28: Network red (0-6UTC on August 14, 2007): Frequency histogram of the
relative departure of the slant wet delay. The different panels show the different time
intervals of the model integration. The overall statistics is shown in the upper most panel.

In model space the difference between the assimilation experiment and the control exper-
iment in the water vapor field reaches +1 gkg™'. The differences in the temperature field
reach about £0.5 K and in the wind field 0.5 ms~!. Figure 29 and Figure 30 show the
difference in 850 hPa between the assimilation experiment and the control experiment in
the water vapor field, the temperature field and the wind field. Air masses are advected
above receivers with the ambient wind direction from the west. It is concluded that
the impact of the GPS data in the assimilation window as well as after the assimilation
window is reasonable and significant.

In order to address question 3, the BmO differences for the green network are computed
for the control experiment and the assimilation experiment. Figure 31 shows the BmO
differences versus the time for the green network. The RMS is slightly reduced in the
assimilation window as well as after the assimilation window. Though the reduction of
the RMS for the green network is smaller than the reduction of the RMS for the red
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Figure 29: Difference between assimilation and no assimilation in water vapor mixing
ratio [g/kg] (left) and temperature [K] (right) in 850 hPa at 1UTC (upper panel) and
3UTC (lower panel) on August 14, 2007.
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Figure 30: Difference between assimilation and no assimilation in u-wind component
[m/s] (left) and v-wind component [m/s] (right) in 850 hPa at 1UTC (upper panel) and
3UTC (lower panel) on August 14, 2007.
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network, the reduction is more continuous in time. Figure 32 shows the BmO differences
versus the elevation angle for the green network and indicates that the RMS is reduced
over the entire elevation range in the assimilation experiment.

The frequency histogram of the relative departure of the slant wet delay for the green
network is shown in Figure 33 and confirms that the assimilation has a detectable impact
in the assimilation window as well as after the assimilation window in observation space.
The statistics of the green network support the results gained by the assimilation of the
GPS data of the red network. Figure 33 indicates that the humidity content is better
represented in the assimilation experiment than in the control experiment.

In connection with question 4, an intercomparison with independent measurements is
performed. All radiosondes from central Europe from 0-6UTC which are available from
the ECMWF Meteorological Archival and Retrieval System (MARS) are evaluated. Nu-
merous radiosondes are far away from the impact region as some of the receivers in the
green network. For those radiosondes no difference between the assimilation experiment
and the control experiment is found. Most of the radiosondes are launched at OUTC and
some at 6UTC. Regarding those profiles where differences are seen, it is observed that
the structure, which is present in the radiosonde measurement but not in the control
experiment, is partly generated by the assimilation of the GPS data. However, there are
specific locations where the water vapor content seems to be better represented in the
control experiment when compared to the assimilation experiment.

Figure 34 and Figure 35 show four radiosonde measurements and their model equivalents.
The first radiosonde measurement is of particular interest since it is close to Stuttgart,
Germany, a convective active region on this particular day. At this radiosonde loca-
tion, the assimilation enhanced the water-vapor content in the lower troposphere. The
simulation with assimilation is in better agreement with the radiosonde measurement
compared to the simulation without assimilation except at one height level in the lower
troposphere. At this height level another interesting feature is observed: A small kink in
the water-vapor profile is introduced by the assimilation, which is also present in the ra-
diosonde measurement, but not in the simulation without assimilation. This structure is
attributed to the the ability of the 4DVAR to self-generate physically consistent structure
functions during model integration, provided that the model physics is accurate enough
and the background errors are reasonable. Similar effects can be observed for the other
radiosonde measurements. In particular, the intercomparison with the second radiosonde
measurement indicates the remarkable ability of the 4ADVAR to generate a complex struc-
ture even though the GPS data are integrated measurements. However, it would be
beneficial to assimilate GPS data together with conventional and non-conventional data,
since otherwise the ability to generate meaningful structure functions relies entirely on
model physics and the background error covariance matrix, which, in particular in the
MMS5 4DVAR must be regarded as a crude estimate. In any case, due to the sparse
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Figure 31: Network green (0-6UTC on August 14, 2007): BmO differences versus the
time. Control experiment (upper panel), assimilation experiment (lower panel). The red

line indicates the RMS, the cyan line indicates the MD and the green line indicates the
zero MD.
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Figure 32: Network green (0-6UTC on August 14, 2007): BmO differences versus the
elevation angle (bottom). Control experiment (upper panel), assimilation experiment
(lower panel). The red line indicates the RMS, the cyan line indicates the MD and the
green line indicates the zero MD.
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Figure 33: Network green (0-6UTC on August 14, 2007): Frequency histogram of the
relative departure of the slant wet delay. The different panels show the different time
intervals of the model integration. The overall statistics is shown in the upper most panel.
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Figure 34: WV mixing ratio profiles at specific radiosonde locations (0-6UTC on August
14, 2007). The red line indicates the radiosonde measurement, the blue line indicates the
model prediction without assimilation and the black line indicates the model prediction
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Figure 35: WV mixing ratio profiles at specific radiosonde locations (0-6UTC on August
14, 2007). The red line indicates the radiosonde measurement, the blue line indicates the
model prediction without assimilation and the black line indicates the model prediction
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character of water-vapor observations, it is difficult to draw a final conclusion regarding
the validation with independent upper air field measurements, at least for a short-range
forecast.

In connection with question 5, a qualitative comparison with the DWD radar composite
is performed to gain insight into the precipitation predicted by the simulations with and
without assimilation. Figure 36 shows the 15 minutes accumulated precipitation qualita-
tively compared to the radar composite of the DWD. The simulation with assimilation
predicts the initiation of convection very close to the region where it was observed. Similar
to the radar image, the convective system moves with the ambient flow from southwest to
northeast before it vanishes in the simulation. A close inspection in the area of interest
indicates that the local enhancement of water vapor in the lower troposphere of the order
of 1 gkg™" due to the assimilation of the GPS data, also indicated by the water vapor
profile of the nearby radiosonde location Stuttgart Figure 34, is the primary source that
permits to simulate the observed convective system.
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Figure 36: 15 min accumulated precipitation [mm| with assimilation and without as-
similation compared qualitatively with the reflectivity of the DWD radar composite at
01:30UTC (left panel) and at 04:00UTC (right panel) on August 14, 2007. No assimila-
tion (upper panel), assimilation (middle panel) and radar image (lower panel).
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8.6 Assimilation experiment 2

To estimate the impact of the assimilation of the GPS data on a statistically significant
basis, an assimilation experiment was conducted for a period of two weeks. The time
period under investigation was 1-14 of August 2007. For each day two simulations were
performed, one with assimilation of the GPS data, the other one without. The network
red provides GPS data for the assimilation, The network green was the observing network,
meaning that GPS data provided by this network were not assimilated. The assimilation
window was 3 hours, ranging from 0-3UTC with an assimilation frequency of 30 minutes.
The forecast range was 0-24UTC and 15 minute data were evaluated.

Figure 37 and Figure 38 shows the ND distribution of the slant path delay for the red and
green network for different time intervals. At first, we take a look at the ND distribution of
the red network. Concerning the first three hours of the simulation, the expected behavior
is observed. The scatter of the ND distribution is strongly reduced in the first few hours of
model integration. The impact of the assimilation fades away after a few hours of model
integration. One may think that the reduction of the scatter of the ND distribution in
the assimilation window is a trivial result. This is not the case: The simple physics used
in the MM5 4DVAR is different from the full and more comprehensive physics used in the
forecast. No artefacts (significant biases) are observed since the important components,
i.e. the cumulus scheme and the horizontal diffusion scheme, have a similar performance
in both, the assimilation and the forecast configuration.

It is interesting to observe that the ND distribution of the control experiment is not
completely Gaussian in the first hours of the model integration (0-3UTC), whereas it is
close to Gaussian when the forecast model integration continuous in time (3-18UTC).
The Gaussian distribution in the first few hours of model integration is slightly skewed.
This feature can be problematic regarding variational assimilation, since the underlying
hypothesis is that the observation and background statistics are Gaussian. The deviation
from a Gaussian distribution is not attributed to deficiencies in the forward /forecast model
or errors in the observations. It is rather associated to the model spin up, an inherent
problem of limited area mesoscale models which are not in a cycling NWP mode. No
spin-up runs to remove artefacts resulting from the resolution jump and the accompanied
interpolation errors from the ECMWEF analysis to the MM5 model grid configuration
were performed. The resolution jump from the ECMWEF analysis to the MM5 model
grid configuration is small (25 to 18 km) and therefore this contribution to the spin-up
is limited. However, the spin-up effect due to the different dynamics of the IFS and the
MMS5 and the spin-up effect caused by hydrometeors which are all reseted in the MM5
initial state, is not precluded.

The reduction of the scattering of the ND distribution of the green network is much smaller
than the reduction of the scattering of the ND distribution for the red network. Again,



110 8 FOUR-DIMENSIONAL VARIATIONAL ASSIMILATION

NETWORK RED 0-3UTC NETWORK GREEN 0-3UTC
8000 T T T 3000 T T T
7000~ b
2500 b
6000 b
2000 b
5000 b
> >
€] [
z z
w w
2 4000 4 21s00F b
o o
w w
o o
s s
3000 b
1000 b
2000 b
500 b
1000 ]
[ L L 0 . I . .
-0.03 -0.02 -0.01 0 0.01 0.02 0.03 -0.03 -0.02 -0.01 0 0.01 0.02 0.03
NORMALIZED DEVIATION STD NORMALIZED DEVIATION STD
NETWORK RED 3-6UTC NETWORK GREEN 3-6UTC
5000 T T T 3000 T T T T T
4500 ]
2500 b
4000 b
3500 b
2000 b
3000 1 >
>
5 2
il I
2 2500 1 30 1
o4 nf
ul @
o w
- 20001 1
1000 b
1500 b
1000 b 5000 |
500 b
o . . . .
0 L L L ; -0.03 -0.02 -0.01 0 0.01 0.02 0.03
-0.03 -0.02 -0.01 0 0.01 0.02 0.03
NORMALIZED DEVIATION STD NORMALIZED DEVIATION STD

NETWORK RED 6-9UTC NETWORK GREEN 6-9UTC
T T

5000 ! . 3500 ! .
45001 ]
3000 1
4000 1
3500l ] 2500 1
3000 1
5 3 2000F 1
z z
w w
2 2500 R
o o
& ¥ 1500
- 2000 40"
1500 1000l ]
1000 1
500 1
500 1
o . . . . o . . . .
-0.03 -0.02 -001 0.02 0.03 -0.03 -0.02 -001 0.02 0.03

0 0.0 0 0.0
NORMALIZED DEVIATION STD NORMALIZED DEVIATION STD

Figure 37: Frequency histogram of the normalized deviation of the slant path delay for
the red and the green network. The red line corresponds to the assimilation experiment
and the blue line corresponds to the control experiment. The different panels show the
different time intervals of the model integration (1-14 of August 2007).
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the red and the green network. The red line corresponds to the assimilation experiment
and the blue line corresponds to the control experiment. The different panels show the
different time intervals of the model integration (1-14 of August 2007).
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it is observed that the reduction is much more continuous in time. The ND distribution
of both networks is virtually the same for the time interval 6-QUTC. As a whole the
green network supports the results gained by the assimilation of the GPS data of the red
network, and thus indicates, on a statistical significant basis, a slight improvement in the
humidity content with the assimilation of the GPS data. Inspection for both, the control
experiment and the assimilation experiment, for the red and the green network reveals
that at about 12-15UTC the mean of the ND distribution starts shifting considerably.
The reason for this tendency is not yet understood. Further studies using different model
configurations are required to understand this tendency.

8.7 Assimilation experiment 3

To investigate the impact of the assimilation of the GPS data on the precipitation forecast,
an assimilation experiment was conducted for a period of one month. The time period un-
der investigation was 1-31 of August 2007. For each day two simulations were performed,
one with assimilation of the GPS data, the other one without. In this experiment, both
networks red and green provided GPS data for the assimilation. The assimilation window
was 3 hours, ranging from 0-3UTC, and the forecast range was 0-24UTC. The assimilation
frequency was 30 minutes.

The hourly measured precipitation data is taken from stations of the RR network of the
DWD. The precipitation data is converted to the surface grid points of the mesoscale
model. For a specific grid point, the precipitation data is averaged for stations which
have a distance < 0.2° to that grid point. The gridded precipitation data set is used
for intercomparison with the predicted precipitation of the model if at least two stations
contribute to the average.

Figure 39 shows the accumulated precipitation field for August 2007 for the observation,
the control experiment and the assimilation experiment. The precipitation patterns are
similar for all cases. However, the precipitation maximum visible in the observation lo-
cated at about 8E 51.5N is absent in both the control and the assimilation experiment.
On contrary, the control experiment and the assimilation experiment show two precip-
itation maxima located at about 8E 50.5N and 9E 50N respectively. Apart from the
misplacement of the maxima in the accumulated precipitation the agreement between the
observation and the two model simulations is good.

Figure 40 shows the difference in the accumulated precipitation between the control ex-
periment and the observation and the assimilation experiment and the observation. In-
spection by eye reveals that the differences are very similar for both model simulations.
However, there are areas where the differences are more pronounced. The large differences
occurring through the misplacement of the precipitation maxima in the simulations are
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Figure 39: Accumulated precipitation [mm]| (1-31 of August 2007) for the control exper-
iment, the the assimilation experiment and the observation. The black rectangle indicates
the COPS area.
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slightly reduced in the assimilation experiment. In addition, large differences visible at
isolated locations are slightly reduced in the assimilation experiment. This might be an
indication that outliers in the precipitation forecast can be reduced by the assimilation of

the GPS data.

Table 7 summarized the RMS, the MD, the MAD and the PMCC for the control experi-
ment and the assimilation experiment. The statistical quantities show that the assimila-
tion of the GPS data has a weak but positive impact. In addition, Figure 41 shows the
POD, the FAR, the TSS and the ETS, for the control experiment and the assimilation
experiment versus various precipitation thresholds. Essentially all skill scores for all pre-
cipitation thresholds confirm that the assimilation of the GPS data has a weak positive
impact.

Statistics RMS [mm] MD [mm] MAD [mm] PMCC
CT 36.65 3.39 28.24 0.62
4D 35.89 3.05 27.64 0.64

Table 7: Statistics of the control and the assimilation experiment.

To get some qualitative insight into the temporal evolution of the accumulated precip-
itation in the COPS area Figure 42 shows the averaged daily cycle of precipitation for
the observation, the control experiment and the assimilation experiment. Two features
are obvious. At first, both simulations underestimate precipitation in the first few hours
of the model integration (0-6UTC). Second, both simulations overestimate precipitation
during day time (6-24UTC). The underestimation of precipitation can be readily associ-
ated with the model spin-up. The overestimation of precipitation might be to some extend
a consequence of the underestimation in the first few hours of the model integration. It
is interesting to observe that qualitatively the evolution of the accumulated precipitation
of the assimilation experiment is closer to the the observation. The 4DVAR seems to be
able to reduce the spin-up phase and to improve the evolution of the accumulated pre-
cipitation during day time. Again, it can not be precluded that the ability of the 4DVAR
to reduce the model spin-up is the reason for the improved evolution during day time.
However, the differences between the assimilation experiment and the control experiment
are rather small. The averaged daily cycle indicates a weak but positive impact in the
temporal evolution of precipitation.

As a whole, the impact of the assimilation of the GPS data must be regarded as slightly
positive to neutral. It is concluded, that in the current configuration the impact on a
precipitation forecast is rather weak. This finding supports results obtained from com-
parable studies utilizing the impact of the GPS data on precipitation (Vedel and Huang,
2004; Poli et al., 2007), and in fact, this result is not too surprising. The assimilation
experiment 2 already indicated that the impact of the assimilation in the humidity field
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Figure 41: Skill scores for the control experiment and the assimilation experiment versus
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ETS.
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Figure 42: The averaged daily cycle of precipitation [mm] in the COPS area (1-31 of
August 2007) for the observation, the control experiment and the assimilation experiment.

is weak and lasts for no more than 12 hours. Since precipitation is strongly linked to the
humidity field, and there is no reason to assume that a precipitation forecast can be im-
proved without an improved humidity field, the results from the assimilation experiment
3 supports the results from the assimilation experiment 2 and vice versa.
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9 Summary and outlook

Ray-tracing is necessary to simulate the propagation of radio signals through a mesoscale
model. In this thesis, a rigorous ray-tracing algorithm, based on a global approach, was
developed which allows the direct numerical simulation of GPS slant path delays in the
MMS5. The ray-tracing algorithm is based on a finite difference scheme, involves the exact
location of the receiver and the satellite automatically in the overall solution, and does not
rely on any other information or empirical model. The structured non-linear system of
equations, arising due to the finite difference scheme, can be efficiently solved by Newton’s
iteration.

Extensive tests were performed to validate the ray-tracing algorithm. The main features
of ray-traced slant path delays were utilized. For elevation angles as low as 5° at the
ground-based receiver a single Newton iteration turns out to be sufficient. The developed
ray-tracing algorithm proves to be a robust and accurate numerical tool, applicable over
the entire elevation range. An immediate by-product of the ray-tracing algorithm is the
bending angle and/or the Doppler frequency shift. Thus, besides the ability to simulate
slant path delays, the ray-tracing algorithm developed in this thesis is believed to be an
appropriate tool for simulating measurements derived from GPS RO. As an alternative
to the rigorous computational model for the slant path delay, a fast computational model
for the slant path delay was developed.

The ray-tracing algorithm was used to estimate the potential azimuthally asymmetric
information content. The simulation indicates that in particular slant path delays for
elevation angles < 20° can contain valueable asymmetric information. It was the first
time that slant path delay data, collected by a large network of continuously operating
ground-based receivers, are compared with their mesoscale model equivalents over the
entire elevation range using a highly sophisticated observation model. The statistical
intercomparison of simulated and observed slant path delays indicates a good agreement
over the entire elevation range. The estimated RMS of the IWV is about 1.3 mm. The
sensitivity of simulated slant path delays with respect to forward model components was
investigated. It was found that for elevation angles < 30° the ray bending effect due to
refractivity gradients cannot be neglected.

The sensitivity of simulated slant path delays with respect to two forecast model compo-
nents, namely the horizontal diffusion scheme and the parameterization of deep convec-
tion, was investigated. Regarding the use of ground-based GPS data for model evaluation,
the following conclusion can be drawn from the sensitivity experiments: A spurious ten-
dency present in the model minus observation statistics of the slant path delay data is
strongly related to the misplacement and/or the enhancement /suppression of precipita-
tion. It is concluded that slant path delay observations are potentially useful for ver-
ification purposes. Noteably, GPS slant path delay data are not merely valueable for
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verification purposes. In this thesis, the analysis of the model minus observation statis-
tics of the GPS slant path delay data was actually used to improve a forecast model
component. The sensitivity studies were restricted to two forecast model components. In
future, sensitivity studies shall be extended to remaining parts of the forecast model, in
particular the vertical diffusion scheme and parameterization schemes associated with the
soil surface exchange.

A description of basic principles of tangent linear and adjoint code construction was
given to provide insight into an interesting coding technique applicable over a wide range
of applications in scientific computing. Tangent linear and adjoint code construction was
illustrated for the fast computational model for slant path delay and a forecast model
component. The provided tangent linear and adjoint code can be directly used as a
recipe for implementation in a different mesoscale model, e.g. the Weather Research and
Forecasting Model (WRF). The impact of a single slant path delay in variational assimi-
lation was estimated analytically. Difficulties arising due to imperfect model components
incorporated in variational assimilation were discussed.

A set of modifications to the existing MM5 4DVAR system was introduced. A modified
horizontal diffusion scheme was developed, which eliminates the erroneous temperature
and moisture tendencies in complex terrain. Furthermore, the Grell cumulus scheme and
its adjoint were implemented in the MM5 4DVAR system in order to eliminate the erro-
neous over-prediction of precipitation introduced by the Kuo cumulus scheme. Although
the author does not preclude any other remaining deficiencies in the MM5 4DVAR, he
believes that these were the most significant systematic model errors.

In this thesis, tools for routine data assimilation of slant path delay observations for the
MM5 4DVAR were developed, which allow the assimilation of slant path delay data in the
MPI environment. The implemented observation model and its adjoint rely on the fast
computational model for the slant path delay. As a consequence, the potential asymmetric
information content present in the GPS data can not be completely utilized. In future,
the bending of the ray trajectory shall be accounted for in 4DVAR in order to take full
advantage of the GPS data.

A single case study was discussed in detail. The results from this single case study can
be summarized as follows: (1) The 4DVAR of GPS data is efficient in reducing the model
minus observation departure. (2) The impact is area wide and reaches +1 gkg™' in
the water vapor mixing ratio, £0.5 K in the temperature and £0.5 ms~! in the wind
field. (3) GPS data of an independent network of receivers confirm the results gained
by 4DVAR. (4) In a convectively active region, radiosonde measurements confirm the
results gained by 4DVAR. The vertical structure in the water vapor field, present in
radiosonde measurements, is partly generated by the assimilation of the GPS data. The
intercomparison indicates the remarkable ability of the 4DVAR to generate a complex
structure in the water vapor field even though the GPS data are integrated measurements.
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(5) A qualitative comparison with radar data shows that the ADVAR of GPS data improves
the simulation of an observed convective system.

An assimilation experiment over a period of two weeks indicates that the impact in ob-
servation space of an independent network of receivers was positive. The experiment
revealed, that, in the current configuration, the impact in the humidity content lasts for
about 12 h. Finally, an assimilation experiment over a period of one month was per-
formed. Both, subjective verification (inspection of the precipitation pattern by eye) and
objective verification revealed that the impact of the assimilation on the precipitation
forecast was positive.

Though the results of the assimilation experiments presented in this thesis are promising,
there is room left for improvement. In particular, a Rapid Update Cycle (RUC) would be
beneficial to circumvent the model spin up, an inherent problem of limited area mesoscale
models which are not in a cycling NWP mode. In addition, GPS data shall be assimi-
lated together with conventional data and non-conventional data, e.g. surface data and
radar radial wind data, in order to complement one another and to reduce the degrees of
freedom in the assimilation. The tuning of background/observation errors as well as the
development of a more sophisticated data selection algorithm is also a subject to future
research.
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A The Jacobian
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B = S p ) - 2o 0 ot

Joo = %]jf = Llll,l(xl) - L/1,1<:U1) B =™

B = G0 = L)~ Liaer) -5

Joa = %_Z = Llll,z(xl) - L/1,2($1) - 37

Jig = aafj = _L/1,2<$1) -af

Joz = aa]:j = —L/1,2(371) o

Do = P8 =g ) ol -

Jog = g];f = _L/1,1(x1> of — 07

and

Jon19m-3 = % = L;;,n—l(xn) - L;,n—l(xn) By
Jont02m—2 = 882]:;1 = L/ri,n—l(wn) - L/n,n—l(mn) - B
Jon1om-1 = %—Zl = L;;n<xn) - L;m(xn) B =
Jonto02n40 = g—]jjl = Lﬁn(wn) - L;Ln(fn) B =T
Jon—12n10 = aaff = _L;z,n(xn) ay, — 0y
Jont0om—1 = (Z];j = —Ly, () - o, — 0},
Jon—12n—2 = aa;:i = _L:m—l(xn) e
Jonto2n-3 = aay]:i ==L, (v) -«

with coefficients according to
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j+1 2 j+1 2
oj = 1+< L},k(%‘)yk> +< L;’,k(xj)zk>
k=j—1 k=j—1

for j=1,...,n.
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B The bicubic interpolation

In matrix notation, the general rule for an increment ¢ € [0, 1] for one dimension reads as
(Keys, 1981)

0o 2 0 O ao
-1 0 1 0 a
— 2 3 1
—1 3 -3 1 as

where a; for £ = 0, ..., 3 denote the function values at a uniform sequence of nodes and
I' denotes the interpolant. For two dimensions, the general rule is applied in I direction
with the increment X according to

ok kK kK
bk - F(X,ao,al,a2,a3)

for £k = 0,...,3 and then again in J direction with the increment Y according to

N = F<Y;b07b17b27b3)

Since bicubic interpolation involves 16 grid points, the integers I and J are limited by
the grid point indices next to the lateral boundaries according to:

I = min(max(/,2), M; — 3)
J = min(max(J,2), M; — 3)
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C The Legendre-Gauss-Lobatto nodes

The Legendre-Gauss-Lobatto nodes are defined on the interval [—1, 1]. The endpoints of
the interval [—1,1] are included in a total of m abscissas, giving m — 2 free abscissas.
Abscissas are symmetrical about the origin. The free abscissas (; for i = 2,...,m — 1 are
the roots of the polynomial P/, _,(¢) where P,,(() is a Legendre polynomial

1 am

= dem(CQ - 1" (88)

Pn(¢)

No explicit formula of the nodes is known. However, they can be computed numerically.
With the weights of the free abscissas

KR; = &9
m(m = 1) Pt (GO )
for i = 2,...,m — 1 and of the endpoints
2
=Ry = ———— 90
re m(m — 1) (50)

the quadrature rule reads as (Abramowitz and Stegun, 1972)

1 m—1
[ o0 = ragl=1) + (1) + 3 wiglch) (01)
-1 i=2

where ¢(¢) denotes a function defind on the interval [—1, 1]. Before applying the quadra-

ture rule the integral over [a, b] must be changed into an integral over [—1, 1]. This change
of interval is done in the following way:

’ b—a (' [b-— b
[o@ac="30 [ o (S5 50 ) ac (92)

After applying the quadrature rule, the following approximation is obtained:

/a " g(Q)dc =

b—a b—a a+b
5 ng( 5 Gt > (93)
i=1
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Therefore, the non-uniform sequence of nodes for which the solution in the ray tracing is
sought is given by

b—ag_i_a—i—b
Ti = i
2 2

(94)
for i = 1,...,m. The weights are given by

b—a

w; =

fori=1,...,m.
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D Statistical quantities

In order to measure the discrepancy between two sets of data a; and b; for i = 1,....,n in
a statistical sense, the following quantities are introduced:

The Mean Deviation MD is defined as

MD = %Z(ai—bi) (96)

The Normalized Deviation ND is defined as

2 o~ a; — b,
ND = -5 (97)
n i1 a; + bz

The Mean Absolute Deviation MAD is defined as

1 n
nZ| | (98)

The Root Mean Square RMS is defined as

The correlation coefficient, also known as the Product-Moment Coefficient of Correlation
PMCC, is defined as

where
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Q|
I
I

&

denote the mean and

denote the standard deviation.

Categorical forecasts are verified by applying 2 x 2 contingency tables

Observed

Forecast | Yes No
Yes a b
No ¢ d

where a denotes the number of hits, b denotes the number of false alarms, ¢ denotes
the number of misses and d denotes the number of correct negatives. A number of
categorical statistics can be computed from the elements in the contingency table to
describe particular aspects of the forecast performance:

The Probability of Detection POD is defined as

POD = —o (99)
a+c
The False Alarm Rate FAR is defined as
b
FAR = (100)

b+ a
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The True Skill Score TSS is defined as

a b
TSS = — 101
at+c bta (101)

The Equitable Threat Score ETS is defined as

a—e
ETS = ——— — 102
a+b+c—e (102)

where

(a+b)(a+c)
a+b+c+d
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E Acronyms

3DVAR
4DVAR
ADJ
BFGS
BmO
BVP
COPS
CPU
DFG
DKRZ
D-PHASE

DWD
ECMWF
EUMETNET
EPOS
E-GVAP
ETS
FAR
FTP
GFZ
GNSS
GPS
HASL
IF'S

IGS

IPM

IVP
IWV
L-BFGS
LEO

LM

LW

MD
MAD
MARS
MATLAB

Three-dimensional variational assimilation
Four-dimensional variational assimilation

Adjoint model

Broyden-Fletcher-Goldfarb-Shanno algorithm
Background minus Observation

Boundary Value Problem

Convective and Orographically-induced Precipitation Study
Central Processing Unit

Deutsche Forschungsgemeinschaft

Deutsches Klimarechenzentrum

Demonstration of Probabilistic Hydrological and Atmospheric
Simulation of flood Events in the alpine region
German Weather Service

European Centre for Medium Range Weather Forecasts
The Network of European Meteorological Services
Earth Parameters and Orbit determination System
EUMETNET GPS water vapour programme
Equitable Threat Score

False Alarm Rate

File Transfer Protocol

German Research Center for Geosciences

Global Navigation Satellite System

Global Positioning System

Height Above Sea Level

Integrated Forecast System

International GNSS Service

Institut fiir Physik und Meteorologie

Initial Value Problem

Integrated Water Vapor

Limited Memory BFGS

Low Earth Orbit

Local Model

Long Wave

Mean Deviation

Mean Absolute Deviation

Meteorological Archival and Retrieval System
Matrix Laboratory
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MMb5 Mesoscale Model 5
MMb5v1 MMS5 version 1
MMb5v2 MM5 version 2
MM5v3 MMS5 version 3
MPI Message Passing Interface
MRF Medium Range Forecast
ND Normalized Deviation
NLM Non-Linear Model
NWP Numerical Weather Prediction
ODE Ordinary Differential Equation
PBL Planetary Boundary Layer
PMCC Product-Moment Coefficient of Correlation
POD Probability of Detection
PPP Precise Point Positioning
PW Precipitable Water
QPF Quantitative Precipitation Forecasting
RO Radio Occulation
RMS Root Mean Square
RRTM Rapid Radiative Transfer Model
RUC Rapid Update Cycle
SW Short Wave
SWV Slant Water Vapor
TLM Tangent-Linear Model
TSS True Skill Score
UK United Kingdom
UTC Universal Time Coordinated
WRF Weather Research and Forecasting Model
WV Water Vapor
WWRP World Weather Research Program
ZTD Zenith Total Delay
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