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Abstract

Most programming languages are designed for general-purpose software deve-
lopment in a one-size-fits-all fashion: They provide the same set of language
features and constructs for all possible applications programmers ever may want
to develop. As with shoes, the one-size-fits-all solution grants a good fit to few
applications only.

The trend toward domain-specific languages, model-driven development, and
language-oriented programming counters general-purpose languages by promo-
ting the use of domain abstractions that facilitate domain-specific language
features and constructs tailored to certain application domains. In particular,
domain abstraction avoids the need for encoding domain concepts with general-
purpose language features and thus allows programmers to program at the same
abstraction level as they think.

Unfortunately, current approaches to domain abstraction cannot deliver on
the promises of domain abstraction. On the one hand, approaches that target
internal domain-specific languages lack flexibility regarding the syntax, static
checking, and tool support of domain abstractions, which limits the level of
actually achieved domain abstraction. On the other hand, approaches that
target external domain-specific languages lack important principles, such as
modular reasoning and composition of domain abstractions, which inhibits the
applicability of these approaches in the development of larger software systems.
In this thesis, we pursue a novel approach that unifies the advantages of internal
and external domain-specific languages to support flexible and principled domain
abstraction.

We propose library-based extensible programming languages as a basis for do-
main abstraction. In an extensible language, domain abstraction can be realized
by extending the language with domain-specific syntax, static analysis, and tool
support. This enables domain abstractions as flexible as external domain-specific
languages. To ensure the compliance with important software-development
principles, we organize language extensions as libraries and use simple import
statements to activate extensions. This facilitates modular reasoning (by inspec-
ting import statements), supports the composition of domain abstractions (by
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importing multiple extensions), and allows uniform self-application of language
extensions in the development of further extensions (by importing extensions
in an extension definition). A library-based organization of extensions enables
domain abstractions as principled as internal domain-specific languages.

We designed and implemented SugarJ, a library-based extensible programming
language on top of Java. SugarJ libraries can declare and export extensions
of SugarJ’s syntax, static analysis, and editor support. Thereby, a syntactic
extension consists of an extended syntax and a desugaring transformation from
the extended syntax into SugarJ base syntax, an analysis extension matches on
part of the current file’s abstract syntax tree and produces a list of errors, and an
editor extension declares editor services such as coloring or code completion for
certain language constructs. SugarJ extensions are fully self-applicable: An exten-
ded syntax can desugar into the declaration of another extensions, an extended
analysis can check the declaration of an extension, and an extended editor can
assist developers in writing extensions. To process a source file with extensions,
the SugarJ compiler and IDE inspect the imported libraries to determine active
extensions. The compiler and IDE adapt the parser, code generator, analyzer,
and editor of the source file according to the active extensions.

In this thesis, we do not only describe the design and implementation of
SugarJ, but also report on extensions of the original design. In particular, we
designed and implemented a generalization of the SugarJ compiler that supports
alternative base languages besides Java. Using this generalization, we developed
the library-based extensible programming languages SugarHaskell, SugarPro-
log, and SugarFomega. Furthermore, we developed an extension of SugarJ that
supports polymorphic domain abstraction and ensures communication integri-
ty. Polymorphic domain abstraction enables programmers to provide multiple
desugarings for the same domain-specific syntax. This increases the flexibili-
ty of SugarJ and supports scenarios known from model-driven development.
Communication integrity specifies that components of a software system may
communicate over explicit channels only. This is interesting in the context of
code generation where it effectively prohibits the generation of implicit module
dependencies. We augmented SugarJ’s principles by enforcing communication
integrity.

On the basis of SugarJ and numerous case studies, we argue that flexible and
principled domain abstraction constitutes a scalable programming model for the
development of complex software systems.



Zusammenfassung

Die meisten Programmiersprachen werden als Universalsprachen entworfen. Un-
abhéngig von der zu entwickelnden Anwendung, stellen sie die gleichen Sprach-
features und Sprachkonstrukte zur Verfiigung. Solch universelle Sprachfeatures
ignorieren jedoch die spezifischen Anforderungen, die viele Softwareprojekte mit
sich bringen.

Als Gegenkraft zu Universalsprachen fordern doménenspezifische Program-
miersprachen, modellgetriebene Softwareentwicklung und sprachorientierte Pro-
grammierung die Verwendung von Domdnenabstraktion, welche den Einsatz
von doménenspezifischen Sprachfeatures und Sprachkonstrukten erméglicht.
Insbesondere erlaubt Doménenabstraktion Programmieren auf dem selben Ab-
straktionsniveau zu programmieren wie zu denken und vermeidet dadurch die
Notwendigkeit Doménenkonzepte mit universalsprachlichen Features zu kodieren.

Leider ermoglichen aktuelle Ansétze zur Doméanenabstraktion nicht die Ent-
faltung ihres ganzen Potentials. Einerseits mangelt es den Ansétzen fiir interne
doménenspezifische Sprachen an Flexibilitdt beziiglich der Syntax, statischer
Analysen, und Werkzeugunterstiitzung, was das tatsichlich erreichte Abstrakti-
onsniveau beschrankt. Andererseits mangelt es den Ansétzen fiir externe domé-
nenspezifische Sprachen an wichtigen Prinzipien, wie beispielsweise modularem
Schliefen oder Komposition von Doménenabstraktionen, was die Anwendbarkeit
dieser Ansitze in der Entwicklung groerer Softwaresysteme einschréankt. Wir
verfolgen in der vorliegenden Doktorarbeit einen neuartigen Ansatz, welcher die
Vorteile von internen und externen doménenspezifischen Sprachen vereint um
flexible und prinzipientreue Doménenabstraktion zu unterstiitzen.

Wir schlagen bibliotheksbasierte erweiterbare Programmiersprachen als Grund-
lage fiir Doménenabstraktion vor. In einer erweiterbaren Sprache kann Domé-
nenabstraktion durch die Erweiterung der Sprache mit domé&nenspezifischer
Syntax, statischer Analyse, und Werkzeugunterstiitzung erreicht werden . Dies
ermoglicht Doméanenabstraktionen die selbe Flexibilitat wie externe doméanen-
spezifische Sprachen. Um die Einhaltung iiblicher Prinzipien zu gewéhrleisten,
organisieren wir Spracherweiterungen als Bibliotheken und verwenden einfache
Import-Anweisungen zur Aktivierung von Erweiterungen. Dies erlaubt modu-



lares Schliefen (durch die Inspektion der Import-Anweisungen), unterstiitzt
die Komposition von Doménenabstraktionen (durch das Importieren mehrerer
Erweiterungen), und ermdglicht die uniforme Selbstanwendbarkeit von Spracher-
weiterungen in der Entwicklung zukiinftiger Erweiterungen (durch das Importie-
ren von Erweiterungen in einer Erweiterungsdefinition). Die Organisation von
Erweiterungen in Form von Bibliotheken erméglicht Doméanenabstraktionen die
selbe Prinzipientreue wie interne doménenspezifische Sprachen.

Wir haben die bibliotheksbasierte erweiterbare Programmiersprache SugarJ
entworfen und implementiert. SugarJ Bibliotheken kénnen Erweiterungen der
Syntax, der statischen Analyse, und der Werkzeugunterstiitzung von Sugar]
deklarieren. Eine syntaktische Erweiterung besteht dabei aus einer erweiterten
Syntax und einer Transformation der erweiterten Syntax in die Basissyntax
von SugarJ. Eine Erweiterung der Analyse testet Teile des abstrakten Syn-
taxbaums der aktuellen Datei und produziert eine Liste von Fehlern. Eine
Erweiterung der Werkzeugunterstiitzung deklariert Dienste wie Syntaxfarbung
oder Codevervollstandigung fiir bestimmte Sprachkonstrukte. SugarJ Erweite-
rungen sind vollkommen selbstanwendbar: Eine erweiterte Syntax kann in eine
Erweiterungsdefinition transformiert werden, eine erweiterte Analyse kann Er-
weiterungsdefinitionen testen, und eine erweiterte Werkzeugunterstiitzung kann
Entwicklern beim Definieren von Erweiterungen assistieren. Um eine Quelldatei
mit Erweiterungen zu verarbeiten, inspizieren der SugarJ Compiler und die
SugarJ IDE die importierten Bibliotheken um die aktiven Erweiterungen zu be-
stimmen. Der Compiler und die IDE adaptieren den Parser, den Codegenerator,
die Analyseroutine und die Werkzeugunterstiitzung der Quelldatei entsprechend
der aktiven Erweiterungen.

Wir beschreiben in der vorliegenden Doktorarbeit nicht nur das Design und die
Implementierung von SugarJ, sondern berichten dariiber hinaus iiber Erweiterun-
gen unseres urspriinglich Designs. Insbesondere haben wir eine Generalisierung
des SugarJ Compilers entworfen und implementiert, die neben Java alternative
Basissprachen unterstiitzt. Wir haben diese Generalisierung verwendet um die
bibliotheksbasierten erweiterbaren Programmiersprachen SugarHaskell, Sugar-
Prolog, und SugarFomega zu entwickeln. Weiterhin haben wir SugarJ ergénzt
um polymorphe Doménenabstraktion und Kommunikationsintegritdt zu unter-
stiitzen. Polymorphe Doménenabstraktion erméglicht Programmierern mehrere
Transformationen fiir die selbe doménenspezifische Syntax bereitzustellen. Dies
erhoht die Flexibilitdt von SugarJ und unterstiitzt bekannte Szenarien aus der
modellgetriebenen Entwicklung. Kommunikationsintegritit spezifiziert, dass die
Komponenten eines Softwaresystems nur iiber explizite Kanéle kommunizieren



diirfen. Im Kontext von Codegenerierung stellt dies eine interessante Eigenschaft
dar, welche die Generierung von impliziten Modulabhéingigkeiten untersagt. Wir
haben Kommunikationsintegritit als weiteres Prinzip zu SugarJ hinzugefiigt.

Basierend auf SugarJ und zahlreicher Fallstudien argumentieren wir, dass flexi-
ble und prinzipientreue Domé&nenabstraktion ein skalierbares Programmiermodell
fiir die Entwicklung komplexer Softwaresysteme darstellt.
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1 Introduction

The complexity of modern software systems calls for new forms of abstraction.
Modern software systems have to address concerns from different domains and
technical spaces. However, conventional abstraction mechanism mostly focus
on the run-time behavior of programs and cannot sufficiently support multiple
domains, which come with their own notation, invariants, and tool support.
Therefore, new forms of abstraction are required that support user-defined
syntax, invariant validation, and tool support.

In general, an abstraction hides low-level implementation details and introduces
new high-level concepts for programmers. Common abstractions include

e symbolic variables to abstract from memory addresses,
e control structures such as loops to abstract from goto statements,

e object-oriented programming to abstract from individual code blocks by
managing classes of blocks and their instances,

e garbage collection to abstract from manual memory management, and

e multithreading to abstract from sequential and finitely parallel computa-
tion.

These and other forms of abstraction are part of many high-level programming
languages, such as Java, C#, Scala, OCaml, and Haskell.

Programmers demand new forms of abstraction due to a perceived lack of
high-level language constructs or due to perceived trouble with existing language
constructs. Both scenarios frequently occurred in the history of programming
languages.

For example, Dijkstra argues that goto statements complicate program un-
derstanding, because the dynamic control flow does not align well with the
lexical structure of the program text [Dij68|. Dijkstra concludes that to resolve
this problem, more restrictive control structures such as procedures or while
loops should be used, because they entail a unique and simple relation between
dynamic control flow and code. Thus, Dijkstra argues for new abstractions on the
basis of troublesome existing language constructs. Conversely, Dahl, Myhrhaug,
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and Nygaard motivate the design of SIMULA with the lack of domain-specific
language features for the domain of large discrete-event simulations [DMN67].
Driven by this demand, they propose classes, objects, and inheritance for de-
composing large applications into interacting classes of code blocks. As we know
now, these features turned out to be useful in a wider area of application than
originally anticipated.

More generally, it is not possible to anticipate all scenarios in which program-
mers may want to apply a programming language [LZ74]. In some applications
the included language features will impose a laborious programming style, in
other applications more high-level language features will be desired to address the
problem at hand more directly. Therefore, it is not enough for a programming
language to include built-in abstractions. Instead, to promote the expressive-
ness of programmers, a programming language should enable programmers to
introduce new forms of application-specific abstractions.

Throughout the history of programming languages, it has been a research goal
to discover programming-language concepts that enable user-defined abstractions.
For example, procedures and higher-order functions enable abstraction from
repeating patterns in a program [BBG163, FFFKO01], abstract data types support
user-defined data representations with encapsulation [LZ74], and object-oriented
programming facilitates the definition of stateful, interacting components by
the programmer [DMN67]. However, most existing abstraction mechanisms
only support semantic abstraction, but neglect the need for integrating user-
defined abstractions into the syntax, static analysis, and editor of a programming
language. This limits the usability of user-defined abstractions because users
are bound to the language’s original syntax, static analysis, and editor support,
and, conversely, they are oblivious to the user-defined abstractions.

In particular, today’s abstraction mechanisms provide insufficient support for
the development of software systems that simultaneously have to deal with a
multitude of domains and technical spaces, such as network communication,
persistency management, visualization, and data analysis. For example, the
Eclipse platform provides an update mechanism (network), stores source and
configurations files (persistency), provides an interactive editor (visualization),
and supports source-code queries (analysis). Existing abstraction mechanisms
impose the same syntax, invariants, and tool support on all code of the project,
irrespective of the domain that the code addresses. This precludes abstraction
potential. In particular, a better domain-specific syntactic integration can
circumvent syntactic boilerplate, domain-specific static analyses can enforce
application-specific invariants to reduce the number of potential runtime errors



and provide more rapid feedback to developers, and domain-specific editor
support can improve the understandability and modifiability of source code. For
these reasons, abstraction mechanisms should support user-defined syntax, static
analyses, and editor support.

This problem can also be motivated from the perspective of domain-specific
languages. A domain-specific language (DSL) consists of a collection of user-
defined abstractions that are specifically useful for a particular domain [Ben86,
Fow10, MHS05]. Often a DSL is useful in multiple applications. For exam-
ple, regular expressions, SQL, statemachines, and XML are widely adopted
DSLs. However, the language-oriented-programming paradigm suggests that the
definition of a DSL can be beneficial even if it is used in a single application
only [Dmi04, Fow05b, War95]. DSLs are typically classified as either external
or internal [Fow05b], which largely influences their applicability and provides a
good starting point for our discussion of DSLs.

An external DSL is an independent programming language. Due to their inde-
pendence, external DSLs are very flexible regarding their syntax, static analysis,
semantics, and editor support. However, this flexibility inhibits interoperability
between programs written in different external DSLs: There is no common
ground for composing external DSLs because each DSL has its own parser,
analyzer, code generator or interpreter, and editor. However, the composition of
DSLs is essential, since DSLs focus on a single domain and thus are incomplete
by design; in realistic software projects, the application of a single DSL is in-
sufficient [PRBA10, WHG'09]. Moreover, general-purpose functionality such
as a collections API needs to be reimplemented for each external DSL, which
raises the development cost of external DSLs [Hud98]. These drawbacks are
significant and justify the investigation of abstraction mechanisms that enable
the integration of DSLs into existing programming languages.

Internal DSLs employ the existing abstraction mechanisms of a programming
language (called the host language) to encode domain abstractions. For example,
in an object-oriented host language, domain abstractions can be represented as
classes and methods. An internal DSL merely provides a domain-specific view
and decomposition principle on an otherwise regular host-language program.
The reuse of host-language abstractions has three central advantages that result
from the fact that a program written in an internal DSL also is a host-language
program. First, programs of an internal DSLs adhere to the principles of the host
language, such as modular reasoning, well-defined variable scoping, abstraction
mechanisms for code reuse, and type-system guarantees. Second, programs
written in different internal DSLs can interoperate with each other using the
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standard schemes of interaction from the host language. Third, programs of an
internal DSL can directly reuse any general-purpose functionality present in the
host language, such as the collections API. Unfortunately, as consequence of
the reuse of the host language’s abstraction mechanisms, internal DSLs inherit
the deficiencies of these abstraction mechanisms as well. In particular, existing
abstraction mechanisms fail to provide good support for the integration of
domain-specific syntax, domain-specific analyses, and domain-specific editor
support.

It is our goal to investigate abstraction mechanisms for domain abstraction as
flexible as external DSLs and as principled as internal DSLs. In the remainder
of this chapter, we present our design goals in detail and outline our solution,
which is based on extensible languages. We dedicate the rest of this thesis to
demonstrating that extensible languages enable flexible and principled domain
abstraction.

1.1 Flexible domain abstraction

The goal of domain abstraction is to bridge the representational gap, that is,
“the gap between our mental model of the domain and its representation in soft-
ware” [Lar02]. A better representation of domain concepts enables programmers
to map domain knowledge into source code and vice versa, which simplifies the
creation, comprehension, and maintenance of domain-specific programs. We
illustrate this idea in Figure 1.1.

Domain-specific semantics. Without domain abstraction (Figure 1.1(a)), pro-
grammers need to translate their understanding of domain concepts into a
general-purpose programming language. For example, suppose a software devel-
oper needs to implement a parser in Java. The developer has already designed
the grammar that the parser should accept, using parser-specific concepts such
as terminal, nonterminal, and production. In Java, there is no corresponding
representation of these domain concepts. Therefore, the developer needs to
encode the grammar with concepts that already exist in the Java language, such
as input streams and switch-case statements. Since the resulting code does not
resemble the grammar, it is difficult to develop the initial parser or to maintain
the parser when the grammar evolves.

With domain abstraction, programmers can express domain concepts in the
corresponding DSL, instead of translating domain concepts into a general-purpose



1.1 Flexible domain abstraction

.< translation GPL

(a) Representational gap between domain concepts and code written in general-purpose
language (GPL).

DSL:
translation semantic GPL
encoding

(b) A semantic encoding of domain concepts as a DSL narrows the gap.

DSL: DSL:
syntactic semantic GPL
encoding encoding

(¢) Domain-specific syntax narrows the representational gap even more.

Figure 1.1: Domain abstraction narrows the representational gap.

programming language. This narrows the representational gap between domain
concepts and their realization as illustrated in Figure 1.1(b). For example, to
implement a parser, a programmer can use an internal DSL such as parsec [LMO1].
Parsec represents nonterminals as variables of the host language and productions
as assignments to these variables. The syntax-definition part of a production
is represented with parser combinators that describe sequences, alternatives,
and repetition of terminals and nonterminals. Since parsec provides a semantic
encoding for each domain concept, it is easy to translate a grammar into a
parsec program. Accordingly, we define our first design goal for flexible domain
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abstraction.

Domain-specific semantics: A domain abstraction should provide a seman-
tic encoding of each domain concept.

Polymorphic domain abstraction. A semantic encoding does not only provide
a representation of domain concepts, but also defines how a domain-specific
program can be executed. However, often multiple execution strategies are
possible for a single language construct. For example, if the domain-specific
semantics is given by a code generator, it can generate code of different languages,
produce documentation or a pretty print, apply different optimizations, or simply
impose different meanings on a domain concept. Flexible domain abstraction
should not preclude different semantics. Instead, we postulate that domain
abstraction is polymorphic, as is typically the case in model-driven development
frameworks. Polymorphic domain abstraction represents our second design goal
for flexible domain abstraction.

Polymorphic domain abstraction: Domain abstractions should allow multi-
ple coexisting semantics for domain concepts.

Domain-specific syntax. A semantic encoding is not sufficient. While it pro-
vides a way of representing domain concepts in a program, the representation is
often inflated or unnatural. As illustrated in Figure 1.1(c), a better syntactic
representation can further narrow the gap between domain concepts and there
realization. For example, EBNF is a standard notation for representing gram-
mars. Domain experts can easily understand and define EBNF grammars. The
following code shows an EBNF production for parsing a lambda expression:

exp ::= "lambda" var "." exp {Lambda}

The identifier in curly braces denotes the name of the production. For comparison,
here is the same production using parsec in Haskell:

exp = do
string "lambda"
v <- var
string "."
e <- exp
return (Lambda v e)
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Even though the production and nonterminal domain concepts are semantically
represented, their textual representation is not natural for domain experts.
Moreover, from the perspective of a domain expert, the parsec representation
includes complicated boilerplate code such as Haskell’s do notation, the string
combinator, and the manual denotation of the standard abstract syntax tree.
Therefore, we state as third design goal for flexible domain abstraction:

Domain-specific syntax: A domain abstraction should provide a natural
and concise syntactic encoding of domain concepts.

We should emphasize that domain-specific syntax is an important issue for the
usability of domain abstractions. If a domain has a well-known notation (such
as EBNF or XML), supporting this notation can shorten the familiarization
phase for domain experts. Furthermore, the avoidance of syntactic boilerplate
can have a significant impact on the productivity of programmers. After all,
it is the syntax of a programming language that programmers have to cope
with in their everyday work. In fact, empirical studies confirm that external
DSLs can be beneficial in the creation, comprehension, and maintenance of
software [HPvD09, KMC12, KOM™10, vDK98|.

This indicates that, by narrowing the representational gap, domain abstrac-
tions can reduce the artificial complexity of writing programs. However, domain
abstraction cannot eliminate the essential complexity of the problem at hand—
domain abstraction is no silver bullet [Bro87]. While domain-specific semantics
and syntax enable programmers to focus on the essentials of a program, the in-
trinsic complexity of the domain is present nonetheless. Therefore, it is desirable
for a domain abstraction to assist programmers beyond syntax and semantics in
tackling the intrinsic complexity of the domain.

Domain-specific static analysis. Mainstream programming languages often
provide assistance in the form of static analyses or type checking. A static analysis
rejects a program based on a violation of some domain-specific invariant. For
example, for the parsing domain, a static analysis could inform the programmer
about the presence of a left-recursive production in the grammar. In a parser
framework like parsec, which does not support left-recursive grammars, such a
domain-specific analysis can prevent run-time errors that otherwise might occur
after deployment. In case a static analysis detects a violation of a domain-specific
invariant, it can provide valuable domain-specific feedback to the programmer.
Therefore, static analysis forms our fourth design goal for flexible domain
abstraction.
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Domain-specific static analysis: A domain abstraction should be accompa-
nied by static analyses that validate the invariants of the domain.

Domain-specific editor services. Integrated development environments (IDEs)
can nicely present the result of a static analysis to the programmer by decorating
part of the source code. Furthermore, IDEs offer editor services such as syntax
coloring, content completion, or reference resolving to assist the programmer in
reading, navigating, writing, and adapting code. For example, editor services for
EBNF can apply a different coloring for terminals and nonterminals, propose ex-
isting nonterminal names as code completion, and resolve nonterminal references
to their definition site. Such editor services can significantly improve the produc-
tivity of programmers [RCM04, HW09]. Therefore, for domain abstraction, we
require the same level of tool support that mainstream programming languages
enjoy. This constitutes our fifth design goal for flexible domain abstraction.

Domain-specific editor services: A domain abstraction should be supple-
mented by editor services to support programmers.

Summary. We have defined five design goals for flexible domain abstrac-
tion: domain-specific semantics, polymorphism, domain-specific syntax, domain-
specific static analyses, and domain-specific editor support. However, to enable
programmers to make efficient use of such flexible domain abstractions, they
should also follow important programming principles, as discussed in the subse-
quent section.

1.2 Principled domain abstraction

Flexible domain abstraction can be achieved using unprincipled approaches such
as preprocessors and build scripts. In this section, we discuss principles that are
important for the efficient application of flexible domain abstraction in complex
software systems.

Modular reasoning. First of all, a domain abstraction should not inhibit a
programmer’s ability to modularly reason about a program. It should be possible
for a programmer to understand a given source file by only looking at the source
file and its dependencies. This entails that all dependencies of the source file
must be explicit and no global reasoning is used. For example, build scripts
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often inhibit modular reasoning because they describe the global architecture of
a software project by linking source artifacts and injecting dependencies between
them. Since these dependencies are not visible in the source code, programmers
must first understand the global build script to reason about a single source
artifact and its dependencies. Such lack of modular reasoning significantly
constrains the applicability of domain abstraction for larger software systems.
Therefore, we formulate the first design goal for principled domain abstraction.

Modular reasoning: Domain abstractions should permit modular program
understanding.

Referential transparency. Modular reasoning is an important precondition
for program understanding of large applications. However, in the context of
domain abstractions, another important criterion for program understanding
is referential transparency, which postulates that all variable references are
resolved in the lexical context in which they occur [CR91]. For programmers
this is crucial because it allows them reason about the identity and meaning of
variable names they defined. Regular programming languages (without domain
abstraction) ensure referential transparency through lexical scoping. Languages
with domain abstraction require additional checks, because domain abstractions
are typically implemented by interpreters or code generators that have full
control over variable resolution. Referential transparency has been thoroughly
studied in the context of syntactic macros [CR91, DHB92, KFFD86], but it is
relevant for all forms of abstraction. Thus, we define our second design goal for
principled domain abstraction.

Referential transparency: Domain abstractions should be referentially
transparent.

Declarativity. Program understanding is not only important for users of do-
main abstractions. but for implementors of domain abstractions as well. Since
domain abstractions are specific to an application or domain, the design and
implementation of a domain abstraction must be conducted by some of the
potential users. However, the implementation of a new domain-specific language
or domain-specific language feature can be complicated, requiring the defini-
tion of syntax, semantics, static analysis, and tool support. Moreover, domain
abstractions may evolve when the application domain shifts or broadens. To
simplify the introduction and maintenance of domain abstractions, their imple-
mentation should be declarative. For example, EBNF-like languages provide
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declarative means for the definition of syntax, which avoids the technical details
of lexical analysis. Declarative means for the definition of domain abstractions
are important to lower the cost of their development and maintenance, and thus
make domain abstractions an attractive alternative to traditional software devel-
opment [Hud98]. Accordingly, we define as our third design goal for principled
domain abstraction:

Declarativity: The implementation of domain abstractions should be declar-
ative.

Implementation reuse. To further reduce the cost of developing and maintain-
ing domain abstractions, it should be possible to reuse their implementation.
For example, many DSLs contain an expression language for arithmetic and
Boolean operations. Requiring developers of domain abstractions to reimple-
ment such expression language for each DSL places an unnecessary burden on
them. Instead, implementations of domain abstractions should be organized in a
module system that enables the reuse of (part of) the syntax, semantics, static
analysis, or tool support of a domain abstraction. This constitutes our fourth
design goal for principled domain abstraction.

Implementation reuse: The implementation of domain abstractions should
be reusable.

Composability. The previous design goal demands reusability of the implemen-
tation. But a domain abstraction itself should also be reusable in different con-
texts, even if other domain abstractions are needed as well. This requires support
for the composition of domain abstractions, which has been the subject of re-
search on language-oriented programming for some time [Dmi04, Fow05b, War95].
Language-oriented programming suggests that each component of software
project should be implemented in the DSL that matches the component’s do-
main. Since many components interact with multiple domains, the corresponding
DSLs must be composable. For example, consider a component that uses HT'TP
with SSL to transmit a request encoded as an XML document. Even if we have
domain abstractions for HTTP, SSL, and XML in separation, our example com-
ponent requires support for composing these domain abstractions. Accordingly,
we define our fifth design goal for principled domain abstraction.

Composability: Domain abstractions should be composable such that
clients can use concepts from multiple domains simultaneously.

10
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Uniformity. So far, our discussion focused on domain abstractions for writing
application code; only declarativity addresses the implementation of domain
abstractions. However, our declarativity design goal is generic and does not
address the specific needs of building domain abstractions for certain domains.
For example, when building different DSL that are dialects of XML, a domain
abstraction for implementing these domain abstractions could introduce XML
Schema, which provides a domain-specific mechanism for declaring XML di-
alects. This requires a uniform language design where domain abstractions are
self-applicable. As macro systems like Scheme [SDF*09] and Racket [Fla12]
demonstrate, such uniform language design enables “growing a language” [Ste99]
from a small core language into a full-fledged general-purpose language that can
extend itself. We adopt uniformity as our final design goal for principled domain
abstraction.

Uniformity: Domain abstractions should be applicable in the implementa-
tion of other domain abstractions.

Summary. Domain abstraction should adhere to established programming
principles. In particular, domain abstraction should permit modular reasoning
and referential transparency, support composability and uniformity, and their
implementation should be declarative and reusable. We believe that flexible and
principled domain abstraction as defined here constitutes a useful programming
model for complex software systems. Following these design goals, we developed
a novel approach to domain abstraction, which we outline in the following
section.

1.3 Extensible languages for domain abstraction

Existing approaches for domain abstraction fulfill many of the design goals
discussed above. In particular, we observe that existing mechanisms for the
definition of external DSLs provide flexibility, whereas existing mechanisms for
the definition of internal DSLs are principled.

However, existing approaches provide insufficient support for the development
of complex software systems because external DSLs lack important principles
such as modular reasoning or composability, whereas internal DSLs are greatly
restricted by the flexibility of the host language, which prevents true domain-
specific syntax, domain-specific static analyses, and domain-specific tool support.

11
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We are looking for new forms of abstraction that combine the strengths of
external and internal DSLs.

We propose the use of extensible host languages for domain abstraction, where
domain concepts are integrated through language extensions. A language ex-
tension defines an embedding of the domain concepts into the host language.
Since the host language is extensible, a language extension can, for example,
introduce domain-specific syntax or domain-specific static analyses. Thus, ex-
tensible host languages break with the traditional inflexibility of internal DSLs.
Simultaneously, extensible host languages can retain the benefits of internal
DSLs.

Extensible programming languages have been an active research topic since the
development of Lisp in the late 1950s [McC60]. Since then, and in particular in
recent years, many extensible programming languages have been proposed, for ex-
ample, ECL [Weg70|, AEPL [KM71], Scheme [SDFT09, DHB92|, Racket [Flal2,
THSACT11], Nemerle [SMOO04], Katahdin [Sea07]|, Fortress [ACNT09], Helve-
tia [RGN10], or Honu [RF12]. The domain abstraction supported by these
languages varies from fully flexible but unprincipled to rather restricted yet prin-
cipled. For example, Scheme provides restricted flexibility in its macro system,
which allows macros to define domain-specific syntax [Kri06] only as long as this
syntax follows the s-expression format and starts with a unique macro identifier.
On the other hand, Scheme macros support the important principle of referential
transparency [CR91] through hygienic macro expansion [CR91, DHB92|. Other
languages such as Helvetia provide a more flexible extensible syntax, but cannot
guarantee referential transparency. We present a detailed comparison of existing
approaches to domain abstraction in Chapter 8.

In this thesis, we explore a novel design for extensible programming languages.
The central idea of our design is to organize language extensions as libraries.
That is, programmers can define language extensions as libraries of the host
language, and libraries can extend the semantics, syntax, static analysis, and
tool support of the host language.

A library that contains a language extension behaves like a regular program-
ming library. In particular, a library encapsulates and scopes any language
extension that it contains. Consequently, language extensions are never acti-
vated implicitly. Instead, to use a language extension, a programmer brings the
extension into the current scope by importing the corresponding library.

In this thesis, we explore the design of language extensions as libraries through
the development and refinement of an extensible programming language called
Sugard. The design of SugarJ targets flexible and principled domain abstraction.

12
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Based on library-based language extensibility, SugarJ provides the following
features:

e domain-specific semantics, syntax, static analysis, and editor support
through language extensions defined in libraries,
e polymorphic interpretations of domain-specific programs,

e modular reasoning on active language extensions and separate compilation
of libraries,

e limited referential transparency based on communication integrity,

e declarative and reusable extension definitions based on SDF, Stratego, and
Spoofax,

e declarative support for layout-sensitive syntax,
e composition of independent extensions,

e self-applicable extensions that target the extension mechanism itself,

and independence of the base language.

In the design of SugarJ, we focused on library-based syntactic extensibility
for Java. The goal was to provide programmers with a customizable surface
syntax that allows them to write domain-specific programs more conveniently.
To this end, we developed a methodology for incremental, import-dependent
parsing of a source file, where each imported library can change the parser for
the remainder of the file. This incremental parsing methodology is one of the
core technical enablers of SugarJ.

Since we selected libraries as the main organizational unit for language ex-
tensions, the initial design of SugarJ supports modular reasoning and separate
compilation. Essentially, to reason about a SugarJ source file, it suffices to
inspect the imported libraries and the code of the current source file itself. The
imported libraries fully determine the active language extensions, so that the
remaining source code can be understood by the programmer and our compiler.
While this may be unsurprising for users of macro systems such as Scheme,
many domain-abstraction approaches apply external, global build scripts to
activate language extensions. Since such build scripts are outside the source file,
a programmer cannot locally reason about the active extensions. In contrast,
SugarJ programmers use import statements to activate language extensions in
the current module.

13
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Another benefit of our design is that libraries provide a good means for
code reuse. With respect to language extensions, two forms of code reuse are
relevant. First, extensions can share and reuse part of their implementation
by importing libraries that contain auxiliary definitions for building extensions.
Second, users can share and reuse language extensions by importing the same
language extensions. Therefore, our design encourages the decomposition of
language extensions into small, reusable units. However, this makes support for
the composition of language extensions even more important. For using multiple
extensions, our design aligns with the use of libraries in regular programming
languages: A programmer simply imports all needed language extensions into a
single source file. The SugarJ compiler composes all language extensions that are
in scope of a source file before processing the body of the file. Technically, this
requires a composable metalanguage for the definition of language extensions.
For this reason, we chose SDF [Vis97b] and Stratego [VBT98] as metalanguages
for the description of language extensions in SugarJ.

It is important to note, though, that SDF and Stratego are fully integrated
into SugarJ. That is, SugarJ comprises Java, SDF, and Stratego. As consequence
of this integration, the extension mechanism of SugarJ is self-applicable: Like a
programmer can use a regular library in the implementation of another library
by importing it, a programmer can also use a language extension in the definition
of another language extension by importing it. Pragmatically, this means that a
SugarJ programmer can define language extensions for the metalanguages SDF
and Stratego. This way, SugarJ programmers can enjoy the benefits of domain
abstraction while writing language extensions.

In a setting like SugarJ, where the language is subject to customization,
conventional tool support fails, because it is oblivious to language extensions.
For example, the syntax-coloring services of conventional Java IDEs such as
Eclipse [Thel2| fail to color embedded XML syntax correctly. To address
this issue, we designed an extensible IDE based on the language workbench
Spoofax [KV10]. Spoofax provides a set of DSLs for the declaration of editor
services. We integrated these DSLs into SugarJ such that programmers can
declare editor services in a SugarJ library. In contrast to Spoofax, our extensible
IDE does not activate editor services globally. Instead, our extensible IDE acti-
vates editor services based on the imported libraries on a file-by-file basis. Thus,
SugarJ programmers can accompany a language extensions with corresponding
editor services, which are imported together with the syntactic extension. This
way, SugarJ provides an editing experience similar to what programmers know
from mainstream languages such as Java.

14
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In addition to SugarJ, we developed three dialects of the language: Sugar-
Haskell, SugarProlog, and JProMo. SugarHaskell is an extensible programming
language that uses Haskell as base language for application code. In the con-
text of Haskell, layout-sensitive syntax is a major issue, which we addressed
by developing a declarative and composable formalism for the specification of
layout-sensitive languages. Furthermore, we reengineered our implementation of
SugarJ to enable extensibility for other base languages than Java. In particular,
we defined an interface that abstracts over the base-language dependencies
of the SugarJ compiler. To demonstrate the host-language independence of
the reengineered SugarJ compiler, we instantiated this interface for three base
languages: SugarJ, SugarHaskell, and SugarProlog.

We developed JProMo to explore polymorphic domain abstractions and to
improve on SugarJ’s lack of referential transparency. For polymorphic domain
abstraction, we found inspiration in works on model-driven software develop-
ment, where a domain abstraction (represented as a metamodel) can have many
semantics (represented as model transformations). This enables the reuse of
a single domain-specific program (a model) in different contexts with different
semantics. To study such polymorphic interpretations of domain-specific pro-
grams, we designed and implemented an extension of SugarJ called JProMo
(Java Programming with Models). JProMo retains SugarJ’s central design choice
of organizing domain abstractions in libraries, but it enables the transformation
of libraries when importing them. That is, an import statement can declare
not only the imported module but also a transformation that is applied to the
imported module first. This way, different users can apply different transforma-
tions to the same domain-specific program. Moreover, we extended SugarJ with
communication integrity [MQR95, LV95], which guarantees that a transforma-
tion does not inject module dependencies. This improves modular reasoning and
represents an important first step toward referential transparency.

1.4 Contributions and outline

The main contribution of this thesis is a novel design for extensible programming
languages based on libraries that provide flexible and principled domain abstrac-
tion. We have studied this design in-depth by designing SugarJ, developing a
compiler and an IDE for it, and exploring the language in numerous case studies.

Alongside our main contribution, this thesis makes further contributions in the
areas of language design and language engineering. Many of these contributions
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have been previously published by the author in collaboration with others in
the proceedings of international conferences, symposia, and workshops. In the
presentation of this thesis, we roughly follow the historical development of
SugarJ.

In Chapter 2, we introduce library-based syntactic language extensibility and
present the design of SugarJ. In particular, we describe how a programmer can
define and use syntactic extension in SugarJ, and how SugarJ scopes language
extensions to enable modular reasoning. Technically, we present the SugarJ com-
piler, which features separate compilation and applies an innovative incremental
parser for import-dependent processing of a source file. We explore the design
and demonstrate the applicability of our approach through five case studies:
tuple syntax and anonymous first-class functions for Java, an embedding of XML
with literal XML syntax, an extension of the metalanguage Stratego for concrete
syntax in transformations, and an embedding of the domain-specific metalan-
guage XML Schema that can be used to define domain-specific dialects of XML.
The latter two case studies demonstrate the utility of SugarJ’s self-applicable
extension mechanism.

In Chapter 3, we focus on IDE support for extensible programming languages.
To this end, we present an extensible IDE based on editor extensions, which
are organized in libraries. For each file, our IDE inspects the editor extensions
brought into scope with import statements, and presents the corresponding
editor services to the user. We discuss the composability of user-defined editor
services and demonstrate our extensible IDE by developing editor extensions for
XML and Latex that give the look-and-feel of standalone XML and Latex IDEs.

In Chapter 4, we present groundwork for a variant of SugarJ based on Haskell,
which employs a layout-sensitive syntax. To support Haskell, we develop an
extension of SDF that features a declarative mechanism for the specification of
layout-sensitive languages: We annotate regular productions of the grammar
with layout constraints that restrict the applicability of a production to layout
that satisfies the constraint. This mechanism is simple, declarative, and retains
the composability of SDF grammars. We develop a generalized parser for
grammars with layout constraints, develop layout-sensitive grammars for Python
and Haskell, and perform an extensive evaluation by parsing 33 290 files.

In Chapter 5, we introduce the syntactically extensible programming language
SugarHaskell, which uses our layout-sensitive parser and the Haskell grammar.
In particular, SugarHaskell not only employs a layout-sensitive base language
but also allows programmers to declare layout-sensitive syntax extensions. We
present language extensions for applicative functors, arrows, and EBNF-based
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declarations of concrete and abstract syntax. Technically, we describe our
implementation of a framework for building extensible languages with which
support for new base languages can be realized relatively easy.

In Chapter 6, we introduce the model-oriented-programming paradigm. Model-
oriented programming is a programming-language approach to model-driven
development, where models, metamodels, and transformations are represented
as libraries, and the application of a transformation to a model is explicitly
declared with import statements. We realized model-oriented programming in
the programming language JProMo, which is built on top of SugarJ. JProMo
extends SugarJ both with respect to flexibility and principles. In particular,
JProMo adds flexible polymorphic domain abstraction by separating models
from transformations, and guarantees communication integrity as a first step
toward referential transparency. We demonstrate the applicability of these new
features with case studies on statemachines and #ifdef-based software product
lines.

In Chapter 7, we focus on language composability, one of the most important
principles applied in SugarJ, because our library-based design facilitates the
decomposition of domains into multiple libraries and the composition of multiple
libraries in a single file. In Chapter 7, we take a step back to investigate
the meaning of language composition, to classify different forms of language
composition, and to survey the support for language composition in existing
systems. In particular, we introduce a precise terminology and an algebraic
notation for describing language composition.

In Chapter 8, we discuss SugarJ in a wider context of related work and compare
it with other approaches to domain abstraction. We provide a tabular overview
of existing approaches using the design goals on flexible and principled domain
abstraction that we introduced in the present chapter. As it turns out, the
design goals provide a characterization of existing systems where no two systems
satisfy the same goals. Furthermore, each of our design goals is addressed by
some systems but not all of them—except for domain-specific semantics which
is a necessity for domain abstraction.

In Chapter 9, we summarize our contributions and provide suggestions for
future work on extensible languages.

We have realized all work described in this thesis in concrete implementations
to guide and evaluate our design. All our implementations are open source and
the source code of the following artifacts is available via http://sugarj.org:

e SugarJ compiler,
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e Sugar]J IDE,

e layout-sensitive generalized LR parser,

e plug-in-based compiler framework for extensible languages,

e SugarJ, SugarHaskell, SugarProlog, and SugarFomega compiler plugins,
e compiler for the model-oriented programming language JProMo,

e case studies for SugarJ, SugarHaskell, and JProMo (see overview in Ap-

pendix A).

The development of these tools represents another major contribution of this
thesis. Our tools can be used by other researchers as the basis for further work.
In particular, the extensible languages SugarJ, SugarProlog, and SugarHaskell
can serve as research platforms for exploring language design in general, and
future extensions of Java, Prolog, and Haskell in particular.
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2 Syntactic Language Extensibility

This chapter shares material with the OOPSLA’11 paper “SugarJ: Library-
based Syntactic Language Extensibility” [ERKO11].

We start our exploration of flexible yet principled extensible languages by
focusing on extensible syntax. To this end, we present sugar libraries, a novel ap-
proach for syntactically extending a programming language within the language.
A sugar library is like an ordinary library, but can, in addition, export syntactic
sugar for using the library. The syntactic extensibility supported by sugar
libraries comprises the full class of context-free languages. In particular, sugar
libraries do not require keywords or macro names to mark the code belonging to
some extension. Instead, syntactic extensions can be freely integrated into the
host language syntax.

On the other hand, sugar libraries maintain the composability and scoping
properties of ordinary libraries. Sugar libraries are never active by default.
Instead, programmers import the sugar libraries they want to use. To apply
multiple language extensions, a programmer simply imports all corresponding
sugar libraries and thereby composes them. Since sugar libraries must be
imported explicitly, programmers can modularly reason about their programs
despite the use of language extensions. Furthermore, sugar libraries inherit
self-applicability from regular libraries, which means that sugar libraries can
provide syntactic extensions for the definition of other sugar libraries.

We realized sugar libraries in the syntactically extensible programming lan-
guage SugarJ. SugarJ employs a novel incremental parsing technique, which
allows changing the syntax within a source file. We demonstrate SugarJ by
five language extensions, including embeddings of XML and closures in Java,
all available as sugar libraries. We illustrate the utility of self-applicability by
embedding XML Schema, a metalanguage to define XML languages.

2.1 Introduction

DSLs can bridge the representational gap between domain concepts and the
implementation of these concepts in a programming language (see Figure 1.1).
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import pair.Sugar;

public class Test {
private (Integer, String) p = (17, "seventeen");

}

Figure 2.1: The import statement activates pair syntax in the current file.

Accordingly, DSLs, such as regular expressions for the domain of text recognition
or Java Server Pages for the domain of dynamic web pages, have often been
argued to simplify software development [MHS05|. However, to use DSLs in large
software systems that touch multiple domains, developers have to be able to
compose multiple DSLs and embed them into a common host language [Hud98|.
In this context, we consider the long-standing problem of domain-specific syn-
tax [Lea66, WC93, BLS98, BS02, BV04, RGN10].

Our novel contribution is the notion of sugar libraries, a technique to syntac-
tically extend a programming language in the form of libraries. In addition to
the semantic artifacts conventionally exported by a library, such as classes and
methods, sugar libraries export also syntactic sugar that provides a user-defined
syntax for using the semantic artifacts exported by the library. Each piece
of syntactic sugar defines some extended syntax and a transformation—called
desugaring—of the extended syntax into the syntax of the host language. Sugar
libraries enjoy the same benefits as conventional libraries: (i) They can be used
where needed by importing the syntactic sugar as exemplified in Figure 2.1.
(i) The syntax of multiple DSLs can be composed by importing all corresponding
sugar libraries; their composition may form a new higher-level DSL that can
again be packaged as a sugar library. (iii) Sugar libraries are self-applicable:
They can import other sugar libraries and the syntax for specifying syntactic
sugar can be extended as well.

In other words, sugar libraries treat language extensions in a unified and
regular fashion at all metalevels. Here, we apply a conceptual understanding of
“metalevel”, which distinguishes the definition of a language from its usage: A
language definition is at a higher metalevel than the programs written in that
language. In this sense, sugar libraries (defining language extensions) are on a
higher metalevel than the programs that use the sugar library, and the import
of a sugar library acts across metalevels.

Sugar libraries are not limited to DSL embeddings; they can be used for
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package pair;
public class Pair<A,B> { ... }

(a) A generic Java class that implements the semantics of pairs.
package pair;

import org.sugarj.languages.Java;
import concretesyntax.Java;

public sugar Sugar {
context-free syntax
"(" JavaType "," JavaType ")" -> JavaType {cons("PairType")}
"(" JavaExpr "," JavaExpr ")" -> JavaExpr {cons("PairExpr")}

desugarings
desugar-pair-type
desugar-pair-expr

rules
desugar-pair-type :
PairType(tl, t2) -> |[ pair.Pair<~tl, ~t2> ]|
desugar-pair-expr :
PairExpr(el, e2) -> |[ pair.Pair.create(~el, ~e2) ]|

}

(b) A sugar library that defines literal pair syntax and desugarings for expressions and types.

Figure 2.2: Sugar libraries provide convenient syntax for semantic encodings.

arbitrary extensions of the surface syntax of a host language (for instance, an
alternative syntax for method calls). However, due to their composability and
their alignment with the import and export mechanism of libraries, they qualify
especially for embedding DSLs.

To explore sugar libraries, we have designed and implemented sugar libraries
in SugarJ. SugarJ is a programming language based on Java that supports
sugar libraries by building on the grammar formalism SDF [Vis97b] and the
transformation system Stratego [VBT98|. As an example of SugarJ’s syntactic
extensibility, in Figure 2.1, we import a sugar library for pairs that enables
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the use of pair expressions and types with pair-specific syntax. We show the
corresponding sugar library pair.Sugar in Figure 2.2. It provides convenient syntax
for the semantic encoding of pairs as a generic class Pair<A,B>.

The pair.Sugar declaration extends the Java syntax with syntax for pair types
and expressions by adding productions for the existing nonterminals JavaType and
JavaExpr. To associate meaning to the new pair syntax, pair.Sugar also stipulates
how pair types and expressions are desugared into Java. In Figure 2.1, for
example, the desugaring transforms the pair type (String, Integer) into the Java
type Pair<String, Integer> and the pair expression (17,"seventeen") into a static
method call pair.Pair.create(17,"seventeen"). Since SugarJ supports arbitrary
compile-time computation, sugar libraries can implement even intricate source
transformations, perform domain-specific compile-time analyses, and program
optimizations.

To set the context for SugarJ, in the following section we briefly review the
syntactic extensibility of existing DSL embedding approaches. Subsequently, in
this chapter, we present the following contributions:

e We introduce the novel concept of sugar libraries, a library-centric approach
for syntactic extensibility of host languages (Section 2.3). Sugar libraries
enable the uniform embedding of DSLs at syntactic and semantic level,
and retain the composability properties of conventional libraries.

e Sugar libraries combine the benefits of existing approaches: Sugar libraries
support flexible domain-specific syntax (based on arbitrary context-free
grammars and compile-time checks), scope language extensions, can be
imported across metalevels, and act on all metalevels uniformly to enable
syntactic extensions in metaprograms (self-applicability).

e The simplicity of activating syntactic extensions by import statements
and the language-integrated support to develop new syntactic extension,
even for small language extensions, encourages development in a language-
oriented [Dmi04, Fow05b, War95]| fashion.

e We present our implementation of SugarJ on top of existing languages,
namely Java, SDF and Stratego, and explain the mechanics of compiling
our syntactically extensible programming language (Section 2.4).

e Technically, we present an innovative incremental way of parsing files, in
which different regions of a file adhere to different grammars from different
syntactic extensions.
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2.2 Syntactic embedding of DSLs

e We demonstrate the expressiveness and applicability of SugarJ on the
basis of five case studies—pairs, closures, XML, concrete syntax in trans-
formations, and XML Schema. The latter is an advanced example of
self-applicability, since each XML Schema defines a new XML language
(Section 2.5).

2.2 Syntactic embedding of DSLs

Many approaches for embedding a DSL into a host language focus on the
integration of domain concepts at semantic level (e.g., [01i09, HORMO08, HO10]),
but neglect the need for expressing domain concepts using domain-specific syntax.
To set the context for sugar libraries, we survey the syntactic amenability of
existing DSL embedding approaches here, and present a more thorough treatment
of related work in Chapter 8.

String encoding. The simplest form of representing a DSL program in a host
language is as unprocessed source code encoded as a host-language string. Since
most characters may occur in strings freely, such encoding is syntactically
flexible. Consider, for instance, the following Java program, which writes an
XML document to some output stream out.

String title = "Sweetness and Power";

out.write("<book title=\"" + title + "\">\n");

out.write(" <author name=\"Sidney W. Mintz\" />\n");
out.write("</book>");

The string encoding allows writing XML code with element tags and attributes
naturally. Nevertheless, in XML documents nested quotes and special whitespace
symbols such as newline have to be escaped, leading to less legible code. Moreover,
the syntax of string-encoded DSL programs is not statically checked but parsed
at run time. Hence, syntactic errors are not detected during compilation and
can occur after deploying the software. Furthermore, string encoded programs
have no syntactic model and, therefore, can only be composed at a lexical level
by concatenating strings. This form of composition resembles lexical macro
expansion in a way that is not amenable to parsing [EO10] and opens the door to
security problems such as SQL injection or cross-site scripting attacks [BDV10].

Library embedding. To avoid lexical string composition and syntax errors at
run time, we can alternatively embed a DSL as a library, that is, a reusable
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collection of functionality accessible through an API. In Hudak’s pure-embedding
approach [Hud98|, for instance, one builds a library whose functions implement
DSL concepts and are used to describe DSL programs. For example, we can
embed XML purely as follows:

String title = "Sweetness and Power";
Element book =
element("book",
attributes(attribute("title", title)),
elements(
element("author",
attributes(attribute("name", "Sidney W. Mintz")),
elements())));

The syntax of the DSL can be encoded in the type system of the host language,
so that, in a statically typed host language, the DSL program is syntax checked
at compile time. In our example, such checks can prevent confusion of XML
attributes and XML elements. But even in an untyped host language, purely
embedded XML documents are properly nested by design, that is, it is not
possible to describe ill-formed documents such as <a><b></a></b>.

An apparent drawback of purely embedded DSLs is the syntactic inflexibility
of the approach: Programmers must adopt the syntax of function calls in
the host language to describe DSL programs. Consequently, when solving a
domain-specific problem, the programmer needs to “translate” any conceived
domain-specific solution into the host language’s syntax manually. Some host
languages partially address this problem by overloading built-in or user-defined
infix operators (e.g., Smalltalk), integer or string literals (e.g. Haskell), or
function calls (e.g., Scala). However, even in these languages a DSL implementer
can only extend the host language’s syntax in a limited, preplanned way. For
example, while Scala supports quite flexible syntax for method calls, the syntax
for class declarations is fixed.

To circumvent the need for manual translation of domain concepts, researchers
have proposed the use of syntactically extensible host languages that support
the syntactic embedding of DSLs [BP01, BS02, Tra08, WC93]. In particular,
languages with macro facilities (or similar metaprogramming facilities) can be
used to develop library-based syntactic embeddings of DSLs [Kri06]. Unfor-
tunately, most macro languages only support user-defined syntax for macro
arguments [BS02|. This obstructive requirement for explicit macro invocations
prevents the usage of macro systems to syntactically embed DSLs like XML into
a host language freely [BV04].
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Independent of their syntactic inflexibility, one essential advantage of library
embeddings is the composability of DSLs. By importing multiple libraries,
a programmer can easily compose those libraries to build a new one. Since
embedded DSLs are implemented as libraries of the host language, library
composition entails the composition of DSL implementations. Therefore, library
embedding supports modular definitions of DSLs on top of previously existing
ones [HORMOS|. These benefits of library embedding are the starting point and
main motivation for our sugar-library approach.

Language extension. To support fully flexible domain-specific syntax, one
possibility is to extend the host language such that it comprises the DSL. In this
approach, syntactic and semantic language extensions are incorporated into the
host language by directly modifying the host language’s implementation or using
an extensible compiler. Usually, language extensions are not restricted in the
syntax they introduce: DSL implementors can integrate arbitrary DSL syntax
and semantics into the host language. For example, Scala provides built-in
support for XML documents:

val title = "Sweetness and Power"
val book =
<book title="{title}">
<author name="S8idney W. Mintz" />
</book>

Scala’s support for XML syntax has been directly integrated into the Scala com-
piler, which translates XML syntax trees into calls to the scala.xml library [Odel0].
Since the Scala compiler parses embedded XML documents at compile time,
run-time syntax errors cannot occur and ill-formed documents cannot be gener-
ated. Moreover, compared to the nested library calls of a pure XML embedding,
users of an XML-extended host language can write programs more naturally
using literal XML syntax.

In general, modifying a (nonextensible) compiler to incorporate a DSL into
the host language is impracticable and makes it hard to develop or compose
independent DSLs. More generic approaches for extending a language therefore
support modular definition and integration of DSLs and are not specific to
the used host language. In these approaches, which include extensible com-
pilers [EH07a, NCMO03| and program transformation systems [BV04, VKBS07],
the active language extensions are determined by compiler configurations or
by generating and selecting the right compiler variant. This becomes impracti-
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cal if programmers use different combinations of DSLs in different source files:
Compiler variants or configurations have to be generated for each combination
of DSLs, and a significant part of the program’s semantics and dependency
structure is moved from the program sources to build scripts or configuration
files.

Summary. String embedding is syntactically very flexible but lacks static safety
and composability. Library embeddings excel in composability but lack syntactic
flexibility. Language extensions are powerful but hard to implement and compose,
and introduce an undesirable stratification into base code and metalevel code.
Obviously, it would be beneficial to combine the respective strengths of these
approaches.

2.3 SugarJ: Sugar libraries for Java

We propose to organize syntactic language extensions into sugar libraries. A sugar
library encapsulates the specification of a syntax extension and a accompanying
desugaring from the extended syntax into host-language syntax. To use a
syntactic extension, a developer simply imports the corresponding sugar library.
A sugar-library import activates the syntactic extension in the current module
and allows the developer to use the new syntactic constructs in subsequent
segments of the same file. Programmers and metaprogrammers can uniformly
import sugar libraries to implement applications or other sugar libraries.

To demonstrate the concept, we have designed and implemented SugarJ, a
variant of Java with support for sugar libraries. SugarlJ is a host language for
language embedding that comprises three existing languages: Java is used as base
language for application code, the syntax definition formalism (SDF) [Vis97b] is
used to describe concrete syntax of extensions, and the Stratego transformation
language [VBT98] is used to describe desugarings of extension-specific code into
SugarJ code. Importantly, extension-specific code can not only desugar into
Java but into the full host language SugarJ. In particular, extension-specific code
can desugar into SDF and Stratego fragments that define yet another syntactic
extension.

We introduce sugar libraries by walking through an example. We extend
Java with closures by introducing syntactic sugar and corresponding desugarings
of the introduced closure syntax into plain Java code. (Closures, or lambda

28



2.3 SugarJ: Sugar libraries for Java

package javaclosure;
public interface Closure<Result, Argument> {
public Result invoke(Argument argument);

}

(a) An interface for function objects.

final int factor = ..;
Closure<Integer, Integer> scale =
new Closure<Integer, Integer>() {
public Integer invoke(Integer x) {
return x * factor;
}

h

List<Integer> scaled = original.map(scale);

(b) A closure that scales its input by a constant factor.

Figure 2.3: Closures can be implemented as function objects, but Java does
not offer convenient syntax for closure types and expressions.

expressions, or anonymous functions are an frequently-requested feature for Java
and plans exist to integrate closures into Java 8, which is expected for 2013.)

2.3.1 Using a sugar library

To use a sugar library, a programmer only has to import the library with
an ordinary import statement. In a source file that imports a sugar library,
the programmer may use syntax introduced by the library anywhere after its
import. All syntax constructs from the library are desugared into plain Java
code (more precisely into SugarJ code, because desugarings can produce new
syntax extensions) automatically at compile time.

Our closure example illustrates the benefits of sugar libraries for programmers
and how easy such libraries are to use. In plain Java code, a programmer
would typically implement closures as anonymous inner classes as illustrated in
Figure 2.3. However, the syntax is rather verbose, especially for the frequent
use case of an anonymous inner class with exactly one method. With SugarJ, a
programmer can import a sugar library that introduces a more concise notation
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import javaclosure.Syntax;
import javaclosure.Desugar;

(a) Import statements activate the sugar library for closures.

final int factor = ...;
#Integer(Integer) scale =

#lInteger(Integer x) { return x * factor; };
List<Integer> scaled = original.map(scale);

(b) Using specialized syntax for creating a closure.

Figure 2.4: The closure sugar library provides concise syntax for the declaration
of closure types and expressions.

for closures, following roughly the proposal of Gafter and von der Ahé [GvdAQ9]
(one of several syntax suggestions). With this syntactic extension, we can rewrite
our example as illustrated in Figure 2.4: Instead of verbose Java code, we write
#R(T) to denote a closure type Closure<R, T> and #R(T t) { stmts...; return exp; }
to denote a closure. The verbose code of Figure 2.3 and the concise of Figure 2.4
are equivalent. SugarJ automatically desugars the concise version into plain
Java code at compile time.

2.3.2 Writing a sugar library

To write a sugar library, one has to define how to extend the language and how to
desugar the extension. Hence, a sugar library consists of two parts: An extension
of the host language’s grammar with new syntax rules and a desugaring of the
new language constructs into the original language.

In SugarJ, programmers define both parts through top-level sugar declara-
tions of the form public sugar Name { ... }, which contain SDF and Stratego code
organized into sections. While we support all features of SDF and Stratego, here
we concentrate on the features most essential for writing sugar libraries: syntax
rules and program-transformation rules.

In an SDF section context-free syntax, a library developer can extend the host
language’s grammar with new syntax rules. Figure 2.5(a) shows the syntax rules
for our closure example. A syntax rule specifies the nonterminal to be extended
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package javaclosure;

import org.sugarj.languages.Java;
import concretesyntax.Java;

public sugar Syntax {
context-free syntax
"#" JavaType " (" JavaType ")"
-> JavaType {cons("ClosureType")}

"#" JavaType " (" JavaFormalParam ")" JavaBlock
-> JavaExpr {cons("ClosureExpr")}

}

(a) We extend the Java grammar with syntax for closure types and expressions.

public sugar Desugar {
rules
desugar-closure-type :
| [ #~result(~argument) ]|
-> |[ javaclosure.Closure<? extends ~result, ? super ~argument> ||

desugar-closure-expr :
| [ #~result(~argument ~id:x) ~block:body ]|
-> |[ new javaclosure.Closure<~result, ~argument>() {
public ~result invoke(~argument ~id:x)

~block: body
}
1

desugarings
desugar-closure-type
desugar-closure-expr

}

(b) We desugar closure types into reference types of the Closure interface and closure expressions
into anonymous classes implementing the Closure interface.

Figure 2.5: A sugar library for closures. We split the definition over two sugar
declarations so that the syntax rules for closures are in scope of
the desugaring declaration.
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(to the right of the arrow ->), a pattern for the newly introduced concrete syntax
(to the left of the arrow), and a name for the syntax tree node created by this
production (in the cons annotation). Importantly, a syntax rule can refer to and
extend existing nonterminals even if these are declared within other modules.
In our example, we import the Java grammar org.sugarj.languages.Java to bring
Java’s nonterminals into scope. This way, sugar libraries can introduce new
syntax for any syntactic category (e.g., class declarations, expressions or import
statements) by extending SugarJ nonterminals or nonterminals introduced by
other sugar libraries.

In a Stratego section rules, a library developer can define program transfor-
mations, called desugaring rules. We illustrate Stratego rules for closures in
Figure 2.5(b). A desugaring rule consists of a name (before the colon), a match-
ing pattern (to the left of the arrow) and a generation template (to the right of
the arrow). Both pattern and template are specified using concrete syntax in
brackets I] ... ]I, where metavariables are written with an initial tilde ~ [Vis02].
A desugaring rule denotes a program transformation from the extended syntax
to the host language (possibly with some other extension).

Desugaring rules are specified using concrete syntax, so that a programmer
does not need to read or write abstract syntax trees. In our example, the rule
desugar-closure-type in Figure 2.5(b) matches on closure types using the # ... (...)
concrete syntax just introduced in Figure 2.5(a). For technical reasons, a syntax
rule is only activated after the sugar declaration it is defined in.! Therefore,
one typically splits a sugar library into two parts, introducing syntax rules and
desugaring rules separately, so the syntax rules for closures are in scope when
we define the desugaring rules for closures. Accordingly, desugar-closure-type
transforms a closure type into a reference type of the javaclosure.Closure interface.
As a general coding convention, in desugarings, we write fully-qualified Java
references to maintain referential transparency [CR91| (more on that later).

The transformation desugar-closure-expr matches on closure expressions and
transforms them into declarations of anonymous classes that implement the
javaclosure.Closure interface. Again we make extensive use of concrete syntax
in the transformation. In fact, the definition of the desugaring rule exactly
reveals the syntactic boilerplate we avoid with our closure abstraction. Instead
of writing a verbose declaration of an anonymous class every time we need a
closure, we use syntactic abstraction to provide a closure-specific shorthand

10ur implementation supports syntax changes only between top-level declarations, but not
in the middle of, for example, a sugar declaration. See Sections 2.3.3 and 2.4 for details.
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1 package javaclosure;
————————————————————————— SugarJ
2 import javaclosure.Syntax;
3 import javaclosure.Desugar; } SugarJ + closures (syntaz only)
4 import pair.Sugar; } SugarJ + closures
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, N
public class PartialApp {
public static <R, X, Y>
#R(Y) invoke(final #R((X, Y)) f,
5 final X x) { » SugarJ + closures + pairs
return #R(Y y) { return f.invoke((x, y)); };
}
¥
-/

Figure 2.6: If multiple sugar libraries are brought into a single scope via imports,
SugarJ composes the syntactic extensions.

notation.

In a final section desugarings of the sugar library, the library developer declares
the main desugaring rules. After parsing, the SugarJ compiler exhaustively
applies these desugaring rules in a bottom-up fashion, starting at the syntax
tree’s leaves and progressing towards its root. Compilation fails if an input
program cannot be unambiguously parsed with the combination of all syntax
rules in scope, if any of the triggered desugaring rules signals an error, or if the
desugared program still contains fragments of user extensions.

2.3.3 Composing sugar libraries

Sugar libraries are composed by importing more than one sugar library into
the same file. For example, in Figure 2.6, we import the sugar library for
closures together with a sugar library for pairs to implement partial application
of a function that expects a pair as input. Note that instead of importing
javaclosure.Syntax and javaclosure.Desugar separately, we could have defined a com-
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pound module javaclosure.Sugar and import this one.? The scope of each sugar
library is annotated in the figure. The syntax for closures and the syntax for
pairs can be freely mixed in the class declaration, where both sugar libraries are
in scope.

To merge several syntactic sugar, SugarJ composes the grammar extension and
desugaring declarations of sugar libraries. The composability of the underlying
grammar formalism and transformation language was the main criteria for
deciding to build SugarJ on top of SDF and Stratego. Composing two sugar
libraries is not always possible entirely without conflicts or ambiguities if the
syntactic extensions overlap. Our experience, however, suggests that in most
practical cases libraries can be freely composed or conflicts can be easily detected
and fixed, see our discussion in Section 2.6.1.

2.4 SugarJ: Technical realization

A compiler for SugarJ parses and desugars a SugarJ source file and produces a
Java file together with grammar and desugaring rules as output. Subsequently,
we can compile the Java file into byte code, whereas the grammar and desugaring
rules are stored separately as a form of library interface for further imports from
other SugarJ files. In this section, we assume that desugaring rules are program
transformations between syntax trees. Later, in Section 2.5.1, we show how an
ordinary sugar library can extend SugarJ to support desugarings rules in terms
of concrete syntax, as used in the examples so far.

2.4.1 The scope of sugar libraries

To parse and desugar a SugarJ source file, the compiler keeps track of which
grammar and desugaring rules apply to which parts of the source file. Through
importing or defining a sugar library, the grammar and desugaring rules may
change within a single source file. Moreover, definitions and import statements
of sugar libraries may themselves be written using an extended syntax. Thus, the
compiler has to desugar such definitions before continuing to parse the remainder
of the file.

2Java supports wildcard imports like import javaclosure.*, but their semantics is ill-suited
for our purpose: A wildcard import only affects unqualified class names, but the name
of a sugar library never occurs in a source file. Instead, the SugarJ compiler needs to
immediately import the sugar library to parse the next top-level declaration with an
updated grammar.
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adapt the current grammar

only SugarJ ® nodes Grammar
SugarJ +
gar. Parse Desugar Generate Java
extensions \
[ J
mized SugarJ ® and extension WM nodes Desugarmg

adapt the current desugaring

Figure 2.7: Processing of a SugarJ top-level declaration.

In SugarJ, imports and declarations of sugar libraries can only occur at the
top-most level of a file, but not nested inside other declarations. Therefore,
the scope of grammar and desugaring rules always aligns with the top-level
structure of a file. For example, in Figure 2.6, the grammar and desugaring
rules change between the the second and the third top-level entry for the first
time, hence the third top-level entry is parsed and desugared in a different
context. Subsequently, it changes again after the third and after the fourth
top-level entry, which influences parsing and desugaring of the remaining file.
This alignment allows the SugarJ compiler to interleave parsing and desugaring
at the granularity of top-level entries.

2.4.2 Incremental processing of SugarJ files

Our SugarJ compiler parses and desugars a SugarJ source file one top-level entry
at a time, keeping track of changes to the grammar and desugaring rules, which
affect the processing of subsequent top-level entries. A top-level entry in Sugar]
is either a package declaration, an import statement, a Java type declaration, a
declaration of syntactic sugar, or a user-defined top-level entry introduced with a
sugar library. As illustrated in Figure 2.7, the compiler processes each top-level
declaration in four steps: parsing, desugaring, generation, and adaption.
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Parsing. Each top-level entry is parsed using the current grammar, that is, the
grammar which reflects all sugar libraries currently in scope. For the first top-
level entry, the current grammar is the initial SugarJ grammar, which comprises
Java, SDF, and Stratego syntax definitions. For subsequent top-level entries,
the current grammar may differ due to declared or imported syntactic sugar.
The result of parsing is a heterogeneous abstract syntax tree, which can contain
both predefined SugarJ nodes and user-defined nodes.

Desugaring. Next, the compiler desugars user-defined extension nodes of each
top-level entry into predefined SugarJ nodes using the current desugaring. For
each top-level entry, the current desugaring consists of the desugaring rules
currently in scope, that is, the desugaring rules from the previously declared
or imported sugar libraries. Desugarings are transformations of the abstract
syntax tree, which the compiler applies in a bottom-up order to all abstract-
syntax-tree nodes until a fixed point is reached. The result of this desugaring
step is a homogeneous abstract syntax tree, which contains only nodes declared
in the initial SugarJ grammar (if some user-specific syntax was not desugared,
the compiler issues an error message). Thus, this tree represents one of the
predefined top-level entries in SugarJ and is therefore composed only of nodes
describing Java code, grammar rules, or desugaring transformations. From these
constituents, the compiler generates three separate artifacts.

Generation. We split each top-level SugarJ declaration into fragments of Java,
SDF, and Stratego and reuse their respective implementations. Java top-level
forms are written into the Java output, whereas a sugar declaration affects the
grammar and desugaring output. Package declarations and import statements,
on the other hand, are forwarded to all output artifacts to align the module
systems of Java, SDF, and Stratego.

After processing the last top-level declaration, the Java file contains pure Java
code and the grammar specification and desugaring rules are written in a form
that can be imported by other SugarJ files. In case any produced artifact does
not compile, the SugarJ compiler issues a corresponding error message. So far,
however, the compiler can only report errors in terms of desugared programs.

Adaption. As introduced above, sugar declarations and imports affect the
parsing and desugaring of all subsequent code in the same file. Therefore, after

36



2.4 SugarJ: Technical realization

each top-level entry, we reflect possible syntactic extensions by adapting the
current grammar and the current desugaring.

After desugaring, if the top-level declaration is a new sugar declaration, we
(a) compose the current grammar with the grammar of the new declaration
and (b) compose the current desugaring rules with the desugaring rules of the
new declaration. If the top-level declaration is an import declaration of a sugar
library, we load the generated grammar and desugaring artifacts from the class
path and compose them with the current grammar and desugaring. On pure
Java declarations, we do not need to update the current grammar or desugaring.

When composed, productions of two grammars (e.g., from the initial SugarJ
grammar and from a grammar in a sugar library) can interact through the use
of shared nonterminal names. Hence, a sugar library can add productions to
any nonterminal originally defined either in the initial grammar or in some other
sugar library. In that way, nonterminals defined in the initial grammar represent
initial extensions points for grammar rules defined in sugar libraries. Similarly,
when composed, two sets of desugaring rules can interact through the use of
shared names and by producing abstract-syntax-tree nodes that are subsequently
desugared by rules from the other set.

Adaptation and composition of grammars and desugarings can take place after
each top-level declaration and affects the processing of all subsequent top-level
declarations.

2.4.3 The implementation of grammars and desugaring

As mentioned earlier, SugarJ uses the syntax definition formalism SDF [Vis97b]
to represent and implement grammars, and the transformation language Strat-
ego [VBT98] to represent and implement desugarings.

Our initial grammar (with regard to the process described in Section 2.4.2) is a
standard Java 1.5 grammar augmented by top-level sugar declarations. To enable
incremental parsing with different grammars, we have further augmented the Java
grammar by a nonterminal which parses a single top-level entry together with
the rest of the file as a single string. An alternative approach to this incremental
parsing are adaptive grammars, which support changing the grammar at parse
time [Shu93|. However, adaptive grammars are inherently context-sensitive,
which makes their efficiency questionable. On the other hand, SDF employs a
scannerless generalized LR parser [Vis97a] that yields a parse forest at cubic
worst-case complexity.

Before using SDF grammars and Stratego transformations, SugarJ has to
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compile them. Our implementation caches the results of SDF and Stratego
compilation to speed up the usual case of using the same combination of sugar
libraries multiple times, either processing different files using the same set of
sugar libraries, or reprocessing the same file after changes which do not affect
the imports. In such a case, our compiler takes only a couple seconds to compile
a SugarJ file. However, when changing the language of a Sugar/J file, all syntax
rules and desugaring rules in scope are recompiled, thus compilation takes
considerably longer. Separate compilation [Car97| of grammars and desugarings
would help to speed up compilation, but SDF and Stratego traditionally focus
on the flexible combination of modules, not on compiling them separately.

2.5 Case studies

Our primary goal in designing SugarJ is to support the integration and composi-
tion of DSLs at semantic and syntactic level. To this end, we provide SugarJ
with an extensible surface syntax that sugar libraries can freely extend to embed
arbitrary domain syntax.

We have embedded a number of language extensions and DSLs into SugarJ,
including syntax for pair expression and pair types (Section 2.1), closures for Java
(Section 2.3) and regular expressions. All of these case studies are implemented
in similar style: One defines an extended syntax and its desugaring into an
existing Java implementation for the domain. In this fashion, we could have
easily embedded many more DSLs such as Java Server Pages or SQL. Many
such case studies have been performed for MetaBorg [BV04]; since we use the
same underlying languages for describing grammars and desugarings, namely
SDF and Stratego, these embeddings could easily be encoded as sugar libraries
by lifting the implementations into SugarJ’s syntax and module system. In
contrast to the case studies in MetaBorg, the resulting SugarJ libraries can
be activated across metalevels and composed by issuing import instructions
and need neither complicated compiler configurations nor explicit compound
modules. Due to the simplicity of activating sugar libraries, they are not only
well-suited for large-scale embeddings of DSLs but also for using several small
language extensions such as pairs and closures.

Since the embedding of further ordinary DSLs does not yield more insight, we
defer from discussing them here and summarize them in Appendix A instead.
Here, we focus our attention on more sophisticated scenarios that demonstrate
the flexibility of sugar libraries compared to other technologies. In the pair

38



2.5 Case studies

and closure case studies, we already used a sugar library that provides concrete
syntax for implementing program transformations. We will explain this sugar
library for concrete syntax in the following subsection. Subsequently, we focus on
the composability of sugar libraries by discussing an embedding of XML syntax
into SugarJ, which reuses existing sugar libraries in nontrivial ways. We close
the present section by illustrating SugarJ’s support for implementing meta-DSLs,
that is, special-purpose languages for implementing DSLs. Specifically, we embed
XML Schema into SugarJ to describe languages of statically validated XML
documents.

2.5.1 Concrete syntax in transformations

As described in Section 2.4, the SugarJ compiler parses a SugarJ top-level
declaration into an abstract syntax tree before applying any desugaring rules.
Internally, desugaring rules are expressed as transformations between abstract
syntax trees, even when they are specified in terms of concrete syntax, as
described in Section 2.3.2. Concrete syntax in transformations significantly
increases the usability of SugarJ: A sugar library developer who wants to extend
the visible surface syntax should not need to reason about the underlying invisible
abstract structure.

To support concrete syntax in transformations, we could have changed the
SugarJ compiler, leading to a monolithic and not very flexible design. How-
ever, the self-applicability of SugarJ allows a more flexible and modular so-
lution: We implement concrete syntax in transformations as a sugar library
concretesyntax.Java that extends the syntax for the specification of sugar libraries
itself. We have imported this sugar library in the sugar libraries for pairs and
closures above.

For example, the desugaring rules for pair expressions can conveniently be
written as a transformation between snippets of concrete syntax as follows:

desugar-pair :
I (~expr:el, ~expr:e2) ]|
-> |[ pair.Pair.create(~el, ~e2) ]I

This rule is desugared into a transformation between abstract syntax trees as
follows:

desugar-pair:
PairExpr(el, e2)
-> Invoke(
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Method(MethodName(
AmbName(AmbName(ld("pair")), Id("Pair")),
Id("create"))),

[e1, €2])

Visser proposed the use of concrete syntax in the implementation of syntax
tree transformation [Vis02| for MetaBorg [BV04]. Technically, a transformation
that uses concrete syntax expands to a transformation with abstract syntax
by parsing the concrete syntax fragments and injecting the resulting abstract
syntax tree. Thus, the left-hand and right-hand sides of the former desugar-pair
transformation expand to the ones of the latter transformation. This technique
is language-independent and has been implemented generically [Vis02], such that
the concrete syntax of any language can be injected into Stratego by extending
Stratego’s grammar accordingly. For example, to enable concrete syntax for Java
expressions in transformations, the following productions specify that quoted
Java code is written in brackets |[ ... ]| and unquoted Stratego code is preceded
by a tilde ~.

" [" JavaExpr "] |" -> StrategoTerm {cons("ToMetaExpr")}
"~" StrategoTerm -> JavaExpr {cons("FromMetaExpr")}

In SugarJ, the sugar library for concrete syntax in transformations, whenever
it is in scope, automatically desugars concrete syntax into abstract syntax as
described above. In contrast, in MetaBorg, the desugaring of concrete syntax
is a preprocessing step which the programmer needs to enable manually by
accompanying the Stratego source file with an equally named “*.meta” file
pointing to the SDF module used for desugaring [Vis02]. The reason for this
obstructive mechanism is that support for concrete syntax is syntactic sugar
at metalevel. Due to the homogeneous integration of metalanguages in SugarJ,
however, SugarJ is host language and metalanguage at the same time. Therefore,
language extensions of SugarJ can be developed as sugar libraries in SugarJ
itself.

The alignment of host language and metalanguage in SugarJ implies that a
programmer can develop and apply language extensions within a single language
and never has to specify any configuration external to the language such as a
build script or MetaBorg’s “*.meta” file. This has a fundamental consequence:
It enables programmers to conduct modular reasoning. Every fact about a given
SugarJ program is derivable from its source code and the modules it references; it
is not necessary to take build scripts, configuration files, or, in fact, any code into
account that is not referenced within the source file. This becomes particularly

40



2.5 Case studies

import xml.XmlJavaSyntax;
import xml.AsSax;

(a) Importing the XML syntax and desugaring.

public void genXML(ContentHandler ch) {
String title = "Sweetness and Power";
ch.<book title="{title}">
<author name="Sidney W. Mintz" />
</book>;

}

(b) Generating an XML document using XML syntax. The unquote operator {...} allows
SugarJ code to occur inside XML documents.

Figure 2.8: XML documents are statically syntax-checked and desugar into
calls of the SAX APIL.

important when the number of available DSLs grows, as, for instance, in our
implementation of the XML sugar library.

2.5.2 XML documents

The embedding of XML syntax [W3C08], as discussed in Section 2.2, is a good
show-case for syntactic extension: Many existing APIs for XML suffer from
a syntactic overhead compared to direct use of literal XML notation, XML
syntax does not follow the lexical structure of most host languages, and neither
well-formedness nor validation of XML documents are context-free properties.
The implementation of our sugar library for XML syntax furthermore serves as
an example to discuss SugarJ’s support for modularity.

Typically, XML is integrated into a host language by providing an API such as
the Simple API for XML (SAX) or the Document Object Model. Following the
MetaBorg XML embedding [BV04], our sugar library for XML syntax desugars
XML syntax into an indirect encoding of documents through SAX calls. For
example, in Figure 2.8 an XML document is sent to a content handler ch.
Compared to Scala’s XML support (Section 2.2), sugar libraries provide similar
syntactic flexibility without changing the host language’s compiler.

The XML sugar library statically ensures that all generated XML documents
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are well-formed and, to this extent, supports the same static checks as the pure
embedding approach shown in Section 2.2. In contrast, the SAX API does not
statically detect illegal nesting as in <a><b></a></b> or mismatching start and
end tags as in <a></b>. The XML sugar library arranges to check both properties:
the former during parsing and the latter during a separate analysis phase.

The XML sugar library illustrates an interesting distinction of the kind of
static analyses we can perform in sugar libraries. On the one hand, context-free
properties such as legal nesting of XML elements can be encoded into the syntax
definition of a language extension; the compiler verifies context-free properties
while parsing the source code. On the other hand, context-sensitive properties
cannot be encoded into context-free syntax rules; instead, it is possible to encode
the checking of context-sensitive properties as a program transformation that
traverses a syntax tree and generates a list of error messages as needed. For
example, the XML sugar library contains a compile-time check that verifies that
all XML elements have equal start and end tags. Consequently, an element with
mismatching tags is detected at compile time and leads to a compiler error as
expected. To support domain-specific analyses, the SugarJ compiler applies
context-sensitive checks before desugaring a program.

When developing the XML sugar library, we heavily reused other sugar
libraries at metalevel in nontrivial ways, including the library for concrete syntax
from the previous subsection. The diagram in Figure 2.9 depicts the structure
and dependencies of the components involved in embedding XML. Package xml
contains three sugar declarations. XmlSyntax defines the abstract and concrete
syntax of XML, which is embedded into the syntax of Java by XmlJavaSyntax.
AsSax defines how to desugar an XML document into a sequence of SAX library
calls. Since XML documents are integrated into Java at expression level but
the SAX library is accessed via statements, calls to SAX have to be lifted from
expression level to statement level. To this end, we adopted the use of expression
blocks EBlock from MetaBorg [BV04]. Accordingly, AsSax uses these expression
blocks and concrete syntax to generate Java code.

Evidently, composing and reusing language extensions is essential in the
implementation of XML. Since in SugarJ the primary means of organizing
language extensions and DSLs are libraries, programmers can import sugar
libraries to build their DSL or language extension on top of existing ones. For
example, in the implementation of AsSax, we desugar XML trees into Java
with expression blocks. The concrete syntax of expression blocks is directly
available in desugaring rules, even though the support for concrete syntax in
transformations was defined independently in concretesyntax.Java. This is possible
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Figure 2.9: The structure of the XML case study: Arrows depict dependencies
between sugar libraries and are resolved through library imports.

because both sugar libraries extend the same Java nonterminals imported from
Java. However, like for ordinary libraries, in general, it might be necessary to
write glue code to compose individual sugar libraries meaningfully.

The XML case study illustrates how sugar libraries can be composed to make
joint use of distinct syntactic extensions. It is important to note that the
embedding of XML is not the end of the line of extensibility but itself a sugar
library that can be used to build further language extensions. We demonstrate
this feature in the following case study, where we implement a type system for
XML as a sugar library.
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2.5.3 XML Schema

A meta-DSL is a DSL with which one can define other DSLs. The definition
of meta-DSLs is natural in SugarJ since SugarJ enables syntactic extensions of
the metalanguage and the object language uniformly. Sugar libraries can thus
provide new frontends for building other sugar libraries without any limitation
on the number of metalevels involved. To exemplify this, we have embedded
XML Schema [W3C04] declarations into SugarJ as a sugar library for validating
XML documents. Each concrete XML Schema specification stipulates a DSL of
valid XML documents; a language of XML specifications is a meta-DSL.

To validate XML documents through the compiler, we have integrated a subset
of XML Schema into SugarJ as a sugar library. As shown in Figure 2.10(a), a
programmer can define an XML schema using a top-level xmlschema declaration
that contains a conventional XML Schema document.®> A programmer can
require the validation of an XML document by annotating it with @Validate, as
we illustrate in Figure 2.10(b). During compilation, the XML schema of the
corresponding namespace traverses the XML document to check its validity and
generate a (possibly empty) list of error messages.

Technically, we have defined a program transformation that desugars an XML
schema into transformation rules for validating XML documents. An XML
Schema element declaration

<xsd:element name="book" type="BookType" />

for example, desugars into a program transformation that matches on XML
elements book and checks whether their attributes and children conform to
BookType. According to the structure of an XML schema, validation rules like
this one are composed to form a full validation procedure for matching XML
documents and collecting possible errors. The XML Schema sugar library tries
to validate an XML document against any validation procedure that is in scope.
The sugar library issues a corresponding error message if no schema exist for
the XML document’s namespace.

The XML Schema case study not only demonstrates SugarJ’s support for
compile-time checks, but moreover its self-applicability support: The sugar li-
brary introduces syntactic sugar (XML Schema declarations) for the specification
of metaprograms. This support of applying SugarJ to itself allows programmers
to build meta-DSLs.

3For simplicity, we currently do not support namespace abbreviations xmlins:abc="xyz" that

enable the more conventional notation <abc:node />. However, this feature is syntactic
sugar and can be implemented in an additional sugar library.
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import xml.schema.XmlSchema;

public xmlschema BookSchema {
<xsd:schema targetNamespace="1ib">
<xsd:element name="book" type="BookType" />

<xsd: complexType name="BookType">
<xsd : choice maxOccurs="unbounded">
<xsd:element name="author" type="Person" />
<xsd:element name="editions" type="Editions" />
</xsd: choice>
<xsd:attribute name="title" type="string" />
</xsd:complexType>

<l-- more schema content here -->
</xsd:schema>

}

(a) Definition of an XML schema for the namespace lib.

import xml.XmlJavaSyntax;
import xml.AsSax;
import BookSchema;

public void genXML(ContentHandler ch) {
@Validate
ch.<lib:book title="Sweetness and Power">
<lib:author name="Sidney W. Mintz" />
</lib:book>;
}

(b) SugarJ statically validates XML documents when validation is required by the @Validate
annotation. To relate XML elements to their schema definition, element names are qualified

by a namespace; here we use the namespace lib.

Figure 2.10: Definition and application of an XML schema.
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SugarJ’s extensive support for self-application was also helpful in our imple-
mentation of the XML Schema sugar library itself. Although standard XML
Schema cannot describe itself in general [MS06], we identified a self-describable
subset of the language. This allowed us to bootstrap the sugar library for
XML Schema declarations from a description of its syntax as an XML Schema
declaration.

In summary, we have presented five case studies showing the expressiveness and
applicability of SugarJ for implementing language extensions and syntactically
embedding DSLs. Especially the more complex sugar libraries reuse simpler
libraries, and with XML Schema we demonstrate SugarJ’s flexibility as well as
the benefits of context-sensitive checks and self-application.

2.6 Discussion and future work

In the present section, we discuss SugarJ’s current standing, its limitations, and
possible future development with respect to language composability, context-
sensitive checks, tool support, and a formal consolidation.

2.6.1 Language composability

Composing languages with SugarJ is very simple because it only involves im-
porting libraries. However, when composing multiple DSLs, ambiguities can
arise in composed grammars and composed desugaring rules, or additional glue
code might be necessary to integrate both languages more carefully (introduce
intended interactions and prevent accidental interactions).

Nonetheless, when composing language extensions, our experience with SugarJ
suggests that ambiguity problems do not occur frequently in practice or are
easily resolvable. For instance, no composition problems arise in the case
studies presented in the previous sections. In Chapter 7, we study language
composability in depth and compare the performance of existing approaches
to domain abstraction. Here, we discuss the problem from a more explorative
viewpoint.

In general, the composition of grammars may cause conflicts, which manifest
as parse ambiguities at compile time. For instance, when composing our XML
sugar library with a library for HTML documents, the parser will recognize a
syntactic ambiguity in the following program, because the generated document
could be part of either language:
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import Xml;
import Html;

public void genDocs(ContentHandler ch) {
ch.<book title="Sweetness and Power">
<author name="Sidney W. Mintz" />
</book>:

}

It is always possible to resolve parse ambiguities without changing the composed
sugar libraries: Besides using one of the predefined disambiguation mechanisms
provided by SDF [vdBSVV02], one can add an additional syntax rule which
allows the user to write, say, ch.xml<...> or ch.html<...> to resolve the ambiguity.
This is similar to using fully-qualified names to avoid name clashes.

Another potential composition problem arises when importing multiple desug-
arings for the same extended syntax. Currently, the compiler does not detect
the resulting conflict in the desugaring rules but selects one rule for application.
This may lead to unexpected compile-time errors during desugaring or, worse
yet, to generated code that ill-behaves at run time. However, we believe that
conflicting desugaring rules are not a practical problem for syntactic sugar and
DSL embedding, since usually each DSL comes with its own syntax and hence
desugaring rules do not overlap.

That said, detecting syntactic and semantic ambiguities or conflicts is an
interesting research topic, related to detecting feature interactions [CKMRMO3].
Although not in the scope of this work, in future work, we plan to evaluate existing
technologies for detecting ambiguities in grammars and program transformations.
For example, we want to investigate the applicability of Axelsson et al.’s encoding
of context-free grammars as propositional formulas, which allows the application
of SAT solving to verify efficiently the absence of ambiguous words up to a certain
length, but may fail to terminate in the general case [AHL0S|. Alternatively,
Schmitz proposed a terminating algorithm that conservatively approximates
ambiguity detection for grammars and generalizes on the ambiguity check build
into standard LR parse table construction algorithms [Sch07]. For the detection
of conflicting desugaring rules, we want to assess the practicability of applying
critical pair analysis to prohibit all critical pairs—even joinable ones—reachable
from the entry points of desugaring. This idea has previously been applied
for detecting conflicts in program refactorings [MTRO05]. To rule out fewer
critical pairs, we could combine critical pair analysis with automatic confluence
verification [AYTO09] to determine the joinability of critical pairs.
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Since SugarJ treats the host language and the metalanguage uniformly, all
of these ambiguity checks could be implemented as metalanguage compile-time
checks in SugarJ. However, these checks operate on the fully desugared base
language, whereas SugarJ performs checking before desugaring. Thus, SugarJ
would need to support more fine-grained control over when checks are executed.

2.6.2 Expressiveness of compile-time checks

Sugar libraries support checking programs for syntactic and semantic correctness:
Each syntactic extension specifies what correctness means in terms of a context-
free grammar and compile-time assertions. During parsing, conformance to an
extension’s grammar is checked. For example, we ensure matching brackets in
our pair and closure DSLs.

Context-sensitive properties occur, for example, in context-sensitive languages
or statically typed DSLs. For context-sensitive properties the question arises
when to check them: before, during, or after desugaring.

In addition to encoding constraints as part of desugaring rules, our current
implementation of SugarJ also offers initial support for a more direct implemen-
tation of error reporting: Sugar libraries can specify a Stratego transformation
which transforms the syntax tree prior to desugaring into a list of error messages.
This approach enables the definition of context-sensitive properties in terms of
surface syntax and comprises pluggable type systems [Bra04]. For instance, the
check for matching start and end tags of XML documents and XML Schema
validation is naturally specified in terms of XML syntax.

However, performing static analyses before desugaring restricts the extensibility
of compile-time checks. Consider, for example, a syntactic extension that
introduces JavaScript Object Notation (JSON) syntax as an alternative syntax
for describing tree-structured data, which desugars to XML code:

{

"book": {
"title" : "Sweetness and Power",
"author" : { "name" : "Sidney W. Mintz" }
¥

}

Even though this code desugars to XML code eventually, our current implemen-
tation of XML Schema validation fails to process the JSON document before
desugaring, because the validation can match on XML documents. To reuse
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XML Schema validation for JSON, we require some interleaving of compile-time
checking and desugaring to enable compile-time checks not only on nondesugared
surface syntax, but also on desugared base language syntax and intermediate
stages of desugaring. To this end, in future work, we would like to investigate
the applicability of a constraint system that separates constraint generation
from constraint resolution and performs both interleaved with desugaring. We
plan to let constraints keep track of the actually performed desugarings, so that
constraint verification does not interfere with the application of desugarings.

2.6.3 Tool support

In order to efficiently develop software in the large, error reporting, debugging and
other IDE support is essential [Fow05b, KV10, RGN10]. Due to the fluent change
of syntax, and thus language, sugar libraries place extraordinary challenges on
tools: all language-dependent components of an IDE depend on the sugar
libraries in scope. Consider syntax highlighting, for example, in which keywords
are colored or highlighted in a bold font. Since syntactic extensions can introduce
new keywords to the host language, syntax highlighting needs to take sugar-
library imports into account. In fact, we have been working on an integration of
SugarJ and Spoofax [KV10], which we describe in the subsequent Chapter 3. In
a nutshell, we implement domain-specific editor services in editor libraries, which
in conjunction with a language’s sugar library supplies the necessary information
for providing advanced editor services in a library-centric fashion.

2.6.4 Core language

In the study of sugar libraries, we used SugarJ to evaluate the expressiveness and
applicability of our approach, for instance, by developing complex case studies
such as XML Schema. However, it would be interesting to formally consolidate
sugar libraries and study them more fundamentally.

One aspect we intend to study is the relation between syntactic extensions
and scopes. It is not obvious how to support sugar libraries in languages that
allow “local” import statements such as in Scala or ML. For example, consider
the following program, in which we assume sl after s2 to desugar to s2; s1, that
is, to swap the order of the statements s1 and s2.

(17,"seventeen") after import pair.Sugar;
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After swapping the two statements, the scope of the import of pair.Sugar in-
cludes (17,"seventeen"), which, thus, is a syntactically valid expression. How-
ever, to parse a program of the form sl after s2, the parser already requires
knowledge of how to parse (17,"seventeen") before it can even consider parsing
import pair.PairSugar; this is a paradox.

Another interesting aspect of such core language is to identify the minimal
components of a syntactically extensible language such that a full language like
SugarJ can be boot-strapped from this core language.

2.6.5 Module system

The semantics of imports in SugarJ is intended to closely match the semantics of
imports in Java. In our proof-of-concept implementation, however, imports are
split into Java, SDF and Stratego by reproducing them in the respective syntax.
Unfortunately, though, the scoping rules of these languages differ: Imports are
transitive in Stratego and SDF but nontransitive in Java. Therefore, in the
current implementation of SugarJ, if A imports syntactic sugar from B, which
in turn imports syntactic sugar from C, the syntactic sugar from C will be
available in A. In contrast, A cannot access Java declarations from C without
first importing C or using fully qualified names. We plan to investigate whether
this mismatch can be resolved using systematic renaming.

Java, the base language for SugarJ, has a rather simple module system in
which the interface of a library is often rather implicit because users of a library
just import the library’s implementation.

In future work, we would like to make syntactic extensions a formal part of a
dedicated interface description language. In this context, we want to address
also the question of whether there should be some kind of abstraction barrier
in an interface that hides the details of the desugaring of a syntactic extension.
In the current SugarJ programming model, a programmer has to understand
the associated desugaring to reason about, say, the well-typedness of a program
written in extended syntax. Hence the desugaring rules must be part of the
interface. We believe that this is acceptable as long as transformations are simple
and compositional—which typically is the case for syntactic sugar. However,
for more sophisticated transformations, it makes sense to have an abstraction
mechanism that hides the details of the transformation, yet allows programmers
to reason about their code in terms of the interface.
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2.7 Chapter summary

We introduced sugar libraries as a mechanism to extend a host language with
domain-specific syntax while preserving modular reasoning. Developers can
import syntax extensions and their desugaring as libraries, for instance, to
develop statically checked domain-specific programs. Sugar libraries preserve
the look-and-feel of conventional libraries and facilitate composability and reuse:
A developer may flexibly select from multiple syntactic extensions and import
and combine them, and a library developer may reuse sugar libraries when
developing other sugar libraries (even in a self-applicable fashion). Composition
conflicts can occur, but we believe that they are rare in practice. Nevertheless,
we would like to have better support for avoiding (by better scoping constructs)
and detecting (by better analyses) composition conflicts statically.

To demonstrate flexibility and expressiveness, we have implemented sugar
libraries in the Java-based language SugarJ. With SugarJ, we have implemented
five case studies with growing complexity: pairs, closures, XML, concrete syntax
for transformations, and XML Schema. The latter of these case studies heavily
reuse syntax extensions imported from former and the last one implements a
meta-DSL for which self-applicability is a significant advantage. In contrast
to many other metaprogramming systems, a SugarJ programmer never has
to reason outside the language since SugarJ comprises full metaprogramming
facilities. In conclusion, sugar libraries are both flexible and principled devices
for syntactic domain abstraction.
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3 Integrated Development Environments
for Extensible Languages

This chapter shares material with the GPCE’11 paper “Growing a Language
Environment with Editor Libraries” [EKR" 11a].

Large software projects consist of code written in a multitude of different
(possibly domain-specific) languages, which are often deeply interspersed even
in single files. While many proposals exist on how to integrate languages
semantically and syntactically, the question of how to support this scenario in
integrated development environments (IDEs) remains open: How can standard
IDE services, such as syntax highlighting, outlining, or reference resolving, be
provided in an extensible and compositional way, such that an open mix of
languages is supported in a single file?

Based on SugarJ, our library-based extensible language for Java (Chapter 2),
we propose to make IDEs extensible by organizing editor services in editor
libraries. Editor libraries are libraries written in the host language, SugarJ, and
hence activated and composed through regular import statements on a file-by-file
basis. We have implemented an IDE for editor libraries on top of SugarJ and the
Eclipse-based Spoofax language workbench [KV10]. We have validated editor
libraries by evolving this IDE into a full-fledged and schema-aware XML editor
as well as an extensible BTEX editor.

3.1 Introduction

Extensible programming languages are an old research topic that has gained
new relevance by the trend toward DSLs and the vision of language-oriented
programming [War95, Dmi04, Fow05b]. Researchers have proposed a variety
of different approaches to extend the syntax and semantics of languages and
to embed languages in other languages, such as libraries [Hud98, THSAC™11],
extensible compilers [EH07a, NCM03, VKBS07], macro systems [BP01, BS02,
THSAC™11, Tra08|, and metaobject protocols [RGN10, TCKI00]. However,
while languages themselves have gained flexibility, tool support in the form of
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Figure 3.1: Alongside the sugar library regex.Sugar that provides a syntactic
extension for regular expressions, we import the editor library
regex.Editor that provides a corresponding IDE extension.

integrated development environments (IDEs) cannot keep up with the rapid
development and composition of new languages.

IDEs assist programmers, who spend a significant amount of time reading,
navigating, adapting, and writing source code. They provide editor services that
improve a program’s layout and support programmers in performing changes to
the code, including syntax highlighting, code folding, outlining, reference resolv-
ing, error marking, quick fix proposals, code completion, and many more. The
quality of IDE support for a language is a significant factor for the productivity
of developers in that language. Therefore, it is desirable to provide the same
level of tool support for extended and DSLs that programmers are familiar with
from mainstream programming languages.

However, as our own and the experience of others show, developing tool
support for a new or extended language requires significant effort [Cha06, MOO06,
KTST09]. Although there are several advances to generate tool support from
declarative specifications [KV10, EV06], generation has to be repeated for every
combination of language extensions because the generated editor services neither
compose nor grow with the language.
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Composable and growable editor services are especially important in the
context of growable languages [Ste99, BS02, ACNT(09] that support flexible and
composable language extensions, e.g., for the embedding of multiple DSLs. In
the previous chapter, we presented SugarJ, a variant of Java which is extensible
via sugar libraries. A sugar library exports, in addition to ordinary types and
methods, a syntactic extension and a transformation from the extended syntax
back into the syntax of the host language. Sugar libraries are imported via the
usual import mechanism of the host language. Multiple syntactic extensions
can be composed by importing them into the same file, allowing a local mix of
multiple embedded languages.

In this chapter, we present editor libraries that generalize library-based exten-
sibility towards IDEs. Editor libraries compose: When multiple languages are
mixed within the same file (such as XML, SQL, and regular expressions within
Java), we import and thereby combine all corresponding editor services. Editor
libraries (as other libraries) are self-applicable, that is, editor libraries can be
used to develop other editor libraries. Furthermore, editor libraries encourage a
generative approach through staging: We generate editor services from high-level
specifications (yet another DSL) at one stage and use the generated services at a
later stage. Staging enables the coordination of editor services that span several
source files or languages.

We have developed an Eclipse-based IDE with support for editor libraries
called the SugarJ IDE. For each file, the SugarJ IDE considers all editor libraries
in scope, interprets the associated editor services and presents the decorated
source code and editing facilities to the programmer. The SugarJ IDE is based
on the Spoofar language workbench [KV10], which supports the generation and
dynamic reloading of Eclipse-based language-specific editors from declarative
editor configurations. In Figure 3.1, we illustrate an example usage of the
SugarJ IDE: The import of regex.Sugar activates a syntactic extension for regular
expressions, which integrates regular expression syntax into the surrounding Java
syntax (instead of the usual string encoding). The import of the editor library
regex.Editor enables corresponding editor services for regular expressions such as
syntax coloring and code completion. The SugarJ IDE automatically composes
the editor services of the host language, here Java, with the editor services of
the extension, here regular expressions, to provide uniform IDE support to the
programmer. While our SugarJ IDE and this chapter focus on editor libraries for
SugarJ, the concept of editor libraries is similarly useful for embedded languages
in syntactically less flexible languages (cf. Section 3.7).

With several case studies, we demonstrate the practicality of editor libraries
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and the power of their composability. Beyond small editor libraries such as
regular expressions illustrated above, we implemented full-fledged editor libraries
for XML (including XML Schema) and Latex. We used the latter for writing a
conference article [EKR*11a| on the subject of the present chapter.

We present the following contributions:

e We introduce the novel concept of editor libraries for organizing IDE
extensions in libraries of the host language, in particular, to provide IDE
support for embedded DSLs. This addresses our design goal on domain-
specific editor services.

e Editor libraries are activated using the host language’s standard import
mechanism, and editor libraries compose to support multiple DSLs and
the host language in a single file.

e We describe a pattern of editor-library staging to generate editor services
from high-level specifications and to coordinate editor services between
several source files or languages.

e We present SugarJ IDE, an extensible IDE for SugarJ based on the
Spoofax language workbench. Our growable IDE complements the syntactic
extensibility of SugarJ with the capability of visualizing the result of
domain-specific static analyses and providing domain-specific editor services
that conform to the embedded DSLs.

e We validate our approach through realistic case studies of full-fledged
editors for XML and Latex. We demonstrate how our IDE supports
domain-specific and programmer-defined editor configuration languages as
well as deriving editor services from language specifications.

3.2 An overview of the SugarJ IDE

The SugarJ IDE, as shown in Figure 3.2, consists of an editor that features
services such as syntax coloring, error marking and code completion. The SugarJ
IDE has built-in support for Java syntax only, but all of the SugarJ IDE’s
editor services are user-extensible: Additional syntax and editor services can be
imported from libraries.
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Figure 3.2: An embedding of XML into Java shown in the SugarJ IDE. The
imported editor libraries extend the SugarJ IDE and compose with

its basic Java editor services.

3.2.1 Using the SugarJ IDE

A user of the SugarJ IDE activates editor support for an additional language
by importing a corresponding editor library. For example, in Figure 3.2, the
sugar library xml.Sugar provides a grammar for embedded XML documents, and
the editor library xml.Editor provides editor services for XML. This editor library
specifies syntax coloring, outlining, code folding, and more for embedded XML
documents without invalidating the built-in services for Java. For example, the
resulting editor contains code folding and outlining for both Java and XML
combined. The additional editor support only affects the XML part of the
document and leaves the remaining editor support intact. This is most visible
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in Figure 3.2 from the nested syntax highlighting, including correct highlighting
of the quoted Java expression new String(title) nested inside XML.

We can further extend editor support for XML if we know the XML schema
that the document adheres to. Given a document’s schema, the SugarJ IDE
provides even more domain-specific editor services for the embedded XML
document, including error reporting for validation errors and content completion,
which provides a list of all valid tags. To activate the additional editor support,
the user imports the editor library xml.schema.BookSchema, which is specified by
a concrete XML schema for books.

3.2.2 Editor services

A user of the SugarJ IDE can also assume the role of editor-service developer,
because editor services are specified declaratively within the SugarJ IDE. This is
more expressive than setting options in the Eclipse menu and significantly easier
than manually extending Eclipse by writing a corresponding plugin. In addition
to error marking, the SugarJ IDE lifts and extends eight different editor services
from Spoofax [KV10]. Each service can be declaratively specified in a DSL.

e Syntax coloring highlights source code using a colored, bold or italic font.

e Code folding supports collapsing part of the source code to hide its details.

e Qutlining gives a hierarchical overview over the current document and
enables fast navigation.

e Content completion provides proposals for complementing the current
source code.

e Reference resolving resolves a construct (typically a name) to its declaration
and provides facilities to navigate to the declaration directly (“CTRL-
click”).

e Hover help displays documentation as a tooltip when hovering over a
documented entity with the mouse.

o A refactoring or projection applies a transformation to (parts of) the source
code and writes the result either in the original or a separate file.

e Parentheses matching marks matching parentheses in the source code and
adds closing parentheses automatically. This service is also essential for
automatic indentation after line breaks.
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package xml;

import editor.Colors;
import xml.XmlSyntax;

public editor services Editor {
colorer
ElemName : blue (recursive)
AttrName : darkorange (recursive)
AttValue : darkred (recursive)
CharData : black (recursive)

folding
Element

outliner
Element

Figure 3.3: Editor library for coloring, folding and outlining of XML code.

Conceptually, editor services can be understood as procedures that decorate
syntax trees, for example, with coloring information. The SugarJ IDE then
interprets these decorated trees and maps the decorations to the original source
code or other means of visualization such as a separate outline window or a
completion proposal viewer. Since editor services are mere tree decorators,
their definitions are fairly simple in most cases (the definition of refactorings
and projections being an exception). To reflect this simplicity in editor service
implementations, we use an extended version of the declarative editor-service
configuration language provided by Spoofax [KV10].

Developers can bundle multiple editor-service specifications in an editor library
declared as a top-level public editor services entity. For example, the xml.Editor
library shown in Figure 3.3 provides editor services for coloring, folding and
outlining XML documents using declarative tree decoration rules. Each tree
decoration rule specifies a syntax-tree pattern to match against and the decoration
to apply to matched trees. For example, the XML coloring rules match on trees of
the kind ElemName, AttrName, AttValue and CharData, that is, trees derived from
these non-terminal sorts as defined by the imported sugar library xml.XmlSyntax.
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The coloring rules thus declare that XML element names are shown in a blue
font, XML attribute names in a dark orange font, etc., and that the coloring
recursively applies to all nodes in the matched trees. Similarly, the folding and
outlining services declare that XML elements are foldable and XML documents
show up in the outline of source files.

We specifically support the development of editor libraries by providing as
part of our SugarJ IDE an editor library for writing editor libraries. In similar
fashion, we encourage other developers of language embeddings to accompany
their embeddings with editor support in the form of editor libraries.

3.3 Editor libraries

Editor libraries provide a principled means for organizing, scoping, and activating
editor services. Before discussing the composability of editor libraries in detail,
we describe a number of advanced usage patterns for editor libraries in SugarJ.

3.3.1 Domain-specific editor configuration languages

SugarJ supports syntactic abstraction over all of its ingredients, that is, Java code,
syntactic sugar, static analysis specifications, and, now as well, editor configura-
tions. This design enables the development of customized and domain-specific
editor-service configuration languages. For example, we have applied SugarJ’s
syntactic extensibility to provide an XML-specific editor service configuration
syntax in the style of Cascading Style Sheets (CSS):

import editor.Colors;
import xml.CSS;
import xml.XmlSyntax;

public css CSSEditor {
Element  { folding; outlining }
ElemName { rec-color : blue }
AttrName { rec-color : darkorange }
AttValue  { rec-color : darkred }
CharData { rec-color : black }

}

This CSS-style editor configuration corresponds and, in fact, desugars to the
editor configuration in standard editor service syntax shown in Figure 3.3. CSS
is just another syntax for specifying editor services.
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3.3.2 Staged editor libraries

Many editor services are not static, but rather depend on the contents of the
file being edited and imported files. For example, hover help for non-local Java
methods depends on the method definitions in other files and code completion
for XML elements depends on the corresponding schema. Hand-written IDEs
support such editor services by managing a set of files as a project, explicitly
coordinating between the information retrieved from each file. Unfortunately,
neither SugarJ nor Spoofax has a notion of projects: In Spoofax, editor services
for different files are independent, and in SugarJ, files are processed one after
another. The SugarJ IDE, however, supports separate generation and application
stages for editor libraries from different source files, which enables rich patterns
of interaction between editor services of individual source files.

The central idea of our staging pattern is to first generate editor services from
domain-specific declarations in one file and to later use them in another file.
The generated editor services may well be of auxiliary nature such as a mapping
from method names to the documentation of these methods, which a hover help
editor service can query to display documentation of a method as a tooltip. In
general, the SugarJ IDE employs the transformation language Stratego [VBT9S]
for auxiliary editor services, and an import statement brings the generated editor
services into scope.

For example, we applied the staging pattern to promote XML schemas as
domain-specific declarations of XML editor services that are specific to an
XML dialect. Such editor services include XML validation and tag completion.
Figure 3.4 shows an excerpt of the Book XML schema, which declares a dialect
of XML for describing books. From this schema, we generate the definition of
a static analysis as well as code completion. For the former, we desugar an
XML schema into a set of Stratego rules that traverse a given XML document
to check whether this document conforms to the schema. In other words, we
generate a type checker for each XML schema. The result of applying the
XML Book type checker is shown in Figure 3.2, where quoted Java expressions
within an XML document are marked but ignored otherwise. Furthermore, our
XML Schema embedding desugars each schema into a set of schema-specific
completion templates. For instance, the following completion template results
from desugaring the above Book schema.

completion template : Content =
"<{1ib}book title=\"" <string> "\">"
"</{1ib}book>"
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import xml.schema.XmlSchema;

public xmlschema BookSchema {
<xsd:schema targetNamespace="1ib">
<xsd:element name="book" type="BookType" />

<xsd: complexType name="BookType">
<xsd: choice maxOccurs="unbounded">
<xsd:element name="author" type="Person" />
<xsd:element name="editions" type="Editions" />
</xsd: choice>
<xsd:attribute name="title" type="string" />
</xsd:complexType>

<l-- more schema content here -->
</xsd:schema>

}

Figure 3.4: An excerpt of an XML Schema for books.  The library
xml.schema.Xm|Schema provides code validation and editor services
for XML schemas themselves.

When the parser expects XML Content, this completion template proposes a book
element with a title attribute to the programmer. Accordingly, when importing
the Book schema, the SugarJ IDE recognizes the accompanying editor services
and provides code completion to the programmer as shown in Figure 3.2.

As this case study illustrates, the SugarJ IDE supports the implementation
of editor services that involve multiple files using a generative approach; the
staging pattern effectively facilitates data flow from one source file to another.
In this example, we modeled data flow from an XML Schema declaration to
clients of the schema, by generating completion templates. We present a more
advanced example in Section 3.6.2, where we model data flow from a Bibtex
bibliography to a Latex file that cites bibliography entries.

3.3.3 Self-applicability

Like conventional libraries, editor libraries are self-applicable, that is, editor
services can be used during the development of other editor libraries. For

62



3.4 Editor composition

example, we have implemented code completion for the code completion editor
service using an editor library:

public editor services Editor {
completions
completion template : EditorServiceCompletionRule =
"completion template" " : " <Sort> " =\n\t"
"\"" <prefix> "\" <" <placeholder> ">"

}

This template provides content completion for completion templates themselves.
Completion templates are represented as sequences of strings and placeholders
such as <Sort>, which the SugarJ IDE marks for the user to replace. The above
completion template expands into the following code on selection, where the
underlined fragments are placeholders:

completion template : Sort =
"prefix" <placeholder>

More generally, we provide full editor support for writing editor libraries in the
SugarJ IDE using editor libraries.

3.4 Editor composition

A key feature of the SugarJ IDE is the ability to compose editor libraries. For
example, we can import editor libraries for regular expressions and XML in
the same document. The IDE then supports both language extensions with
corresponding syntax highlighting and other facilities. Editor libraries cooperate
to present a coherent user interface even though their respective authors might
not have anticipated the exact combination of editor libraries.

We can compose editor libraries developed independently, such as regular
expressions and XML, but we can also develop editor libraries that extend
other libraries and editor libraries that explicitly interact with other editor
libraries through extension points. Let us illustrate such interaction with an
example from the domain of text documents (which we describe in more detail in
Sec. 3.6.2): We express a bibliography database in one language (e.g., Bibtex-like)
and write the text with references to bibliography entries in another language
(e.g, Latex-like). When composing both languages, we would like to add editor
services to navigate from bibliography references to their definitions, to suggest
available references with content completion, to provide hover help, and so forth.
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These editor services need to bridge elements in different files and from different
languages.

Although different kinds of interactions and even conflicts between editor
services are possible, we argue that editor services are largely independent and
have local effects. In addition, for many services, interactions can be implicitly
resolved using generic strategies. Finally, for intended interactions as in the
bibliography example, we apply the staging pattern for explicitly coordinating
editor services.

3.4.1 Local variation and global consistency

Editor libraries extend the local behavior of the SugarJ editor. There are different
notions of locality:

e Editor libraries are modular and affect only files that import them explicitly.
In these files, only the part after the import is affected.

e Editor libraries that extend distinct editor services compose naturally. For
example an editor library defining syntax coloring will not conflict with
another editor service providing content completion.

e Editor libraries usually reason about small and local subtrees of the ab-
stract syntax tree. For example, an editor library typically defines syntax
highlighting for specific syntactic forms, not for the overall program, and
editor libraries that accompany a DSL embedding reason over tree frag-
ments of that DSL only. Editor libraries that act on different parts of the
abstract syntax tree naturally compose. For example, the XML editor
library shown in Figure 3.3 only decorates XML fragments of the syntax
tree and does not affect Java fragments.

The global behavior of the SugarJ editor, however, is fixed and cannot be
extended by editor libraries. For example, the SugarJ editor supports a fixed
set of editor services such as syntax highlighting, reference resolving, hover help,
etc. as discussed in Section 3.2.2. The SugarJ editor presents a coherent user
interface to access these editor services. For example, key bindings or the visual
appearance of error markers are defined by the SugarJ editor directly and are
therefore consistent across error libraries.

Together, global consistency and local variation go a long way ensuring that
the SugarJ IDE supports arbitrary languages while still providing a coherent
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user interface. Some interactions between editor libraries cannot be resolved by
locality, however, and require implicit or explicit coordination between editor
libraries.

3.4.2 Implicit coordination

Although most editor libraries work locally, their results can conflict or overlap.
For most editor services, conflicts can be resolved implicitly following generic
strategies: aggregation and closest match.

For many editor services, aggregating results of different editor libraries is
sufficient. For example, in our XML embedding, both Java and XML code
completion services would respond to a prefix ch., which could be followed by
a Java method name or an XML element. The SugarJ IDE simply shows all
completion proposals. Aggregation works similarly for code folding, outlining
and error marking.

For some other services, primarily syntax highlighting and hover help, simple
heuristics can resolve conflicts implicitly. For example, when one editor library
specifies that all tokens in assignments should be blue, whereas another editor
library specifies that all tokens in while loops should be red, the SugarJ IDE
needs to coordinate between these editor libraries and decide in which color to
display tokens in an assignment nested within a while loop. As heuristic, we
propose a closest-match rule, as used for style sheets in HTML: Color information,
hover help, and other specifications on an AST node overrule corresponding
specifications of the parent node; always the most specific information is used
for presentation. For our example above, the closest-match rule displays the
assignment blue, because the match on assignments is more specific (closer to
the tokens in question) than the match on the while loop.

Aggregation and the closed-match rule resolve many conflicts implicitly in
a natural way. Explicit coordination is usually necessary only for intended
interactions.

3.4.3 Explicit coordination

Not all editor libraries are supposed to be independent. Editor libraries might
explicitly extend the behavior of other libraries or interact with them in controlled
ways.

An editor library can add additional editor-service specifications to another
library. For example, the XML-Schema library builds on top of the XML library
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and extends it with code completion and error checking. In addition, different
editor libraries can interact explicitly through the staging pattern to share data
and coordinate editor services. The staging pattern, described in Section 3.3.2,
enables communication from one editor library to another through the generation
of auxiliary editor services. In our example, the bibliography database shares
information about all known entries by generating an auxiliary editor service
(technically: Stratego rules) that maps entry names to their definitions:

bibtex-entry : "Hudak98" ->
BibtexEntryStm(
"@inproceedings",
BibtexEntryName("Hudak98"),
[ BibtexAttribute(BibtexAttributeName("author"), "Paul Hudak"),
BibtexAttribute(
BibtexAttributeName("title"),
"Modular domain specific languages and tools"),
BibtexAttributeUnwrapped(
BibtexAttributeName("booktitle"),
BibtexConstName("ICSR")),
BibtexAttribute(BibtexAttributeName("year"), "1998"),
BibtexAttribute(BibtexAttributeName("pages"), "134--142"),
BibtexAttribute(BibtexAttributeName("publisher"), "IEEE")])

Auxiliary editor services are scoped via editor libraries. Accordingly, other
editor library can use the information of an auxiliary editor service whenever
the corresponding editor library is in scope. For example, our Latex editor
library integrates with the bibliography editor library to supply hover help and
content completion for citations (\cite{...}), and checks for undefined references
by querying the auxiliary editor service bibtex-entry.

Technically, explicit coordination with auxiliary editor services relies on the
self-applicability of SugarJ. We rely on the fact that SugarJ libraries can generate
Stratego code that is available at compile time of other libraries. Accordingly,
one editor library can provide auxiliary editor services as Stratego rules to be
used in other editor libraries.

3.4.4 Limitations

Although editor-library composition is usually straightforward in practice, there
are limitations. Most significantly, we cannot provide modular guarantees about
editor services in hostile environments.
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Editor services use a global namespace without hiding. In principle, editor
libraries could access (auxiliary) services of all other imported editor libraries and
extend them. We discourage uncontrolled sharing and use naming conventions
(similar to fully qualified names in Java) to avoid accidental name clashes. The
staging-based communication between editor libraries relies on conventions and
implementation patterns; there is no explicit scoping concept for staged services
yet.

Furthermore, editor services should make little assumptions about the global
structure of the AST. Editor services are used in a context where the AST of a file
typically contains structures from different languages. For example, navigating
from an AST element to its direct parent should be avoided, instead one should
search for a direct or indirect parent of the expected type. Such strategies make
editor libraries more robust against additional language extensions. However,
the SugarJ IDE currently does not enforce locality and cannot detect violations
modularly.

Building a module system to provide explicit namespaces and checked interfaces
for the SugarJ IDE and the underlying SugarJ is an interesting avenue for future
work. Such a module system should prevent name clashes and control what
kind of information (technically: which Stratego rules) can be shared between
editor libraries. To a large degree this seems to be a straightforward adoption
of concepts from other module systems, such as the compilation manager in
Standard ML [BA99]. On top, semantic interfaces could enable modular detection
of conflicts between two editor libraries at link time.

In our experience, conflicts between editor libraries are rare and patterns for
explicit coordination are easy to implement when required. Naming conventions
and implementation patterns seem sufficient to avoid conflicts in practice. Hostile
environments (deliberate attacks against editor libraries) are currently not a
practical concern for editor extensions. Our SugarJ IDE appears useful for many
practical tasks, even without modular guarantees. We revisit the composability
of domain-specific editor services in Chapter 7, where study language composition
in a broader context.

3.5 Technical realization
In the SugarJ IDE, we combine the sugar libraries of SugarJ (Chapter 2) with

the IDE foundation of Spoofax [KV10] to support editor libraries for growing
an IDE. SugarJ parses a file incrementally, because each declaration can extend
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Figure 3.5: Data flow in the SugarJ IDE. The results of the processing pipeline
(:>) are used to configure (f - >) the earlier stages.

the grammar of the rest of the file, and like in Spoofax, we use a generic editor
component which can be configured to support different languages. The SugarJ
IDE adds editor libraries into the mix: Sugar libraries can desugar source code
into editor libraries, and editor libraries in scope reconfigure the editor while a
source file is edited. Together, these components enable to grow the IDE with
editor libraries.

3.5.1 Architecture

Source code documents are often processed in many stages, compile time and
run time traditionally being the most well-known. A library can affect several of
these stages. For example, a Java class library contains, among other things, type
definitions and method bodies. Clients of the library are type-checked against
the type definitions in the library at compile time, but method calls to method
definitions in the library are executed at run time. In our previous work on sugar
libraries in SugarJ, we have broadened the applicability of libraries by considering
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additional stages: parsing, desugaring, and analysis. Sugar libraries contain
grammar or desugaring rules to affect these stages of the SugarJ implementation.
In the present work on editor libraries, we consider an integrated development
environment as an integral part of the language implementation, that is, we
consider an additional editor stage, which can be affected by editor libraries.

The interaction of these stages in the SugarJ IDE is shown in Figure 3.5.
The diagram extends Figure 2.7 from Chapter 2 with stages for the editor and
analysis. The editor stage is depicted by the SugarJ IDE screenshot, all other
stages are depicted as block arrows (Zﬁ)) The parsing stage transforms a
source-code document into an heterogeneous abstract syntax tree with nodes
from different language extensions. The desugaring stage expands all nodes
corresponding to language extensions into nodes of the base language, and the
generation stage transforms the resulting homogeneous abstract syntax tree
into separate source code artefacts containing grammar extensions, desugaring
rules, editor services, and so on. At the same time, the analysis stage checks
the heterogeneous abstract syntax tree and produces a problem report listing all
found errors and warnings.

The results of compilation can configure earlier stages as depicted with dashed
arrows (— —») in Figure 3.5. For example, generated grammars configure the
parsing stage for clients of a sugar library and the generated analyses are applied
in the analysis stage. In addition to these stages, the results of compilation also
configure the editor, as we detail in the following subsections. In particular, the
editor displays the input file’s content with syntax highlighting according to the
parsed source code, marks problems found by the analysis stage and behaves
according to the editor services currently in scope. When the programmer
changes code in the editor, the processing pipeline is run again to produce
updated grammars, desugarings, etc., and any changes in these artifacts are
reflected in the various stages.

3.5.2 Incremental parsing

Our SugarJ IDE supports languages with extensible syntax by relying on SugarJ
for incremental parsing. Parsing with SugarJ is an incremental process because
import declarations and syntax definitions can change the syntax for the rest
of the file. To this end, Sugar] repeatedly parses a single top-level entity (e.g.,
import or class declaration) followed by the remainder of the file as a string. For
each such parse, SugarJ extends the grammar according to the parsed entity
before continuing to parse the remainder of the file. See Section 2.4 for details.
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In the context of the SugarJ IDE, two additional concerns arise. First, the
parser must associate every node of the abstract syntax tree with position
information which the editor needs for marking errors, moving the cursor for
reference resolving or outline view navigation, and so on. Second, the parser
must associate some nodes of the abstract syntax tree with tokens that are used
for syntax highlighting.

To reconcile incremental parsing of SugarJ with creating tokens and collecting
position information, we use the same tokenizer for each parse. After each parse,
we partially retract the tokenizer to ignore all tokens after the top-level entity
and to reset the parser position accordingly. After parsing, we combine the
trees of all top-level entities and ensure that the tree nodes have pointers to
corresponding tokens and position information.

3.5.3 Dynamic loading of editor services

The SugarJ IDE supports editor libraries by relying on Spoofax to provide
a generic Eclipse-based editor which can dynamically load and reload editor
services. Although Spoofax still distinguishes the building and loading of editor
services into separate phases, its dynamic loading capability forms the basis for
editor services that are transparently built and loaded with library imports in
the SugarJ IDE.

In the context of the SugarJ IDE, two additional concerns arise. First,
parse tables and editor services need to be adapted on-the-fly whenever the
corresponding language or editor libraries change. This is accomplished by
running the full processing pipeline whenever a file has been changed and needs
to be reparsed. The editor then dynamically reloads the possibly regenerated
editor services. To ensure optimal responsiveness of the editor, generation and
reloading happens in a background thread. Any services that were already
loaded and parse tables that were already built are cached. Second, in the
SugarJ IDE, each file determines the required language components and editor
components by means of library imports. The SugarJ IDE therefore needs to
maintain a separate set of editor services for each file. In contrast, Spoofax
normally uses a language-level factory class. We subclass that factory with a
specialized implementation that loads editor services in a file-specific fashion.

To conclude, in the present section we presented the architecture of our SugarJ
IDE, which augments SugarJ’s processing pipeline with an additional editor
stage that can be configured via editor libraries. The editor stage connects to the
processing pipeline through presenting the parsed syntax tree, marking errors
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and loading the (possibly staged) editor services. The following section reports
on experiments with this realization of the SugarJ IDE.

3.6 Case studies

We applied the SugarJ IDE implementation to demonstrate the practicability of
editor libraries. We have developed editor libraries for a small number of simple
language extensions such as regular expressions, where editor services only act
locally and no explicit coordination is necessary. These simple editor services
compose with the basic SugarJ editor services and other simple editor services
through implicit coordination. For example, our regular expression editor library
would compose easily with an editor library for SQL to provide editor services
for regular expressions nested within SQL statements, because each library acts
on syntax tree of the respective DSL only.

In addition to these simple editor libraries, we have conducted three realistic
case studies to evaluate the practicability and composability of editor libraries
for larger languages: XML and I¥TEX, which we describe here, and Java Server
Pages, which we describe in Appendix A. In all three case studies, we demonstrate
the support of the SugarJ IDE for the staging of editor services, and in the
Latex case study we additionally apply explicit coordination to compose editor
libraries.

3.6.1 Growing an XML IDE

XML and XML Schema demonstrate many interesting facets of editor libraries,
including domain-specific editor configuration languages and editor-library stag-
ing as described in Section 3.3. Although the XML Schema editor library extends
the editor library for XML with schema-specific tag completion and validation,
both libraries compose with editor services such as Java or SQL. This compos-
ability is based on locality and implicit coordination in the form of aggregation
and the closest match rule (cf. Section 3.4).

Examples of the use and definition of editor libraries for XML and XML
Schema have appeared throughout this chapter. In summary, we have grown
our SugarJ IDE through the use of syntactic extensions and editor libraries into
an XML-aware IDE that features coloring, folding, outlining, schema-specific
tag completion and XML validation. Several potential editor services have not
been implemented so far, but qualify as future student projects, for example,
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Figure 3.6: Editor services for Latex in the SugarJ IDE: outline, nested syntax
coloring, citation completion, reference checking, code folding.

reference resolving according to XML Schema references or hover help to display
documentation from the schema within the XML document.

3.6.2 Growing a Latex IDE

Language extensions such as XML or regular expressions extend the Java
fragment of SugarJ and provide editor services that compose with Java services.
Compared to Java, these language extensions are relatively small and do not
cross-cut Java programs too much. Therefore, we also wanted to gain experience
with incrementally growing a language from scratch by composing multiple
sublanguages and their editor services into one unified language. To this end, we
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grew the Sugar]J IDE into a Latex IDE by composing a Latex core with libraries
for mathematical formulas, listings of (statically parsed and IDE-supported)
source code, and Bibtex bibliographies and citations. However, we only provide
an IDE frontend for the Latex language and its libraries: Latex code in the
SugarJ IDE compiles to regular Latex files, which use regular Latex libraries. In
Figure 3.6, we show a screenshot of our library-based Latex IDE.

The basic Latex language we support consists of environments \begin{abstract}
...\end{abstract}, macro calls \emph{arg}, structural declarations \section{A},
\paragraph{B}, and so forth, and of course text. We support these concepts
in our core Latex syntax definition and editor library, which, for example, high-
lights section headers in a bold, blue font, proposes code completions for macro
calls, and provides a structural document outline. In separate libraries, we define
the syntax and editor support for various extensions of the Latex core.

First, the math library introduces a new language construct for formulas
n — n + 1 and according editor services (e.g., highlighting). These services act
locally and thus compose with other Latex extensions.

Second, the listings library supports source code listings in a document.
Typically, such source code listings are unparsed, unchecked and, often enough,
erroneous. In contrast, we provide a library for code listings that statically
parses the code to prevent any syntactic errors to slip into a published article.
Within our code listing, all language-specific editor services are available if
the corresponding editor libraries are in scope. This way, we compose the
Latex editor services with editor services for Java, services for editor libraries
themselves, and services for language extensions such as XML Schema. For
example, while writing a conference article on editor librariesf EKR*11a|, the
SugarJ IDE provided us syntax coloring, code folding, and error checking for
the schema in Figure 3.4, as shown in the screenshot of Figure 3.6.

Third, we separately implemented a syntactic extension and editor library for
Bibtex, which, for instance, provides reference resolving and hover help for string
constants (such as conference acronyms) within a bibliography. Bibtex and Latex
interact via citations \cite{...} that occur in a Latex document and refer to Bibtex
entries. However, the according editor services do not compose automatically in a
meaningfully way; explicit coordination is necessary to provide code completion,
hover help, or checking for undefined references. We provide these editor services
for citations by generating and explicitly coordinating services as described in
Section 3.4.3. This way, a Latex document can use any citation key that is
provided by an imported Bibtex bibliography. In fact, our encoding allows a
Latex document to rely on multiple Bibtex libraries simultaneously.
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The key feature of our Latex IDE is its extensibility: users can extend the
IDE through syntax definitions and editor libraries to support, for instance,
vector-graphics libraries such as TikZ. Staging and explicit coordination of editor
services provides the conceptual means for implementing a wide range of powerful
IDE extensions.

3.7 Discussion

In this chapter, we have focused on the integration of editor libraries into a
syntactically extensible host language such as SugarJ. In this section, we point
out a number of further application scenarios for editor libraries and discuss
whether it is sensible at all to organize editor services as part of source files.

3.7.1 Language embedding

There are several approaches to embed DSLs, even when the host language
is not syntactically extensible. Typical examples are string-based embeddings
and embedding a language with standard abstraction mechanisms of the host
language, known as pure embedding [Hud98|]. The latter works even better if
the host language has a flexible syntax, as in Scala. In Figure 3.7, we illustrate
three typical embeddings: embedding regular expressions as plain strings in
Java, embedding XML as API calls in C#, and embedding LINQ-style queries
in Scala.

Even for DSL embeddings in a nonextensible language, we want to add domain-
specific IDE support. Even if regular expressions are embedded as strings or
XML is embedded as API calls, we want to provide domain-specific editor
services such as syntax coloring and content completion. Using editor libraries,
DSL implementers can accompany their DSL embeddings with editor services to
support programmers.

In the case of string-based embedding, the SugarJ IDE attempts to parse the
document in more detail than the host language. In the pure-embedding scenario,
we provide editor-service declarations that reason about more complex syntactic
structures, for example nesting of XAttribute instantiation inside XElement
instantiation. The library mechanism works equally well for languages that are
syntactically extensible or not.
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s.matches("a\\.*[0-9]1")

(a) String-based embedding of regular expressions in Java.

new XElement("book",
new XAttribute("title", new String(title)),
new XElement("author", new XAttribute("name", "Mintz")))

(b) Pure embedding of XML in C#.

from(books)(b => where(b.isPublished) select(b.title))
(¢) Pure embedding of SQL in Scala.

Figure 3.7: Typical DSL embeddings in Java, C#, and Scala.

3.7.2 Library-based pluggable type systems

The notion of pluggable type systems was first proposed by Bracha and describes
type systems that accept extensions (plugins) to enforce additional static analyses
on demand [Bra04]. Programmers can configure a pluggable type system by
selecting a set of extensions to activate. Due to the support of the SugarJ IDE
for marking user-defined errors and warnings visually in the source file and
problems view, the SugarJ IDE is especially well-suited for the application of
library-based pluggable type systems. In a library-based pluggable type system,
type system extensions are organized in libraries and activated through usual
import statements.

Pluggable type systems enable the definition of specialized language subsets
for various purposes: Pedagogical language subsets prohibit the use of certain
language constructs, convention-based language subsets enforce the compliance
with code style or author guide lines, language subsets for a particular platform
(e.g., Java targeting Google Web Toolkit (GWT)) often support part of the
standard library only. However, more sophisticated language restrictions are
possible as well. For instance, we implemented XML validation as a library-based
type system plugin.
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3.7.3 Language integration of editor services

Our Sugar]J IDE raises the question whether it is a good idea to have editor
definitions as part of the sources of a program. One could argue that such
metadata should be kept separate, because it is not part of the program semantics
and it potentially couples the sources to a specific IDE. Our answer to this
objection is twofold: First, SugarJ and the SugarJ IDE are attempts to tear down
stratifications into base and metalevel. This enables self-applicability and the
use of the same mechanisms for abstraction, versioning, deployment, evolution
and so forth at all metalevels. Second, we tried to reduce the conceptual coupling
to a specific IDE by making the editor definitions as abstract as possible, such
that functionality as provided by the Sugar]J IDE can be adopted for many IDEs.
While more experience is necessary for the final word on editor libraries, we
believe that the positive evidence we collected so far makes further research
worthwhile.

3.8 Related work

Our work follows in a line of previous work on extensible and customizable
code editors, IDEs, and language workbenches. We compare these works to our
extensible IDE.

Extensibility of code editors and IDEs. Notable early examples of extensible
code editors are Emacs and Vim. They support extensibility by means of plugins,
written in dynamic languages such as Lisp and Vim Script. Using APIs and
hooks to coordinate actions in the editor, these plugins can introduce syntax
highlighting and shortcuts or commands specific to a language. Plugins that
introduce more advanced features, such as inline error markers, are rare for these
editors.

Modern IDEs distinguish themselves from the traditional code editors and
programming environments by combining a rich set of programmer utilities such
as version management with a variety of sophisticated language-specific editor
services [Fow05a]. These IDEs parse the source code as it is typed, rather than
treating it as text with regular-expression-based syntax highlighting. The parsed
abstract syntax tree is used for semantic editor services such as inline error
marking and content completion. Examples of these IDEs are Eclipse, IntelliJ
IDEA, and Visual Studio. Each provides extensibility by means of plugins
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written in general-purpose languages such as Java or C+#, for which APIs and
hooks are provided to customize the IDE experience.

Extensible code editors and IDEs use a plugin model for the organization and
distribution of editor components. In contrast to our library-based approach,
plugins are not part of the object language but are externally implemented and
integrate into an editor’s architecture directly. This has a number of significant
implications. First, editor libraries can be activated through object language
imports on a per-file basis, whereas plugins require external activation instead,
for example, on a per-editor mode or per-language basis. Second, independent
editor libraries typically compose based on locality and implicit coordination,
whereas plugins have to be designed for composition a priori. Third, editor
libraries are declarative and describe how to perform editor services, rather
than imperatively changing the editor execution. Finally, while IDEs such as
Eclipse or Visual Studio require the environment to be restarted whenever the
implementation of editor service changes, editor libraries ensure a transparent
compilation model.

Customizability of code editors and IDEs. IDEs usually provide some adapt-
ability through configurations such as custom coloring schemes or user-defined
code templates. However, these facilities are often coarse-grained and hard to
deploy or share. For instance, Eclipse’s standard Java plugin JDT defines a
fixed set of colorable entities (decimal and hexadecimal numbers must look the
same), requires completion templates to apply either to Java statements or type
members only, or to complete Java (no completion templates for expressions
only) and does not support an import and export mechanism for all editor config-
urations. In contrast, editor libraries are deployable just like usual Java libraries
and enable precise configuration of editor services based on the language’s full
syntactic structure. Furthermore, since editor libraries are part of the object
language, it is possible to package them with conventional programming libraries.
This enables library-specific editor services such as code completion templates
for typical use cases of an API or warnings for depreciated uses.

Language workbenches. Language workbenches are tools that integrate tradi-
tional language engineering tools such as parser generators and transformation
systems and tools to develop IDE support [Fow05b]. By combining these tools
and by providing IDE support for these metaprogramming tasks, language
workbenches enable developers to efficiently create new languages with IDE
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support.

Language workbenches based on free text editing and parsing include EMF-
Text [HJKT09], MontiCore |[KRV08], Rascal [vdS11], Spoofax [KV10], TCS
[JBKO6] and Xtext [EV06]. These workbenches provide modern editor service
facilities such as content completion, following in a line of work on extensible
IDEs with metaprogramming facilities, such as the Meta-Environment [K1i93,
vdBvDH™'01]. Similar to our work, these workbenches provide support for devel-
oping and using editor services. However, they strictly separate metaprogram-
ming and programming. Languages and editor services are deployed together
in such a way that they apply to a certain file extension. Any changes to the
language or editor service can only be applied at language-definition level. In
contrast, in our work editor services can be freely imported and composed as ed-
itor libraries across any number of metalevels, which enables the self-application
of editor services.

In addition to language workbenches designed to implement arbitrary tex-
tual languages, there are also tools that are based on a fixed host language.
Examples include Helvetia [RGN10], a Smalltalk-based environment, and Dr-
Racket [FCFT02], aimed at the Racket programming language (formerly known
as Scheme). Helvetia supports syntactic extensibility and custom syntax high-
lighting for extensions through a dynamic meta-object protocol, but has no
support for more sophisticated editor services such as reference resolving or
content completion. DrRacket does not provide the same syntactic flexibility as
Helvetia or our IDE, but does provide autogenerated reference resolving editor
services. In Helvetia, language definitions can be loaded for a Smalltalk image
and activated in parts of the application. In DrRacket a language definition can
only be selected at file level using the #lang directive. Both tools are highly tied
to their respective host languages, using dedicated metaprogramming systems.
For instance, reference resolving in DrRacket demands that new constructs for
binding identifiers are defined in terms of predefined binding constructs of the
Racket language. In contrast, our editor libraries approach is language-agnostic
as our Java-independent case study for Latex shows.

MPS is a language workbench based on projectional editing rather than free
text editing [V6110, VS10], notable for its support for language composability. It
allows language extensions to be activated in specific parts of an application, but
does not organize them as true libraries. MPS strictly separates metaprogram-
ming and programming by providing fixed templates for syntactic and semantic
customization of language components.
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3.9 Chapter summary

Our main idea for the SugarJ IDE is the application of libraries for organizing IDE
extensions as reusable units. This combines the flexibility of extensible tooling
with the principles of libraries, in particular modular reasoning, code reuse,
and composability. As our case studies show, editor libraries are particularly
beneficial in combination with syntactically extensible programming languages
such as SugarJ and represent an important step towards our ultimate goal of
language libraries. Language libraries enable the implementation of all aspects
of a language as a library. Currently, we support the library-based adaptation
of parsing, desugaring, analyzing and editor presentation, but lack library-based
extensibility for implementing the semantics of a language extension. In our
future work, we would like to support the configuration of builder services that
declare the semantics of embedded languages and integrate into the SugarJ IDE
naturally. Builder services should replace traditional build scripts completely
and specify the order as well as the tool used to build a set of source files.

In addition, we would like to further investigate the modularity and com-
posability of editor libraries. In particular, we would like to explore scoping
mechanisms for editor libraries that retain composability while providing clearer
interfaces for explicitly coordinating services with staged editor libraries. We
also plan to conduct a large-scale case study to evaluate the composability of
editor libraries more accurately, namely Java Server Pages. Java Server Pages
brings together a number of languages such as HTML, Java, JavaScript and
CSS. We plan to provide editor libraries for each of these language separately
and to compose the resulting editor libraries to form an editor library for Server
Pages. While conducting this case study, we would furthermore like to explore
new declarative means for explicitly coordinating editor libraries.
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4 Declarative Syntax Descriptions for
Layout-sensitive Languages

This chapter shares material with the SLE’12 paper “Layout-sensitive
Generalized Parsing” [ERKO12].

One of the goals of SugarJ is to provide programmers with the flexibility that
typically is reserved for developers of a programming language, namely to define
extensions. We promote language extensions as first-class language constructs
that programmers can directly rely on to define domain abstractions specific
to their needs. However, when programmers become language developers as
in SugarJ, one important aspect is to provide declarative language-definition
mechanisms that are easy to use.

In particular, SugarJ language definitions consist of a parser, a transformation,
and editor services. As described in the previous chapters, SugarJ employs
the SDF, Stratego, and Spoofax’s editor-service configuration language for
language definitions. The reuse of these declarative languages was essential in
the development of SugarJ, because it allowed us to focus on the novel concept
of library-based extensibility (see Chapter 2 and Chapter 3). However, due to
this reuse, SugarJ also inherits the respective limitations of SDF, Stratego, and
Spoofax. One particular profound limitation for SugarJ is SDF’s confinement to
context-free languages, which restricts the possible extensions and host languages
that SugarJ can support.

The theory of context-free languages is well-understood and context-free
parsers like SDF can be used as off-the-shelf tools in practice. In particular,
to use a context-free parser framework, a user does not need to understand
its internals but can specify a language or language extension declaratively as
a grammar. However, many languages in practice are not context-free. One
particularly important class of such languages is layout-sensitive languages, in
which the structure of code depends on indentation and whitespace. For example,
Python, Haskell, F#, and Markdown use indentation instead of curly braces
to determine the block structure of code. Their parsers (and lexers) are not
declaratively specified but hand-tuned to account for layout-sensitivity.

81



Chapter 4 Declarative Syntax Descriptions for Layout-sensitive Languages

To support declarative specifications of layout-sensitive languages, we pro-
pose a parsing framework in which a user can annotate layout in a grammar.
Annotations take the form of constraints on the relative positioning of tokens
in the parsed subtrees. For example, a user can declare that a block consists
of statements that all start on the same column. We have integrated layout
constraints into SDF and implemented a layout-sensitive generalized parser as
an extension of generalized LR parsing. We evaluate the correctness and perfor-
mance of our parser by parsing 33 290 open-source Haskell files. Layout-sensitive
generalized parsing is easy to use, and its performance overhead compared to
layout-insensitive parsing is small enough for practical application.

The work described in this chapter is an essential stepping stone for making
SugarJ-like flexibility available for layout-sensitive languages. In particular, in
the subsequent Chapter 5, we present the extensible programming language
SugarHaskell that brings flexible and principled domain abstraction to the
layout-sensitive language Haskell.

4.1 Introduction

Most computer languages prescribe a textual syntax. A parser translates from
such textual representation into a structured one and constitutes the first step
in processing a document. Due to the development of parser frameworks such as
lex/yacc [MB90], ANTLR [PQ95, PF11], PEGs [For02, For04], parsec [LMO01],
or SDF [Vis97b], parsers can be considered off-the-shelf tools nowadays: Non-
experts can use parsers, because language specifications are declarative. Although
many parser frameworks support some form of context-sensitive parsing (such
as via semantic predicates in ANTLR [PQ95]), one particularly relevant class
of languages is not supported declaratively by any existing parser framework:
layout-sensitive languages.

Layout-sensitive languages were proposed by Landin in 1966 [Lan66]. In layout-
sensitive languages, the translation from a textual representation to a structural
one depends on the code’s layout and its indentation. Most prominently, the
offside rule prescribes that all non-whitespace tokens of a structure must be
further to the right than the token that starts the structure. In other words,
a token is offside if it occurs further to the left than the starting token of a
structure; an offside token must denote the start of the next structure. In
languages that employ the offside rule, the block structure of code is determined
by indentation and layout alone, whose use is considered good style anyway.
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if x I=y: do input <- readlnput
if x>0: case input of
y =X Just txt -> do putStrLn "thank you"
else: sendToServer txt
y=0 return True
X = -X Nothing -> fail "no input"
(a) Python: Indentation resolves (b) Haskell: Nested block structure.

the dangling else problem.

Figure 4.1: Layout-sensitive languages use indentation instead of curly braces.

The offside rule has been applied in a number of computer languages including
Python, Haskell, F#, and Markdown. The Wikipedia page for the off-side
rule! lists 20 different languages that apply the offside rule. For illustration,
Figure 4.1 shows a Python and a Haskell program that use layout to declare the
code’s block structure. The layout of the Python program specifies that the else
branch belongs to the outer if statement. Similarly, the layout of the Haskell
program specifies to which do block each statement belongs. Unfortunately,
current declarative parser frameworks do not support layout-sensitive languages
such as Python or Haskell, which means that often the manually crafted parsers
in compilers are the only working parsers. This makes it unnecessarily hard to
extend these languages with new syntax or to create tools for them, such as
refactoring engines or IDEs.

Our core idea is to declare layout as constraints on the shape and relative
positioning of syntax trees. These layout constraints occur as annotations of
productions in the grammar and restrict the applicability of annotated pro-
ductions to text with valid layout. For example, for conditional expressions in
Python, we annotate (among other things) that the if keyword must start on
the same column as the else keyword and that all statements of a then or else
branch must be further indented than the if keyword. These latter requirements
are context-sensitive, because statements are rejected based on their appearance
within a conditional statement. Thus, layout constraints cannot be fully enforced
during the execution of a context-free parser.

We developed an extension of SDF [Vis97b| that supports layout constraints.
The standard parsing algorithm for SDF is scannerless generalized LR pars-

lhttp://en.wikipedia.org/w/index.php?title=0ff-side_rulekoldid=517733101
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ing [Vis97al. In a generalized parsing algorithm, all possible parse trees for
an input string are processed in parallel. One approach to supporting layout
would be to parse the input irrespective of layout in a first step (generating
every possible parse tree), and then in a second step discard all syntax trees
that violate layout constraints. However, we found that this approach is not
efficient enough for practical applications: For many programs, the parser fails
to terminate within 30 seconds. To improve performance, we identified a subset
of layout constraints that in fact does not rely on context-sensitive information
and therefore can be enforced at parse time. We found that enforcing these
constraints at parse time and the remaining constraints at disambiguation time
is sufficiently efficient.

To validate the correctness and to evaluate the performance of our layout-
sensitive parser, we have build layout-sensitive SDF grammars for Python and
Haskell. In particular, we applied our Haskell parser to all 33290 Haskell files
in the open-source repository Hackage. We compare the result of applying
our parser to applying a traditional generalized parser to the same Haskell
files where block structure has been made explicit through curly braces. Our
study empirically validates the correctness of our parser and shows that our
layout-sensitive parser can compete with parsers that requires explicit block
structure.

We make the following contributions:

e We identify common idioms in existing layout-sensitive languages. Based
on these idioms, we design a constraint language for specifying layout-
sensitive languages declaratively.

e We identify context-free layout constraints that can be enforced at parse
time to avoid excessive ambiguities.

e We implement a parser for layout-sensitive languages based on an existing
scannerless generalized LR parser implementation in Java.

e We implemented a layout-sensitive SDF grammar for Python and extended
an existing layout-insensitive SDF grammar for Haskell? with layout con-
straints.

e We evaluate the correctness and performance of our parser by parsing
33290 open-source Haskell files and comparing the results against parse

?Based on a grammar from the Haskell transformation framework HSX (http://strategoxt.
org/Stratego/HSX).
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4.2 Layout in the wild

main =do Erint 16, main=do main=d0§rint 16,
print (11 +12) print (11 +12)] rint (11+12)
[print 42) —iprint 42 rint 42

(a) Three statements with (b) Wrong parse: State- (c) Correct parse: Only two

correct vertical alignment. ments have to begin at the statements, where the sec-
same column, hence print 42 ond print is applied to three
cannot be a statement. arguments.

Figure 4.2: Simple Haskell programs.

trees produced for Haskell files with explicit block structure. Our evaluation
suggests that our parser is correct and fast enough for practical application.

4.2 Layout in the wild

Many syntactic constructs in the programming language Haskell use layout
to encode program structure. For example, the do block in the simple Haskell
program in Figure 4.2(a) contains three statements which are horizontally aligned
at the same column in the source code. We visualize the alignment by enclosing
the tokens that belong to a statement in a box. More generally, a box encloses
code corresponding to a subtree of the parse tree. The exact meaning of these
boxes will become clear in the next section, where they form the basis of our
constraint language.

A Haskell parser needs to check the alignment of statements to produce correct
parse trees. For example, Figure 4.2(b) displays an incorrect parse tree that
wrongly identifies print 42 as a separate statement, even though it is further
indented than the other statements. Figure 4.2(c) visualizes the correct parse
tree for this example: A do block with two statements. The second statement
spans two lines and is parsed as an application of the function print to three
arguments. In order to recognize program structure correctly, a parser for
a layout-sensitive language like Haskell needs to distinguish programs as in
Figure 4.2(a) from programs as in Figure 4.2(c).

It is not possible to encode this difference in a context-free grammar, because
that would require counting the number of whitespace characters in addition to
keeping track of nesting. Instead, many parsers for layout-sensitive languages
contain a handwritten component that keeps track of layout and informs a
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catch (do Erint 16 catch (do Erint 16

rint (11 + rint (11 +
12)[) 12)|) (\e->do

(\e ->do|putStr "error: " putStr "error: |
print e|) printe|)
(a) Exception handler. (b) Means the same as (a).

Figure 4.3: More complicated Haskell programs.

standard parser for context-free languages about relevant aspects of layout, for
instance, by inserting special tokens into the token stream. For example, the
Python language specification® describes an algorithm that preprocesses the
token stream to delete some newline tokens and insert indent and dedent tokens
when the indentation level changes. Python’s context-free grammar assumes
that this preprocessing step has already been performed, and uses the additional
tokens to recognize layout-sensitive program structure.

This approach has the advantage that a standard parser for context-free
languages can be used to parse the preprocessed token stream, but it has the
disadvantage that the overall syntax of the programming language is not defined
in a declarative, human-readable way. Instead, the syntax is only defined in terms
of a somewhat obscure algorithm that explicitly manipulates token streams.
This is in contrast to the success story of declarative grammar and parsing
technology [KVW10].

Furthermore, a simple algorithm for layout-handling that informs a standard
parser for context-free languages is not even enough to parse Haskell. The Haskell
language specification describes that a statement ends earlier than visible from
the layout if this is the only way to continue parsing [Mar10]. For example,
the Haskell program in Figure 4.3(a) is valid: The statement print (11 + 12) only
includes one closing parenthesis, because the second closing parenthesis cannot
be consumed inside the statement. An algorithm for layout handling could
not decide where to end the statement by counting whitespace characters only.
Instead, additional information from the context-free parser is needed to decide
that the statement needs to end because the next token cannot be consumed.
As a second and more extreme example, consider the program in Figure 4.3(b)
that has the same parse tree as the program in Figure 4.3(a). In particular, the

Shttp://docs.python.org/3/reference/
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context-free syntax

Stm -> Impl  {layout("1.first.col < 1.left.col")}

Impl -> Impls

Impl Impls -> Impls {cons("StmSeq"), layout("1.first.col == 2 first.col")}
Stm ->  Expls

Stm ";" Expls -> Expls {cons("StmSeq")}

Impls -> Stms {cons("Stms")}

"{" Expls "}" -> Stms {cons("Stms"), ignore-layout}

"do" Stms -> Exp  {cons("Do"), longest-match}

Figure 4.4: Excerpt of our layout-sensitive Haskell grammar. Statements with
implicit layout (Impl) have to follow the offside rule. Statements
have to align horizontally. Statements with explicit layout (Expl)
are not layout-sensitive.

statements belong to different do blocks even though they line up horizontally.
These two programs can only be parsed correctly by close cooperation between
the context-free part of the parser and the layout-sensitive part of the parser,
which therefore have to be tightly integrated. This need for tight integration
further complicates the picture with low-level, algorithmic specifications of layout
rules prevalent in existing language specifications and implementations.

In this section, we have focused our investigation of layout-sensitive languages
on Haskell and Python, but we believe our box model is general enough to
explain layout in other languages as well.

4.3 Declaring layout with constraints

Our goal is to provide a high-level, declarative language for specifying and
implementing layout-sensitive parsers. In the previous section, we have discussed
layout informally. We have visualized layout by boxes around the tokens that
belong to a subtree in Figures 4.2 and 4.3. We propose (i) to express layout rules
formally as constraints on the shape and relative positioning of boxes and (ii) to
annotate productions in a grammar with these constraints. The idea of layout
constraints is that a production is only applicable if the parsed text adheres to
the annotated constraint.

For example, Figure 4.4 displays an excerpt from our grammar for Haskell
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tree ::= number
tok ::= tree.first | tree.left | tree.right | tree.last
ne ::= tok.line | tok.col | ne + ne | ne - ne
be :=mne==ne | ne<ne | ne>ne | be&& be | be || be | lbe
¢ ::= layout(be) | ignore-layout

Figure 4.5: Syntax of layout constraints ¢ that can annotate SDF productions.

that specifies the layout of Haskell do blocks with implicit (layout-based) as well
as explicit block structure. This is a standard SDF grammar except that some
productions are annotated with layout constraints. For example, the nonterminal
Impl stands for implicit-layout statements, that is, statements of the form ]
(but not O or ). The layout constraint layout("1.first.col < L.left.col") formally
expresses the required shape TJ for subtree number 1.

We provide the full grammar of layout constraints in Figure 4.5. Layout
constraints can refer to direct subtrees (including terminals) of the annotated
production through numerical indexes.

Each subtree exposes its shape via the source location of four tokens in the
subtree, which describe the relevant positions in the token stream. Layout
constraints use token selectors to access these tokens: first selects the first
non-whitespace token, last selects the last non-whitespace token, left selects the
leftmost non-whitespace token that is not on the same line as the first token,
and right selects the rightmost non-whitespace token that is not on the same line
as the last token. Figure 4.6(a) shows how the positions of these tokens describe
the shape of a subtree.

It is essential in our design that layout rules can be described in terms of the
locations of these four tokens, because this provides a declarative abstraction
over the exact shape of the source code. As is apparent from their definition,
the token selectors left and right fail if all tokens occur in a single line. Since a
single line of input satisfies any box shape, we do not consider this a constraint
violation.

For each selected token, the position selectors line and col yield the token’s
line and column offset, respectively. Hence the constraint 1.first.col < 1.left.col
specifies that the left border of the shape of subtree 1 must look like T1. In other
words, the constraint 1.first.col < 1.left.col corresponds to Landin’s offside rule.
Consider the following example:
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< l.right.col
1.right.col
> 1.right.col
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(b) Layout constraints that mention only
one tree restrict the shape of the surround-
ing box.

(a) The source locations of four tokens in-
duce (an abstraction of) the shape of a
subtree.

Figure 4.6: Example layout constraints and the corresponding boxes.

Here, the constraint 1.first selects the first token of the function application,
yielding the character p for scannerless parsers, or the token print otherwise. 1.left
selects the left-most token not on the first line, that is, the operator symbol *.
This statement is valid according to the Impl production because the layout
constraint is satisfied: The column in which print appears is to the left of the
column in which * appears. Conversely, the following statement does not adhere
to the shape requirement of Impl because the layout constraint fails:

Consequently, the Impl production is not applicable to this statement.

The layout constraint 1.first.col < 1.left.col mentions only a single subtree of
the annotated production and therefore restricts the shape of that subtree.
Figure 4.6(b) shows other examples for layout constraints that restrict the shape
of a subtree. In addition to these shapes, layout constraints can also prescribe the
vertical structure of a subtree. For example, the constraint 1.first.line == 1.last.line
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prohibits line breaks within the subtree 1 and 1.first.line + num(2) == 1.last.line
requires exactly two line breaks.

If a layout constraint mentions multiple subtrees of the annotated production, it
specifies the relative positioning of these subtrees. For example, the nonterminal
Impls in Figure 4.4 stands for a list of statements that can be used with implicit
layout. In such lists, all statements must start on the same column. This
horizontal alignment is specified by the layout constraint 1.first.col == 2 first.col.
This constraint naturally composes with the constraint in the Impl production:
A successful parse includes applications of both productions and hence checks
both layout constraints.

The anti-constraint ignore-layout can be used to deactivate layout validation
locally. In some languages such as Haskell and Python, this is necessary to
support explicit-layout structures within implicit-layout structures. For example,
the Haskell grammar in Figure 4.4 declares explicit-layout statement lists. Since
these lists use explicit layout {stmt;...;stmt}, no additional constraints are needed.
Haskell allows code within an explicit-layout list to violate layout constraints
imposed by surrounding constructs. Correspondingly, we annotate explicit-layout
lists with ignore-layout, which enables us to parse the following valid Haskell
program:

e
do { print 14;
print 15 }

print 16

Our Haskell parser successfully parses this program even though the second
statement seemingly violates the shape requirement on Impl. However, since
the nested explicit statement list uses ignore-layout, we skip all its tokens when
applying the left or right token selector. Therefore, the left selector in the
constraint of Impl fails to find a leftmost token that is not on the first line, and
the constraint succeeds by default.

We deliberately kept the design of our layout-constraint language simple to
avoid distraction. For example, we left out language support for abstracting
over repeating patterns in layout constraints. However, such facilities can easily
be added on top of our core language. Instead, we focus on the integration of
layout constraints into generalized parsing.
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4.4 Layout-sensitive parsing with SGLR

We implemented a layout-sensitive parser based on our extension of SDF [Vis97b]
with layout constraints. Our parser implementation builds on an existing
Java implementation [KdJNNVQ9] of scannerless generalized LR (SGLR) pars-
ing [Tom87, Vis97a]. A SGLR parser processes all possible interpretations of the
input stream in parallel and produces multiple potential parse results. Invalid
parse results can be filtered out in an additional disambiguation phase.

We have modified the SGLR parser to take layout constraints into account.*
As a first naive but correct strategy, we defer all validation of layout constraints
until disambiguation time. As an optimization of this strategy, we then identify
layout constraints that can be safely checked at parse time.

4.4.1 Disambiguation-time rejection of invalid layout

SDF distinguishes two execution phases: parse time and disambiguation time.
At parse time, the SGLR parser processes the input stream to construct a
parse forest of multiple potential parser results. This parse forest is input
to the disambiguation phase, where additional information (e.g., precedence
information) specified together with the context-free grammar is used to discard
as many of the trees in the parse forest as possible. Ideally, only a single tree
remains, which means that the given SDF grammar is unambiguous for the given
input.

While conceptually layout constraints restrict the applicability of annotated
productions, we can nevertheless defer the validation of layout constraints to
disambiguation time. Accordingly, we first parse the input ignoring layout
constraints and produce all possible trees. However, to enable later checking of
token positions, during parsing we store line and column offsets in the leaves of
parse trees.

After parsing, we disambiguate the resulting parse forest by traversing it.
Whenever we encounter the application of a layout-constrained production, we
check that the layout constraint is satisfied. For violated constraints, we reject
the corresponding subtree that used the production. If a layout violation occurs
within an ambiguity node, we select the alternative result (if it is layout-correct).

4We can reuse the parse-table generator without modification, because it automatically
forwards layout constraints from the grammar to the corresponding reduce-actions in the
parse table.
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The approach described so far is a generic technique that can be used to
integrate any context-sensitive validation into context-free parsing. For instance,
Bravenboer et al. [BVVVO05] integrate type checking into generalized parsing to
disambiguate metaprograms. However, layout-sensitive parsing is particularly
hard because of the large number of ambiguities even in small programs.

For example, in the following Haskell programs, the number of ambiguities
grows exponentially with the number of statements:

foo=doprint1 foo=do print 1 foo=doprint1
print 2 print 2
print 3

For the first program, the context-free parser results in a parse forest with one
ambiguity node that distinguishes whether the number 1 is a separate statement
or an argument to print. The second example already results in a parse forest
with 7 ambiguity nodes; the third example has 31 ambiguity nodes. The number
of ambiguities roughly quadruples with each additional statement.

Despite sharing between ambiguous parse trees, disambiguation-time layout
validation can handle programs of limited size only. For example, consider the
Haskell program that contains 30 repetitions of the statement print 1 23456 7 8 9.
After parsing, the number of layout-related ambiguities in this program is so big
that it takes more than 20 seconds to disambiguate it. A more scalable solution
to layout-sensitive parsing is needed.

4.4.2 Parse-time rejection of invalid layout

The main scalability problem in layout validation is that ambiguities are not
local. Without explicit block structure, it is not clear how to confine layout-based
ambiguities to a single statement, a single function declaration, or a single class
declaration. For example, in the print examples from the previous subsection, a
number on the last line can be argument to the print function on the first line.
Similarly, when using indentation to define the span of if-then-else branches as
in Python, every statement following the if-then-else can be either part the else
branch or not. It would be good to restrict the extent of ambiguities to more
fine-grained regions at parse time to avoid excessive ambiguities.

Internally, SGLR represents intermediate parser results as states in a graph-
structured stack [Tom87]. Each state describes (i) a region in the input stream,
(ii) a nonterminal that can generate this input, and (iii) a list of links to the
states of subtrees. When parsing can continue in different ways from a single
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state, the parser splits the state and follows all alternatives. For efficiency, SGLR
uses local ambiguity packing [Tom87] to later join such states if they describe
the same region of the input and the same nonterminal (the links to subtrees
may differ). For instance, in the ambiguous input print (1 + 2 + 3), the arithmetic
expression is described by a single state that corresponds to both (1+2)+3 and
1+(2+3). Thus, the parser can ignore the local ambiguity while parsing the
remainder of the input.

Due to this sharing, we cannot check context-sensitive constraints at parse
time. Such checks would require us to analyze and possibly resplit parse states
that were joined before: Two parse states that can be treated equally from
a context-free perspective may behave differently with respect to a context-
sensitive property. For example, the context-free parser joins the states of the
following two parse trees representing different Haskell statement lists:

Erint(11+12) print (11 +12)
Erint 42 rint 42

The left-hand parse tree represents a statement list with two statements. The
right-hand parse tree represents a statement list with a single statement that
spans two lines. This statement violates the layout constraint from the Haskell
grammar in Figure 4.4 because it does not adhere to the offside rule (shape
7). Since the context-free parser disregards layout constraints, it produces both
statement lists nonetheless.

The two statement lists describe the same region in the input: They start
and end at the same position, and both parse trees can be generated by the
Impls nonterminal (Figure 4.4). Therefore, SGLR joins the parse states that
correspond to the shown parse trees. This is a concrete example of two parse
trees that differ with respect to a context-sensitive property, but are treated
identically by SGLR.

Technically, context-sensitive properties require us to analyze and possibly
split parse states that are not root in the graph-structured stack. Such a split
deep in the stack would force us to duplicate all paths from root states to the
split state. This not only entails a serious technical undertaking but likely
degrades the parser’s runtime and memory performance significantly.

To avoid these technical difficulties, we would like to enforce only those layout
constraints at parse time that do not interact with sharing. Such constraints
must satisfy the following invariant: If a constraint rejects a parse tree, it must
also reject all parse trees that the parser might represent through the same
parse state. For constraints that satisfy this invariant, it cannot happen that we
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prematurely reject a parse state that should have been split instead: Each tree
represented by such state would be rejected by the constraint. In particular,
such constraints only use information that is encoded in the parse state itself,
namely the input region and the nonterminal. This information is the same for
all represented trees and we can use it at parse time to reject states without
influencing splitting or joining.

In our constraint language, the input region of a tree is described by the token
selectors first and last. Since the input region is the same for all trees that share
a parse state, constraints that only use the first and last token selectors (but not
left or right) can be enforced at parse time without influencing sharing: If such a
constraint rejects any random tree of a parse state, the constraint also rejects
all other trees because they describe the same input region.

One particularly useful constraint that only requires the token selectors first
and last is 1.first.col == 2 first.col, which denotes that trees 1 and 2 need to be hori-
zontally aligned. Such constraint is needed for statement lists of both Haskell and
Python. Effectively, the constraint reduces the number of potential statements to
those that start on the same column. This confines many ambiguities to a single
statement. For example, the constraint allows us to reject the program shown
in Figure 4.2(b) at parse time because the statements are not aligned. However,
it does not allow us to reject or distinguish the programs shown in Figure 4.2(a)
and 4.2(c); we retain an ambiguity that we resolve at disambiguation time.

Technically, we enforce constraints at parse time when executing reduce actions.
Specifically, in the function DO-REDUCTIONS [Vis97a], for each list of subtrees,
we validate that the applied production permits the layout of the subtrees. We
perform the regular reduce action if the production does not specify a layout
constraint, or the constraint is satisfied, or the constraint cannot be checked at
parse time. If a layout constraint is violated, the reduce action is skipped.

The remaining challenge is to validate that we in fact reduce ambiguity to a
level that allows acceptable performance in practice.

4.5 Evaluation

We evaluate correctness and performance of our layout-sensitive generalized
parsing approach with an implementation of a Haskell parser. Correctness is
interesting because we reject potential parser results based on layout constraints;
we expect that layout should not affect correctness. Performance is critical
because our approach relies on storing additional position information and
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creating additional ambiguity nodes that are later resolved, which we expect
to have a negative influence on performance. We want to assess whether the
performance penalty of our approach is acceptable for practical use (e.g., in an
IDE). Specifically, we evaluate the following research questions:

RQ1: Can a layout-sensitive generalized Haskell parser parse the same files and
produce equivalent parse trees as a layout-insensitive Haskell parser that
requires explicit layout?

RQ2: What is the performance penalty of the layout-sensitive Haskell parser
compared to a layout-insensitive Haskell parser that requires explicit
layout?

4.5.1 Research method

In a controlled setting, we quantitatively compare the results and performance
of different Haskell parsers on a large set of representative Haskell files.

Parsers and parse results. We have implemented the layout-sensitive parser
as discussed above by modifying the original SGLR. parser written in Java.® We
have extended an existing SDF grammar for Haskell that required explicit layout®
with layout constraints. We want to compare our parser to a reimplementation
of GHC’s hand-tuned LALR(1) parser that has been developed by others and is
deployed as part of the haskell-src-exts package.” Here, we refer to it simply as
GHC parser. However, comparing the performance of our layout-sensitive SGLR
parser to the hand-optimized GHC parser would be unfair since completely
different parsing technologies are used. Also comparing the produced abstract
syntax trees of both parsers is not trivial, because differently structured abstract
syntax trees are generated. Therefore, we primarily compare our layout-sensitive
parser to the original SGLR parser that did not support layout.

However, the original SGLR parser is layout-insensitive and therefore not
able to parse Haskell files that use implicit layout (which almost all Haskell files
do). Therefore, we also used the pretty printer of the haskell-src-exts package to
translate Haskell files with arbitrary combinations of explicit and implicit layout
into a representation with only explicit layout. Since the pretty printer also

5 Actually, we improved the original implementation by eliminating recursion to avoid stack
overflows when parsing files with long comments or long literal strings.

Shttp://strategoxt.org/Stratego/HSX

“http://hackage.haskell.org/package/haskell-src-exts
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removes comments, the files may be smaller and hence faster to parse. Therefore,
we use the same pretty printer to create a file that uses only implicit layout and
contains no comments either.

Overall, we have three parsers (GHC, the original SGLR, parser, and our
layout-sensitive SGLR parser) which we can use to parse three different files
(original layout, explicit-only layout, implicit-only layout). We are interested in
the parser result and parse time of four combinations:

GHC. Parsing the file with original layout using the GHC parser.

SGLR-0rig. Parsing the file with original layout (possible mixture of explicit
and implicit layout) with our layout-sensitive SGLR parser.

SGLR-Expl. Parsing the file after pretty printing with explicit layout only and
without comments with the original SGLR parser.

SGLR-Impl. Parsing the file after pretty printing with implicit layout only and
without comments with our layout-sensitive SGLR, parser.

We illustrate the process, the parsers, and the results in Figure 4.7. All SGLR-
based parsers use the same Haskell grammar of which the original SGLR parser
ignores the layout constraints. Our Haskell grammar implements the Haskell
2010 language report [Mar10], but additionally supports the following extensions
to increase coverage of supported files: HierarchicalModules, MagicHash, Flexi-
bleInstances, FlexibleContexts, Generalized NewtypeDeriving. We configured the
GHC parser accordingly and, in addition, deactivated its precedence resolution of
infix operators, which is a context-sensitive mechanism that can be implemented
as a post-processing step. Running the C preprocessor is necessary in many files
and performed in all cases. Note that SGLR-Orig and SGLR-Impl use the same
parser, but execute it on different files.

Subjects. To evaluate performance and correctness on realistic files, we selected
a large representative collection of Haskell files. We attempt to parse all Haskell
files collected in the open-source Haskell repository Hackage.® We extracted
the latest version of all 3081 packages that contain Haskell source code on
May 15, 2012. In total, these packages contain 33 290 Haskell files that amount
to 258 megabytes and 5 773 273 lines of Haskell code (original layout after running

cpp).

8http://hackage.haskell.org
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Figure 4.7: Evaluation setup

Data collection. We perform measurements by repeating the following for each
file in Hackage: We run the C preprocessor and the pretty printer to create
the files with original, explicit-only, and implicit-only layout. We measure the
wall-clock time of executing the GHC parser and the SGLR-based parsers on
the prepared files as illustrated in Figure 4.7. We stop parsers after a timeout of
30 seconds and interpret longer parsing runs as failure. We parse all files in a
single invocation of the Java virtual machine and invoke the garbage collector
between each parser execution. After starting the virtual machine, we first parse
20 packages (215 files) and discard the results to account for warmup time of
Java’s JIT compiler. A whole run takes about 6 hours. We repeat the entire
process with all measurements three times after system reboots and use the
arithmetic mean of each file and parser over all runs.

We run all performance measurements on the same 3 GHz, dual-core machine
with 4GB memory and Java Hotspot VM version 1.7.0 _04. We specified a
maximum heap size of 512MB and a maximum stack size of 16MB.

Analysis procedure. We discard all files that cannot be parsed by the GHC
parser configured as described above. On the remaining files, for research
question RQ1 (correctness), we evaluate that the three abstract syntax trees
produced by SGLR parsers are the same (that is, we perform a form of differential
testing).

For research question RQ2 (performance penalty), we determine the relative
slow down between SGLR-Expl and SGLR-Impl (and briefly compare also the
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Figure 4.8: Number of files each parser produces the correct AST for.
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Figure 4.9: Correct parses ignoring files that timeout with at least one parser.

performance of the other parsers). We calculate the relative performance penalty
between parsers separately for each file that can be parsed by all three parsers.
We report the geometric mean and the distribution of the relative performance
of all these files.

4.5.2 Results

Correctness. Of all 33290 files, 9071 files (27 percent) could not be parsed by
the GHC parser (we suspect the high failure rate is due to the small number
of activated language extensions). Of the remaining 24 219 files, 22812 files
(94 percent) files could be parsed correctly with all three SGLR-based parsers
(resulting in the same abstract syntax tree). We show the remaining numbers
in the Venn diagram in Figure 4.8. Some differences are due to timeouts; the
diagram in Figure 4.9 shows those results that do not time out in any parser.
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Figure 4.10: Performance of layout-sensitive parsing.

Performance. The median parse times per file of all parsers are given in Fig-
ure 4.10(b). Note that the results for GHC are not directly comparable, since
they include a process invocation, which corresponds to an almost constant
overhead of 15ms. On average SGLR-Impl is 1.8 times slower than SGLR-Expl.
We show the distribution of performance penalties as box plot in Figure 4.10(a)
(without outliers). The difference between SGLR-Orig and SGLR-Impl is negli-
gible; SGLR-Impl is slightly faster on average because pretty printing removes
comments.

In Figure 4.11, we show the parse times for all four parsers (the graph shows
how many percent of all files can be parsed within a given time). We see
that, as to be expected, SGLR-Expl is slower than the hand-optimized GHC, and
SGLR-Impl is slower than SGLR-Expl. The parsers SGLR-Impl and SGLR-Orig
perform similarly and are essentially not distinguishable in this figure.

4.5.3 Interpretation and discussion

As shown in Figure 4.8, SGLR-Orig and SGLR-Impl do not always produce
the same result as SGLR-Expl. Of these differences, 40 can be ascribed to
timeouts, which occur in SGLR-Expl as well as in SGLR-Orig and SGLR-Impl.
The remaining differences are shown in Figure 4.9. We investigated these
differences and found that the five files that only SGLR-Expl can parse are due
to Haskell statements that start with a pragma comment, for example:

{-# SCC "Channel_Write" #-} liftlO . atomically $ writeTChan pmc m

Since our SGLR-based parsers ignore such pragma comments, the statement
appears to be indented too far. We did not further investigate due to the low
number of occurrences of this pattern.
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Figure 4.11: Distribution of parsing times.

For the 274 files that only SGLR-Expl and SGLR-Impl can parse, we took
samples and found that SGLR-Orig failed because of code that uses a GHC
extension called NondecreasinglIndentation, which is not part of the Haskell 2010
language report but cannot be deactivated in the GHC parser. The extension
allows programs to violate the offside rule for nested layout blocks:

foo = do foo = do
print 16 print 16
do pretty-prints to do
print 17 print 17
print 18 print 18

None of the SGLR-based parsers can handle such programs. However, the
GHC pretty printer always produces code that complies with the offside rule.
Thus, SGLR-Expl and SGLR-Impl can parse the pretty-printed code, whereas
SGLR-Orig fails on the original code. We consider this a bug of the reimplemen-
tation of the GHC parser, which does not implement the Haskell 2010 language
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report even when configured accordingly.

Finally, GHC accepts 1651 files that none of the SGLR-based parsers accepts.
Since not even the layout-insensitive parser SGLR-Expl accepts these files, we
suspect inaccuracies in the original Haskell grammar that are independent of
layout.

Regarding performance, layout-sensitive parsing with SGLR-Impl entails an
average slow down of 1.8 compared to layout-insensitive parsing with SGLR-Expl.
Given the median parse times per file (Figure 4.10(b)), this slow down is still
in the realm of a few milliseconds and suggests that layout-sensitive parsing
can be applied in practice. In particular, this slow down seems acceptable
given the benefits of declarative specifications of layout as in our approach,
as opposed to low-level implementation of layout within a lexer or the parser
itself. Furthermore, we expect room for improving the performance of our
implementation of layout-sensitive parsing, as we discuss in Section 4.6.

Overall, regarding correctness (RQ1), we have shown that layout-sensitive
parsing can parse almost all files that the layout-insensitive SGLR-Expl can parse.
In fact, we did not find a single actual difference that would indicate an incorrect
parse. Regarding performance penalty (RQ2), we believe that the given slow
down does not inhibit practical application of our parser.

4.5.4 Threats to validity

A key threat to external validity (generalizability of the results) is that we have
analyzed only Haskell files and parse only files from the Hackage repository.
We believe that the layout mechanisms of Haskell are representative for other
languages, but our evaluation cannot generalize beyond Haskell. Furthermore,
files in Hackage have a bias toward open-source libraries. However, we believe
that our sample is large enough and the files in Hackage are diverse enough to
present a general picture.

An important threat to internal validity (factors that allow alternative expla-
nations) is the pretty printing necessary for parser SGLR-Expl. Pretty printing
removes comments but possibly adds whitespace. The pretty-printed files with
explicit layout have a 45 percent larger overall byte size compared to original
layout, whereas the pretty-printed files with implicit layout have a 15 percent
smaller byte size. Unfortunately, we have no direct influence on the pretty
printer. We believe that the influence of pretty printing is largely negligible,
because whitespace and comments should not trigger ambiguities during parsing
(the similarity of the performance of SGLR-Orig and SGLR-Impl can be seen as
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support). However, a more configurable pretty printer should improve internal
validity in future work.

It may be surprising that GHC (and also SGLR-Orig) fail to parse over one
quarter of all files. We have sampled some of these files and found that they
require more language extensions than we currently support. For example,
the GADTs and TypeFamilies extensions seem to be popular, but we did not
implement their syntax in our grammar and deactivated them in the GHC parser.
In future work, we would like to support Haskell more completely, which should
increase the number of supported Hackage files.

Regarding construct validity (suitability of metrics for evaluation goal), we
measured performance using wall-clock time only. For the SGLR-based parsers,
we control JIT compilation with a warmup phase. By running the garbage
collector between parser runs and monitoring the available memory, we ensured
that all parsers have a similar amount of memory available. However, the
layout-aware parser stores additional information and may perform different in
scenarios with less memory available. Furthermore, we can, of course, not entirely
eliminate background noise. Although we have repeated all measurements only
three times, we believe the measurements are sufficiently clear and we have
checked that variations between the three measurements are comparably minor
for all parsers (for over 95 percent of all files, the standard deviation of these
measurements was less than 10 percent of the mean).

4.6 Discussion and future work

We modified an SGLR parser to support validation of layout constraints at parse
time and disambiguation time. Here, we summarize some technical implications,
potential improvements, and limitations of our parser.

Technical implications. Layout-sensitive parsing interacts with traditional
disambiguation methods such as priorities or follow restrictions. For example,
consider the following Haskell program, which can be parsed into two layout-
correct parse trees (boxes indicate the toplevel structure of the trees):

do return 5

In both parse trees, the do block consists of a single statement that adheres to
the offside rule. However, the Haskell language report specifies that the left-hand
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parse tree is correct: For do blocks the longest match needs to be selected.

SDF provides a longest-match disambiguation filter for lexical syntax, called
follow restrictions [vdBSVV02]. A typical use of follow restrictions is to ensure
that identifiers are not followed by any letters, which should be part of the
identifier instead. Since, in fact, both of the above parse trees correspond to
some valid Haskell program (dependent on layout), not even context-free follow
restrictions enable us to disambiguate correctly because they ignore layout.
Similarly, a priority filter would reject the same parse tree irrespective of layout.

For this reason, we added a disambiguation filter to SDF called longest-match.
We use it to declare that, in case of ambiguity, a production should extend
as far to the right as possible. We annotated the production for do blocks in
Figure 4.4 accordingly. Since our parser stores position information in parse
trees anyway, the implementation of the longest-match filtering is simple: For
ambiguous applications of a longest-match production we compare the position
of the last tokens and choose the tree that extends further.

More generally, it should be noted that due to position information in parse
trees, our parser supports less sharing than traditional GLR parsers do. Essen-
tially, our parser can only share parse trees that describe the same region in
the input stream. We have not yet investigated the implications on memory
consumption, but our empirical study indicates that the performance penalty is
acceptable.

Performance improvements. In our implementation of layout-sensitive gener-
alized parsing, we mostly focused on correctness and only addressed performance
in so far as it influences the feasibility of our approach. Therefore, in our cur-
rent implementation, we suspect two significant performance improvements are
still possible. First, we interpret layout constraints by recursive-descent with
dynamic type checking. We have profiled the performance of our parser and
found that about 25 percent of parse time and disambiguation time are spent
on interpreting layout constraints. We expect that a significant improvement is
possible by compiling layout constraints when loading the parse table. Second,
our current implementation validates all layout constraints at disambiguation
time. However, we validate many constraints at parse time already (as described
in Section 4.4.2). We suspect that avoiding the repeated evaluation of those
constraints represents another significant performance improvement.
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Limitations. In general, context-sensitive properties can be validated after
parsing at disambiguation time without restriction. However, the expressivity of
our constraint language is limited in multiple ways. First, layout constraints in
our language are compositional, that is, a constraint can only refer to the direct
subtrees of a production. It might be useful to extend our constraint language
with pattern-matching facilities as known, for example, from XPath. However, it
is not obvious how such pattern matching influences the performance of parsing
and disambiguation; we leave this question open. A second limitation is that
we focus on one-dimensional layout-sensitive languages only. However, a few
layout-sensitive languages employ a two-dimensional syntax, for example, for
type rules as in Epigram [McB04]. We would like to investigate whether our
approach to layout-sensitivity generalizes to two-dimensional parsers.

4.7 Related work

We have significantly extended SDF’s frontend [Vis97b] and its SGLR back-
end [Tom8&7, Vis97a] to support layout-sensitive languages declaratively. We are
not aware of any other parser framework that provides a declarative mechanism
for layout-sensitive languages. Instead, existing implementations of parsers for
layout-sensitive languages are handwritten and require separate layout-sensitive
lexing.

For example, the standard Python lexer and parser are handwritten C pro-
grams.® While parsing, the lexer checks for changes of the indentation level in
the input, and marks them with special indent and dedent tokens. The parser
then consumes these tokens to process layout-sensitive program structures. This
implementation is non-declarative.

As another example, the GHC Haskell compiler employs a layout-sensitive
lexer that uses the Lexer generator Alex!? in combination with manual Haskell
code. The generated layout-sensitive lexer manages a stack of layout contexts
that stores the beginning of each layout block. When the parser queries the lexer
for layout-relevant tokens (such as curly braces), the lexer adapts the layout
context accordingly. These interactions between parser and lexer are non-trivial
and require virtual tokens for implicit layout. Since the layout rules of Haskell
are hard-coded into the lexer, it is also not easy to adapt the parser and lexer
for other languages. The same holds for the Utrecht Haskell Compiler [DFS09].

9http://svn.python.org/projects/python/trunk/Modules/parsermodule.c
Ohttp://www.haskell.org/alex/
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4.8 Chapter summary

Data-dependent grammars [JMW10] support the declaration of constraints to
restrict the applicability of a production. However, constraints in data-dependent
grammars must be context-insensitive [JMW10, Lemma 4], and therefore cannot
be used to describe languages with context-sensitive layout such as Haskell.

4.8 Chapter summary

We have presented a declarative mechanism for specifying layout-sensitive lan-
guages based on layout constraints in context-free grammars. We have developed
a parser for these grammars based on SGLR. Our parser enforces constraints
at parse time when possible but fully validates parse trees at disambiguation
time. We have empirically shown that our parser is correct and the performance
penalty is acceptable compared to layout-insensitive generalized parsing. While
our parser implementation is based on a scannerless parser, the ideas presented
in this chapter are applicable to parsers with separate lexers as well. We believe
that this work will enable language implementors to specify the grammar of
their layout-sensitive languages in a high-level, declarative way.

Our original motivation for this work was to develop a syntactically extensible
variant of Haskell in the style of SugarJ, where regular programmers write
syntactic language extensions. This requires a declarative and composable
syntax formalism as provided by SDF, but supplemented with support for
layout-sensitive language. Based on the work presented in this chapter, we have
been able to implement SugarHaskell, a syntactically extensible programming
language based on Haskell, which we present in the following chapter.
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5 A Framework for Library-based
Language Extensibility

This chapter shares material with the HASKELL’12 paper “Layout-sensitive
Language Extensibility with SugarHaskell” [ERRO12].

The core idea explored in this thesis is to use library-based language extensibil-
ity for flexible and principled domain abstraction. In Chapter 2 and Chapter 3,
we investigated library-based language extensibility in SugarJ, an extensible
programming language that supports domain-specific syntax, domain-specific
static analyses, and domain-specific editor services. In this chapter, we generalize
SugarJ to a framework for library-based language extensibility.

SugarJ is based on Java, in which application code is written by the user or
generated by desugarings. However, the ideas behind SugarJ do not depend on
Java. Instead, we hypothesize that library-based language extensibility can be
made available for any programming language that has a notion of libraries.

To validate this claim, we have developed a framework for library-based
language extensibility that can be instantiated for different base languages.
The framework is based on the SugarJ compiler, but abstracts over the Java-
specific fragments of the compiler using an abstract class [Riel2]|. The resulting
compiler framework can be instantiated for different base languages. So far, we
have instantiated the framework to build support for library-based language
extensibility based on Java, Prolog, F,,, and Haskell.

In this chapter, we present the extensible programming language SugarHaskell
that uses Haskell as a base language. SugarHaskell satisfies the same design
goals as SugarJ: domain-specific syntax, domain-specific static analysis, domain-
specific editor services, modular reasoning, implementation reuse, declarativity,
composability, and uniform self-application. However, in contrast to Java and
as discussed in the previous chapter, Haskell is a layout-sensitive programming
language. SugarHaskell embraces the layout-sensitivity of Haskell and also
supports layout-sensitive language extensions using layout constraints introduced
in the previous chapter. Building on our previous work on syntactic extensibility
for Java, SugarHaskell integrates syntactic extensions as sugar libraries into
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Haskell’s module system. Syntax extensions in SugarHaskell can declare arbitrary
context-free and layout-sensitive syntax. SugarHaskell modules are compiled
into Haskell modules and further processed by a Haskell compiler. We provide
an Eclipse-based IDE for SugarHaskell that is extensible through editor libraries,
and automatically provides syntax coloring for all syntax extensions imported
into a module.

We have validated SugarHaskell with several case studies, including arrow nota-
tion (as implemented in GHC) and EBNF as a concise syntax for the declaration
of algebraic data types with associated concrete syntax. EBNF declarations also
show how to extend the extension mechanism itself: They introduce syntactic
sugar for using the declared concrete syntax in other SugarHaskell modules.

5.1 Introduction

Many papers on Haskell programming propose some form of domain-specific
syntax for Haskell. For instance, consider the following code excerpt from a
paper about applicative functors [MPOS8]:

instance Traversable Tree where
traverse f Leaf = [I Leaf []
traverse f (Node | x r) = [| Node (traverse f I) (f x) (traverse f r) []

The idiom brackets [| ... 1] used in this listing are not supported by the actual
Haskell compiler; rather, the paper explains that they are a shorthand notation
for writing this more elaborate code:

instance Traversable Tree where
traverse f Leaf = pure Leaf
traverse f (Node | x r) = pure Node <*> (traverse f |) <*> (f x) <*> (traverse f r)

Such domain-specific syntax is quite common. Sometimes it is eventually
supported by the compiler (such as do notation for monads); sometimes pre-
processors are written to desugar the code to standard Haskell (such as the
Strathclyde Haskell Enhancement preprocessor! which supports, among other
notations, the idiom brackets mentioned above), and sometimes such notations
are only used in papers but not in actual program texts. Extending a compiler
or writing a preprocessor is not declarative, not modular, and independently
developed compiler extensions or preprocessors are hard to compose.

Ihttp://personal.cis.strath.ac.uk/conor.mcbride/pub/she
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5.1 Introduction

Another practical problem of syntactic language extension is that integrated
development environments (IDEs) should know how to deal with the new syntax
and provide domain-specific editor services, for example, for syntax coloring,
auto completion, or reference resolving. IDEs can be extended, of course, but
this again is not declarative, not modular, and does not support composition.

We propose a generic extension to Haskell, SugarHaskell, with which arbitrary
syntax extensions can be defined, used, and composed as needed. In SugarHaskell,
a syntactic extension is activated by importing a library which exports the syntax
extension and defines a desugaring of the extension to SugarHaskell. Using
SugarHaskell, we can realize the code example from above as follows:?

import Control.Applicative
import Control.Applicative.ldiomBrackets

instance Traversable Tree where
traverse f Leaf = (| Leaf |)
traverse f (Node | x r) = (| Node (traverse f I) (f x) (traverse fr) |)

The syntactic extension and its desugaring is defined in the library ldiomBrackets.
By importing this library, the notation and its desugaring are activated within
the remainder of the current module. When the SugarHaskell compiler is invoked,
it desugars the brackets to the code using pure and <*> from above. Modules
that do not import IdiomBrackets are not affected by the syntactic extension.
If more than one syntax extension is required in the same file, the extensions
are composed by importing all of them. Conflicts can arise if the extensions
overlap syntactically, but this is rare for real-world examples and can usually be
disambiguated easily.

SugarHaskell also comes with an Eclipse-based development environment specif-
ically tailored to support syntactic extensions. By importing the IdiomBrackets
library, syntax coloring for the extended syntax is automatically provided. More
advanced IDE services can be defined in and imported from editor libraries (see
Chapter 3).

It makes a significant difference that the target of the desugaring is Sugar-
Haskell and not Haskell, because this means that the syntax extension mechanism
is itself syntactically extensible. We illustrate this issue with a case study that
allows the definition of EBNF grammars in Haskell. Besides desugaring an
EBNF grammar into an algebraic data type (the abstract syntax) and a Parsec

2To avoid syntactic overlap with Template Haskell, we follow Strathclyde Haskell Enhancement
and implement rounded idiom brackets.
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parser (the concrete syntax), we generate yet another syntactic extension that
enables using the concrete syntax in Haskell expressions and patterns directly.

SugarHaskell builds on our earlier work on SugarlJ, a syntactically extensible
version of Java presented in Chapter 2. The research contributions of this chapter
are as follows:

e SugarHaskell demonstrates that flexible and principled domain abstraction
is not confined to Java-based languages, but similar extensibility is feasible
for other base languages, too.

e To create SugarHaskell, we developed a framework for library-based lan-
guage extensibility that decouples the syntax-extension mechanism of
SugarJ from the underlying programming language. To this end, we gen-
eralized the SugarJ compiler by creating an interface that abstracts over
the base language. We describe the design of this interface and how we
used it to implement SugarHaskell.

e Haskell presents a new technical challenge not present in Java: layout-
sensitive parsing [Mar10, Sec. 2.7]. SugarHaskell allows the definition of
layout-sensitive syntactic extensions and is, to the best of our knowledge,
the first declaratively extensible parser for Haskell with layout-sensitive
syntax. We validate the extensibility of our parser by developing a layout-
sensitive language extension of Haskell, namely arrow notation [Pat01].

In addition to these research contributions, we believe that this work can also
contribute very practically to the Haskell community. Haskell programmers often
strive to express programs elegantly and concisely, using built-in features such
as user-defined infix notation and layout-sensitive do notation. But since these
built-in features are not always enough to express the desired syntax, Haskell
compiler writers add language extensions to their compilers to support additional
syntactic sugar. The Haskell community can benefit from SugarHaskell in two
ways:

e SugarHaskell empowers ordinary library authors to provide appropriate
notation for the use of their libraries without having to change a Haskell
compiler.

e SugarHaskell assists language designers by providing a framework for
prototyping and thoroughly experimenting with language extensions that
affect Haskell’s syntax.
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We show through a number of examples that it is simple and practical to
implement a wide range of frequently desired syntactic extension in SugarHaskell.

5.2 SugarHaskell by example

To illustrate SugarHaskell, let us integrate syntactic sugar for programming
with arrows [Hug00]. Arrows are a versatile generalization of monads and, like
monads, arrows are somewhat cumbersome to use without syntactic support.
For this reason, Paterson proposed arrow notation to make programming with
arrows more convenient [Pat01]. In this section, we implement arrow notation
with SugarHaskell.

We are not the first to support arrow notation for Haskell. Paterson developed
a preprocessor> that translates Haskell code with arrow notation into Haskell 98
code. Furthermore, GHC supports arrow notation through a compiler extension,
which can be activated by the -XArrows flag [GHC12, Section 7.13|. In contrast,
SugarHaskell empowers regular programmers to integrate custom syntactic
extensions that compose.

5.2.1 Arrow notation

Figure 5.1 summarizes the syntactic extension for arrow notation as specified
by GHC [GHC12, Section 7.13]. Arrow notation is centered around commands
cmd, which are like expressions but provide different syntax for applications.
The first and second command productions specify arrow application where
the right-hand-side expression is input to the arrow described by the left-hand-
side expression. Here, GHC (and we) distinguish forwarding arrow application
(exp -< exp) from the arrow application (exp -<< exp) that uses app from the
ArrowApply type class. The third and fourth productions declare application
of an expression to commands and vice versa. The brackets (I...|) have been
introduced into GHC to syntactically distinguish these two forms of application.
The remaining command productions parallel standard expression syntax for
commands. Finally, arrow notation integrates into regular Haskell syntax by
extending the expression nonterminal exp from the Haskell grammar. Arrow
notation introduces new expression syntax proc pat -> cmd where proc is a new
keyword for building arrows whose input matches pat and whose output is
determined by the command cmd.

Shttp://hackage.haskell.org/package/arrowp
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exp -< exp calt ::= pat -> cmd [where decls]
exp -<< exp pat (guards -> cmd)® [where decls]
(I exp emd ... emd 1)

cmd ::

cmd exp cstmt ::= let decls

cmd qop cmd | pat <- cmd

(emd) | rec { cstmt ; ... ; estmt }
\ pat ... pat -> cmd | emd

let decls in ecmd

if exp then cmd else cmd

case exp of { calt ; ... ; calt } | exp ::= ...

do { ecstmt ; ... ; cstmt } | proc pat -> cmd

Figure 5.1: Syntactic additions for arrow notation.

An example SugarHaskell program that uses arrow notation is shown in
Figure 5.2. It activates arrow notation by importing the arrow sugar library
Control.Arrow.Syntax alongside the standard arrow library. Arrow notation is only
active where the import is in scope, that is, in the current module. Therefore,
it is possible to use competing syntactic extensions in different modules, but
also to compose different syntax extensions in a single module by importing all
of them. For example, idiom brackets (Section 5.1) do not conflict with arrow
notation since brackets in arrow notation can only occur inside a command.
Therefore, these two sugar libraries can be used within the same module. Let us
now look at the implementation of the arrow sugar library.

A sugar library consists of two artifacts: A grammar that specifies an extended
syntax and a transformation that translates the extended syntax into Haskell code
(or Haskell code extended by other sugar libraries). To specify the syntax, we
employ the generalized LR parsing formalism SDF [Vis97b], which we extended
to support layout-sensitive languages. SDF has two major advantages over other
parsing technologies. First, since SDF uses a generalized LR parser, it supports
declarative grammar specifications that liberates developers from such concerns
as left-recursion or encoding priorities. Second, SDF organizes grammars in
composable modules and features a number of disambiguation mechanisms that
make it possible to add syntax without changing previous syntax definitions.
This enables SugarHaskell users to modularly add syntactic extensions to Haskell
without changing the original Haskell grammar.

We have decomposed the syntax definition for arrow notation into three sugar
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import Control.Arrow
import Control.Arrow.Syntax

eval :: (ArrowChoice a, ArrowApply a) => Exp -> a [(Id, Val a)] (Val a)
eval (Var s) = proc env ->
returnA -< fromJust (lookup s env)
eval (Add el e2) = proc env -> do
~(Num u) <- eval el -< env
~(Num v) <- eval €2 -< env
returnA -< Num (u + v)
eval (If el e2 e3) = proc env -> do
~(BI b) <- eval el -< env
if b
then eval €2 -< env
else eval e3 -< env
eval (Lam x €) = proc env ->
returnA -< Fun (proc v -> eval e -< (x,v):env)
eval (App el e2) = proc env -> do
~(Fun f) <- eval el -< env
v <- eval €2 -< env
f-<<v

Figure 5.2: Hughes’s lambda calculus interpreter [Hug00] using arrow notation
in SugarHaskell.

libraries: one for command alternatives, one for command statements, and one
for commands themselves. The latter one is shown in Figure 5.3. A SugarHaskell
sugar library integrates into Haskell’s module system. Accordingly, each sugar
library starts with a module declaration and a list of import statements. These
imports typically refer to other sugar libraries whose syntax is extended. The
body of a sugar library is composed of SDF syntax declarations and desugaring
transformations (more on desugarings later). Essentially, the syntax declaration
in Figure 5.3 reflects the EBNF grammar from Figure 5.1. In SDF, the defined
nonterminal appears on the right-hand side of the arrow ->. Hence, the first pro-
duction declares a new syntactic form for Haskell expressions. After a production,
a list of annotations can follow in curly braces. The cons annotation specifies the
name of the AST node corresponding to a production. The annotations left and
right declare a production to be left-associative or right-associative, respectively.
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module Control.Arrow.Syntax.Command where

import Control.Arrow.Syntax.Alternatives
import Control.Arrow.Syntax.Statement

context-free syntax

"proc" HaskellAPat "->" ArrCommand ->

HaskellExp "-<" HaskellExp
HaskellExp "-<<" HaskellExp

"(|" HaskellExp ArrCommand+ "[)"
ArrCommand HaskellExp

ArrCommand HaskellQop ArrCommand
"\\" HaskellFargs "->" ArrCommand

>
->
>

HaskellExp {cons("ArrProcedure")}

ArrCommand {cons("ArrFirst")}
ArrCommand {cons("ArrHigher")}
ArrCommand {cons("ArrForm")}
ArrCommand {cons("ArrAppBin"), left}
ArrCommand {cons("ArrOpApp"), right}
ArrCommand {cons("ArrAbs")}

"do" ArrStmtList -> ArrCommand {cons("ArrDo"), longest-match}

Figure 5.3: SugarHaskell syntax extension for arrow notation.

Finally, longest-match denotes that in case multiple parses are possible (SDF
uses a generalized parser), the longest one should be chosen. These productions
are supplemented with priority declarations (left out for brevity), which, for
example, specify that the ArrAppBin production has precedence over the ArrOpApp
production.

By importing the Control.Arrow.Syntax.Command module, a program using the
extended syntax can already be parsed by SugarHaskell. However, compilation
will fail because the parsed AST contains arrow-specific nodes like ArrProcedure
that will not be understood by the compiler. Therefore, we require a desugaring
transformation that relates the arrow-specific nodes to Haskell nodes (or nodes
from another syntactic extension). To implement desugaring transformations,
SugarHaskell employs the Stratego term-rewriting system [VBT98|. Stratego
rules are based on pattern matching but, in contrast to many other systems,
Stratego rules are open for extension: A rule can be amended in a separate
module to handle more syntactic forms [HKGV10]. This way, all SugarHaskell
extensions in scope contribute to a single desugaring transformation that desugars
an AST bottom-up.

Figure 5.4 displays an excerpt of the desugaring transformation for arrow
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notation. First, let us inspect the import statements. The first import just
brings the concrete and abstract command syntax into scope, which is the input
language of the transformation we are about to define. However, the second
import is special: It activates a SugarHaskell extension that does not affect
the object language Haskell but the metalanguage Stratego. The sugar library
Meta.Concrete.Haskell activates concrete syntax for transformations [Vis02], that
is, it enables metaprogrammers to describe AST transformations by concrete
syntax within |[...]| instead of abstract syntax. Since SugarHaskell extensions
are self-applicable, syntactic extensions to the metalanguage can be expressed
as a sugar library as well. Moreover, in our example, the metaextension is
further extended by Control.Arrow.Syntax.Concrete, which enables concrete syntax
for arrow commands after the cmd keyword.

Using concrete Haskell syntax in Stratego transformations, the desugaring
transformation follows the GHC translation rules for arrow notation [PP04]
except for some optimizations. The entry point of our desugaring is the
desugar-arrow rule as declared by the desugarings block. Each Stratego rule
declares a pattern on the left-hand side of the arrow -> and produces the term
on the right-hand side of the arrow. In concrete syntax, we use $ to escape to the
metalanguage in correspondence with TemplateHaskell [SP02|. Accordingly, in
the first transformation rule desugar-arrow in Figure 5.4, the pattern matches on
an arrow procedure and binds the Stratego variables pat and cmd. If the matching
succeeds, the rule produces a term that constructs an arrow with arr from a
lambda expression and composes (>>>) this arrow with the result of desugaring
cmd. Note that angled brackets <r> t in Stratego denote an application of the
rewrite rule r to the term t.

The module Control.Arrow.Syntax imports and reexports the two modules that
define the syntax and desugaring for arrow notation. Since sugar libraries are
integrated into Haskell’s module system, an import statement suffices to activate
the syntactic extension as illustrated in Figure 5.2. Moreover, SugarHaskell
modules that contain (possibly sugared) Haskell code compile into a pure Haskell
module. Therefore, SugarHaskell programs are interoperable with regular Haskell
programs: The application of SugarHaskell in a library is transparent to clients
of that library.

5.2.2 Layout-sensitive syntactic extensions

In order for a syntactic extension to integrate into Haskell seamlessly, the
syntactic extension needs to adhere to the layout-sensitive rules of Haskell. For
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module Control.Arrow.Syntax.Desugar where

import Control.Arrow.Syntax.Command
import Meta.Concrete.Haskell
import Control.Arrow.Syntax.Concrete

desugarings
desugar-arrow

rules
desugar-arrow :
[[ proc $pat -> Scmd ]| ->
[[ arr (\$pat -> $(<tuple> vars))
>>> $(<desugar-arrow’(|vars)> cmd) ||
where <free-pat-vars> pat => vars

desugar-arrow'(|vars) :
cmd || $f -< $e ]I ->
I arr (\$(<tuple-pat> vars) -> $e) >>> $f ]|

desugar-arrow'(|vars) :
cmd |[ $f -<< $e ]I ->
[[ arr (\$(<tuple-pat> vars) -> (8f, $e)) >>> app ]|

desugar-arrow'( | vars) :
cmd |[ do $c
$xcs ]I ->
[[ arr (\$(<tuple-pat> vars) -> ($(<tuple> vars), $(<tuple> vars)))
>>> first $(<desugar-arrow’(|vars)> c)
>>> arr snd
>>> $(<desugar-arrow’(|vars)> cmd |[ do $xcs ]1) ]I

Figure 5.4: Desugaring transformation for arrow notation using concrete
Haskell syntax for generating code.
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module Control.Arrow.Syntax.Statement where

context-free syntax

"let" HaskellDeclbinds -> ArrStmt {cons("ArrLetStmt")}
HaskellPat "<-" ArrCommand -> ArrStmt {cons("ArrBind")}
ArrCommand -> ArrStmt {cons("ArrCmdStmt")}

context-free syntax
ArrlmplStmtList -> ArrStmtList {cons("ArrStmtList")}
"{" ArrExplStmtList "}" -> ArrStmtList {cons("ArrStmtList"), ignore-layout}

ArrStmt -> ArrExplStmtList
ArrStmt "; " ArrExplStmtList -> ArrExplStmtList {cons("ArrStmtSeq")}

ArrStmt -> ArrlmplIStmt {layout("1.first.col < 1.left.col")}
ArrlmplStmt -> ArrlmplStmtList
ArrlmplStmt ArrlmplStmtList -> ArrlmplStmtList

{cons("ArrStmtSeq"), layout("1.first.col == 2.first.col")}

Figure 5.5: Layout constraints restrict the context in which a production may
be applied.

example, arrow notation includes arrow-specific do blocks that consists of a
sequence of command statements, as visible in the interpreter in Figure 5.2 and
the last production in Figure 5.3. All existing layout-sensitive languages we
know of employ hand-tuned lexers or parsers. However, since we want regular
programmers to write SugarHaskell extension, we need a declarative formalism
to specify layout-sensitive syntax.

To this end, as presented in the previous chapter, we have developed a variant
of SDF that supports layout-sensitive languages. In our variant, SugarHaskell
programmers can annotate productions with layout constraints that restrict the
context in which this production may be used. Figure 5.5 shows the use of
layout constraints in the definition of arrow-specific statement lists. A statement
list can employ implicit or explicit layout. In the latter case, the statement
list is encapsulated in curly braces and statements are separated by semicolons.
Hence, an explicit statement list does not pose any layout constraints. What
is more, an explicit statement list may even violate constraints imposed by the
surrounding context. For example, the following is a syntactically valid Haskell
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program where the do block consists of three statements:

foo = do
x <- foo
let

{y = barx
yz=bazz}
bac z

In SugarHaskell, such layout behavior is declared by the ignore-layout annotation.

Statement lists with implicit layout are harder to realize. Essentially, they
need to adhere to two invariants. First, each statement must adhere to the
offside rule [Lan66], that is, every token is further indented than the token
that starts the statement. This invariant is expressed by the first constraint
in Figure 5.5: 1.first.col selects the column of the starting token of the first
subtree of the current production; in contrast, 1.left.col selects the column of the
leftmost non-starting token of the first subtree of the current production. Our
parser prevents the application of the annotated production for code that does
not satisfy the annotated constraint. The second invariant declares that each
statement in a statement list must start on the same column. This invariant is
expressed by the second constraint on the last line of Figure 5.5.

Due to the self-applicability of SugarHaskell, our layout-sensitive parser is
not limited to the object language. We employ the same layout-sensitive parser
for parsing object-level programs and metaprograms. Thus, metaprograms can
make use of layout-sensitive syntax, too. In particular, when using concrete
Haskell syntax to declare transformations, the quoted Haskell syntax is layout-
sensitive. For example, the last rule of Figure 5.4 matches on an arrow-specific
do block. The Haskell snippet used to match on such expressions is parsed
layout-sensitively, that is, indenting or dedenting the remaining statement list
$xcs will lead to a parse error. While this may seem overkill for such small
example, it becomes essential when generating code that nests let, do, case, and
where blocks.

5.3 Technical realization

We realized SugarHaskell on top of our previous work on SugarJ. Like SugarJ,
SugarHaskell is a syntactically extensible programming language that integrates
syntactic extensions into the module system of the base language. However, to
realize SugarHaskell, we significantly reengineered the SugarJ compiler to factor
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out base-language-specific components and to hide them behind an abstract
data type. In the resulting framework for library-based language extensibility it
is relatively easy to realize syntactic extensible for additional base languages.

5.3.1 Base-language-specific processing of the SugarJ
compiler

The SugarJ compiler processes a source file by first parsing it into an AST, then
desugaring the AST into an AST that contains no syntactic extensions, and
finally compiling the desugared program. However, since in SugarJ syntactic
language extensions are integrated into the module system of the base language,
the SugarJ compiler needs to support two particular features: First, to react to
a sugar-library import, the compiler needs to understand the module-relevant
structure of source files. Second, to activate a sugar library dynamically, the
compiler needs to be able to adapt the parser and desugaring transformation
while processing a source file.

We realized the first requirement by incorporating knowledge about the
relevant AST nodes into the compiler, so that the compiler recognizes ASTs and
can react appropriately. For example, when the compiler encounters an import
statement, it inspects the imported library to determine whether it is a regular
library or a sugar library. If the library is a sugar library, the compiler activates
it right away by adapting the parser and desugaring transformation.

To realize the second requirement, the compiler processes source files incre-
mentally. It dissects any source file into a sequence of top-level entities that it
parses, desugars, and compiles one after another. Examples of top-level entities
in Java include package declarations, import statements, class declarations,
and sugar declarations. For Haskell, we recognize module declarations, import
statements, and the body of a module as top-level entities. To handle a source
file incrementally, the compiler repeatedly parses the next top-level entity as an
AST and the remainder of the file as a character string. It then desugars the
parsed top-level entity, stores it for compilation, and possibly adapts the parser
and desugaring transformation for the next iteration. Hence, the syntax of a
SugarJ program can change after any top-level entity.

5.3.2 The Haskell language library

We reengineered the SugarJ compiler to support base languages other than
Java [Riel2]. To this end, we designed an abstract data type LanguageLib that
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encapsulates base-language-specific components of the compiler. To date, we
have implemented four instances of Languagelib: Javalib, HaskellLib, PrologLib,
and Fomegalib for a syntactically extensible variant of F,,.

The important categories of abstract methods in LanguagelLib are:

e [nitialization, which comprises methods that set up the initial grammar,
desugaring transformation, and editor services for the sugared language.
For SugarHaskell, the initial grammar consists of full Haskell amended
with SDF and Stratego grammars for specifying sugar libraries.

o AST predicates, which comprises methods to reflect on the parsed top-level
entity. Each concrete language library needs to distinguish declarations
of a module or namespace, import statements, language-specific entities,
sugar libraries, and editor services. The SugarJ compiler uses these AST
predicates to dispatch on the parsed AST.

e Base-language processing, which comprises methods to process base-language
code. In particular, Languagelib requires methods for processing a mod-
ule declaration, import statements, and a module’s body. The standard
way of implementing these methods is to generate a base-language source
file that contains pretty prints of the base-language entities. In addition,
LanguageLib requires a method that compiles the generated source file. This
method is called by the SugarJ compiler as final step of processing a source
file.

Notably, the SugarJ compiler handles declarations of sugar libraries and editor
services independent of concrete language libraries. Moreover, a language library
can perform static checking and notify the programmer at compile time. For
example, HaskellLib ensures that imports of Haskell modules are resolvable by
calling ghc-pkg.

5.4 Case study

We evaluated our framework for library-based language extensibility by instanti-
ating it for SugarJ, SugarProlog, SugarFomega, and SugarHaskell. In this section,
we demonstrate that the framework in fact provides the same flexibility and
principles as the original SugarJ compiler. To this end, based on SugarHaskell,
we implemented a sugar library that extends Haskell with a DSL for syntax
declarations, namely EBNF. A Haskell programmer can use this extension to
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specify an EBNF grammar, which we desugar into an algebraic data type (the
abstract syntax) and Haskell functions to parse a concrete-syntax string into
instances of that data type. Moreover, from a concrete EBNF grammar we
generate yet another syntactic extension that allows programmers to use their
own concrete syntax in Haskell code to pattern-match or construct values of their
abstract syntax (the generated data type). In addition, we defined an analysis
that checks for left-recursion in a grammar, and our IDE provides simple editor
services for EBNF.

This case study demonstrates that our framework provides flexible and prin-
cipled domain abstraction with domain-specific syntax, domain-specific static
analysis, domain-specific editor services, modular reasoning via imports, imple-
mentation reuse, declarative definitions, extension composition, and uniform
self-application to generate other extensions.

5.4.1 EBNF: A DSL for syntax declarations

Haskell’s declarative nature and expressiveness make it a good platform for exper-
imenting with the design and implementation of other programming languages.
For example, it is comparatively easy to write interpreters or type checkers
in Haskell. However, in our own experience, experimentation and testing are
often limited by the format in which example programs have to be fed into
the interpreter, that is, as instances of an algebraic data type. Consequently,
programmers experiment with their interpreter or type checker only on a small
number of examples of very limited size.

To make writing examples easier, one could implement a parser. However,
writing parsers is tedious, distracting, and produces additional maintenance
overhead when the abstract syntax changes. For that reason, we propose a
syntactic integration of EBNF with which programmers can simultaneously
declare the abstract and concrete syntax of the language under design. For
example, Figure 5.6 shows a SugarHaskell program that specifies the concrete
and abstract syntax of the lambda calculus using our EBNF embedding.

EBNF grammars are organized by nonterminal. For the lambda calculus,
we use three nonterminals Var, Exp, and String, where String is primitive and
describes sequences of non-whitespace characters. The concrete syntax of all
other nonterminals is user-supplied. In addition to concrete syntax, a programmer
specifies abstract syntax by supplying the names of AST nodes in curly braces.
If no node name is supplied, the corresponding production only forwards its
children to the surrounding production but does not produce an AST node
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module Lambda.Syntax where
import Data.EBNF.Syntax
import Data.EBNF.Data
import Data.EBNF.Parser

Var ::= String {Var}

Exp ::= Var {EVar}
| "(" Exp Exp ")" {EApp}
| "lambda" Var "." Exp {EAbs}
l ||(|| EXp ||)||

Figure 5.6: Declaration of concrete and abstract syntax of the lambda calculus
using the EBNF sugar library.

itself. For example, according to the lambda-calculus grammar, the string
"lambda f. lambda x. (f x)" is concrete syntax for:

EAbs (Var "£") (EAbs (Var "x") (EApp (EVar (Var "f")) (EVar (Var "x"))))

We desugar an EBNF grammar into multiple artifacts. First, to represent the
abstract syntax, an EBNF grammar desugars into an algebraic data type using
the following translation scheme:

EBNF Haskell

nonterminal definition data-type declaration
alternative with AST node name constructor
nonterminal in concrete syntax constructor field

Accordingly, the grammar from Figure 5.6 desugars into the following data-type
declarations:

data Var = Var String
data Exp = EVar Var
| EApp Exp Exp
| EAbs Var Exp

To encode the concrete syntax of an EBNF grammar, we generate the definition
of a Haskell function that parses a string into instances of the previous data
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types. The generated functions employ Parsec [LMO01] to parse the input and
are used to derive an instance of the Read type class. Hence, the following
declarations are generated for the lambda-calculus grammar:

parseVar :: ParsecT String Identity Var

parseVar = ...
instance Read Var where
readsPrec _ input = ... runParser parseVar ...

parseExp :: ParsecT String ldentity Exp

parseExp = ... (parseVar >>= return . EVar) <[> ...
instance Read Exp where
readsPrec _ input = ... runParser parseExp ...

By generating a Parsec parser from EBNF, we also inherit Parsec’s limitations:
The parser of a left-recursive EBNF grammar will not terminate and if multiple
productions are applicable, the parser always uses the first one and completely ig-
nores the others. We address these problems in two ways. First, we implemented
a domain-specific static analysis in SugarHaskell that approximates whether an
EBNF grammar is left-recursive and issues a domain-specific error message to
the programmer if that is the case. Second, in the generated parser, we prefer
productions that start with a keyword matching the input. The resulting parser
can be used to describe example lambda-calculus expressions in concrete syntax:

ident = read "lambda x. x" :: Exp
app = read "lambda f. lambda x. (f x)" :: Exp

We have designed the EBNF sugar library such that clients can configure
which artifacts to generate from the grammar. To this end, the main desugaring
of EBNF calls a fixed set of pattern-matching Stratego rules, each of which
supports no input at all and always fails. Stratego’s extensibility mechanism
allows programmers to amend those rules in other modules to handle further input
(a rule is only executed once even if definitions overlap) [HKGV10|. Thus, by
bringing further sugar libraries into scope, a programmer can effectively configure
the desugaring of an EBNF grammar. This design is visible in Figure 5.6, where
we activate the desugaring into data-type and parser declarations through the
imports of Data and Parser, respectively. If we do not want a parser, we can drop
the corresponding import to deactivate its generation. On the other hand, it is
not possible to only deactivate the data-type generation because the generated
parser depends on it. Hence, Parser reexports Data and an import of Parser
activates Data as well. In addition to Data and Parser, a client of the EBNF sugar
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library can import Data.EBNF.MetaSyntax to activate a desugaring that employs
SugarHaskell’s self-applicability as we explain in the following subsection.

5.4.2 EBNF: A meta-DSL

The EBNF sugar library allows programmers to simultaneously define con-
crete and abstract syntax. Programmers can use the generated Parsec parser
to declare example programs of their language in concrete syntax, which the
parser translates into instances of the generated algebraic data type. How-
ever, in a syntactically extensible programming language like SugarHaskell
such indirection is unnecessary—the example program could be parsed at
compile time. Moreover, the generated Parsec parser does not allow pro-
grammers to use their concrete syntax for building compound ASTs such as
EAbs (Var "x") (EApp ident (EVar (Var "x"))) or for pattern matching on ASTs.

To address these concerns, we provide another desugaring of EBNF grammars
defined in Data.EBNF.MetaSyntax. This desugaring generates a syntactic extension
of Haskell specific to a concrete EBNF grammar. To illustrate the generated
sugar, Figure 5.7 displays a definition of the small-step operational semantics of
the lambda calculus.

The function reduce realizes the reduction relation using concrete lambda-
calculus syntax in pattern matching and data construction. Concrete syntax is
wrapped in brackets |[...]| to distinguish it from regular Haskell code. Within
concrete syntax, $ can be used to escape to the metalanguage, that is, Haskell.
Accordingly, in the first equation of reduce, the pattern |[ ((lambda $v. $b) $e) ]|
corresponds to the Haskell pattern (EApp (EAbs v b) e) that binds the pattern
variables v, b, and e. Similarly, on the right-hand side of the second equation
of reduce, concrete syntax is used to produce a new lambda-calculus expression:
I[ ($(reduce el) $e2) ]I corresponds to the Haskell expression EApp (reduce el) e2.

As visible in the last equation of reduce, MetaSyntax also incorporates some
disambiguation mechanisms. The problem is that a pattern |[ $v ]| can be
understood in different ways. It could either refer to a variable v :: Var, to
an expression v :: Exp, or to an expression variable (EVar v) :: Exp. Therefore,
programmers can denote the syntactic category a concrete-syntax block be-
longs to as [ Exp | ... ]|, which rules out the first interpretation of || $v]I. To
distinguish the remaining possibilities, a programmer can also declare which
syntactic category an escaped metaexpression belongs to. Hence, Var$ prefixes
a metaexpression that describes a Var instance, whereas Exp$ prefixes an Exp
expression.
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module Lambda.Eval where
import Lambda.Syntax

reduce |[ ((lambda $v. $b) $e) ]|
| isVal e = subst ve b
reduce |[ ($el $e2) ||
| not (isVal el) = |[ ($(reduce el) $e2) ]|
| not (isVal €2) = |[ ($el $(reduce €2)) ]I
reduce |[ Exp | Var$v ]| = error ("free variable " ++ show v)

subst ve |[ Exp | Var$w ]I
[v==w =e
| otherwise = |[ Exp | Var$w ]|
subst v e | ($el $e2) ]I
= |[ ($(subst v e el) $(subst v e €2)) ]I
subst v e |[ lambda $w. $b ]|
| v==w = |[lambda $w. $b ]|
| otherwise = |[ lambda $w'. $b' ]|
where w' = nextFreeVar w (freeVars e ++ freeVars b)
b’ = subst v e (subst w |[ Exp | Var$w' ]| b)

isVal |[ lambda $v. $e ]| = True
isVal _ = False

eval e
| isVale =e
| otherwise = eval (reduce €)

app = |[ lambda f. lambda x. (f x) ]|
ident = |[ lambda x. x ]|
identEta = |[ lambda x. ($ident x) ]|

Figure 5.7: Small-step operational semantics for the lambda calculus using the

MetaSyntax language extension.
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Technically, MetaSyntax desugars an EBNF grammar into a syntactic extension
of Haskell. It produces productions that describe the concrete syntax in SDF

context-free syntax

MSVar -> MSExp {cons("MS-EVar")}
" (" MSExp MSExp ")" -> MSExp {cons("MS-EApp")}
"lambda" MSVar "." MSExp -> MSExp {cons("MS-EAbs")}
" (" MSExp ")" -> MSExp {cons("NoConstr")}

as well as SDF productions that describe the integration into Haskell syntax:

context-free syntax
"|[" MSExp "II" -> HaskellExp {cons("ToHaskellExp")}
"|[" MSExp "11" -> HaskellAPat {cons("ToHaskellAPat")}
"$" HaskellExp -> MSExp {cons("FromHaskellExp")}

In addition, MetaSyntax provides a generic desugaring that translates concrete-
syntax expressions into Haskell expressions. For example, this desugaring
translates the AST of identEta in Figure 5.7

ToHaskellExp(
MS-EAbs(
MS-Var("x"),
MS-EApp(
FromHaskellExp(HSVar("ident")),
MS-EVar(MS-Var("x")))))

into the corresponding Haskell expression:
EAbs (Var "x") (EApp ident (EVar (Var "x")))

Like all other desugarings in SugarHaskell, this translation is performed at
compile time; there is no run-time overhead.

The essential feature of SugarHaskell, which also separates it from most
other syntax extenders, is the self-applicability of the extension mechanism:
Sugar libraries can declare syntactic sugar for defining further sugar libraries.
In particular, EBNF can be seen as a DSL for declaring further user-specific
language extensions. Therefore, we call such a language a meta-DSL, that is, a
DSL for defining DSLs.

5.5 Discussion and future work

The major goal of SugarHaskell is to support Haskell programmers in writing
elegant and concise programs. In this section, we reflect on the practical
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advantages and limitations of using SugarHaskell.

5.5.1 Haskell integration

When proposing an extension of an existing system, it is important to ensure
interoperability between the extended and the original system. SugarHaskell
provides interoperability with Haskell by (1) forwarding valid Haskell programs
unchanged (except for parsing and pretty printing) to GHC, (2) not relying
on run-time support, (3) using the GHC package database to locate imported
modules and (4) organizing and linking compiled files such that they can be
used both with SugarHaskell and GHC, where GHC simply ignores any gen-
erated grammars and desugaring rules. Together, this supports the following
interoperation scenarios:

o A Haskell program is compiled by SugarHaskell. This is supported because
pure Haskell programs are forwarded unchanged to GHC.

e A Haskell library is used in a SugarHaskell program. This is supported
because SugarHaskell uses the GHC package database to locate the Haskell
library.

e A SugarHaskell library is used in a Haskell program. This is supported
because extensions are just syntactic sugar: SugarHaskell programs always
desugar into pure Haskell programs and no special run-time support is
required. Hence, a library author can use SugarHaskell to develop a
library and deploy the library as desugared Haskell code. Thus, the use of
SugarHaskell is transparent to users of the library.

Currently, SugarHaskell is not integrated in the Cabal build system or the
ghci interactive Haskell interpreter. In our future work, we want to investigate
whether such integration with Cabal or ghci is feasible. The following scenarios
would be worthwhile to enable:

o SugarHaskell programmers build SugarHaskell programs with Cabal.

e SugarHaskell programmers distribute SugarHaskell packages with Cabal
and HackageDB.

e SugarHaskell programmers download, compile and install SugarHaskell
packages from Hackage with cabal-install.
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e Haskell programmers download, compile and install SugarHaskell packages
from Hackage with cabal-install. This means that the packages on Hackage
need to contain the generated Haskell files.

e SugarHaskell programmers can import sugar libraries and use syntactic
sugar from the ghci prompt.

e SugarHaskell programmers can debug desugarings from the ghci prompt.

This integration would go beyond the current state of the art of preprocessor
integration into the Haskell ecosystem. While Cabal supports preprocessors, it
cannot track whether a preprocessor is available on the user’s system. Prepro-
cessors are therefore not automatically installed by cabal-install. SugarHaskell
libraries, however, would be tracked as ordinary package dependencies.

5.5.2 Extension composition

SugarHaskell achieves composability by employing composable metalanguages,
namely SDF and Stratego. More specifically, SugarHaskell supports the composi-
tion of sugar libraries that are syntactically unambiguous, which is the common
case. Such sugar libraries provide productions that extend different parts of
the language or extend the same part with different syntax. Furthermore, since
desugaring transformations typically only translate a sugar library’s new syntax,
there is no conflict between desugaring transformations of independent sugar
libraries. All sugar libraries presented in this chapter (idiom brackets, arrow
notation, EBNF, EBNF metasyntax) are syntactically unambiguous and can be
used within the same module.

In case two sugar libraries overlap syntactically, programmers can often use one
of the disambiguation mechanisms of SDF [vdBSVV02, Vis97b|. For example,
priorities declare precedence of one production over another, whereas reject
productions can be used to restrict what can be parsed by a nonterminal. For
example, we used reject productions

lexical syntax
"proc" -> HaskellVARID  {reject}
"-<"  -> HaskellVARSYM {reject}
"-<<"  -> HaskellVARSYM {reject}

in the arrow-notation sugar library to disallow the use of proc as a variable name
and to reserve -< and -<< for arrow notation. Similarly, a programmer can
disambiguate two conflicting sugar libraries by adding a third sugar library that
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applies SDF disambiguation mechanisms. There is no need to alter previously
defined productions.

5.5.3 Transformation language

SugarHaskell employs Stratego as metalanguage for term transformation. From
a language-design point of view, this is unattractive because it lacks regularity:
The metalanguage is different from the object language. It would be more
appealing to use the same language and language extensions at all metalevels.

However, we use Stratego for a good reason. As previously discussed in
Section 5.2 and Chapter 2, the definition of a single Stratego rule can be separated
into multiple equations that are located in different modules. Essentially, each
equation corresponds to a pattern-matching case that can fail or succeed. When
applying a transformation rule, Stratego tries each equation currently in scope
until one succeeds or all have failed [VBT98, HKGV10]. SugarHaskell makes
heavy use of this extensibility mechanism.

In particular, all sugar libraries contribute to a single Stratego rule desugar
through the declaration of desugarings. Whenever a programmer activates another
sugar library using an import, one or more additional equations for desugar come
into scope. SugarHaskell applies the single resulting desugaring transformation
desugar to an AST bottom-up until a fixed point is reached. Hence, a sugar
library can also desugar into an AST that another sugar library handles.

5.5.4 Referential transparency

Hygienic transformations enable the transparent use of names in code transforma-
tions and avoid two potential conflicts [CR91]. First, when generating code that
refers to a variable, this variable may not be captured at the transformation’s
call site. Instead, the variable must be resolved in the context of the transforma-
tion’s definition. For example, the IdiomBrackets sugar library from Section 5.1
generates references to pure and (<*>). This should be transparent to users of
the sugar library and should not interfere with local declarations of functions
of the same name. Second, a name capture can occur when a transformation
introduces new variable bindings. These bindings may not capture any variables
at the transformation’s call site.

SugarHaskell does not support referential transparency. Hence, sugar libraries
may produce accidental name capture. However, we employ the convention of
fully qualified names, which at least avoids most potential naming conflicts of the
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first category. For example, in the IdiomBrackets sugar library from Section 5.1, we
in fact generate references to Control.Applicative.pure and Control. Applicative.(<*>) as
well as a qualified import of Control.Applicative. In our experience, this convention
makes unhygienic transformations much less harmful.

However, a clean solution to hygiene is desirable. Unfortunately, we cannot
directly apply existing solutions to hygiene [DHB92| as known from macro
systems such as Scheme [SDF109]. The reason is threefold. First, hygienic
macro expansion relies on the compositionality of macros. However, our program
transformations are more flexible and can affect a syntax tree non-locally. Second,
we want to support user-defined binding mechanisms that do not necessarily
translate into a binding of the base language. Therefore, we cannot infer variable
scoping in the sugared syntax from the desugaring. Third, since we pretty print
and compile regular Haskell code, we cannot enhance identifiers with context
information; ultimately, each identifier must be represented as a simple string.
We plan to investigate these issues in our future work.

5.5.5 Type-awareness

The preprocessor nature of SugarHaskell becomes most apparent when consider-
ing type-system integration and error reporting. While SugarHaskell supports
user-defined static analyses before desugaring, these analyses are independent of
Haskell’s type system. SugarHaskell delegates actual type checking of desugared
code to GHC, which consequently reports errors in terms of generated code. We
see the following potential use cases of a tighter integration of type checking
into SugarHaskell:

e Sugar libraries could declare extension-specific error messages in case the
generated code fails to type-check. One interesting avenue of future work
is to analyze the applicability of type-inference instrumentation [HHS03|
to achieve extension-specific error messages.

e Type-dependent transformations could be used to generate specialized
code for input of certain types, for example, to increase efficiency or to
circumvent run-time ad-hoc polymorphism.

e Type-based syntax disambiguation [BVVVO05] could be used to select a
parse tree in case there is a syntactic ambiguity. For example, arrow nota-
tion would not need a separate syntactic category command since arrows can
be distinguished by type. Similarly, the EBNF metasyntax disambiguation
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I[ Exp | ... ]I would often be unnecessary because the expected syntactic
category is implied by the expected type.

One interesting line of research that would enable these use cases is to feature
type checking itself as an extensible component inside SugarHaskell. Instead of
checking code generated from a sugar library, the sugar library could declare
a type-system extension that defines new type rules for the added syntax. For
example, the arrow-notation sugar library would declare type rules for checking
the well-typedness of commands. In such system, all error checking and all error
reporting should be in terms of original source code. However, there are many
open research questions such as how can we ensure that extensions retain the
invariants of the original type system? Further investigation is pending.

5.6 Related work

Syntactic extensibility has been the focus of researchers for a long time, from
macro processors [McI60, Lay85, THSAC*11|, to attribute grammars [Knu68,
VBGK10], extensible compiler frameworks [EH07a, NCMO03], and language work-
benches [KV10, VS10]. We discuss the relation of our approach to existing works
in detail in Chapter 8. In a nutshell, we are different from most other approaches
because our syntactic extension can use the full class of context-free languages,
our extensions compose, and our extensibility mechanism is self-applicable. Here,
we focus on related work that is more specific to Haskell.

5.6.1 TemplateHaskell

GHC supports compile-time metaprogramming with the TemplateHaskell lan-
guage extension [SP02]. TemplateHaskell supports arbitrary compile-time com-
putation via TemplateHaskell macros. They are written in Haskell and invoked
explicitly with a special call syntax $(...). Macros can only be called in a fixed
set of syntactical contexts. TemplateHaskell is tightly integrated with GHC,
and macros can even access GHC’s typing environment to analyze the program
currently being compiled. TemplateHaskell is therefore not available for other
Haskell compilers.

SugarHaskell also supports arbitrary compile-time computation in the form
of desugarings, but desugarings are written in Stratego and invoked implicitly
whenever they are in scope. Desugarings can match on any constructors in the
AST and even on constructors that have been introduced by other sugar libraries.
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SugarHaskell is independent of any specific Haskell compiler, but therefore also
does not integrate into a compiler’s typing environment. It would be interesting
to implement part of the static analysis of a Haskell program, for example,
name resolution, as a sugar library in Stratego to support more TemplateHaskell
programming patterns in SugarHaskell.

GHC also supports a limited form of syntax extension via quasiquotation [Mai07].
Syntax extensions are specified by writing a quasiquoter in Haskell, that is, es-
sentially a stand-alone TemplateHaskell macro of type String -> Q Exp. The new
syntax is used by explicitly invoking the quasiquoter with special call syntax
[fool...I]. The part ... can be arbitrary text and is processed by the quasiquoter
foo at compile time. Quasiquotation is only available in a fixed set of syntactical
contexts. Quasiquotation nests badly, because the outer quasiquoter would
need to implement the quasiquotation mechanism manually in order to correctly
handle the inner quasiquoter.

SugarHaskell’s support for syntax extension is more declarative, because it
is based on grammar rules instead of hand-written parsers. This means that
SugarHaskell extensions compose better, since Sugar libraries can extend all
parts of the base Haskell syntax as well as syntax introduced by other sugar
libraries. In particular, nesting works out of the box without extra effort by the
implementors of sugar libraries.

5.6.2 Preprocessors

The Haskell toolbox contains numerous preprocessors. The Haskell platform?, a
collection of blessed Haskell libraries and developer tools, includes the following
preprocessors: the parser generator Happy®, the lexer generator AlexS, and
hsc2hs”, a generator for bindings to C functions. The Haskell Common Architec-
ture for Building Applications and Libraries (Cabal)®, the most common build
and distribution system for Haskell, additionally supports two other binding
generators (c2hs® and greencard!?) as well as cpphs!!, a reimplementation of the
C preprocessor with better support for Haskell’s lexical syntax. The standard C

4nttp://hackage.haskell.org/platform/

Shttp://www.haskell.org/happy/

Shttp://www.haskell.org/alex/

"http://www.haskell.org/ghc/docs/latest/html/users_guide/hsc2hs.html

8http://wuw.haskell.org/cabal/

9http://wuw.cse.unsw.edu.au/~chak/haskell/c2hs/
Ohttp://hackage.haskell.org/package/greencard
Hhttp://projects.haskell.org/cpphs/
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preprocessor is directly supported by GHC and, on Windows, even distributed
with GHC.

The Strathclyde Haskell Enhancement (SHE)'? is a handwritten preprocessor
for Haskell. It is not based on a complete layout-sensitive Haskell parser, but on
a lexer with layout heuristics. We have modeled our implementation of idiom
brackets after SHE’s implementation.

These and similar tools play two important roles in the Haskell ecosystem:
(1) They extend the Haskell language with additional special-purpose constructs
that are very useful for some applications, but not generally useful enough to
warrant inclusion in the Haskell standard. (2) They allow language designers to
provide prototype implementations of language extensions to the community.
Unfortunately, it is impossible to compose these preprocessors to extend an
extended language further. For example, it is not possible to use SHE to enable
idiom brackets in the parser actions in a Happy parser because SHE does not
produce a Happy grammar. We therefore believe that such custom preprocessors
would better be implemented in a framework like SugarHaskell that supports
the composition of many language extensions to be used in the same source file.

Priebe proposes a light-weight framework to implement preprocessors using
Template Haskell [Pri05]. His key idea is to use an universal preprocessor that
wraps a Haskell source file in a call to a Template Haskell macro. The actual
preprocessing is then done by the macro, which can be defined in a library.
Unlike SugarHaskell, Priebe’s approach does not address syntactic extensions or
the composition of different preprocessing libraries. Nevertheless, the idea of
combining a preprocessor (to define concrete syntax) and Template Haskell (to
define desugarings) seems promising. Future work could investigate whether and
how such a combined approach can be implemented as a SugarHaskell library.

The Utrecht Haskell compiler (UHC) [DFS09] is an extensible compiler for
Haskell. It is heavily based on preprocessors that compose implementation
fragments for different language levels. Extensions have to be compiled into
UHC. Parsing is implemented with a hand-written combinator parser. In
contrast, SugarHaskell supports extensions as libraries and declarative grammar
extensions.

2http://personal.cis.strath.ac.uk/conor.mcbride/pub/she
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5.7 Chapter summary

Syntactic concerns are important for programmers in practice. While semantics
make code run, it is syntax that programmers interact with every day. Therefore,
we believe it is important to support programmers in describing not only what
their programs do, but also how their programs look. SugarHaskell addresses
this belief and provides programmers with syntactic extensibility that allows
extensions to use the full class of context-free languages enriched with layout
sensitivity. SugarHaskell extensions compose and can affect object language
and metalanguages equally easily. While there are some open issues regarding
integration with Cabal, HackageDB, and Haskell’s type system, SugarHaskell is
operational and we invite programmers and language designers to experiment
with SugarHaskell and its IDE.

In the development of SugarHaskell, we generalized the SugarJ compiler to a
framework for library-based language extensibility that can support different
base languages. So far, we instantiated the framework for Java, Prolog, Haskell,
and F,,. However, Haskell is special because the Haskell community seems to be
open toward syntactic extensibility, as the large number of existing syntactic
preprocessors and compiler extensions suggests. For example, the most recent
release 7.6.1 of GHC '3 defines new syntactic sugar for lambda expressions with
case distinction (lambda-case) and if expressions with more than two branches
(multi-way if-expressions). Therefore, we believe that the Haskell community
is more likely to adopt a system like SugarHaskell, which would enable us to
substantiate our evaluation of sugar libraries through the feedback of others.

Bhttp://www.haskell.org/ghc/docs/7.6.1/html/users_guide/release-7-6-1.html
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6 Polymorphic Domain Abstraction and
Communication Integrity

SugarJ and its variants provide programmers with flexible extensibility for the
syntax, static analysis, and editor support of the host language. In a sense,
SugarJ resembles a macro system with particularly flexible macro-application
syntax: Programmers can select any context-free syntax to trigger a desug-
aring transformation. As consequence, and similar to other macro systems,
domain-specific syntax is strongly coupled to the desugaring transformation
that translates it into base syntax: SugarJ does not fulfill our design goal on
polymorphic domain abstraction.

SugarJ furthermore lacks referential transparency and hygienic code generation,
as discussed in the previous chapter. Hygiene is a hard problem for SugarJ
because of the use of the general-purpose transformation language Stratego,
whose expressiveness hinders the application of standard approaches known from
macro systems with more restricted macro-expansion engines as, for example,
used in Scheme [DHB92, CR91]. Therefore, SugarJ currently can neither prevent
the generation of unhygienic references to artifacts outside the lexical scope of
the generator, nor the generation of unhygienic bindings that captures references
outside the lexical of the generator: SugarJ does not fulfill our design goal on
referential transparency.

In this chapter, we approach polymorphic domain abstraction and referen-
tial transparency by reviewing and revising SugarJ from the perspective of
model-driven development (MDD) and software architecture. We present a novel
programming paradigm called model-oriented programming, which is both a
framework for MDD and a programming language. Like in MDD, model-oriented
programming supports the decomposition of software systems into models and
transformations. In particular, in model-oriented programming, programmers
can apply multiple transformations to the same model. This enables polymor-
phic domain abstraction. Unlike MDD, models and transformations are tightly
integrated into the module system of the programming language. From the
perspective of MDD, the most distinguishing feature of model-oriented program-
ming is communication integrity [MQR95, LV95, ACNO02]|, which we adopted
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from the field of software architecture. Communication integrity ensures that
dependencies between modules are explicit in the original source code and that
transformations cannot introduce or manipulate dependencies. Consequently,
communication integrity enables programmers to reason about module references
transparently. This is a promising first step toward referential transparency for
other kinds of references such as variable occurrences.

We designed and implemented a programming language for model-oriented
programming on top of the Java-based SugarJ compiler (Chapter 2); our frame-
work for library-based language extensibility (Chapter 5) currently does not
support model-oriented programming, which is why we refer to our model-
oriented programming language as JProMo (Java Programming with Models).
In this chapter, we describe the design of JProMo, present a formal semantics
for a core of JProMo, and demonstrate the expressiveness and applicability of
JProMo through case studies.

6.1 Introduction

Increasing the level of abstraction in software development has been a permanent
research goal since the beginning of programmable computers. A recent trend
toward this goal is MDD [CH06, KBJV06], which, in the context of this work, is
understood as the idea to decompose a software system into models, metamodels,
and transformations. Metamodels represent domain-specific abstractions; models
that conform to a metamodel represent particular instances of the abstraction.
Transformations give meaning to a model by translating it (directly or via
intermediate metamodels) to a metamodel whose meaning is already given (such
as the Java programming language). A model is not coupled to a particular
transformation but can be reused multiple times with different, independent
transformations.

While the basic idea of MDD is quite powerful [Béz05], it is not obvious how it
fits to basic principles from software architecture and component-based software
development. For instance, it is not clear how to structure such software systems
hierarchically into layers of abstraction, how to compose them from reusable
parts, or how to compile and reason about them in a modular and compositional
way. Also, ordinary programs (whether written by a programmer or generated
by a transformation) do not seem to fit very well into the MDD idea, which has
led to a significant gap between programming and modeling [MMP10].

The goal of our approach, called model-oriented programming, is to improve
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MDD with regard to these issues by tightly integrating models and transforma-
tions into a programming language. In model-oriented programming, models,
metamodels, and transformations are represented as libraries and all dependen-
cies are explicitly declared by import statements. In particular, a dependency
on the result of applying a transformation Trans to a model Model is denoted by
the import statement import Model<Trans>. The most significant consequence of
the explicit representation of dependencies is that model-oriented programming
guarantees communication integrity [MQR95, LV95, ACNO02], which means that
a module only depends on imported modules; transformations cannot inject mod-
ule dependencies. Communication integrity is a cornerstone for modular program
understanding and an important first step toward referential transparency.

We present the design and implementation of model-oriented programming
language for Java called JProMo. JProMo builds on our work on syntactic
extensibility and the SugarJ programming language (Chapter 2). JProMo goes
beyond SugarJ regarding its first-class support for models and transformations,
explicit application of transformations in import statements, and guarantees for
separate compilation and communication integrity. In this chapter, we make the
following contributions:

o We discuss the deficiencies of MDD from the perspective of component-
based software development and motivate model-oriented programming as
an integration of MDD into a programming language (Section 6.2).

e We give an introduction to model-oriented programming, formalize its
semantics, and prove communication integrity and separate compilation
theorems (Section 6.3 and 6.4).

e We present a Java-based model-oriented programming language called
JProMo that adheres to the formal properties of model-oriented program-
ming (Section 6.5).

e We demonstrate the expressiveness and applicability of JProMo through
three case studies that apply model-oriented programming for software
decomposition, metamodeling, and the encoding of #ifdef-based product
lines (Section 6.6).
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H Statemachine H H Transformation H

[ATM]| | SM2Java

[[] model —P> metamodel instance

E] metamodel —— model reference

|::> model - - - generated

Figure 6.1: ATM statemachine with transformation to Java and a test suite.

6.2 Requirements for model-oriented
programming

To motivate requirements for model-oriented programming, we consider a typical
kind of model in MDD: a finite statemachine. Figure 6.1 illustrates the typical
components in an MDD scenario to support finite statemachine models. We
designed a visual notation that makes all dependencies between components
explicit:

1. The ATM model is an instance of the Statemachine metamodel, the model
transformation SM2Java is an instance of the Transformation metamodel,
and ATMJ and ATMTest are instances of the Java metamodel.!

2. The transformation SM2Java depends on the source and target metamodels,
which is expressed via model references.

3. The ATMJ model (dashed box) has been generated by applying SM2Java
to the ATM model (solid box). The generated ATMJ model thus depends
on the original ATM model and the transformation.

4. The Java model ATMTest uses the generated ATMJ Java model to execute
test cases. ATMTest thus depends on a model that must be generated.

1We treat Java programs as models, too, hence the terms ‘Java model’ and ‘Java program’
are equivalent.
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Conventional MDD frameworks allow ATMTest to declare a dependency only
on ATMJ, e.g., by importing the generated ATMJ Java class. Actually, however,
ATMTest depends on ATM and SM2Java. For instance, if either of these compo-
nents changes, the change may affect ATMTest. In other words, conventional MDD
frameworks violate communication integrity, which postulates that each compo-
nent in the implementation of a system may only depend on those components
to which it is explicitly connected. Communication integrity has been recognized
as a pillar of component-based software architecture [MQR95, LV95, ACN02].

The only way to find out about these dependencies is to consider the build
scripts (often called workflows or generator models), which specify that SM2Java
should be run on input ATM and that the result should be called ATMJ. Con-
versely, the build scripts specify that ATMJ does not depend on any other models
or transformations that may exist in our software system. However, since build
scripts are global entities, the dependency on the generation process remains
implicit and nonmodular.

The lack of communication integrity is important from the perspective of
component-based software architecture. For instance, it becomes hard to under-
stand the impact of changes to one component on the rest of the system. It also
prevents abstraction: Ideally, the programmer of ATMTest should only need to
reason about the interfaces and documentation of ATM and SM2Java. Looking
at the structure and details of the generated ATMJ code violates the abstraction
barrier which the statemachine model is supposed to maintain.

Reasoning about dependencies in conventional MDD frameworks becomes
even harder when one considers the dependencies of generated models. For
instance, ATMJ may depend on a Java library for statemachines. However, this
dependency cannot be seen by considering the dependencies of ATM and SM2Java.
Rather, this dependency is generated and hence hidden in implementation details
of SM2Java. The dependency might also depend on details of ATM; for instance,
based on the size or structure of the statemachine, SM2Java may generate a
dependency on a different library. Hence, the overall dependency structure
can only be seen by a closed-world assumption after all transformations have
been executed in the complete software project. Furthermore, the dependency
structure is highly fragile, because it can depend on implementation details
of models or transformations. Fragile, implicit dependencies are at odds with
basic software architecture principles, in which dependencies are seen as a high-
level architectural concern [AG94]. From this discussion, we derive our first
requirement for model-oriented programming:
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(R1) Model-oriented programming must guarantee communication integrity.

This lack of modularity also has negative technical consequences, most notably
a lack of separate compilation: Since the dependencies are not explicit and may
in fact arise during transformation application, the build process is global. Kuhn
et al. [KMT12] report that developers complain that long build cycles, which
often take multiple hours in bigger MDD projects, prevent ‘live modeling’ and
consequently more effective adoption of modeling. Consequently, our second
requirement for model-oriented programming is:

(R2) Model-oriented programming must enable separate compilation.

A related problem, which has been expressed many times in the literature, is
that MDD entails a gap between modelling and programming [MMP10, HISW09,
FLO08|. In our example, we glossed over the difference between models and normal
programs, but in all MDD environments we know, the two are rather separated.
For instance, there is no integration between the dependency management by the
module system of the programming language (such as import statements), and
dependency declarations in models. Although it is simple to convert back and
forth between programs and a representation of the program as a model, it is
not obvious how models and code can be composed with each other and interact
with each other in a principled, explicit way. Ordinary programs and their
dependencies are somewhat external to the MDD methodology. Consequently,
it is not surprising that developers are worried that models and code become
inconsistent [FLOS|. Henceforth, we derive:

(R3) Model-oriented programming must tightly integrate models and code
by a common dependency management and provide the possibility to
intermingle models and code in a principled way.

A final architectural concern about model-oriented programming is its applica-
bility at different metalevels. Kuhn et al. report that MDD developers often have
no tool support to create tools similar to the ones they use themselves [KMT12].
MDD tools such as EMF [SBPMO08§] also suggest a strict stratification into
metalevels; for instance, using a generated editor entails starting a new Eclipse
instance with a separate workspace. For scalability, we believe that it is impor-
tant that everything is a model [Béz05], including programs, transformations,
and metamodels, such that the programming model stays the same regardless
of the metalevel. For instance, it should be straightforward to have higher-
order transformations, to transform metamodels, or to generate editor support

142



6.3 Model-oriented programming with JProMo

for metamodels. Model-oriented programming shares this design goal with
SugarJ:

(R4) Model-oriented programming must be uniformly applicable across met-
alevels.

Since communication integrity is a quite strong restriction, it is not clear
whether it will have negative consequences for the expressiveness of model-
oriented programming with regard to partitioning a large application into parts.
Therefore, our last requirement is:

(R5) Model-oriented programming must be applicable for component-based
software development in practical applications.

6.3 Model-oriented programming with JProMo

In this section, we give an overview about model-oriented programming with
JProMo, which satisfies above requirements. We exemplify JProMo by modeling
an ATM for money withdrawal as a statemachine. The complete definition of
the ATM model is shown in Figure 6.2. The ATM model specifies an initial
state Init, a set of events the ATM reacts to, and a set of states. Each state
describes a partial transition function from events to target states.

JProMo employs domain-specific textual syntax to describe models. The
domain-specific syntax is part of the metamodel, which also describes the
abstract syntax for representing models internally. A JProMo model refers to
its metamodel explicitly using an import statement. Besides expressing the
metamodel dependency, the import statement also activates the metamodel’s
domain-specific syntax in the current JProMo file. The domain-specific syntax
is declared by a grammar as part of a metamodel declaration. For example, here
is an excerpt of the statemachine metamodel:

package statemachine;
public metamodel Metamodel {
context-free syntax

Statemachine -> ToplevelDeclaration
Mod* "statemachine" Id "{" SMBody "}" -> Statemachine
InitialState EventsDec* StateDec* -> SMBody
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package banking;
import statemachine.Metamodel,

public statemachine ATM {
initial state Init

events DoWithdraw, Cancel, PinOK, PinNOK, [...]

state Init {
DoWithdraw => Withdraw
Cancel => Init

state Withdraw {
PinOK => GiveMoney
PinNOK => RevokeCard
Cancel => Init

}

state GiveMoney { MoneyTaken => ReturnCard }
state ReturnCard { CardTaken => Init }
state RevokeCard { CardRevoked => Init }

Figure 6.2: Model of an ATM statemachine in JProMo.

Like SugarJ, JProMo uses the grammar formalism SDF [Vis97b]. Beyond
context-free syntax, a metamodel can also specify domain invariants in the form
of domain-specific static analyses. As in SugarJ, JProMo import statements
activate the context-free syntax and static analyses of a metamodel library.

As usual in MDD, JProMo metamodels do not declare the semantics but only
the syntax and invariants of a domain. Instead, a semantics is formalized by a
model transformation converting a model from a source metamodel to a target
(or the same) metamodel. Like SugarJ, JProMo uses the Stratego term rewriting
language [VBT98] for describing model transformation.

Figure 6.3 shows how a transformation from a statemachine model to a Java
implementation of the statemachine looks like. The transformation generates a
method step for firing events. To write a test case for the ATM statemachine,
we want to use the generated Java representation of the ATM and run it on a
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package statemachine;

import transformation.Compile;
import statemachine.Metamodel,
import org.sugarj.languages.Java;

public transformation SM2Java {
main = compile-after(sm-to-java)

sm-to-java :
CompilationUnit(pkg, imps, Statemachine(init, events, states)) ->
CompilationUnit(pkg, imps, JavaClass(...<map(state-to-class)>...))

state-to-class :
|[ state ~sname { ~transitions } ]| ->
|[ class ~sname implements State {
public State instance = new ~sname();
public State step(Event e) {
~(<map(event-handle)> transitions)
return null;

}
}
]l

event-handle :
|[ ~ename => ~target || ->
|[ if (e == ~name) return ~target.instance; ]|

Figure 6.3: Transformation from statemachines to Java code.

sequence of events as illustrated by the method test in Figure 6.4.

Figure 6.4 also illustrates our solution to support uniformity and communi-
cation integrity: JProMo organizes models, metamodels, and model transfor-
mations uniformly as libraries, which prevents an undesirable heterogeneous
stratification. For instance, a transformation could also transform or output
another transformation or a metamodel. For communication integrity, the appli-
cation of a model transformation is specified with an import statement as part of
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package banking;
import banking. AT M<statemachine.SM2Java> as ATMJ;

public class ATMTest {
public void test() {

ATMJ machine = new ATMJ();
machine.step(machine.event _DoWithdraw());
machine.step(machine.event  PinOK());
machine.step(machine.event MoneyTaken());
machine.step(machine.event _CardTaken());
assert machine.currentState() == machine.state_Init();

Figure 6.4: ATMTest depends on a generated Java implementation of ATM.

the client of a generated model: We write import Model<Trans> as Ident to declare
a dependency on the result of applying Trans to Model. A client thus does not
depend on any external modeling artifacts except for the ones explicitly declared
with import statements. In conventional MDD frameworks, the generation of
ATMJ would be specified in a build script, and ATMTest would import ATMJ by
name. JProMo avoids such fragile dependencies and enables modular reasoning.

The state-machine case study illustrates the spirit of model-oriented program-
ming: We use model-based domain abstraction where useful, but write pure
application code in Java where appropriate. In model-oriented programming,
model-driven and code-driven development are fully integrated and connected
through the unifying library concept. Due to the uniform handling of depen-
dencies and transformation application by imports, communication integrity is
maintained and all concepts are applicable across metalevels. Our formalization
will illustrate how exactly this works and why we can in fact guarantee these
properties.

6.4 Formalization

The previous subsection illustrates model-oriented programming by example
of our Java-based realization JProMo. However, to abstract from details of
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Syntax:
n € Name
m ::= (n =1 in e) modules have imports and a body
i u=mn| i) import by name, import transformed
en=... module body left abstract

Semantic domains:
D=Mx (B+T+ {e})

B=... base semantics left abstract
M=mxT models close over the dependencies of a module
T=M-—D, transformations map models to semantic artifacts

I' = Name — D environments

Figure 6.5: Syntax and semantic domains of model-oriented programming.

our implementation and to describe model-oriented programming in its full
generality, we specify an abstract core of model-oriented programming that
illustrates the meaning of models, transformations, and imports, and is sufficient
to state and prove communication integrity and separate compilation.

Figure 6.5 shows the syntax and semantic domains of our abstract core
language for model-oriented programming. Programs are organized in modules
m. A module consists of a sequence? of names 7 bound to a sequence of module
imports 7 in the module’s body e. For instance, the import statement from
Figure 6.4 would be written as ATMJ = ATM<SM2Java>. An import references
another module either by name n, or by transformation i, (iz) of a model i;
with a transformation i5. The syntax of a module body e is not of relevance for
the formal development; we leave it unspecified. In JProMo, e includes Java
programs, transformations, and grammars.

We specify the semantics of our core language for model-oriented programming
as a denotational semantics, that is, by a compositional mapping of each program
to a mathematical object of the corresponding semantic domain [Sto77]. Our
semantics is a compile-time semantics; the dynamic semantics of the final program
is not in the scope of our formalization.

The semantic domain of modules is ID: Each module is mapped to a pair com-
posed of other semantic domains. B stands for the semantic domain of compiled

2We use the standard notation of writing = for a sequence zj ...xp
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application code, which we leave abstract in the formalization. For JProMo, B
would correspond to the domain of Java class files. M stands for the semantic
domain of models, which consist of a syntactic module representation and an
environment that provides mappings for the dependencies of the module. In
analogy with function closures, we say that a model closes over the dependencies
of a module. Transformations T are functions that map models to semantic
artifacts. Since a transformation may fail, we allow the error value L as a result
of a transformation. Coming back to the semantic domain of modules D, the
first component denotes the model corresponding to the closed module and is
always present, whereas the second component depends on whether the module
describes application code, a transformation, or a model. In the latter case, we
do not require a second representation of the model and use the unit element e.

The design of the semantic domains already illustrates how we realize unifor-
maity. First, every semantic artifact from ID can be reified as a model to serve
as the input of a model transformation. In addition to models, this includes
regular application code such as a Java class in JProMo. We realize this by
accompanying each semantic artifact with an explicit model representation.
Second, a model transformation from T can produce any semantic artifact. In
particular, we support higher-order transformations, that is, transformations
producing other transformations. Since transformations also need to produce
a transformed model (the first component of D), it is also possible to compose
transformations sequentially.

We provide the denotation semantics of our core language in Figure 6.6.
Function sem-mod defines the semantics of modules. It accepts a module and
an environment and yields an element of . sem-mod first resolves each import
iz € 1 of the module using function resolve. For a named import i = n, function
resolve looks up the name in the environment. For an application ij (is), the
function resolves i; and iy, and, if i5 resolves to a transformation, applies
this transformation to the model reification of 7;. sem-mod uses the resolved
imports d to construct an environment ¢ that binds the imported artifacts to the
names 1. This environment only contains artifacts explicitly referenced through
imports, i.e., the domain of ¢ is m. sem-mod uses o to evaluate the body of
the module with sem-exp, which we leave unspecified. If the evaluation of any
of the imports or the module body fails (yielding 1), sem-mod yields L itself.
Otherwise, sem-mod yields a pair consisting of the module’s closure and the
result of evaluating the module body.

We deliberately designed the semantics in a way that achieves communication
integrity. This required two design choices. First, we chose a representation
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Semantics:
sem-mod : mxI' — D

1, if L ed or body= L
(m body), otherwise
where d, € d = resolve(iy, p) for i, €

o= mkenv( n,d)

body = sem-exp(e, o)
m=Mm=1iine, o)

sem-mod(m = i in e, p) {

sem-exp 1 ex ' — (B+ T+ {e, L})
sem-ezp(e, p) =

resolve : i x ' =D
pn), ifi=n
d2(m1), le = 21<ZQ>
and (my,dy) = resolve(iy, p)

resolve(i, p) = and (ma,ds) = resolve(ia, p)

and d, € T
1, otherwise
mkenv : mxD — T
e et (6
" | mkenv(m,d)(n’), otherwise

Figure 6.6: Denotational semantics of model-oriented programming.

of models that is closed over external dependencies. All dependencies of the
encapsulated module can be resolved within the accompanying environment.
This is similar to lexical scoping of functions, which is typically achieved by a
closure consisting of the function definition and its lexical environment. Second,
in contrast to other MDD frameworks, we require transformations to produce
semantic artifacts instead of syntactic artifacts. Typically, a model-oriented-
programming transformation achieves this by first applying a syntactic rewriting
and then calling the compiler (function sem-mod) on the resulting artifact. How-
ever, in the call to sem-mod, the transformation has to provide an environment,
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too. Since the transformation does not receive any input apart from the original
model, this environment can only map to artifacts available within the input
model or the transformation itself.

Therefore, communication integrity holds: It is not possible for a transforma-
tion to inject implicit communication channels between modules. We formalize
this in the following. First, we define function deps-mod, which computes the
explicit dependencies of a module, which are locally declared with imports:

deps-mod : m — gName
deps-mod(i =i in e) = |J; ; deps-imp(iz)

deps-imp(n) = {n}
deps-imp(iq (i) = deps-imp(i1) U deps-imp(iz)

Communication integrity then states that the semantics of a module only depends
on these explicitly declared dependencies.

Lemma 1. For all imports i and environments p and o, if plaeps-imp(i) =
Ol deps-imp(i) then resolve(i, p) = resolve(i, o).

Proof. By structural induction on i. The base case i = n follows from p| geps-imp(i) =
0| deps-imp(i)» Which entails p(n) = o(n). The step case follows directly using the
induction hypothesis twice. O

Theorem 1 (Communication integrity). For all modules m and environments
P and ag, Zf p‘deps—mod(m) = U|deps—mod(m) then sem_mOd(map) = sem_mOd(ma 0)'

Proof. By Lemma 1, each d, € d from the definition of sem-mod evaluates to
the same value under p and o. Since the body of the module is evaluated under
the constructed environment mkenv(7, d), the result of sem-mod is the same
under p and o, independent of the definition of sem-ezp. O

As direct consequence of communication integrity, we get separate compilation:
A module m can be compiled in separation of any other module n if m is
independent of n.

Theorem 2 (Separate compilation). For all modules m, environments p, and
names n , if n ¢ deps-mod(m) then sem-mod(m, p) = sem-mod(m, plaom(p)\{n})-

Proof. By Theorem 1 with 0 = p|gom(p)\{n}- O
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JProMo complies to these formal properties and implements and refines the
abstract semantics of model-oriented programming, as we see next.

6.5 Technical realization of JProMo

JProMo is a model-oriented programming language with application code writ-
ten or generated in Java. We developed a compiler for JProMo. Similar to
SugarJ (Chapter 2), the compiler resolves imports, applies transformations, and
compiles the resulting Java code to provide an executable to the user.

However, in contrast to SugarJ compiler, the JProMo compiler conforms to the
specification of model-oriented programming: It supports polymorphic domain
abstraction, guarantees communication integrity, and allows the reification of
any software artifact as a model. However, the implementation of the compiler
deviates from above semantics in one important aspect. There is no environ-
ment of dependencies in a compiler; a compiler looks up and compiles source
files from the source path on demand. Therefore, our compiler cannot satisfy
communication integrity by design: A model transformation can generate code
that contains imports beyond the dependencies of the original model and trans-
formation. The compiler would resolve such imports from the source path. This
violates communication integrity and would circumvent separate compilation
and modular reasoning about dependencies. The problem cannot occur in the
above semantics, because a transformation has to produce an environment for
the dependencies of generated code in order to successfully call sem-mod.

The JProMo compiler guarantees communication integrity by checking after
each transformation application that the result of the transformation has no
dependencies beyond those of the original model and transformation. If this
check fails, the compiler reports a violation of communication integrity as a
compile error to the user. Another difference to the formal semantics is that our
compiler also supports circular dependencies of models and Java code.

6.6 Case studies

We designed model-oriented programming as a modeling framework with de-
sirable requirements such as communication integrity, separate compilation,
and uniformity. In Section 6.4, we have formally validated that model-oriented
programming fulfills communication integrity (R1), separate compilation (R2),
and uniformity (R4) from Section 6.2. In this section, we experimentally validate
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the integration of code and models (R3), uniformity (R4), and in particular the
applicability (R5): We illustrate that model-oriented programming is useful and
expressive enough for practical component-based development with models.

The purpose of the case studies is to generate evidence for the following three
hypotheses: (i) A model-oriented-programming application can be decomposed
into independent and reusable parts. (ii) Modeling at the metalevel is useful
and practical. (iii) Modeling and programming can be tightly intertwined. We
have conducted one case study for each of these hypotheses.

6.6.1 Model-oriented software decomposition

To illustrate model decomposition, we develop an entity schema for managing
banking entities. Such a schema may be concerned with hundreds of different
concepts, from customers, to bank employees, ATMs, and different kinds of
credit and debit cards. To develop, maintain, and use such a large schema
effectively, a decomposition into multiple smaller schemas seems unavoidable.

To divide entity schemas into subcomponents, we map each domain concept
into a single library. For instance, we represent a schema for customers as one
library, and a schema for accounts as another library. However, these concepts
are not independent because a customer has a collection of accounts and each
account has a corresponding customer. We use imports to model the functional
dependencies of customers and accounts as shown in Figure 6.7(a) and 6.7(b).
In fact, if we left out these imports, communication integrity would guarantee
us that customers and accounts do not interact in any way.

The Account and Customer schemas instantiate the same entity metamodel.
However, it is also possible to connect models that conform to different meta-
models, as exemplified in Figure 6.7(c). The statemachine DataATM instantiates
a metamodel that integrates data-dependent features from the entity metamodel
into the statemachine metamodel, which we already encountered in Section 6.3.
In addition to regular state machines, a data-dependent statemachine can man-
age and act upon internal as well as event-supplied data. For example, DataATM
declares internal data fields using the data keyword followed by a property dec-
laration. The acc field stores the account that is served during a withdrawal,
while pinCount totals the number of failed pin requests. Since DataATM depends
on the account schema, we use an import to make this dependency explicit.

Data-dependent statemachines represent a deep composition of entity schemas
and statemachines. For example, the entity metamodel declares an expression
language for querying and manipulating with schema instances. The metamodel
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package banking.entity;

import entity.Metamodel;
import banking.entity. Customer;

public entity Account {

uid :: Integer
owner :: Customer
balance :: Integer
pin :: String

}

(a) A schema for bank accounts.

package banking;

import statemachine.data.Metamodel,
import banking.entity.Account;

public statemachine DataATM {
initial state Init
data acc :: Account
data pinCount :: Integer

package banking.entity;

import entity.Metamodel;
import banking.entity.Account;

public entity Customer {

name :: String
address :: String
accounts :: Set<Account>

}

(b) A schema for bank customers.

events InsertCard(Account), Pin(String), [...]

state Init {
InsertCard(clientAcc) => Withdraw {
acc := clientAcc
pinCount := 0

}

state Withdraw {
Pin(p) if p == acc.pin
Pin(p) if p = acc.pin && pinCount < 2

=> HowMuch
=> Withdraw { pinCount := pinCount + 1 }

Pin(p) if p != acc.pin && pinCount >= 2 => RevokeCard

}
b

(c) A data-dependent ATM that references the Account model and instantiates the metamodel
composed from the statemachine metamodel and the entity metamodel.

Figure 6.7: JProMo supports the decomposition of an application into multiple
interlinked models that conform to different metamodels.
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package statemachine.data;

import entity.Entity2Java;
import statemachine.SM2Java;
import transformation.Recursive;

import statemachine.data.Metamodel;
import org.sugarj.languages.Java;

public transformation DataSM2Java {
main = recursively-transform(
switch get-metamodel
case ?"entity.Metamodel":
main-entity Entity2Java
case ?"statemachine.data.Metamodel":
?model;
main-statemachine_ SM2Java;
handle-internal-data-decls( | model)
end)

handle-internal-data-decls(|model) = ...

}

Figure 6.8: Transformation for interlinked models can be built by extending
and reusing existing transformations.

for data-dependent statemachines reuses this expression language unchanged in
declarations of premises and side-effects of state-machine transitions. To support
metamodel composition, we rely on the grammar formalism SDF [Vis97b] and
its support for language unification. Technically, SDF allows a grammar to refer
to and extend nonterminal definitions from other grammars. SDF generates
a parser for the composed extended grammar that we use to process model
instances.

An instance of a composed metamodel refers to concepts from different do-
mains, such as statemachine transitions and entity expressions. Therefore, a
transformation for composed metamodels needs to understand the composition
and recursively transform referenced models such as the account schema. Fig-
ure 6.8 shows such a transformation DataSM2Java, which largely builds on existing
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transformations. DataSM2Java calls the auxiliary function recursively-transform
that accepts a transformation as argument, tries to apply it to each referenced
model recursively, and calls the JProMo compiler on artifacts for which the trans-
formation succeeds. DataSM2Java uses a different transformation depending on a
model’s metamodel. If the model conforms to the entity metamodel, DataSM2Java
simply delegates to the existing transformation main-entity Entity2Java, which
is the main rewrite rule of the imported entity.Entity2Java transformation.? If
the model conforms to the extended statemachine metamodel, DataSM2Java del-
egates to the transformation statemachine.SM2Java and only handles constructs
that SM2Java cannot handle, such as internal data.

We thus successfully composed two independent metamodels and their trans-
formations for handling models that address multiple domains. We rely on SDF
to extend metamodels and Stratego to compose model transformations.

6.6.2 Modeling at higher metalevels

Conventional modeling frameworks provide fixed metamodeling and transfor-
mation languages that a developer can not easily configure, let alone replace.
Since JProMo organizes metamodels, models, and model transformations as
libraries that are models, too, the modeling and transformation mechanism of
JProMo is uniformly applicable at all metalevels. In particular, while JProMo
provides default metamodeling and model-transformation languages, custom
domain-specific metamodeling languages can be used instead.

The default model transformation language of JProMo is the term-rewriting
language Stratego. While writing model transformations as term rewrites is
feasible, template engines seem to be more prominent in practice. Templates
focus more on the generated code, whereas term rewrites primarily follow the
structure of the input model to decompose it.

Since model transformations are models, too, we can define a template-engine
as a metamodel, use this metamodel to describe templates, and transform the
templates into executable model transformations. To illustrate this idea, we
have built a template engine with JProMo. In contrast to template engines
in other MDD frameworks, our template engine is not built into the JProMo
compiler but user-defined within libraries.

Figure 6.9 shows the full entity.Entity2Java template, which transforms an entity
model such as Account (Figure 6.7(a)) into a Java class. The template generates

3Unfortunately, Stratego provides neither qualified names nor a hierarchical namespace, so
that we depend on renaming in a global namespace.
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package entity;

import template.Metamodel,
import entity.Metamodel;
import org.sugarj.languages.Java;

public template Entity2Java {
$8firstUpper = string-as-chars([to-upper|id])
$%sort-to-javatype = ...
$pkg = collect-one(?PackageDec( ,<id>))
$classname = collect-one(?ModelDecHead( _,<id>))

package $pkg;
$x{?CompilationUnit(_,<id>, )}
public class $classname {
$for(Property(name, sort) in collect-all(?Property(_, ))) {
$type = <sort-to-javatype> sort
$upName = <Id(first-upper)> name

private $type $name;
public $type get#Supname() { return Sname; }
public void set#$upname($type $name) { this.$name = $name; }

Figure 6.9: JProMo supports custom model-transformation languages.

a private field with accessor methods for each property. In a template, a dollar
sign $ constitutes an escape to Stratego, for example, to reference metavariables
or to query the input model with $for. Note that collect-one(p) and collect-all(p)
are Stratego strategies that retrieve the first, respectively all, subtrees for which
the given predicate p succeeds. We applied our template engine to implement
all the transformations for statemachines.

Using JProMo’s support for higher-order metamodeling, we also defined an
alternative metamodeling language that allows the separate specification of
abstract and concrete syntax (not shown for brevity). This separation enables
the use of different concrete syntaxes for the same metamodel in different parts of
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a software project. Moreover, it allows developers to write model transformations
for a metamodel independent of any concrete syntax. JProMo is expressive
enough to support such profound changes to the metamodeling and model
transformation languages through user libraries.

6.6.3 Mixing models and code

As final case study, we have built a framework for feature-oriented software
development (FOSD) [AK09] using JProMo. A FOSD product line consists
of (i) a feature model that declares available features and constraints their
combination, (ii) feature configurations that determine the activated features
and adhere to the constraints of the feature model, and (iii) variable libraries
that expresses conditionally included code fragments using the declared features.
FOSD is a challenging case study for mixing models and code, because the feature
conditions in variable libraries are deeply intertwined with normal program code.

We encode a variable library as a model that connects to other variable and
invariable Java libraries through import statements. A feature configuration
then corresponds to a model transformation that transforms a variable program
into a regular program. Accordingly, feature configurations can be seen as
a domain-specific model-transformation language. A feature model gives rise
to additional static checks that determine whether all used feature names are
declared and whether a feature configuration adheres to the constraints on feature
combinations. With JProMo, all of these static analyses can be generated from
a feature model using transformations.

To demonstrate our encoding of FOSD, we asked an undergraduate student
to implement a configurable graph library, proposed by others as a standard
benchmark for FOSD [LHBO1]. Figure 6.10 shows excerpts of the library’s
feature model and a configuration. The feature model declares that every variant
must support the Connected and Edgelmpl features, which entail exactly one of
Directed or Undirected, and one of one of OnlyNeighbors and NoEdges. The feature
configuration DirectedNeighbors (Figure 6.10(b)) selects and deselects features
and satisfies the constraints of the feature model, as checked by the generated
static analysis GraphFeatureModel<variability>.

We represent feature conditions in variable libraries with syntactic #ifdef
statements. The metamodel variability.Java integrates #ifdef statements into the
Java grammar at appropriate places. In contrast to the #ifdef implementation
of the C preprocessor CPP, our metamodel only supports disciplined #ifdef
statements [LKA11] and all occurrences of #ifdef statements are parsed together
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package graph;
import variability.model.Metamodel;

public featuremodel GraphFeatureModel {
features Edgelmpl, OnlyNeighbors, NoEdges, Weighted, ...

constraint Connected && Edgelmpl
constraint Connected -> (Directed xor Undirected)
constraint Edgelmpl -> (OnlyNeighbors xor NoEdges)

-

(a) Feature model with mandatory features Connected and Edgelmpl, and mutually exclusive
features Directed/Undirected and OnlyNeighbors/NoEdges.

package graph;

import variability.config.Metamodel;
import graph.GraphFeatureModel;
import graph.GraphFeatureModel<variability.CheckConfig>;

public config DirectedNeighbors for GraphFeatureModel {
enable Connected, Edgelmpl, Directed, OnlyNeighbors, Weighted, ...
disable Undirected, NoEdges, ...

}

(b) Feature configuration that is valid for GraphFeatureModel.

Figure 6.10: JProMo supports the encoding of whole paradigms such as FOSD.

with the Java code.

Figure 6.11 shows part of the configurable graph library, declared as a variable
class. Within such declaration, we write #ifdef(COND) CODE to conditionally
include CODE based on the condition COND. The condition is a Boolean ex-
pression over the features declared by the feature model. The graph library
uses #ifdef statements to conditionally include the field edges and to describe
conflicting method declarations that would be considered duplicate in ordinary
Java, because the method declarations share the exact same signature.
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package graph;

import variability.Java;
import graph.GraphFeatureModel;

import impl.Vertex;
import impl.Edgelfc;
import impl.Neighbor;

public variable class Graph {
LinkedList<Vertex> vertices;

#tifdef(Connected && !NoEdges)
private LinkedList<Edgelfc> edges;

#ifdef(NoEdges)
public Edgelfc addEdge(Vertex start, Vertex end, #ifdef(Weighted) int weight) {
start.addAdjacent(end);
#tifdef(Undirected)
end.addAdjacent(start);
#tifdef(Weighted)
start.setWeight(weight);
#tifdef(Undirected && Weighted)
end.addWeight(weight);
return (Edgelfc) start;

}

#ifdef(OnlyNeighbors)

public Edgelfc addEdge(Vertex start, Vertex end, #ifdef(Weighted) int weight) {
Neighbor e = new Neighbor(end, #ifdef(Weighted) weight);
addEdge(start, e);
return e;

}

Figure 6.11: Excerpt of a variable Java class Graph. In ordinary Java, the
methods would be duplicate and result in a compilation error.

159



Chapter 6 Polymorphic Domain Abstraction and Communication Integrity

We can configure a variable Java class by applying a feature configuration
as a transformation to it. For example, the configuration DirectedNeighbors
deselects the former and preserves the latter addEdge method declaration of the
class Graph. To apply it, we first transform the feature configuration into a
model transformation using variability.ConfigTrans, and then apply the resulting
transformation to the graph library:

import graph.Graph< graph.DirectedNeighbors<variability. ConfigTrans> >;

Model-oriented programming is particularly well-suited for encoding #ifdef-
based software product lines for two reasons. First, model-oriented programming
supports separate compilation and checking of models (which represent variable
libraries). Thus, a static analysis can provide immediate feedback to programmers
before the product line is fully implemented or configured, by checking each model
in separation including its variability. For example, we could employ variability-
aware type checking [KATS12] to ensure, without configuring the product line,
that no valid configuration of a library contains type errors. Second, model-
oriented programming supports the integration of models and regular programs.
Therefore, variable programs can be easily integrated into invariable programs
through importing a configured variant, that is, by applying a configuration in
the import. There are no distinct technical spaces for variable and invariable
programs that hinder the development process; model-oriented programming
seamlessly integrates domain abstractions like #ifdef with regular programming
in a single programming paradigm.

6.7 Discussion and future work

We designed model-oriented programming to bridge the gap between program-
ming and modeling. Specifically, model-oriented programming should provide
fundamental programming-language features (communication integrity, separate
compilation, modular reasoning) in combination with the flexibility of modeling
(multiple transformations, code generation across all metalevels). We review our
design in the present section.

Model-oriented programming integrates modeling and programming by (i)
representing models, metamodels, and model transformations as programming
libraries and (ii) enforcing the explicit declaration of interdependencies between
artifacts through library imports. In particular, model-oriented-programming
libraries declare dependencies on generated code by specifying how this code is
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generated, that is, by providing the original model and a transformation. This is
different from SugarJ, where a fixed desugaring transformation is associated with
each domain abstraction. However, like SugarJ, model-oriented programming
promotes library imports as its single dependency mechanism and applies imports
across metalevels, for example, to generate a model transformation.

Model-oriented programming satisfies the code/model-integration requirement
(R3) and the uniformity requirement (R4) from Section 6.2 by design. To
validate that model-oriented programming satisfies communication integrity
(R1) and separate compilation (R2), we formalized a denotational semantics of
model-oriented programming and verified corresponding theorems. Despite these
strong requirements, model-oriented programming is expressive and applicable
to a large range of problems (R5) as our case studies indicate.

We believe that model-oriented programming represents a significant improve-
ment over previous MDD approaches, there is still a lot of potential for further
improvement in future work:

Information hiding. Model-oriented programming supports the decomposition
of software into many interconnected artifacts. However, there are no explicit
interfaces to communicate the behavior of a generated artifact without exposing
its internals. For example, in order to find out the available methods of a
generated class, a programmer has to either look into the generated code, or
understand the transformation and its input well enough to predict the available
methods. Both solutions are at odds with information hiding. While comments
can be used as informal interfaces, they are not enforced and therefore likely
become outdated when a program evolves. A modular solution would be to derive
the interface of the generated entity from the interfaces of the transformation and
its input. The main open issue here seems to be to identify what good interfaces
for model-oriented programming look like and how to enforce them. For example,
we would like to guarantee that the result of transforming a statemachine to
Java defines a step(Event) method. To this end, we want to explore whether
previous work on interfaces for type-safe metaprogramming [KO10] can be used
for model-oriented programming as well.

Error reporting. JProMo performs separate compilation to compile and check
libraries in isolation. Therefore, compile errors are reported per library, which
enables developers to locally reason about code to find the error’s cause. How-
ever, as usual for MDD frameworks, the quality of error messages is rather
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unsatisfactory: If there is a problem with generated code, such as a Java type
error, JProMo reports it in terms of the generated artifact. However, providing
high-quality error reports is a hard problem and deserves separate treatment.

Multiple target languages. One goal of MDD that JProMo currently does not
achieve is support for multiple code-generation target languages (also known as
platform independence). To support separate compilation, the JProMo compiler
calls a platform-specific build tool such as javac on each library. Therefore,
JProMo currently only supports the generation of Java code. As described
in the previous chapters, we generalized the SugarJ base implementation to
support multiple alternative host languages, such as Haskell for SugarHaskell.
However, more work is required to enable the simultaneous use of multiple target
languages.

6.8 Related work

Model-oriented programming is related to earlier works on metaprogramming
with macros, domain-specific languages, and models.

Macros were an important inspiration for this work, because they illustrate
how code transformation can be tightly integrated into programming languages,
including explicit dependencies [Fla02]. The main difference between macros and
this work is that each macro argument is coupled to a specific macro invocation;
there is no notion of a ‘model’ whose existence is independent of any particular
transformation. This simplifies dependency management in macro systems
significantly.

Our earlier work on which the implementation of JProMo is partially based,
SugarJ, can be understood as a macro system with a particularly powerful
macro call syntax. SugarJ allows programmers to define syntactic language
extensions in libraries and to activate them using imports. This is similar to
metamodels in JProMo. However, each SugarJ syntax extension must define a
unique desugaring transformation that is immediately used to desugar client code
into Java before continuing compilation. In contrast to most other macro systems,
SugarJ does not support communication integrity because it allows unrestricted
program transformations for macro expansion. JProMo is a major extension
of SugarJ both conceptually and technically. In contrast to SugarJ, JProMo
guarantees communication integrity, provides models and transformations as first-
class concepts, models can exist independent of any transformation, arbitrary
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modules can be reified as models, transformations are explicitly applied in import
statements, and transformations receive a callback to the JProMo compiler for
compiling generated code.

There have been some works in the domain of classical embedded DSLs to
achieve DSL programs (which correspond to models) that are independent of
a particular interpretation, such as polymorphic embedding [HORMOS], or the
finally-tagless approach [CKS09]. A significant difference to these works is
that they offer a better integration into the host language type system but no
domain-specific syntax. They also limit the range of possible interpretations
to compositional specifications in the underlying programming language. For
instance, it would not be possible to generate datatypes, documentation, or a
database schema using these approaches.

In comparison with existing MDD frameworks, model-oriented programming
as realized in JProMo is, to the best of our knowledge, the first system to
fully bridge modeling and programming: JProMo is the only MDD framework
that organizes models, metamodels, and model transformations as modules of a
well-behaved programming language. In particular, model-oriented programming
ensures communication integrity, that is, all dependencies of models, metamodels,
and especially model transformations are explicit in a code/modeling fragment.
As support for this statement, we compare model-oriented programming to Xtext
from the Eclipse Modeling Project, the Meta Programming System (MPS), and
the model-oriented technology Umple as representatives.

Xtext [EV06, Xtel2] is a MDD framework that supports textual metamodel-
specific notation and a template-based transformation language. The application
of transformations is specified in an application-specific build script called
workflow. A workflow is a global, sequential description of which metamodel to
use for parsing a model, which transformation to apply to which model, and how
models are connected to (possibly generated) artifacts. As consequence, Xtext
is not modular: Dependencies are not explicit in a module and the framework
does not support separate compilation of models. Furthermore, Xtext does
not provide a uniformly applicable modeling mechanism: It cannot be used to
provide an alternative transformation or metamodeling language.

The Meta Programming System (MPS) [Vo6lll] is a MDD framework that
avoids parsing and uses projectional editing to modify models directly. In
MPS, dependencies between modeling artifacts are specified within a property
dialog for each artifact separately. However, these dependencies are not part of
the textual projection of an artifact. Furthermore, the application of a model
transformation is not specified as part of the client code, but within the original
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model itself. Accordingly, when a new client requires a different transformation,
this has to be specified in the property dialog of the original model. Finally, MPS
does not automatically deduct the set and order of models for recompilation. In
contrast, after changing any model, JProMo leverages communication integrity
to determine the set of dependent models that require separate recompilation.

Umple [FBLS12| is a programming language for model-oriented programming
that integrates modeling constructs such as associations or statemachines into
the Java programming language. In contrast to JProMo, Umple only supports a
fixed set of modeling constructs with a fixed semantics and is not extensible by
the user. Thus, Umple does not support custom domain abstractions. Moreover,
Umple retains a stratification of artifacts into metalevels, because generated
code cannot be integrated into the user’s source program.

There is a wide variety of other MDD frameworks which are too numerous to
discuss here; to the best of our knowledge, none of them supports model-oriented
programming as described in this paper. In particular, they do not provide a
uniform modeling methodology and do not ensure communication integrity.

A number of authors have envisioned MDD frameworks that inspired us in
the development of model-oriented programming. First, Kent calls for fam-
ilies of domain-specific languages that come with tool support [Ken02|. He
specifically argues for uniform metamodeling support to enable the generation
of tool support and semantics. Second, in analogy with the everything-is-an-
object idea from object-oriented programming, Bézivin proposes the unifying
view that everything is a model, including metamodels and model transforma-
tion [Béz05]. While Bézivin is more rigorous in his vision than we are—for
example, he proposes to regard the trace of running a program as a model as
well—model-oriented programming realizes the everything-is-a-model idea to
a large degree. Finally, France and Rumpe challenge the research community
with respect to model-driven development of complex software [FR07|. They
argue that future MDD frameworks should support domain abstraction, formal
semantics, extensibility, separation of concerns, and model maintenance. Model-
oriented programming addresses separation of concerns and maintainability
with communication integrity, and extensibility through our uniform modeling
methodology.
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6.9 Chapter summary

We have presented model-oriented programming, a software-development ap-
proach that extends SugarJ with (i) polymorphic domain abstraction and (ii)
communication integrity. On the one hand, polymorphic domain abstraction
allows a single domain-specific program to have different semantics in different
contexts. This increases the flexibility of SugarJ. On the other hand, com-
munication integrity is an important step toward referential transparency and
prevents transformations from injecting dependencies into generated code. This
represents a new principle in SugarJ.

However, model-oriented programming not only forwards SugarJ, but also
consolidates MDD. In particular, model-oriented programming represents an
MDD programming language that uses libraries as a unifying architectural device.
All dependencies between software artifacts are declared by library imports. Most
importantly, model-oriented programming abolishes the need for global build
scripts, enables separate compilation, and guarantees communication integrity.
Furthermore, model-oriented programming does not stratify modeling artifacts
into stages or levels; in model-oriented programming, metamodels and model
transformations are models and languages at every metalevel are customizable.
Our case studies suggest that model-oriented programming can provide modular
and effective solutions to a wide range of software-development scenarios.
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7 Composability of Domain Abstractions

This chapter shares material with the LDTA’12 paper “Language Composi-
tion Untangled” [EGR12].

One of the most important principles supported by SugarJ and its variants
is composability of domain abstraction. Composability enables programmers
to use concepts from different domain-specific languages (DSLs) within a single
program, for example, to query a database with SQL statements and present
the result as synthesized XML code. Support for composing DSLs is especially
important for SugarJ and its variants, because they promote small, reusable
language extensions as sugar libraries. Therefore, from a user’s perspective,
composing DSLs is as simple as importing all corresponding sugar libraries.

More generally, in language-oriented programming and modeling, software
developers are largely concerned with the definition of DSLs and their com-
position. While various implementation techniques and frameworks exist for
defining DSLs, language composition has not obtained enough attention and
is not well-enough understood. In particular, there is a lack of precise termi-
nology for describing observations about language composition in theory and
in existing language-development systems. To clarify the issue, we specify five
forms of language composition: language extension, language restriction, lan-
guage unification, self-extension, and extension composition. We illustrate this
classification by various examples and apply it to discuss the performance of
different language-development systems with respect to language composition.
We hope that the terminology provided by our classification will enable more
precise communication on language composition.

7.1 Introduction

DSLs are a prominent candidate for bridging the gap between domain concepts
and software developers. DSLs enable software developers to think about the
components and relations of a domain rather than about how these components
and relations might be represented. DSLs thus provide abstraction over the
concrete realization of domain concepts.
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Not least due to the success of DSLs in practice, many language-development
systems have been investigated [MHS05]. To implement a DSL, a language
developer can, for example, write a parser and interpreter, apply an attribute
grammar system [EH07a, VKBSO07], use a language workbench [EV06, KV10],
write a compiler plug-in for an extensible compiler [EHO7a, NCMO03], or provide
a library for domain primitives using regular functions [Hud98|, macros [Tra08,
THSACT11], or sugar libraries. Advances in DSL implementation techniques
have led to a proliferation of DSLs in today’s software engineering research and
practice, and DSLs for many problem domains are available.

However, realistic software projects are not just concerned with a single prob-
lem domain but also with many secondary domains such as data serialization
and querying, communication, security, data visualization, graphical user inter-
faces, concurrency, or logging. Following the idea of language-oriented software
development [Dmi04, Fow05b, War95], we want to provide a separate DSL for
each domain that occurs in a project and to use all of these DSLs together.
Support for this large and changing amount of domains can only be efficiently
provided if DSLs can be implemented independently, and then composed together.
Consequently, realistic software projects in a language-oriented context require
language composition. Most recent work on language-development systems
addresses language composition in one way or another.

At conceptual level, however, language composition is treated rather vaguely
in the literature. In particular, there is no account the authors are aware of
that specifies what language composition exactly means. This lack of a clear
conceptual framework hinders our ability to reason about the composability
of languages or to compare the support for language composition in different
implementation techniques.

To this end, our goal is to provide precise terminology for language composition
that enables effective communication on language composition and can serve
as a basis for comparing existing and future language-development systems. In
this chapter, we make the following contributions.

e We present a classification of language composition that distinguishes
five cases: language extension, language restriction, language unification,
self-extension, and extension composition. We illustrate this classification
through various examples.

e We demonstrate that our classification provides precise terminology to
explain language-composition support in existing technology and therefore
clarifies our understanding of these systems.
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e We apply our terminology to show that many language-development sys-
tems employ multiple forms of language composition. Without precise
terminology, these different applications of language composition can easily
be confused.

e Qur classification reveals unexpected room for improvement for language-
composition support in existing language-development systems. In fact,
only one of the systems we investigated supports the composition of
independent languages.

In this chapter, we focus entirely on language composition and try to clarify
its meaning. We discuss related work of SugarJ with respect to our other design
goals in the subsequent Chapter 8.

7.2 Language composition

The term “language composition” can refer to mechanisms and usage scenarios
that significantly differ in terms of flexibility and reuse opportunities. In fact, the
composability of languages is not a property of languages themselves: any two
languages can be composed by stipulating a new syntax and semantics for the
composed language. Rather, language composability is a property of language
definitions, that is, whether two definitions work together without changing
them.

To clarify the situation, we develop a taxonomy of language composition
based on the idea of unchanged reuse, that is, whether a language definition can
be reused without modifying it. Existing language-development systems differ
significantly in their support for unchanged reuse. For example, some systems
support the unchanged reuse of a base language through extension (e.g., macro
systems), whereas other systems even allow to compose independently developed
languages unchanged (e.g., JastAddJ). To avoid ambiguous statements, authors
need to be aware of the equivocality of language composition and we recommend
to consciously use language composition only as an umbrella term for our more
precise terminology.

7.2.1 Language extension (<)

When the first stable version of Java was released, it lacked many features that
we are used to today. For example, before version 1.5, Java had no support
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for the foreach loop or generics. Java was only extended with these features
later on. Similarly, earlier versions of Haskell did not include support for let
expressions (introduced in Haskell 1.1), monads, or do notation (both introduced
in Haskell 1.3) [HHPWO7]. By now, these later-added features have become
characteristic for Java and Haskell, respectively. More generally, languages
evolve over time and subsequent introduction of language features is nothing
surprising.

This brings us to the first form of language composition: language extension.
A language designer composes a base language with a language extension. A
language extension is itself a language fragment, which often is meaningless when
regarded independent of the base language. This dependency of the language
extension on the base language is the main characteristic of this form of language
composition.

Often, implementing a language extension involves changing the implementa-
tion of the base language. Examples include the integration of generics into Java
and do notation into Haskell. However, the language-engineering community
has brought forward language-development systems that particularly support
language extensibility. These systems share a common property, which we
capture in the following definition.

Definition 1. A language-development system supports language extension of a
base language if the implementation of the base language can be reused unchanged
in implement of the extended language.

Importantly, this definition only demands the reuse of the base language’s
implementation but does not regulate how language extensions are implemented.
In particular, this definition does not prescribe whether multiple language
extensions can be used jointly. In addition to describing terminology, we also
introduce an algebraic notation for language composition. We will later use this
notation to explain how different forms of language composition integrate. We
denote the result of composing a base language B with a language extension F
as B < E. The asymmetry of the language-composition operator < reflects the
dependency of the extension on the base language.

Language restriction. Especially in education, it sometimes makes sense to
restrict an existing programming language. For example, to teach students
functional programming in Haskell, monads and type classes are rather hindering.
It might be more instructive to rigorously forbid the use these constructs. We
call this language restriction as opposed to language extension.
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Interestingly, language restriction does not require special support by language-
development systems. Instead, a language restriction can be implemented as
an extension of the static analyses of the base language: The extension rejects
any program that uses restricted language constructs. The same idea is used in
pluggable type systems [Bra04]. Since language extension subsumes language
restriction, we do not treat language restriction specifically in the remainder of
this chapter.

7.2.2 Language unification (W)

Language extension and language restriction assume the existence of one domi-
nant (typically general-purpose) language that serves as the base language for
other languages. However, sometimes it is more natural to compose languages
on equal terms. For example, consider the composition of HTML and JavaScript.
Both languages serve a purpose and can be used independently: HTML for
describing web pages and JavaScript as a prototype-based object-oriented pro-
gramming language. If anything, it would make sense to use the general-purpose
language JavaScript as a base language for the generation of dynamic HTML
content. However, in the domain of dynamic web pages, the HTML-based view
appears to be the central program artifact.

Accordingly, we want to compose languages in an unbiased manner. Fur-
thermore, the language composition should be deep and bidirectional, that is,
program fragments from either language should be able to interact with program
fragments from the other language. For example, in the composition of HTML
and JavaScript as defined by the W3C [W3C99|, JavaScript programs can ma-
nipulate and generate HTML documents using the DOM tree or the function
document .write(), and dynamic JavaScript-based behavior can be attached
to HTML elements using attributes like onMouseOver="showPopup()". Thus,
to compose HTML and JavaScript, we need change both languages: We add
support to JavaScript for generating and inspecting HTML document trees and
we supplement the definition of HTML elements to allow event attributes.

This illustrates the next form of language composition: language unification.
A language designer composes two independent languages by unification. Like
in mathematical unification, language unification requires that parts of the
languages are equalized. For example, deep integration often requires sharing
of primitive data types such as numbers or strings. Also, like in mathematical
unification, the unified language subsumes its two constituents.

Language unification is very difficult to achieve in practice and rarely supported
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by language development systems. Often language unification requires the
composition of language implementations by hand. The reason for this seemingly
incompatibility of languages is the lack of a common back-end, for example,
in languages that are compiled for different VMs or implemented by different
interpreter engines. Unification is simpler if the same language-development
system implements both languages. In particular, for languages that do not
integrate bidirectionally, support for language extension suffices to unify both
languages, such as Java and regular expressions, where the latter does not
support references to Java artifacts. More generally, though, we apply the
following definition.

Definition 2. A language-development system supports language unification of
two languages if the implementation of both languages can be reused unchanged
by adding glue code only.

Notably, this definition permits the adaption of the unified languages as long
as their implementations remain unchanged. Generally, we can assume that
some program weaves the two language implementations together. As usual in
component engineering and modularity discussions, we refer to the program that
weaves two languages as glue code.

We write L1 W, Lo to denote the language that unifies L; and Lo with glue code
g. The symmetry of the language operator @ reflects that unification composes
languages on equal terms. Due to glue code, though, & is not necessarily a
symmetric relation, that is, L1 Wy Lo only equals Lo W, Ly for different glue
code g. Moreover, the unification of two languages is typically not unique. For
example, in HTML W, JavaScript, the glue code g determines the attribute
name onMouseOver, which might as well be called onPointerQOver by different
glue code.

7.2.3 Self-extension (+)

For many subdomains of a software project, there are special-purpose languages
that provide functionality specific to the subdomain. Examples of such DSLs
include SQL for data querying, XML for data serialization, and regular expres-
sions for string analysis. Since these languages each only tackle a small part
of a software system, it makes sense to make their functionality available in a
general-purpose language that can serve as a bridge between these DSLs.
Traditionally, this form of language composition is called language embed-
ding: A domain-specific language is (purely) embedded into a host language
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by providing a host-language program that encapsulates the domain-specific
concepts and functionality [Hud98]. However, the term “language embedding” is
ambiguous since it only characterizes the result of integrating one language into
another language. Pure embedding is not the only technique for achieving such
integration. For example, a compiler plugin can describe the embedding of one
language into a base language, too. Since the decisive difference to other forms
of language composition is how we integrate languages, our terminology should
reflect that. In particular, we aim to exclude systems where the extensibility is
external to the host language.

We call this form of language composition self-extension. To compose a host
language with an embedded language, a language implementer develops—in the
host language—a program which defines the embedded language. Often the
definition of the embedded language simply consists of a host-language API for
accessing domain-specific concepts and functionality. More advanced languages
also enable the self-extension of the host language’s syntax, static analyses, or
IDE support. Because the implementation of an embedded language is itself a
regular program of the host language, the host language extends itself.

There are various ways of self-extending a language, but two extension styles
are most popular: string embedding and pure embedding. In string embedding, a
program of the embedded language is represented as a string of the host language
and the embedded language provides an API for evaluating embedded programs.
A good example of string embedding is the integration of regular expressions
into Java (similar for many other host languages). A programmer writes a
regular expression "a[b-z]*" as a string and passes it to the library function
Pattern.match as in Pattern.match("a[b-z]*","atext"). Pattern.match
parses and compiles the regular expression at run time and matches it against
the given input text "atext". Another example for string embedding is the inte-
gration of SQL into Java, where SQL queries are represented as Java strings (see
package java.sql). Generally, string-embedded programs do not compose well
with each other because string embedding reifies a lexical macro system [EO10].
Moreover, string embeddings are vulnerable to injection attacks [BDV10].

Alternatively, programs of the embedded language can also be expressed as a
sequence of API calls in the host language. Paul Hudak coined the term pure
embedding for this kind of self-extension [Hud98]. As an example, consider
the embedding of XML into Java using JDOM. A program of the embedded
language XML is simply a Java program that utilizes the JDOM API:

Element book = new Element("book");
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book.setAttribute("title", "Sweetness and Power");
Element author = new Element("author");
author.setAttribute("name", "Sidney W. Mintz");
book.addContent(author);

A purely embedded language does not provide its own syntax but instead
reuses the syntax of the host language. Therefore, programs of a purely embedded
language can be readily mixed with code from the host language, for example,
to retrieve the author name from a database.

The term self-extension can only apply to languages and not to language-
development systems in general. Accordingly, we define:

Definition 3. A language supports self-extension if the language can be extended
by programs of the language itself while reusing the language’s implementation
unchanged.

Self-extension has three essential advantages over regular language extension.
First, to run or compile a program of a self-extended host language, the standard
interpreter or compiler of the host language is reused. In contrast, systems that
support regular language extensions often require compiler configurations that
reflect the activated extensions, which may differ for different source files. Second,
since the extended language is part of the host language, programmers can reuse
standard libraries of the host language in code that applies a language extension.
Third, since self-extensions are implemented in the self-extensible language itself,
extensions can be used when writing further self-extensions. In particular, this
enables the integration of meta-DSLs, that is, DSLs for implementing further
DSLs (see Chapter 2).

We write H <+ E to denote the self-extension of a host language H with
the embedded language E. As defined above, the implementation of E has to
be an instance of H. The asymmetry of the language operator < reflects this
dependency of the embedded language on the host language.

7.2.4 Extension composition

So far, we have identified three language-composition scenarios a language
or language-development system may support: language extension, language
unification, and self-extension. However, these properties only describe to which
extent a system supports base-language composition with a single extension or
language. Our terminology so far does not describe to which extent a system
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supports the composition of extensions, that is, whether different extensions can
work together.

Let us first note that systems which support language unification also support
unification of extensions: L W, (E1 W), Ez). On the other hand, for systems that
only support language extension, we need to distinguish three cases: no support
for extension composition, support for incremental extension, and support for
extension unification. In a system that does not support any form of extension
composition, two extensions B <1 F; and B <1 F5 cannot be used in combination
at all. For example, this occurs in preprocessor-based systems. In contrast, in a
system that supports incremental extension, an extended language B < E can in
turn be extended to (B <1 Eq) <1 Es. Here, extension Fy may be specifically built
to work on top of Fy. Incremental extension supports Steele’s idea of growing a
language [Ste99]. Finally, in a system that supports extension unification, two
independent extensions can be composed and used together B < (E; Wy E»)
by using some glue code g. Extension unification supports growing a language
modularly.

A particularly interesting instance of extension unification is modularly defined
language extensions that entirely avoid glue code B <1 (E; Wy Fs) [KV12, SV09].
Such language definitions are restricted in expressiveness to guarantee their
composability. This constitutes an interesting trade-off between the flexibility
and the composability of language extensions.

Self-extension adheres to the same case distinction for extension composability
as language extension: no extension composability, incremental extension, or
extension unification. In addition, though, self-extensible languages support
another interesting form of extension composition, namely self-application. Since
implementations of extensions are programs of the host language itself, a host-
language extension F; can be used in the implementation of another extension
E>, that is, H <+ F5 where FEs is an instance of H < F.

This discussion shows that language composition is not only important for
the base language but also for extensions. Therefore, precise terminology is
crucial to enable clear statements about the language-composition support of
a system and to prevent confusion about whether a statement addresses base-
language composability or extension composability. Furthermore, this discussion
illustrates the utility of an algebraic notation for describing and reasoning about
language composition.
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Figure 7.1: A typical language processing pipeline.

7.3 Language components

Support for language composition is often not uniform for all components
of a language definition because different low-level techniques and high-level
considerations apply to different aspects of a language. Generally, a language
consists of syntax and semantics. Accordingly, most language definitions stipulate
the syntax and semantics of a language separately. However, for machine-
processed languages and programming languages in particular, this picture is
not entirely correct. In fact, the definition of many machine-processed languages
consists of three artifacts: a context-free syntax, a collection of non-context-free
validation procedures (the static semantics), and a definition of the language’s
behavior (the dynamic semantics). While the reason for separating context-
free syntax and validation is a technical one—generic context-sensitive parser
frameworks are inefficient—we cannot ignore the implications on language design
and language composition.

The relation between language-definition artifacts is depicted in Figure 7.1.
First, a parser checks whether the input source code adheres to the given
context-free grammar and either rejects the program with an error message
or produces an abstract syntax tree. Subsequently, the language-validation
procedure processes the resulting syntax tree and either accepts or rejects it.
If the code is not valid, validation generates an error report. If the program is
valid instead, validation may add information to the AST (for instance, resolving
overloading in Java). Next, the language’s (dynamic) semantics takes a syntax
tree as input and produces the meaning of the corresponding program. The
behavior of the dynamic semantics may be unspecified for programs which are
rejected during parsing or validation.

In addition to these classical components of a language processing pipeline, we
include integrated development environments (IDEs) as a fourth component into
Figure 7.1 and the discussion in the present chapter. IDEs provide an editor with
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various editor services to the programmer. Editor services may include syntax
coloring, code outline, code folding, code completion, reference resolving to jump
to the definition of an identifier, or refactorings. More generally, this component
includes all programming tools that a developer can use to write, navigate,
and maintain programs. While IDE support is not directly part of a language
definition, it is essential for the productivity of programmers. Furthermore, only
few systems exist that support the composition of IDE support for different
languages.

Our separation of languages into four components is general and covers
virtually every programming language. For instance, the Java programming
language declares a context-free syntax, a type checker, and a compiler that
produces byte code [GJSB05]. Instead of using a general context-sensitive parser
to parse Java’s context-sensitive syntax directly, compilers parse the context-free
syntax first before applying special-purpose validations such as type checking
and the remainder of compilation. In addition, various IDEs for Java exist, for
example, Eclipse or IntelliJ IDEA. Another example language is XML: XML’s
context-free syntax and XML validity can both be checked efficiently, whereas
the application of a general-purpose context-sensitive parser will likely lead to
inefficient XML processing. Finally, note that language components as outlined
above similarly exist for DSLs such as SQL, VHDL, or DOT.

However, some languages combine two or more of the language components
we identified. Prominently, dynamically typed languages such as Ruby or
Smalltalk perform well-typedness validation as part of their dynamic semantics.
Alternatively, type checking and parsing can be combined to resolve syntactic
ambiguities by typing information [BVVVO05]. LaTeX even applies parsing and
validation as part of its dynamic semantics: it repeatedly parses, validates
and executes the next command or macro until the complete source file is
processed [EO10]. Finally, in Smalltalk, even the IDE is interpreted by the
language’s dynamic semantics and can be modified at run time [RGN10|.

7.4 Existing technologies

We introduced new terminology for language composition in order to enable
more precise descriptions of existing and future technologies. In this section, we
exemplify the use of our terminology to classify existing language-development
systems with respect to their support for language composition.

We reviewed existing language-development systems as described in the litera-
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Syntax  Validation Semantics IDE Self-
ext.
OpenlJava [TCKI00] <( ) <(W) yes
pure embedding [Hud98] <(w) <(w) yes
MPS [VS10] <A(w) <(w) <A(w) yes
string embedding <a( ) () yes
AspectLisa [RMHPO06] <() <() <(w) no
Converge [Tra08| <( ) <( ) <( ) yes
preprocessors [Spi0l] <(<) <(<) (<) no
Racket [THSAC™11] (<) (W) <(w) yes
JSE [BPO01] <(W) <( ) <(w) yes
Helvetia [RGN10] <(W) <(W) <(W) yes
ableJ [VKBS07] <(w) <(w) (W) no
Polyglot [NCMO03] aw) <) a(w) no
JastAddJ [EHOT7a| (W) W(w) CIC) W(w) no
Spoofax [KV10] (W) <(W) <(W) <(W) no
SugarJ and variants w(W) (W) (W) (W) yes

Table 7.1: Support for language composition in existing language-development
systems: No composition (empty), extension but no extension com-
position <( ), incremental extension <(<1), extension unification
<(W), language unification w(w).

ture in light of our classification. Table 7.1 summarizes our findings. Each cell
in the table shows how a system supports composition with respect to a specific
language component, both regarding language extension or unification (first
symbol) and regarding extension composition: incremental extension or exten-
sion unification (second symbol, in parentheses). The last column applies to all
language components and records whether a system supports self-extension. We
have been somewhat liberal in our judgment for extension unification and also ac-
knowledged support to systems that only support unification for non-interacting
language extensions.

Different technologies follow very different approaches to achieve language
composability. One of the simplest and also most popular mechanisms is hand-
written preprocessors [Spi0l]. To extend a language, a programmer writes
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a preprocessor that translates the extended language into the base language.
However, each extension requires its own preprocessor and preprocessors can
only be composed sequentially, that is, run one after another. Consequently,
preprocessors only support incremental extension but not extension unification.

AspectLisa [RMHPO06], ableJ [VKBS07], and JastAddJ[EH07a| follow more
sophisticated approaches and build on attribute grammars. Attribute gram-
mars [EH04, VBGK10] enable the definition of new productions to extend the
base syntax and new attributes to extend the base language validation and
semantics. Since AspectLisa and ableJ allow language extensions to reuse and
extend base-language attributes, they support language extension, where the
base language does not have to be changed. In addition, AspectLisa applies
aspect-oriented programming to add new attributes to productions of the base
language. On the other hand, JastAddJ applies aspect-oriented programming
and rejects information hiding to support overwriting attributes. Accordingly,
JastAddJ supports the composition of languages by unifying their respective
implementations, that is, by only adding glue code and not changing previous
implementations. The same applies to IDE support [SH11].

Polyglot [NCMO03]| is an extensible compiler that allows language extensions to
integrate into various compiler phases. For example, a language extension can
extend the parsing, type checking, and code generation phase of the compiler to
support additional language constructs. Polyglot achieves language extensibility
with method delegation, where compiler actions are delegated to extensions,
which further delegate to yet other extensions. Polyglot does not support
language unification since adapting the behavior of extensions is not supported.

Spoofax [KV10] follows an alternative approach to language composition
based on SDF for syntax composition and Stratego for semantic composition.
SDF [Vis97b] applies scannerless generalized LR parsing, which enables the
unification of arbitrary context-free grammars. However, generalized parsing
may result in a syntax tree that contains ambiguities. SDF supports the
elimination of ambiguities on the basis of glue code, that is, without changing
the original grammars. For semantic composition, Spoofax applies the Stratego
term rewriting language [VBT98|, which supports adding rules to handle an
extended base language. Stratego does not support the adaption of an existing
rule base, though, which is necessary to unify languages.

Self-extensible languages. The following language-development systems are

self-extensible languages, that is, the base language itself is used to implement
language extensions or glue code. The extended base language can then be used
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in the implementation of further self-extensions. Notwithstanding this similarity,
self-extensible languages come in various flavors.

String embedding and pure embedding are approaches available in any base
language that supports strings and procedural abstraction, respectively. In string
embedding, programmers use language extensions by writing specially-formatted
strings of the base language, which the extension parses and evaluates at run
time of the program. A typical example of a string-embedded language is the
language of regular expressions. The main problem of string embedding is the
lack of proper structural abstraction. Therefore, string embeddings fall back to
lexical abstraction and lexical composition of program snippets, which is error-
prone and forestalls static syntax analyses [EO10]. Furthermore, since IDEs
require a structural representation of programs, string embedding comes without
IDE support. Nevertheless, string embedding is widely applied in practice, for
example, to issue SQL queries or generate XML documents [Fehl11].

Pure embedding takes a more structural approach than string embedding and
represents programs as API calls [Hud98|. In particular, a programmer can nest
or sequentialize calls to such a special-purpose API. Moreover, API calls can
readily be mixed with regular base language code as well as with calls to other
special-purpose APIs. There is, however, one constraint that is often overlooked:
Pure embeddings must share their data representations. For example, suppose
an extension provides its own collection data type. This prevents reuse of
functionality from the base language such as mapping or sorting as well as
integration with other extensions that can only process standard collections. As
pointed out by Mernik et al. [MHSO05|, pure embedding enables the reuse of IDE
support of the base languages such as code completion for a special-purpose API.
However, true domain-specific editor services such as SQL-specific code coloring
is not in the focus of pure embedding.

Converge [Tra08|, JSE [BP01]|, OpenJava [TCKI00|, and Racket [Flal2]
[THSAC™11] enable language extensions with macros and macro-like facili-
ties. A macro is much like a normal function except it is run at compile time.
Consequently, a macro does not receive or produce normal run-time data, but
instead takes and produces compile-time data, that is, representations of pro-
grams. Converge, JSE, and Racket represent programs as syntax trees, whereas
OpenlJava represents programs as metaobjects. None of these systems support
language unification since the meaning of a previously defined macro cannot
be changed. However, some macro systems come with more advanced support
for unifying independent language extensions. For example, Racket supports
extension unification through local and partial macro expansion, which enables
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the collaboration of independent macros [FCDF12].

SugarJ (Chapter 2) is similar to macro systems but supports more flexible
syntax composition. Like Spoofax, SugarJ employs SDF [Vis97b] to support the
unification of arbitrary context-free grammars, where additional glue code can
coordinate between grammars to eliminate ambiguities. To specify the validation
and semantics of extensions, SugarJ uses Stratego’s support for composing partial
pattern matches through equally-named rules. Since pattern matches can only
be added, SugarJ does not support the unification of an extension’s validation
or semantics. Moreover, SugarJ provides IDE support for the base language
and extensions (Chapter 3). IDE support is extensible because it aggregates
information from all extensions (e.g., for code completion) or chooses the most
specific editor service available (e.g., for syntax coloring), but unification of
editor services is not supported.

Helvetia [RGN10] leverages Smalltalk’s dynamic nature to enable extensibility
of parsing, compilation, and IDE support. Helvetia extensions are implemented
through annotated methods, which Helvetia organizes in a global rule set.
Whenever two or more rules are active in the parser, compiler, or IDE, Helvetia
throws an error. It is not possible to adapt existing extensions non-invasively.

The projectional language workbench MPS [VS10] rejects parsing and applies
intentional programming instead. Essentially, MPS maintains a central program
representation, which can be thought of as an AST, and displays projections of the
AST to the programmer. To edit a program, a programmer sends edit directives
to MPS, which applies the edits to the central AST and updates the projection.
This way MPS provides IDE support and creates a user experience close to
usual programming environments. Furthermore, MPS supports extensibility:
The central program representation can be extended by new concepts, which
can integrate into existing projections, validations, and code generation. As in
the other systems, once defined, the behavior of an extension is fixed [V6111].

Summary. We have shown how our terminology for language composition is
useful to explain existing systems and distinguish between them meaningfully.
In particular, our terminology enables the precise description of composition
with the base language in contrast to composition of language extensions.

We are aware that our discussion of existing technologies is incomplete and
many more systems deserve attention. In particular, we excluded any tools
from this discussion that do not support semantic extensibility, because without
semantics programs of an extended language cannot be executed. However,
since the goal of this work is the clarification of language composition in general,
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we believe the omission of any particular system is negligible. Furthermore,
we excluded semantic IDE services like debugging or testing from the present
discussion. An investigation of the composability of such services remains future
work.

One important conclusion of our study is the lack of wide-spread support for
language unification in existing systems. In our study, JastAddJ is the only tool
that supports language unification for semantics. Language unification requires
that a system supports the adaption of independently implemented languages,
for example, by glue code. In JastAddJ, the flexible adaption by glue code is
based on aspect-oriented programming. This suggests that technologies that
favor flexibility over modularity in the sense of information hiding [OGKR11]
should be more thoroughly investigated as a foundation for language-development
systems.

7.5 Related studies

Other authors have described DSL-related patterns but with less focus on
reusability of language implementations. Spinellis [Spi01]| describes and classifies
patterns for DSL design and implementation. Mernik et al. extend Spinellis’
work and present an extensive survey [MHS05] that covers various aspects of DSL
development methodologies: They identify different DSL development phases,
discuss when DSL development is appropriate, and compare different implemen-
tation techniques for DSLs. Mernik et al. also survey language-development
systems and mention the use of DSLs as metalanguages within such systems.
Spinellis and Mernik et al. distinguish whether an existing language is restricted
or extended with new elements. As explained in Section 7.2.1, we instead identify
these scenarios and consider language restriction as an instance of language
extension, targeting the validation system. In addition, we distinguish language
unification, self-extension, and extension composability.

Hofer et al. [HORMOS8] distinguish hierarchical and peer language composition
in the context of embedded DSLs. We can describe hierarchical language
composition through (H < L1) < Ls and peer language composition through
H < (L1 Wy Ly). Our notation and terminology thus covers these scenarios
while supporting the description of further language-composition scenarios in a
uniform way.
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7.6 Chapter summary

The goal of this chapter is two-fold. First, we want to raise awareness on the
many meanings of language composition and on the consequent ambiguity in
discussions on language composition. For this ambiguity, we believe the lack
of precise terminology deserves major blame. Therefore, our second goal is the
classification of language composition and the introduction of precise terminology
to describe language composition. We hope that the terminology introduced
in this chapter can clarify future discussions and communication on language
composition. It certainly helped us to better understand the composability of
sugar libraries.

An interesting next step would be the development of a formal theory of lan-
guage composition. In this chapter, we defined language-composition operators
informally using the notion of unchanged reuse. Furthermore, we refrained from
specifying algebraic properties for language-composition operators. It would
be interesting to study language composition based on a formal representa-
tion of languages, such as denotation semantics, modular structural operation
semantics [Mos04|, or algebraic specifications.

183






8 A Comparison of Approaches to
Domain Abstraction

Domain abstraction has been the focus of research for quite some time now. Still,
the interest in techniques and systems that support domain abstraction shows
no sign of decline. In fact, domain abstraction has gained industrial relevance
in the form of DSLs and model-driven development. Correspondingly, many
approaches for realizing domain abstraction exist.

In the previous chapter, we developed a notion of language composition and
used it to classify the language-composition support of various systems for
domain abstraction. In contrast, in this chapter, we survey existing approaches
with respect to all the design goals for flexible and principled domain abstraction
we introduced in Chapter 1. Due to the vast number of existing approaches, we
focus our survey on systems that are currently in use or have been developed in
recent years. Table 8.1 gives an overview on the surveyed systems.

8.1 SugarlJ

The central idea of SugarJ is to organize language extensions as libraries of the
host language. We followed this path to support flexible domain abstraction
with domain-specific syntax, semantics, analyses, and editor services as libraries.
To achieve polymorphic domain abstraction, we extended SugarJ to JProMo,
which decouples the definitions of syntax and semantics. Again, we use libraries
to organize these artifacts and allow users to apply a transformation to a model
as part of an import statement.

Regarding principled domain abstraction, our library focus has important
advantages, such as the avoidance of global build scripts. In fact, Sugar]
programs declare all their dependencies as library imports, which enables modular
reasoning. For referential transparency, we assure communication integrity of
transformations but fail to provide a fully hygienic transformation system. Thus,
SugarJ transformations can perform accidental name capture. To counteract
this danger, we typically generate references as fully qualified names that are
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Table 8.1: Overview of systems that support domain abstraction.
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not subject to name capture. However, this convention only works for top-level
entities, because local variables are not qualified in either Java or Haskell.

SugarJ language extensions can reuse grammar productions and transfor-
mation rules from other libraries. However, our module system for grammars
and transformations does not support fine-grained reuse: When imported, all
productions and transformation rules of a library are brought into scope. In
future work, we want to support more fine-grained reuse that allows to select
and rename definitions for import.

SugarJ builds on SDF and Stratego for the implementation of language
extensions. SDF and Stratego are declarative DSLs for parsing and transforming
programs. One important consideration when selecting SDF and Stratego for
SugarJ was their integrated support for composability. SDF grammars can
be freely composed and glued together [Vis97b, vdBSVV02]. Stratego rules
compose due to a try-catch execution model where multiple definitions of a rule
may coexist, and all of them are tried until one succeeds or all fail [VBT98].

Finally, like regular libraries from nonextensible programming languages,
SugarJ language extensions are self-applicable, which enables the application
of domain abstraction in the implementation of further domain abstractions.
Beyond regular libraries, SugarJ language extensions can also be used to abstract
over the library concept altogether. We call a language extension that abstracts
over the sugar-library concept a meta-DSL. In contrast, regular libraries cannot
abstract over the library concept itself.

To structure our survey, we classify existing approaches into three categories:
embedding, internal extensibility, and external extensibility. We discuss the
systems of each category in turn.

8.2 Embedding

Embedding approaches reuse facilities of the host language to encode domain ab-
stractions. We distinguish string embedding, pure embedding, and polymorphic
embedding.

String embedding encodes domain-specific programs as strings of a host lan-
guage. This requires the escaping of quotes and does not support static syntax
checks, let alone more sophisticated semantic analyses. Instead, string-embedded
programs are parsed at run time. Like for all other embedding techniques, the
reuse of host-language facilities inhibits domain-specific editor services because
domain-specific programs are indistinguishable from regular programs. String
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embedding supports polymorphic domain abstractions because domain-specific
programs (host-language strings) are first-class and can be submitted to different
semantics.

One advantage of embedding approaches is that no code generation is required.
Therefore, embedding approaches retain the modular reasoning and referential
transparency of the host language. However, string embeddings require a
nondeclarative implementation that includes a run-time parser, analyzer, and
interpreter. Since any host-language function can implement these artifacts, it
is difficult to reuse or compose implementations of domain abstractions. String
embedding supports uniformity since the interpretation of a string may result in
another interpretation function, which can be applied at a lower metalevel.

Pure embedding represents domain abstraction through APIs of the host
language that encode the concepts of the domain [Hud98|. A domain-specific
program then is a sequence of API calls. Accordingly, domain-specific programs
have to follow the host-language syntax for function or method application,
and cannot be written in a domain-specific syntax. The encoding as function
application limits domains-specific analyses to the extent that can be encoded as
type signatures of the host language’s type system. A polymorphic interpretation
of domain-specific programs is not possible in the pure-embedding approach.

Since all domain abstractions are implemented as library APIs, it is easy to
reuse part of a domain abstraction in other domains. The implementation of a
purely embedded domain abstraction is conducted using regular host-language
constructs, which are not tailored to the implementation of domain abstractions.
Pure embedding supports the composition of domain abstractions particularly
well, because of the usage of libraries for scoping: A programmer can import
multiple domain abstractions by importing multiple libraries and using the
multiple APIs simultaneously. Pure embedding partially supports uniformity:
While it is possible to use one library in the implementation of another library, it
is not possible to use a library for declaring another API, because APIs typically
are not first-class.

Polymorphic embedding extends the pure-embedding approach by separating a
domain abstraction into a language interface and its implementations [HORMOS].
In particular, a language interface can have multiple implementations, each of
which represents a different semantics for the domain.

Domain-specific programs are parametric over the concrete semantics, that is,
programs are written against the language interface. Before executing a program,
a developer first has to select a concrete semantics and specialize the program
to that semantics (through function application). This way, domain-specific
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programs are independent of concrete semantics. This makes it possible to start
out with a simple interpreter semantics, and later change it to an optimized
or pretty-printer semantics without modifying the program or the language
interface.

Technically, polymorphic embedding uses Scala traits to represent language
interfaces and their implementation. Since traits are not first-class in Scala, the
uniformity of polymorphic embedding is restricted similar to pure embedding.
Generally, polymorphic embedding retains all the advantages of pure embedding
but adds polymorphic domain abstraction.

8.3 Internal extensibility

Systems that support internal extensibility provide metaprogramming facilities
as an integral part. Typically, such systems are programming languages with
metaprogramming facilities such as a macro system or a metaobject protocol.
Since internal extensibility does not depend on external information, one of the
characteristic features of internal extensibility is modular reasoning: Developers
can modularly reason about the set of available domain abstractions. All of the
internally extensible systems we investigated support modular reasoning.

Cardelli et al. describe a language that features extensible syntax with lexical
scope [CMA94]. The language supports flexible syntactic extensibility but is
rather restricted in semantic expressiveness. Essentially, a syntactic extension
can only paraphrase a host-language expression; no recursion or similar construct
is supported in the declaration of domain semantics. This restriction enables
Cardelli et al. to guarantee referential transparency because their transformation
mechanism is hygienic. Cardelli et al. define a declarative, EBNF-like language
for the declaration of grammars, where it is possible to express how an extension
composes with the previous grammar. Moreover, they support the use of
quasiquoted syntax for specifying the term that is generated on application of
a production. Technically, Cardelli et al. generate an LL(1) parser from the
syntactic extensions. Since LL(1) parsers support little lookahead and are not
closed under composition, the composability of Cardelli et al.’s approach is
limited.

OpenJava [TCKIO00] applies a metaobject protocol [KDRB91]| that enables
reflection and modification of the structure of a Java class definition. An
OpenlJava class can declare a metaclass (also written in OpenJava), which is
used to define compile-time transformations of the class. These transformations
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are regular OpenJava programs that exploit the metaobject protocol to inspect
and modify the class structure. The instrumentation of an OpenJava class by
a metaclass is explicit in the source code, which enables modular reasoning
on the behavior of instrumented classes. Furthermore, metaclasses are regular
OpenlJava classes that are subject to reuse and instrumentation themselves.
Therefore, OpenJava provides a uniform metaprogramming mechanism.

Helvetia applies the metaobject protocol of Smalltalk to provide a rich ex-
tensible language [RGN10]. Helvetia enables the programmer to influence the
Smalltalk parser, code generator, and IDE, which allows for flexible integration of
DSLs. Moreover, Helvetia supports dynamic domain-specific analyses [RDGN10].
Helvetia organizes DSL implementations in language boxes [RDN09]. Like li-
braries, language boxes encapsulate DSL implementations, but provide more
fine-grained scoping than Java libraries: A Helvetia DSL can be scoped to a
method, a class, a package, or the whole system. Moreover, users of DSL can
activate a language box in the current scope.

Language boxes can be implemented using regular Smalltalk code, which
enables uniformity and reuse. But Helvetia also provides a declarative parser-
combinator DSL and supports quasiquoted syntax in transformations. The
parser-combinator DSL features scannerless parsing [Vis97a| and ordered choice
(similar to parsing expression grammars [For04]) to support the composition of
different language boxes.

Katahdin is an interpreted programming language that supports extensible
syntax through dynamic parser recompilation [Sea07]|. The Katahdin interpreter
detects the definition of new syntactic constructs and adapts the parser accord-
ingly. Each syntactic extension defines an interpreter function that determines
the meaning of the new construct. Syntactic extensions can be organized in
modules, whose import activates them in the current scope. Similar to SugarJ,
this provides modular reasoning and allows for the composition of extensions.
A syntactic extension is defined using an EBNF-like language, whereas the
interpreter for syntactic extensions is written in regular, reusable Katahdin code.

The Fortress programming language features a macro system with user-defined
macro call syntax [ACNT09]. Fortress uses parsing expression grammars |[For04]
to support an extensible core syntax. The semantics of syntactic extension is given
as syntax transformation with quasiquoted syntax in a designated transformation
language. Despite its syntactic flexibility, Fortress does not require a physical
separation of macro definitions and macro call sites. Instead, Fortress applies
a two-phase parsing approach that first recognizes all macro definitions while
ignoring all other code. From the macro definitions, Fortress constructs a new
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grammar that is used to parse the main program and the quasiquoted syntax
in transformations. As consequence, Fortress macros are organized similar to
other top-level definitions and modular reasoning is supported. Furthermore,
Fortress macros are hygienic and compose based on the ordered choice of parsing
expression grammars.

Converge is a programming language with macro-like metaprogramming facil-
ities [Tra08]. In particular, Converge features metaprogramming with quasiquo-
tation in regular Converge functions that are run at compile time. In addition,
Converge supports domain-specific syntax through DSL blocks. A DSL block
$<<expr>> indented-code forwards the unparsed but indented code indented-code
as a string to the user-designated function expr. The function expr implements
the DSL by dynamically parsing the code and producing a syntax tree that
replaces the DSL block. The DSL implementation can also perform domain-
specific analyses on the parsed syntax tree and Converge provides facilities
for reporting errors. Converge supports modular reasoning since DSL blocks
explicitly refer to the DSL implementation. Moreover, Converge’s quasiquotation
mechanism retains referential transparency by hygienic macro expansion. The
metaprogramming facilities of Converge are uniformly self-applicable. In fact,
Converge supports the declarative specification of DSL blocks by self-applying
the DSL-block concept to itself in order to introduce an EBNF-like grammar
language.

The Haskell programming language features macro-like metaprogramming
with Template Haskell [SP02]. Template Haskell supports domain-specific syn-
tax in user-programs similar to Converge: Haskell programmers can use the
quasiquotation construct [:exprlcodel] to forward the unparsed code code as a
string to the function expr [Mai07]. Like in Converge, expr parses the code and
produces an abstract syntax tree that replaces the quasiquote. In contrast to
Converge, Template Haskell only guarantees referential transparency when the
DSL implementation uses quasiquotation for generating Haskell code. However,
Sheard and Peyton Jones report that quasiquotation cannot express all the
desired metaprogramming applications [SP02]. For such case, Template Haskell
provides constructors for abstract syntax trees that can be used instead of
quasiquotation, but do not provide referential transparency. In fact, any Haskell
program can be used as a compile-time function in Template Haskell. Template
Haskell does not provide a declarative formalism for specifying domain-specific
syntax. Instead, the parser of the DSL must be written in Haskell. However,
Template Haskell supports uniformity, as long as the definition and the use of a
domain abstraction are located in different files. Therefore, it should be possible
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to provide a declarative syntax formalism using Template Haskell itself.

Racket provides a macro system that organizes macros in libraries [Fla02].
Racket macros can specify new syntax, but always require a unique leading
keyword, the macro name. This is limiting, for example, in the embedding
of literal XML syntax. Racket macros are expanded at compile time and can
conduct domain-specific static analyses on the macro arguments. Like SugarJ,
Racket has been proposed as a host language for library-based language extensi-
bility [THSACT11, Flal2| that features composability and provides referentially
transparent and hygienic macro expansion [CR91, KFFD86|. In contrast, SugarJ
transformations are not hygienic. On the other hand, SugarJ employs non-local
term rewriting instead of local macro expansion. This gives SugarJ more flexi-
bility in code generation, but complicates referential transparency as discussed
in Section 5.5.4. Racket uses the declarative syntax-rules construct to declare
macros. A macro defines valid syntactic patterns (the new syntax) and code
templates, which are instantiated on macro expansion. Templates can produce
applications of other Racket functions and macros, which enables implementation
reuse across macros definitions. Finally, Racket macros can expand into new
macro definitions. This enables extension of the macro system through macros
themselves.

In addition, Racket provides facilities for adapting its lexical syntax (using
readers) and thus supports more flexible syntactic embeddings of DSLs [FBF09].
However, Racket lacks support for a declarative syntax formalism, and reader
implementations do not compose well. The entries in Table 8.1 for Racket
correspond to a usage of Racket without readers.

Honu is a programming language that extends the Racket macro system to
support more flexible macro call syntax [RF12|. Similar to Nemerle, Honu macro
calls require a unique macro name that can be followed by mixfix notation to
describe the macro’s argument list. The syntactic extension associated to a
macro is declared by the macro’s signature: Each macro argument is annotated
by a user-definable syntax class such as numbers or regular expression. Macro
arguments can be separated by lexical constructs such as commas or parentheses.
This information is used to parse macro calls. Honu does not address domain-
specific analyses so far. Honu retains all the principles of the Racket macro
system.
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8.4 External extensibility

Systems that support external extensibility add domain abstraction to a pro-
gramming language through external tools. Such tools include preprocessors,
transformation systems, and extensible compilers. Dual to internal extensibility,
systems that support external extensibility rely on external configuration to ac-
tivate or process domain abstractions. Therefore, these systems inhibit modular
reasoning.

Camlp4 is an extensible preprocessor and pretty printer that is targeted espe-
cially at extending the syntax of the functional programming language OCaml.
Camlp4 supports domain-specific syntax with an in-memory representation of the
current grammar that is interpreted by a recursive descent parser. Backtracking
can be enabled or disabled for individual rules. Syntax extensions are written in
an EBNF-like grammar formalism and mutate the current grammar in order
to install additional productions. To activate a Camlp4 syntax extension, a
programmer needs to run the preprocessor with the corresponding extension
definition on the source file. Thus, the configuration of syntax extensions is ex-
ternal to the source file, which inhibits modular reasoning. Camlp4 uses OCaml
for specifying transformations but supports quasiquotation as well. Camlp4
transformations are not hygienic. Camlp4 is self-applicable and in fact, Camlp4
includes several extensions that are targeted at language extension authors,
including the declarative grammar and transformation notations. Camlp4 can
also be adapted for other languages than OCaml. However, language extensions
themselves still have to be written in OCaml.

Nemerle [SMO04] is a programming language that uses an extensible compiler
to support metaprogramming. Nemerle uses a macro-like mechanism to define
compiler extensions that support a restricted form of syntactic extensibility, where
each syntax extension must start with a unique token followed by mixfix notation.
Nemerle compiler extensions are activated via a special compiler argument. This
inhibits modular reasoning as the set of active macros cannot be determined
from the user’s source file. Nemerle supports hygienic code transformation.
These transformations are regular, reusable Nemerle programs that can employ
quasiquotation to declaratively describe syntax trees. Nemerle macros compose
due to the requirement on unique first tokens in syntax extensions. Like other
macro systems, Nemerle macros are uniformly applicable: Macros can be used
to define other macros, which requires multiple applications of the compiler
configured with different extensions.

The Java Syntactic Extender (JSE) also uses macros in external files to provide
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domain abstraction [BP01|. JSE targets the Java programming language and
uses a preprocessor that expands macros to generate Java source files. When
using a syntactic extension, the user must call the preprocessor by hand and
configure it to eliminate the appropriate syntactic extension. Then the user
can call javac on the resulting source files. The original JSE paper [BP01]
describes a design for a hygienic code generation, but no implementation or
other form of evaluation is available. To declare a syntactic extension with JSE,
a programmer provides a name for the macro, a mixfix argument list, and a
generation template. The generation template is written in Java augmented with
quasiquotation, and can be factored out into reusable Java methods. Since the
implementation language and the object language both are Java, JSE features
uniform self-application, which requires multiple calls to the preprocessor with
different configurations.

MetaBorg is a language-agnostic preprocessor framework for syntactic ex-
tensibility based on SDF an Stratego [BV04]. MetaBorg uses SDF grammars
to model and extend the object language’s syntax with arbitrary context-free
syntactic extensions. An extension-specific Stratego transformation desugars
the user program into a program of the object language without extension. The
execution model of MetaBorg is preprocessor-like, that is, users must manually
configure and apply MetaBorg to their programs. Since MetaBorg is based
on the flexible transformation engine Stratego, it cannot guarantee referential
transparency. MetaBorg particularly promotes the use of language-agnostic
quasiquotation in transformations, which enables declarative specifications of
domain abstractions. As discussed for SugarJ above, SDF and Stratego are
well-suited for the definition of composable language extensions. The extension
mechanism of MetaBorg is self-applicable because MetaBorg is language-agnostic:
The preprocessor can apply to SDF and Stratego programs as well.

JastAdd is a framework for extensible compilers based on aspect-oriented
programming and attribute grammars [EH0O7b]. Compiler extensions are defined
as aspects that are woven into the base compiler to extend it. The implementation
of an extension can be given as Java code or as declarative reference attribute
grammars [EHO04|, which are well-suited for extensible tree traversals and can
be used to define domain-specific analyses. Moreover, JastAdd allows the use of
attribute grammars to define domain-specific editor services [SH11|. For parsing,
JastAdd uses an extensible grammar formalism that generates an LALR parser.
JastAdd language extensions are activated from the command line by configuring
and calling JastAdd on the source files. Withing the extension definitions,
JastAdd supports reuse and refinement of attributes and equations from other
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extensions. This way JastAdd enables language unification as discussed in
Chapter 7.

Silver is an attribute-grammar system that features extensibility [VBGK10].
Given a host-language implementation in Silver, other Silver modules can extend
the syntax, semantics, and analysis of the host language. For extensible parsing,
Silver employs context-aware scanning [WS07]. Silver extensions can build on
attributes and equations defined in other modules, and attribute grammars
provide a declarative means for the definition of such extensions. Silver supports
uniformity and, in fact, is implemented in itself, where a small core system is
extended with convenient features such as pattern matching on syntax trees or
collection attributes.

Silver supports the composition of domain abstractions, but favors guaranteed
composability over flexibility. In particular, the Silver developers investigate
language extensions that are modular in the sense that their composition always
succeeds [SV09, KV12]. This has the benefit that users of multiple extensions
never are exposed to composition errors. On the other hand, this guarantee
places some restrictions on what kind of extensions are supported. For example,
to guarantee syntactic composability, extension-specific syntax must start with
a unique token.

Polyglot is an extensible compiler front-end for Java that supports customiza-
tion of compiler phases [NCMO3]. Extensions can declare domain-specific syntax
through an extensible grammar formalism that generates an LALR parser. For
semantics and static analysis, extensions can add, replace, reorder, and remove
phases of the compiler, which gives extensions a lot of flexibility. Polyglot
compiler phases are implemented in Java, heavily relying on abstract factories,
delegation, and proxies to enable extensibility. This enables reuse between differ-
ent extensions but does not provide a declarative mechanism for analysis or code
generation. Moreover, Polyglot does not target the composition of extensions and
it is not clear to which extend abstract factories, delegation, and proxies foster
or inhibit composability. However, Polyglot supports uniform self-application
because it uses Java both as object language and as implementation language of
extensions.

8.5 Language workbenches

Language workbenches are tools that integrate traditional language engineering
tools, such as parser generators and transformation systems, and tools to develop
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IDE support [Fow05b]. By combining these tools and by providing IDE support
for these metaprogramming tasks, language workbenches enable developers to
create new languages with IDE support.

Meta-environment is a language workbench based on the syntax and transfor-
mation engine ASF+SDF |K1i93, vdBvDH*01]. Developers can declare domain-
specific syntax using SDF. The Algebraic Specification Formalism ASF allows
developers to declare domain-specific semantics and analyses for their syntax
through rewrite equations. The Meta-environment uses a generic syntax-directed
editor that the system configures according to the language of the current file.
In particular, the generic editor is used for language definitions and programs
written in the defined languages. However, the editor is not configurable; it
only highlights keywords and marks errors in the source code. ASF+SDF def-
initions are organized in modules that enable the reuse of productions and
equations in the implementation of multiple domain abstractions. Furthermore,
ASF+SDF is declarative and composable: When importing multiple modules,
all productions and equations become available. ASF+SDF is not self-applicable,
that is, only ASF+SDF and no other DSLs can be used to define languages.
The Meta-environment project is continued by the Rascal metaprogramming
language [KvdSV09, vdS11].

The Spoofax language workbench uses SDF and Stratego to define domain-
specific syntax, semantics, and analyses, but also features a declarative language
for the specification of domain-specific editor services [KV10]. From a simple
editor-service declaration, Spoofax generates an Eclipse plugin for the DSL that
features syntax coloring, outlining, code completion, reference resolution, and
more. Moreover, Spoofax supports the coevolution of a DSL and programs
written in it, because Spoofax regenerates the domain-specific editor on-the-
fly and no separate Eclipse instance is necessary. Spoofax editor services are
declared in specific files in an Eclipse project, and no module system is available
to foster reuse of definitions across projects. Still it is possible to compose
DSLs by manually loading all relevant definitions into a single project. Spoofax
supports the definition of domain-specific syntax, semantics, analyses, and editor
services with domain-specific editor services for SDF, Stratego, and editor-service
declarations. However, it is not possible to uniformly abstract over language
definitions. The Spoofax language workbench was the basis for our uniformly
extensible IDE described in Chapter 3.

The Meta Programming System (MPS) is a language workbench based on in-
tentional programming [V6111, VS10]. According to the intentional-programming
paradigm, MPS avoids parsing and employs projectional editing instead. There-
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fore, instead of defining a grammar, DSL developers define editor actions that
provide convenient and efficient ways to input programs. While this avoids
potential syntactic ambiguities when composing languages, the composition of
editor actions may also be conflicting. MPS organizes implementations of domain
abstractions in modules. Dependencies between artifacts are specified within a
property dialog for each artifact separately; dependencies are not part of the
textual projection of a program, which limits the support for modular reasoning.
Nevertheless, the module system supports reuse of implementation artifacts.
MPS strictly separates metaprogramming and programming by providing fixed
DSLs for the definition of editor actions, data schemas, code generation with
quasiquotation, and others.

Cedalion is a language workbench based on intentional programming [LR11].
Cedalion provides constructs to declare, project, analyze, and evaluate domain
abstractions. For the latter two, Cedalion builds on logic programming and
represents domain abstractions as logical relations. The semantics of a domain
abstractions then specifies the preconditions for a domain-specific relation to
hold. Cedalion definitions are managed in a global namespace: All definitions
in the current Eclipse workspace are available in a source file. This inhibits
modular reasoning but allows predicates to be reused in the implementation
of other predicates. Logic programming with syntactically flexible projections
of predicates provides a rather declarative means for implementing domain
abstractions. Furthermore, it enables the composition of domain abstractions,
where each abstraction adds more constraints to the currently defined predicate.
While this is a meaningful definition, it is not clear whether it provides a useful
model for DSL composition. Finally, Cedalion has been bootstrapped to provide
uniformity, which allows Cedalion programmers to extend the system itself.

Xtext is a popular model-driven language workbench that gives developers
lots of flexibility [EV06, Xtel2|. Xtext supports grammars, validators, code
generators, and IDE providers for the implementation of all aspects of a domain
abstraction. Moreover, Xtext code generators are configurable through workflows.
A workflow loads domain-specific programs and prescribes arbitrarily complex
transformation schemes for these programs. Essentially, a workflow is a build
script that applies to a whole project and inhibits modular reasoning. A direct
consequence of this is the lack of separate compilation, which results in overly long
compilation times for model-driven software projects [KMT12]. Xtext grammars,
transformations, and workflows are organized in reusable libraries. Moreover,
these artifacts are defined using declarative notations for the respective domain.
Xtext focuses on standalone DSLs and domain abstractions that desugar to Java
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code. However, DSLs build with Xtext do neither compose with each other nor
with the Java programming language. The only supported interaction is via the
generated code. Moreover, Xtext does not support domain abstraction over the
used metalanguages for grammars, transformations, workflows.

Monticore is a language workbench that particularly targets the composition
of DSLs [KRV10]. To this end, Monticore provides a grammar formalism
that features inheritance and embedding: Inheritance enables the incremental
extension of a grammar by providing additional productions for a nonterminal.
Reversely, embedding declares some nonterminals of a grammar as abstract,
which enables clients of the grammar to specialize it by embedding a language
into it. From a grammar, Monticore generates a parser for the concrete syntax
and a Java encoding of the abstract syntax. For editor services, Monticore
provides a declarative configuration language similar to Spoofax. For domain-
specific analysis and code generation, Monticore uses regular Java programs and
the visitor pattern. This does neither provide the same declarativity nor the
same composability as Monticore’s grammar formalism. However, Monticore
employs the DSLTool framework, which provides an architecture for domain-
specific analysis and code generation that enables polymorphic interpretation of
domain-specific programs. Essentially, a semantics is represented as an object of
the abstract class DSLRoot, which, similar to a build script, can apply different
analyses and generators to inspect and transform a user program.

Epsilon [KRPGD12] is a modeling framework that provides a set of DSLs to
analyze, compare, transform, and refactor domain-specific programs in the form
of EMF [SBPMO08] models. Epsilon does not support domain-specific syntax
or editors directly, besides simple support Human-Usable Textual Notation
(HUTN) [Obj04]. However, Epsilon can reuse frontend support for EMF models
as provided by Xtext [Xte12] or EMFText [HJKT09|. For static analysis, Epsilon
provides the declarative Epsilon Validation Language for the specification of
invariants and other form of checks. For code generation, Epsilon provides
separate model-to-model and model-to-text transformation languages. Both pro-
vide declarative constructs to transform a model, but neither ensures referential
transparency. All Epsilon languages are organized as modules that can be reused
in the implementation of different domain abstractions. Epsilon supports the
application of a transformation to a model through a GUI action or through
the definition of a workflow model. Both mechanisms inhibit modular reasoning
since the transformation application is transparent to clients of the generated
code.
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8.6 Chapter summary

The list existing systems that support domain abstraction in one way or another
is long. In this chapter, we provide an overview of systems that are currently in
use or have been developed in recent years. We describe these systems according
to their support for flexible and principled domain abstraction and provide an
overview in Table 8.1.

Our survey has two goals beyond giving an overview. First, we want to put
our own system for domain abstraction SugarJ into context of related work. As
our comparison shows, SugarJ does not provide any new features, but unifies
existing features in a unique way. This makes SugarJ very flexible, with support
for domain-specific syntax, polymorphic semantics, domain-specific analysis, and
domain-specific editor services, and quite principled, with support for modular
reasoning, declarative implementations, DSL composition, and uniformity. While
there are equally flexible systems (Xtext and Monticore) and more principled
systems (Racket and Honu), SugarJ is the only system that combines high
flexibility with strong principles.

The second goal of our survey is to evaluate our design goals for flexible and
principled domain abstraction. In particular, our survey shows that our design
goals for domain abstraction are relevant and sufficient to distinguish existing
systems. The design goals are relevant since each is realized by a number of
existing technologies. Moreover, the design goals are sufficient to characterize all
systems we investigated in our survey. In fact, as Table 8.1 shows, no two systems
have the same characteristics. Probably, our design goals are incomplete still
because some desirable features for domain abstraction have not been identified
yet. Future work will show what other features developers of domain abstractions
require.
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9 Conclusion and Future Work

Domain-specific languages promise to ease the development of software by
raising the abstraction level to the level of domain constructs. This narrows
the representational gap |[Lar02] between the way programmers think about
domain concepts and the way programmers encode the domain concepts in their
programs. However, for DSLs to unfold their full potential, the employed domain
abstractions must be flexible enough to support a complete domain-specific
frontend (syntax, analysis, tooling), and principled enough to not interfere with
best practices such as modular reasoning or code reuse. In this thesis, we
identified eleven design goals for flexible and principled domain abstraction,
developed a language that satisfies these goals, and evaluated it through numerous
case studies.

We propose extensible programming languages for the definition of flexible and
principled domain abstractions. In an extensible programming language, domain
abstractions are encoded as language extensions, and programmers use the
extended language to write domain-specific programs. Furthermore, we propose
to represent language extensions as libraries, that is, as scoped, reusable, and
composable components. A programmer can activate a language extension by
importing the corresponding library into the current scope. A programmer can
reuse the implementation of a language extension by importing the corresponding
library into another extension definition. And a programmer can compose
multiple language extensions by importing all corresponding libraries into a
single scope.

Domain abstractions implemented as language extensions resemble internal
DSLs, because the implementation reuses the existing abstraction mechanisms
of the host language. As consequence, our approach provides the advantages
of internal DSLs such as modular reasoning. However, extensibility is a pow-
erful abstraction mechanism that enables internal DSLs as flexible as their
external counterparts. In our approach, the flexibility of the supported domain
abstractions directly depends on the flexibility of the extension mechanism:
An extensible syntax enables domain-specific syntax, extensible static analysis
enables domain-specific checking, and extensible tool support enables domain-
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specific editor services. Accordingly, a flexibly extensible programming language
combines the advantages of internal and external DSLs.

We designed and implemented the flexibly extensible programming language
SugarJ that organizes language extensions in libraries. SugarJ’s extensibility
mechanism is flexible and supports domain-specific syntax, polymorphic seman-
tics, domain-specific static analysis, and domain-specific editor services. This
enables domain abstractions as flexible as external DSLs. Despite this flexibility,
SugarJ’s extension mechanism is principled: It organizes extensions in libraries,
which enables modular reasoning, implementation reuse, composition, and uni-
formity like in internal DSLs. Moreover, SugarJ checks communication integrity
and builds on SDF and Stratego to provide a declarative mechanism for the
implementation of extensions.

On top of SugarJ, we developed an extensible IDE that programmers can
coevolve with the language. Like SugarJ, our IDE organizes editor extensions
in libraries: A programmer can activate an editor extension by importing the
corresponding library alongside a language extension, or the programmer can
package these two artifacts together into a single library. For each file, our
IDE inspects the libraries in scope to determine the set of activated editor
extensions. The IDE then presents the corresponding editor services to the user.
Our IDE provides syntax highlighting for user-defined language extensions by
default, but programmers can define more sophisticated editor services such
as code completion or reference resolution. This way, our IDE can provide
a user experience for extensible programming languages similar to IDEs of
nonextensible programming languages.

In summary, our design and implementation of SugarJ and its IDE demon-
strates that extensible languages enable flexible and principled domain abstraction.
In addition, we evaluated the applicability of our system by conducting numerous
case studies. We developed the following language extensions in SugarJ: closures
for Java, entity data schemas, Java Server Pages with HTML and JavaScript,
Latex and Bibtex, regular expressions, software-product-line development with
\#ifdef, statemachines, a template engine, XML, and XML Schema. In all these
case studies, we were able to integrate domain-specific syntax into SugarJ using a
library-based language extensions. We were able to modularly reason on the set
of active language extensions, compose language definitions to support multiple
domains in a single file, and get assistance by domain-specific static analysis
and domain-specific editor services. Moreover, some of our case studies make
use of the uniform design of SugarJ and, in fact, apply to SugarJ’s metalevel.
For example, XML Schema is a meta-DSL that provides domain abstraction for
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the declaration of a static analysis, and our template engine provides an alterna-
tive implementation model for the declaration of program transformations. In
general, our case studies explore and exploit all features of SugarJ. Appendix A
includes detailed descriptions of all our case studies.

Based on our experiments with SugarJ, we found that library-based extensibil-
ity is not specific to Java but similar extensibility is applicable to other languages.
Following this insight, we generalized the SugarJ compiler into a framework for
library-based language extensibility that can be easily instantiated for new base
languages. The only requirement on base languages is that they use a module
system to organize code, where language extensions can only be activated by
import statements that appear at the top-level of a source file. In practice,
most programming languages are admissible according to this requirement. We
instantiated our framework for Java, Haskell, Prolog, and F,, to provide support
for flexible and principled domain abstraction in each of these languages. Each
extensible language built with our framework enjoys the same flexibility and
principles that the original SugarJ compiler and IDE provided. By generalizing
the SugarJ compiler and IDE into a framework that supports different base
languages, we effectively demonstrate that library-based language extensibility is
a metaprogramming technique that generalizes to a wide range of programming
languages.

Our work constitutes an important step toward a wider application of domain
abstraction in practice for the following reasons. First, the flexibility of our
approach provides a high gain for software developers and makes the application
of domain abstractions attractive. Second, the principles we follow delimit the
risk and cost of using domain abstraction, because we retain best practices,
support reuse, and provide declarative implementation languages. Third, our
approach facilitates domain composition and polymorphic domain abstraction to
support complex software systems that address concerns from different domains
and technical spaces. For these reasons, we believe that library-based language
extensibility is well-suited for modeling practical systems, for which our case
studies on the graph product line and the Java Pet Store give initial evidence.

Besides practical application, our work provides benefits for language designers,
because the extensibility of SugarJ makes it an attractive platform for language-
design experiments. A language designer can evaluate a design idea with Sugar]
by first implementing the design as a language extension and then using the
extended language to experiment with the design. This can be useful for
experiments on the design of small language extensions, such as our extension
of Java with closures, as well as on the design of whole languages, such as our
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Chapter 9 Conclusion and Future Work

statemachine DSL. SugarJ is well-suited for such experiments because it provides
tool support for the extended language, has no stratification into metalevels
that requires, for example, to start a new Eclipse instance, and it supports
the evaluation of the interaction between different designs by composing the
corresponding language extensions. At the time of writing, multiple research
projects use SugarJ as a platform for design experimentation.

Future work. SugarJ addresses all and satisfies most of our design goals for
flexible and principled domain abstraction. The design goals SugarJ only par-
tially achieves are implementation reuse and referential transparency. We suggest
addressing these goals more adequately in future work. For implementation
reuse, future work could impose a module system on SDF and Stratego that
provides namespace management and more fine-grained control over code reuse:
partial import, qualified import, rename before import, import-as-extension
versus import-as-library. For referential transparency, we suggest the inves-
tigation of hygienic program-transformation systems in general. A hygienic
program-transformation systems must guarantee that variable resolution is in-
variant to the application of transformations. This requires the transformation
system to know about the binders and scoping of the generated language. To
this end, one interesting avenue of future work is to use the Name Binding
Language [KKWV12], a DSL for the declaration of binders and scoping, to
generate transformations for systematic renaming. In the context of extensible
programming languages, an interesting question for hygienic transformations
is whether it is sufficient to declare name bindings of the base language, as
supported by the Scheme macro system [SDFT09], or whether language exten-
sions need to declare extended scoping rules, too. Moreover, the efficiency of
the hygiene mechanism is important [DHB92] and constitutes an interesting
challenge that precludes naive renaming strategies.

As described in this thesis, we realized our design for SugarJ as a compiler.
However, our compiler retains a preprocessor character: It processes and reacts to
import statements by changing the current grammar and desugaring transforma-
tion, but, in the end, out compiler emits plain base-language source code that we
compile with an off-the-shelf compiler of the base language. This implementation
strategy factors our technicalities of the base language and enabled us to focus on
the novelties of SugarJ instead. It would be interesting to investigate the benefits
of a tight integration of our extensibility mechanism and the base-language com-
piler. One immediate advantage would be the avoidance of pretty printing as a
means for communicating generated code to the base-language compiler. Instead,
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a tight integration enables communication via a uniform program representation,
which, in particular, can easily retain source-position information. Furthermore,
a tight integration unifies the exception handling and abolishes the need for
parsing the output of the base-language compiler to recognize errors. In addition,
a tight integration can improve the expressiveness of language extensions. For
example, a tight integration should enable type-dependent transformation that
use the type-checking or type-inference engine of the base language to decide
what code to generate. Finally, a tight integration may give rise to a process for
outsourcing features implemented by the compiler into library-based language
extensions, which simplifies the compiler and provides more flexibility to pro-
grammers. Reversely, the integration may give rise to a process for incorporating
library-based extensions into the base-language compiler, which elevates our
approach from extension prototyping to compiler development.

Another area of future work are extensible static analyses. SugarJ supports
language extensions to define static analyses that, when in scope, are run prior to
desugaring to validate the source code. Other works on extensible static analysis
interleave desugaring with static checking [F'S06] or fully desugar the code before
analyzing it [THSAC*11]. Independent of the order of desugaring and analysis,
the question remains: How can we guarantee the soundness of the extended type
system? Specifically, we want to ensure that if the extended type system declares
a program well-typed, then the fully desugared program does not go wrong. This
guarantee renders analysis of generated code unnecessary because the extended
analysis already rules out run-time type errors. In a system like SugarJ that
performs analysis prior to desugaring, the soundness of the extended analysis
constitutes a dramatic improvement in the quality of error messages, because
errors never are reported in terms of generated code. We are currently working
on a framework that guarantees the soundness of extended analyses given a
sound base analysis. In our framework, every extension of a static analysis
must be accompanied by a proof that shows that the extension only accepts
programs whose desugaring is accepted by the base analysis. This entails the
soundness of the extended analysis. In fact, we plan to synthesize these proofs
using a combination of symbolic execution and the base analysis itself. Early
experiments with an extensible F, type system suggest the feasibility of our
synthesis procedure.

In conjunction with our future work, we believe that flexible and principled
domain abstraction, as presented in this thesis, elevate DSLs to their full potential
as a scalable methodology for the implementation of complex software systems.
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A List of Case Studies

We summarize the 14 case studies that we conducted as evaluation of SugarJ,
SugarHaskell, and JProMo. All case studies are open-source and available via
http://sugarj.org.

A.1 Case studies with SugarlJ

Closures

Version: April 5, 2011

Developed by: Sebastian Erdweg, Tillmann Rendel

Size: 171 lines of SugarJ code (9 files) and
192 lines of Java with closures code (3 files)

Description:  Closures (also known as lambda expressions or anonymous func-
tions) introduce functions as first-class citizens into Java. We
implemented closures as a sugar library, following the proposal
of Gafter and von der Ahé [GvdA09] for integrating closures into
the Java programming language. We used our closure embedding
to implement a simple yet powerful list API for Java that features
higher-order functions such as map, sortBy, or zip [EKR™11b].

Results: This case study demonstrates that even sophisticated features of

programming languages can be implemented as syntactic sugar,
and SugarJ is an implementation platform well-suited for the
extension of the host language with new programming-language
concepts.

Java Pet Store

Version: July 11, 2012
Developed by: Stefan Fehrenbach as part of his bachelor thesis [Feh11]
Size: 2896 lines of SugarJ code (37 files) and
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Description:

Results:

4909 lines of reengineered Java code (55 files)

The Java Pet Store is a reference application for Java Enterprise
Edition originally developed by Sun Microsystems [Sun02]. It
implements a web store for trading pet animals. The imple-
mentation follows the model-view-controller design pattern and
makes use of AJAX for dynamically updating sites.

We used the Java Pet Store to experiment with the practical
adoption of syntactic sugar as provided by SugarJ. We integrated
sugar libraries that provide domain abstraction for field access
(similar to Java beans), XML, XML Schema, JPQL, and EBNF.
We reengineered part of the implementation of the Java Pet
Store to make use of these sugar libraries.

This case study shows that domain abstraction in the form of
sugar libraries can be adopted to practical applications. In
particular, sugar libraries prevent syntactic errors that occur in
the originally used string embedding of XML and JPQL, sugar
libraries reduce boilerplate in the definition of field accessors,
sugar libraries support additional domain-specific checks such
as XML Schema validation, and sugar libraries are equipped
with appropriate editor support to assist programmers writing
domain-specific code.

Additionally, this case study let to the development of a novel
methodology for the implementation of DSLs in existing legacy
applications. With sugar libraries, the code base of a legacy
application can be incrementally reengineered to improve main-
tainability: Sugar libraries can be added incrementally to support
more domains, and sugar libraries can be adopted incrementally
to lift more code to the domain abstractions. For the latter, it
is essential that SugarJ promotes the use of syntactic sugar that
has no semantic consequence. Therefore, the reengineering of one
library does not influence code in other libraries. This enables
the benefits of domain abstraction in large legacy applications.

Java Server Pages

Version:

August 9, 2011

Developed by: Selman Halid Kahya during an internship at the University of
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Size:

Description:

Results:

Marburg, Sebastian Erdweg

3490 lines of SugarJ code (48 files) and
352 lines of HTML, JavaScript, and JSP code (6 files)

Java Server Pages (JSP) is a DSL for describing dynamic web
pages based on Java servlets. JSP combines HTML, JavaScript,
and Java into a single language that supports web pages with
client-side and server-side scripting. JSP uses HTML for the
description of a web page’s initial view. As usual, JavaScript
can be embedded in the HTML document to enable client-side
scripting. For server-side scripting, JSP defines integrates HTML
and the Java programming language, where the Java code is
syntactically embedded into a HTML document. Semantically,
JSP compiles to a Java servlet that generates HTML documents
at runtime on the server. Since JSP compiles to Java, it should
be possible to fully realize JSP as a sugar library. So far, we
only the developed the frontend part of JSP: syntax and some
editor services.

This case studies shows that (i) language composition occurs
in practice and (ii) SugarJ supports composition of modularly
developed sugar libraries. Concretely, we defined the syntax of
HTML, JavaScript, and Java in isolation and composed them
to form the JSP syntax. This way, we are able to support
the JSP. As future work, we want to define the compilation of
JSP to a Java servlet as a desugaring in SugarJ. Furthermore,
JSP supports a simple form of extensibility via tag libraries.
We plan to support tag libraries as a meta-DSL for our JSP
implementation.

Latex and Bibtex

Version:
Developed by:
Size:

Description:

June 21, 2011
Sebastian Erdweg, Lennart Kats, Tillmann Rendel

1588 lines of SugarJ code (14 files) and
3010 lines of embedded Latex and Bibtex code (7 files)

Latex and Bibtex are DSLs for typesetting. We embedded them
into SugarJ by defining sugar libraries for small, parsable subsets
of each language. We further subdivided Latex into different
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Results:

language aspects and implemented each as a separate sugar
library: basic Latex commands for structuring and typesetting of
documents, mathematical formulas, code listings, bibliographical
citations. The latter library integrates with the embedding of
Bibtex. We used this Latex and Bibtex embedding to write our
GPCE’11 paper [EKRT11a].

We conducted this case study to evaluate the composability of ed-
itor services in our extensible IDE. In particular, this case demon-
strates the effectiveness of our explicit-coordination scheme that
we use to coordinate between a bibliography written in Bibtex
and citations specified as part of a Latex document. Moreover,
this case study shows how sugar libraries lend themselves for
decomposing larger languages into smaller aspects that can be
separately implemented and composed.

Regular expressions

Version:
Developed by:
Size:
Description:

Results:
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May 29, 2011
Sebastian Erdweg
214 lines of SugarJ code (4 files)

Regular expressions are a simple DSL that provides efficient
matching of lexical patterns in strings. Most languages realize
regular expressions as a string embedding, where a run-time
parser and compiler handles regular expressions. In contrast, this
case study promotes regular expressions as first-order language
constructs that are parsed at compile time and desugar into the
usual string encoding. In addition, we provide syntax coloring
and code completion with explanations.

The development of the regular-expression case study is straight-
forward and requires little effort. This case study shows that the
effort in developing sugar libraries scales down to small language
extensions. This indicates the feasibility of a syntactically exten-
sible core language, where all advanced language constructs are
realized through sugar libraries.
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XML and XML Schema

Version:
Developed by:
Size:

Description:

Results:

September 13, 2011
Sebastian Erdweg

2792 lines of SugarJ code (19 files) and
596 lines of XML and XML Schema code (9 files)

We implement a syntactic embedding of XML into Java. This em-
bedding enables programmers to use literal XML syntax within a
regular Java program, and to splice dynamic Java values into the
XML document. Our embedding desugars to method calls of the
SAX API, that is, an XML document is decomposed into events
that describe the beginning and ending of an XML element.

On top of XML, we implement support static XML validation.

To this end, we provide an embedding of XML Schema into
SugarJ as a sugar library. XML Schema reuses XML syntax,
but desugars into another sugar library that implements a val-
idator for the given XML schema. When importing the library
that defines an XML schema, the generated validator is acti-
vated to statically validate XML documents of the corresponding
namespace.
XML is a language that uses a syntax different from most pro-
gramming languages. Therefore, XML is a good example of
a DSL that cannot satisfactorily be implemented with pure
embedding, because the host language does not support XML
literals. In contrast, SugarJ supports the integration of arbitrary
context-free languages.

The XML Schema case study illustrates two points. First, it
shows how a sugar library can be used to implement a static
analysis on domain-specific programs. In our SugarJ, we define
domain-specific analyses as program transformations in Stratego
that transform the user program into a list of error locations and
error messages. An import of the defining library activates a
static analysis in the current module. Second, the XML Schema
case study shows the power of uniform self-applicability: We
can use domain abstraction to build XML Schema as a DSL for
definition of domain-specific static analyses on XML. That is,
we can provide domain abstraction on top of the abstraction
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A.2 Case

Arrows

Version:
Developed by:
Size:

Description:

Results:

EBNF

Version:
Developed by:
Size:

214

mechanism itself. We call an abstraction such as XML Schema
a meta-DSL as it is used to implement other DSLs.

studies with SugarHaskell

June 18, 2012
Sebastian Erdweg

273 lines of SugarJ code (6 files) and
102 lines of Haskell with arrows code (2 files)

Arrows generalize monads to computations with multiple in-
puts and outputs. Since arrow combinators are difficult to use,
Paterson propose a new notation for arrows [Pat0l]. An ex-
tended version of this notation was integrated into Haskell by
GHC as a compiler extension. In particular, the extended arrow
notation features arrow-specific do notation, which requires a
layout-sensitive parser.

We realized the extended arrow notation in SugarHaskell by writ-
ing a sugar library. In particular, this case study illustrates the
following features of SugarHaskell. First, SugarHaskell extensions
can be layout-sensitive, using our declarative layout constraints
in productions of the extension grammar. Second, SugarHaskell
allows developers to integrate customary layout-sensitive syntax
for transformations. In particular, we used concrete arrow syntax
for pattern matching in the desugaring of the arrow sugar library,
and concrete Haskell syntax for code generation. In particular,
when generating larger code fragments, layout-sensitive concrete
syntax can reduce the accidental complexity by retaining the
look-and-feel of the target language.

June 3, 2012
Sebastian Erdweg

309 lines of SugarJ code (5 files) and
99 lines of Haskell with EBNF code (2 files)



A.2 Case studies with SugarHaskell

Description:

Results:

Haskell traditionally supports the description of parser by parser
combinators. While parser combinators are expressive and flexi-
ble, they do not provide the same declarativity as EBNF-based
grammar formalism. Moreover, a grammar typically contains
information on the abstract syntax as well as the concrete syntax
of the described language. Parser combinators only address the
latter aspect.

The EBNF case study extends Haskell with syntax for the
declaration of EBNF-based grammars. We desugar EBNF gram-
mars into multiple artifacts: First, we generate a declaration of
an algebraic data type that represents the abstract syntax oft
he described language. Second, we generate a Haskell program
that uses Parsec parser combinators [LMO1] to represent the
concrete syntax of the language. Our desugaring takes care
of some technical issues related to parsing, such as whitespace
and backtracking. To ease the use of the generated parsers,
we also generate instance of the type class Read. Finally, we
use SugarHaskell’s self-applicability to generate another sugar
library from a user’s grammar, which enables programmers to
use their concrete syntax in Haskell programs directly. Such
user-language code fragments are parsed at compile time and
translated into instances of the generated algebraic data type.
The EBNF case study illustrates the power of self-applicable
extensible languages like SugarHaskell. A programmer can flex-
ibly decide whether to parse a domain-specific expression at
compile time or at run time. Also, this case study shows that
it is possible, and in fact useful, to generate multiple artifacts
from a single domain-specific program. We generate a data type,
a object-language parser, and a metalanguage parser from an
EBNF grammar. Moreover, we explored a design pattern that
enables users of sugar libraries to decide which artifacts the
desugaring should generate. This way, we enable users to select
whether to only generate support for the abstract syntax, for the
abstract and concrete syntax, or additionally a metaextension.

Idiom brackets

Version:

June 3, 2012
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Developed by:
Size:
Description:

Results:

Sebastian Erdweg
35 lines of SugarJ code (1 file)

Idiom brackets provide a simple syntactic abstraction on top of
applicative programming with effects [MPO08]. This case study
implements idiom brackets as a sugar library for Haskell.

This case study is straightforward and without surprises. It
shows that the implementation effort of SugarHaskell extension
scales down with the complexity of the extension. Accordingly,
for idiom brackets, the sugar library is simple and easy to write.

A.3 Case studies with JProMo

Entity modeling

Version:
Developed by:
Size:

Description:
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May 11, 2012
Sebastian Erdweg

802 lines of SugarJ code (20 files) and
87 lines of entity declarations (13 files)

The modeling of data schemas as entities is a typical exam-
ple used by MDD frameworks. Entities declare properties and
functionality, and are independent of any particular execution
platform. We realized an entity DSL as a metamodel library in
JProMo. This library defines concrete and abstract syntax for
entity declarations. We provide a separate transformation library
that, when applied to an entity model, generates a class-based
Java representation of the entity with getter and setter methods.

Furthermore, the entity case study explores self-application in
an MDD setting. We provide a meta-DSL for the declaration
of metamodels that separates the declaration of concrete syntax
from the declaration of abstract syntax. Our meta-DSL enables
the definition of a metamodel without any concrete syntax, which
can already be used to program analyses or transformations for
the metamodel, because these artifacts are independent of the
concrete syntax. A user can add concrete syntax to a metamodel
in a separate library, which corresponds to a model transforma-
tion that takes the metamodel as input and generates a regular
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Results:

JProMo metamodel with concrete and abstract syntax. In fact,
this way a user can provide multiple concrete syntaxes for a
single metamodel. When declaring a model instance of the meta-
model, the programmer selects the concrete syntax by applying
a corresponding transformation to the metamodel. Moreover, we
provide a transformation that generates a default HUTN [Obj04]
syntax for a user-defined metamodel.

With this case study we explore the model-oriented programming
paradigm. We exploit the separation of transformations and
models to enable multiple semantics for the entity metamodel.
Moreover, the case study shows that communication integrity
does not prevent flexible domain abstraction. In fact, communi-
cation integrity provides a principled framework that directs the
dependency managing of meta-DSLs. In this case study, commu-
nication integrity required us to import auxiliary libraries, which
the generated code uses, in the transformation library. This way,
the transformation is allowed to generated code that depends
on the auxiliary library. For the user, this restriction provides a
much clearer interface because dependencies are explicit in the
original code.

#ifdef-based product-lines

Version:
Developed by:
Size:

Description:

August 20, 2012
Sebastian Erdweg, Jonas Pusch

1259 lines of SugarJ code (19 files) and
89 lines of Variability-aware Java code (6 files)
Software product lines describe a set of related products by a
single configurable code base. One way to implement a product
line is to use conditional compilation with CPP #tifdefs. #ifdefs
provide a form of syntactic abstraction to the developers that
allows the inclusion or exclusion of certain fragments of code.
We implement language support for #ifdef-based product lines
with libraries in model-oriented programming. For this, we
provide a metamodel for variability-aware Java that supports
the use of #ifdef statements at syntactically well-defined positions,
such as classes, fields, methods, method parameters, statements,
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Results:

or expressions. This way, developers can declare libraries that
encode a software product line. An application can consist of
arbitrary many variable and non-variable libraries, which can be
interconnected in both directions.

To configure a variable library, a developer specifies a feature
configuration that selects some features and deselects others. We
provide a simple DSL for the declaration of feature configurations
as yet another library. In fact, feature configurations are a meta-
DSL that compiles into a regular model transformation that
takes a variable Java library as input and produces a regular
Java library.

This case study makes heavy use of polymorphic domain ab-
straction. In fact, the whole point of software product lines is
to support multiple products with different semantics through a
single code base. Therefore, this case study demonstrates the
flexibility enabled by polymorphic domain abstraction, and gives
some indication for the relevance of this feature. Moreover, the
#ifdef case study highlights our support for mixing models (vari-
able Java programs) and code (regular Java programs). Since we
organize models and code as libraries in the same technical space,
they can freely depend on one another. Finally, this case study
illustrates the usability of meta-DSLs, which we used to build
domain abstractions for the declaration of feature models and
feature configurations. This way, product-line developers do not
need to concern with the complexity of model transformation.
Instead, they can use a declarative formalism to select or deselect
features.

Graph product line

Version:
Developed by:
Size:
Description:

218

August 18, 2012
Jonas Pusch, Sebastian Erdweg
1388 lines of SugarJ code (26 files)

We used above case study for #ifdef-based product lines to im-
plement the standard graph product line [LHBO1]. All feature
models, feature configurations, and variable Java classes are
expressed as JProMo libraries. Even the selection of a prod-
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Results:

uct, which initiates the product’s generation, is declared within
JProMo. Since a feature configuration is a domain abstraction
that compiles into a regular model transformation, we can apply
a configuration to a variable Java library as a transformation in
import statements.

Our product-line encoding can express the full graph product

line. We provide multiple configurations that can be used to
generate concrete graph libraries. Since in JProMo the configura-
tion of a product line is declared within the language, a JProMo
program can depend on multiple configurations of a variable
Java library simultaneously.
This case study shows that model-oriented programming is ex-
pressive enough to encode whole programming paradigms such
as ftifdef-based product lines. In particular, this case study
demonstrates that our encoding supports typical product lines
developed by others. However, our product-line encoding goes
beyond what other frameworks can achieve, because we encode
product lines as libraries of a larger application, and the fea-
ture configurations are part of that application, too. We plan
to explore the applicability of model-oriented programming for
advanced product-line engineering in future work.

Statemachines

Version:
Developed by:
Size:

Description:

August 20, 2012
Sebastian Erdweg

676 lines of SugarJ code (16 files) and
230 lines of statemachine code (10 files)

Statemachines are another typical example used by MDD frame-
works. Again, we build language support statemachines with
libraries in JProMo. However, simple finite statemachines are
not expressive enough for modeling realistic protocols, because
they cannot depend on external data carried by the events or
managed as internal state in the machine itself. Therefore, we
extend statemachines to data-dependent statemachines that have
data as internal state and enable data-parameterized events.
We develop data-dependent statemachines by reusing parts
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of the entity case study described above. In particular, we
allow property declarations inside a statemachine for declaring
internal data, and the transition function can query the internal
and event-provided data using an expression language that is
also part of the entity metamodel. We develop data-dependent
statemachines by reusing the existing entity metamodel and
transformation.

This case study demonstrates the support of model-oriented
programming for composition across domains. We were able to
reuse property declarations and the expression language from
the entity metamodel unchanged, as well as parts of the transfor-
mation that translates an entity declaration into a Java program.
Furthermore, we were able reuse the transformation from sim-
ple statemachines to Java, but we required some changes: We
integrated extension points for the transformation of a state tran-
sition’s premise and consequence. This allowed us to later add
functionality for data-dependent premises and data-mutating
consequences.

Template engine

Version:
Developed by:
Size:

Description:

Results:
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August 16, 2012
Sebastian Erdweg

590 lines of SugarJ code (15 files) and
285 lines of code templates (3 files)

Most existing MDD frameworks employ a template engine for
the generation of code. In contrast, JProMo uses the trans-
formation language Stratego. In this case study, we realize
a model-to-model template engine as a meta-DSL in JProMo.
The template engine enables developers to write concrete Java
code, interspersed with Stratego expressions to inject model-
dependent code fragments. We used the template engine in the
implementation of the statemachine case study.

This case study demonstrates the power of uniform self-applica-
bility, which enables meta-DSLs that abstract over technicalities
of the transformation system. Moreover, the resulting template
engine is still user-extensible: If a feature is missing, developers
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can add it themselves via a library. To the best of our knowledge,
model-oriented programming is the only system that provides
such high level of flexibility to programmers.
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