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Abstract 

Nanoparticles are produced and used in huge amounts increasing their probability to 

end up in surface waters. There, they are subject to environmentally driven 

modification processes. Consequently, aquatic life may be exposed to different 

nanoparticle agglomerate sizes, while after sedimentation benthic organisms are 

more likely to be affected. However, most ecotoxicity studies with nanoparticles 

exclusively investigated implications of their characteristics (e.g. size) on pelagic 

organisms, ignoring environmentally modified nanoparticles. Therefore, a systematic 

assessment of factors triggering the fate and toxicity of nanoparticles under 

environmentally relevant conditions is needed. The present thesis, therefore, 

investigates the implications of nanoparticle related factors (i.e., inherent material-

properties and nanoparticle characteristics) as well as environmental conditions 

towards the pelagic living organism Daphnia magna and the benthic species 

Gammarus fossarum. In detail, inert titanium dioxide (nTiO2) and ion-releasing silver 

nanoparticles (nAg), both of varying particle characteristics (e.g. initial size), were 

tested for their toxicity under different environmental conditions (e.g. ultraviolet-light 

(UV-light)). The results indicate that the toxicity of nTiO2 and nAg is mainly 

determined by: their adsorption potential onto biota, and their fate in terms of reactive 

oxygen species or Ag+ ion release. Thus, inherent material-properties, nanoparticle 

characteristics and environmental conditions promoting or inhibiting these aspects 

revealed significant implications in the toxicity of nTiO2 and nAg towards daphnids. 

Furthermore, the presence of ambient UV-light, for example, adversely affected 

gammarids at 0.20 mg nTiO2/L, while under darkness no effects occurred even at 

5.00 mg nTiO2/L. Hence, the currently associated risk of nanoparticles might be 

underestimated if disregarding their interaction with environmental parameters.
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Zusammenfassung 

Heutzutage werden Nanopartikel in großem Maßstab produziert, weshalb deren 

Eintrag in Oberflächengewässer immer wahrscheinlicher wird. Dort angelangt 

unterliegen sie verschiedenen umweltbedingten (Oberflächen-)Modifikationen, die in 

letzter Konsequenz eine Vielfalt von Nanopartikel-Agglomeraten unterschiedlicher 

Größe hervorbringen. Direkt davon betroffen sind aquatische Lebewesen, die einer 

entsprechenden Nanopartikelexposition in der Wasserphase ausgesetzt sind. Nach 

Sedimentation der Agglomerate können aber ebenfalls benthische Organismen 

betroffen sein. Bisherige ökotoxikologische Untersuchungen haben solche 

umweltbedingten Einflüsse außer Acht gelassen und viel mehr nanopartikel-

spezifische Charakteristika auf deren Wirkweise gegenüber pelagischen Vertretern 

untersucht. Aus diesem Grund ist eine systematische Untersuchung derer Faktoren 

von Nöten, die den Verbleib und das Verhalten aber auch die Toxizität von 

Nanopartikeln in der Umwelt maßgeblich beeinflussen. Die kumulative Arbeit dieser 

Dissertation macht sich dies zum Ziel und hinterfragt entsprechende Faktoren die 

einerseits durch Nanopartikel assoziierte Aspekte (definiert als i) inhärente 

Stoffeigenschaft des untersuchten Materials und ii) Nanopartikel Charakteristika)) 

und andererseits durch Umweltbedingungen in Oberflächengewässern geprägt sind. 

In diesem Kontext wurden verschiedene ökotoxikologische Untersuchungen mit 

inerten Titandioxid Nanopartikeln (nTiO2) und Ionen freisetzenden Silber 

Nanopartikeln (nAg) unter Berücksichtigung verschiedener Nanopartikel 

Charakteristika (z.B. initiale Partikelgröße, Oberflächengröße) und 

Umweltbedingungen (z.B. Ionenstärke, ultraviolettes Licht (UV-Licht)), durchgeführt. 

Als Testorganismen dienten dazu die pelagischen bzw. benthischen Vertreter 

Daphnia magna und Gammarus fossarum. Die Ergebnisse deuten daraufhin, dass 
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die Toxizität von nTiO2 und nAg gegenüber Daphnien maßgeblich durch das 

Adsorptionspotential (im Bezug auf das Anhaften der Partikel an die 

Organismenoberfläche) und das Umweltverhalten (Freisetzung von radikalen 

Sauerstoffspezies oder Metallionen) der Nanopartikel bestimmt wird. Darüber hinaus 

wurde die Nanopartikeltoxizität von jenen inhärenten Stoffeigenschaften, 

Nanopartikelcharakteritika und Umweltbedingungen am meisten beeinflusst, welche 

die zuvor genannten Aspekte entweder verstärken oder abschwächen. Hierfür 

beispielhaft ist der toxizitätsverstärkende Effekt von UV-Licht auf nTiO2 in 

Experimenten mit Gammarus: Während eine Exposition der Organismen in absoluter 

Dunkelheit selbst bei 5,00 mg nTiO2/L keine Effekt hervorrief, kam es in der 

Anwesenheit von UV-Licht schon bei 0,20 mg nTiO2/L zu schwerwiegenden Effekten 

auf sublethaler und lethaler Ebene. Unter Berücksichtigung der Ergebnisse dieser 

Dissertation sowie bisherige Erkenntnisse der Wissenschaft im Allgemeinen, ist die 

derzeitige Risikoeinschätzung von Nanopartikeln möglicherweise unprotektiv, sofern 

eine Interaktion von Nanopartikeln und Umwelteinflüssen unberücksichtigt bleibt. 
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1. Introduction 

 

1.1 Nanoparticles: production, use, release and the aquatic life cycle 

 

The field of nanotechnology has tremendously expanded over the last few years and 

nowadays contributes trillions of dollars to the global economy (CORDIS, 2006). This 

will continue with a steadily increasing demand (Scheringer, 2008) for nanoparticles, 

which can be attributed to their special physicochemical properties. These properties 

provide helpful functionalities, for instance, for (bio-) medical, cosmetic, textile, and 

environmental engineering purposes (Blaser et al., 2008; Morones et al., 2005; 

Nowack and Bucheli, 2007). As a consequence of their heavy use, metal-based 

nanoparticles, such as titanium dioxide (nTiO2) or silver nanoparticles (nAg), 

especially (Gottschalk et al., 2009; Piccinno et al., 2012) are unintentionally released 

into aquatic environments (Gondikas et al., 2014; Klaine et al., 2011). The pathways 

nanoparticles travel to enter surface waters are most likely: wastewater treatment 

plant effluents, storm waters, landfill leaches, or in some cases major (car) accidents 

(Duester et al., 2014; Nowack et al., 2014; Westerhoff et al., 2011). 

Once they have entered aquatic environments, nanoparticles are subjected to 

environmentally driven modification processes. Thereafter they may represent a 

distinct threat for various organisms, depending on the specific fate of the 

nanoparticle (Baun et al., 2008). Thus, in the initial phase of their aquatic life cycle 

they may pose a higher risk for pelagic species such as daphnids, when compared to 

organisms living at the bottom of surface waters. However, as most nanoparticles 

may quickly agglomerate and settle down (Petosa et al., 2010) after their release into 

surface waters, a bigger threat for benthic organisms (living in and on the 

substratum) may exist (Li et al., 2014a) during a subsequent aquatic life cycle phase 
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of the nanoparticles. The associated fate and resulting ecotoxicity of nanoparticles is 

likely controlled and affected by multiple factors. These are comprised of three main 

aspects, which are listed, and subsequently used throughout the entire thesis, as 

defined in the following:  

i) Inherent material-properties: These are specific substance qualities that exist 

independently of the outer appearance of the material (e.g. in nano or bulk form). 

This includes, for instance, the intrinsic photocatalytical or ion-releasing abilities 

of nTiO2 or nAg, respectively. 

 ii) Nanoparticle characteristics: These mainly determine the outer appearance but 

also comprise the composition and surface coating of nanoparticles (e.g. initial 

size, surface area, crystalline structure composites of nanoparticles). 

iii) Environmental conditions: These are environmental parameters of surface 

waters, for example their ionic strength or level of pH. 

Although the ultimate nanoparticle toxicity is determined by an interplay of these 

factors, knowledge on their interaction is patchy. Therefore, a systematic 

assessment, investigating the ecotoxicity of environmentally modulated nanoparticles 

for aquatic species of different habitats is urgently needed. 
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1.2 Inherent material-properties and nanoparticle characteristics: effects on 

fate and ecotoxicity of metal-based nanoparticles 

 

1.2.1 Differentiating metal-based nanoparticles: inert vs. ion-releasing 

materials  

 

In a more general point of view, two groups of metal-based nanoparticles can be 

differentiated by their suggested fate in water, which is, among other things, 

determined by their inherent material-properties: 

i) Inert nanoparticles that cannot, or only in very limited (negligible) quantities, 

release toxic metal ions, such as nTiO2. 

ii) Metal-based nanoparticles that release high amounts of harmful ions during their 

aquatic life cycle as for instance nAg. 

Consequently, the ecotoxicity of metal-based nanoparticles is directly affected by 

their fate. Besides the release of toxic ions, other inherent material-properties can 

also affect the toxic potential of nanoparticles, for instance, the photocatalytic activity 

of semi-conductors such as nTiO2 (Fujishima et al., 2000). Particles exhibiting such 

properties can induce harmful reactive oxygen species (ROS) under ultraviolet light 

(UV-light) and thereby adversely affect aquatic organisms (Feckler et al., 2015; 

Kalčíková et al., 2014; Kim et al., 2010). However, irrespective of whether inert or 

ion-releasing nanoparticles, the extent of toxic potential not only depends on the 

material itself (inherent properties) but also on the nanoparticle characteristics (size, 

composites, coating) (Nel et al., 2006). 
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1.2.2 Particle size, composites, and coating: the role of particle characteristics 

 

Nanoparticle characteristics have the potential to significantly influence their toxicity. 

For example, studies with inert nTiO2 and ion-releasing nAg showed that smaller 

nanoparticles can reveal a higher toxicity for daphnids when compared to larger 

nanoparticles or respective bulk-material (Dabrunz et al., 2011; Kennedy et al., 

2010). Whereas for nTiO2 the reasons have not been fully uncovered yet (Dabrunz et 

al., 2011), explanations for ion-releasing nAg have been partly attributed to a higher 

surface area of the smaller nanoparticles. Amongst other things, this is suggested to 

induce a higher release of toxic metal ions and thereby potentially increasing the 

toxicity for nAg (Hoheisel et al., 2012). However, the ultimate reason for nAg toxicity 

is still under debate and therefore is not yet finally determined (sensu Völker et al., 

2013). Moreover, existing studies with nTiO2 and nAg have widely missed assessing 

the toxicity of nanoparticles systematically. Thus, the influence of single nanoparticle 

characteristics (especially size, surface area and composition), contributing to the 

overall toxicity, remains unclear. 

For example, nanoparticle composites of different crystalline structure (anstase:rutile) 

may affect the extent of nTiO2 ecotoxicity towards daphnids (Bang et al., 2011; 

Clément et al., 2013). Unfortunately, the experimental approaches used so far did not 

allow for a clear differentiation of particle size and product composition related 

effects. Therefore, the mechanisms behind the toxicity are not yet clarified. However, 

characteristics, such as the nanoparticle composition or surface coating, may either 

enhance or limit inherent material-properties of nanoparticles (Schaumann et al., in 

press). For instance, nanoparticle surface coatings can limit or increase the release 

of harmful ions (Chappell et al., 2011). This may, in the end, change the toxic 
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potential of a nanoparticle (Liu et al., 2010), which in turn also depends on the type of 

nanoparticle coating (e.g. Dobias and Bernier-Latmani, 2013). 

 

1.3 Environmental conditions affecting the fate and ecotoxicity of 

nanoparticles  

 

In addition to the inherent material-properties and nanoparticle characteristics, 

environmental conditions also determine the fate and ecotoxicity of nanoparticles for 

aquatic biota (Figure 1.1). Varying levels of ionic strength, particle interaction time 

(=aging), natural organic matter (NOM), pH and UV-light in the surrounding water, 

can significantly influence the nanoparticles fate and thus their bioavailability and 

toxicity (Schaumann et al., in press).  

For instance, when considering the initial phase of the nanoparticles' aquatic life 

cycle, the ionic strength of the receiving water plays a very important role for the 

subsequent nanoparticle fate and toxicity. A high ionic strength facilitates an 

extensive nanoparticle agglomeration, which promotes a rapid deposition ‒ as a 

function of aging duration ‒ of nanoparticles (agglomerates) from the water phase to 

the sediment (Petosa et al., 2010). This in turn decreases their bioavailability for 

pelagic life, while increasing it for benthic organisms (Li et al., 2014b). Even though 

the particle size may have significantly increased at the time the agglomerates have 

settled to the bottom ‒ reducing their total surface area and therefore their potential 

to release ROS or ions ‒ the nanoparticles can still exhibit a certain toxic potential as 

a bottom layer (Seitz et al., 2013). 
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Figure 1.1: Factors interacting with and controlling the ecotoxicity of nanoparticles 
towards aquatic life: a) inherent material-properties (e.g. release of ROS 
or ions) b) particle characteristics (coating, composition, surface area and 
initial size) c) environmental conditions in surface waters (e.g. UV-light, 
aging (interaction time), natural organic matter (NOM)). 
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Furthermore, the presence of NOM can also significantly alter the fate and toxic 

potential of nanoparticles (Blinova et al., 2012; Hall et al., 2009). When NOM is 

present in sufficient quantities (Erhayem and Sohn, 2014a) it can build a natural 

coating around the nanoparticles' surface and thereby charge stabilize the material in 

the water phase (Hall et al., 2009). This comes along with an increased exposure 

period of nanoparticles for pelagic organisms. However, comparable to man-made 

coatings, NOM coatings can also significantly lower the toxic potential of 

nanoparticles (Schaumann et al., in press). For example, when NOM coats ROS or 

ion-releasing nanoparticles a reduced ecotoxicity can be assumed due to scavenging 

properties of NOM (Brame et al., 2014). 

In addition, the predominant level of pH can impact a particle’s fate and toxicity. 

Alterations in the pH level may directly influence the surface charge of nanoparticles 

(Badawy et al., 2010) and thus its potential for adsorption including homo or 

heteroagglomeration (Romanello and Fidalgo de Cortalezzi, 2013). Lower levels of 

pH may increase the toxic potential of certain metal nanoparticles by releasing higher 

amounts of harmful ions from their surface (Liu and Hurt, 2010)  

In the case of photocatalytically active material the presence of UV-light can also 

significantly influence the toxic potential of nanoparticles by inducing the release of 

meaningful quantities of harmful ROS (Ma et al., 2012). However, after 

agglomeration and sedimentation the photocatalytically induced toxicity of the 

nanoparticles may be altered due to lower UV-light doses arriving at the bottom ‒ as 

a function of water column height and presence of NOM ‒ but also by a comparable 

smaller surface area of agglomerated particles (when compared to single particles). 

Thus, finally lower quantities of ROS may be released in a later phase of the 
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nanoparticles life cycle. However, a potential risk for benthic organisms cannot be 

excluded and thus needs to be assessed. 

 

1.4 Factors and conditions triggering ecotoxicity: are results transferable 

among different nanoparticles and organisms? 

 

The majority of studies dealing with the ecotoxicity of nanoparticles focus on a single 

factor modulating the toxicity of one specific nanoparticle product towards one test 

organism (Amiano et al., 2012; Campos et al., 2013; Fouqueray et al., 2012). This 

approach, however, widely disregards the existing variety of nanoparticles and their 

potential fate and impact under more realistic conditions. In nature, combinations of 

different factors determine the nanoparticle fate, which ultimately affects the toxicity 

for species of different habitats. The present work aims at counteracting this 

shortcoming by assessing single factors and combinations of factors affecting the 

fate and ecotoxicity of inert (nTiO2) and ion-releasing (nAg) nanoparticles. Therefore, 

experiments with sensitive representatives from the pelagic (Daphnia magna) and 

benthic (Gammarus fossarum) zone were conducted. Thereby, the present thesis 

aims at evaluating, to which extent the results are transferrable among metal-based 

particles of different inherent material-properties and organisms from different aquatic 

habitats. 
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2. Objective 

 

The present dissertation was conducted within the subproject IMPACT as part of the 

larger DFG-project INTERNANO, that consists of several working groups and aims at 

investigating the "Mobility, aging and functioning of engineered inorganic 

nanoparticles at the aquatic-terrestrial interface". This dissertation has the main 

objective to point out single factors (nanoparticle- and environmental condition 

related) and factor combinations that significantly trigger the fate and ecotoxicity of 

metal-based nanoparticles. It further aims at assessing to which extent the observed 

results are transferrable among metal-based particles of different inherent material-

properties (inert vs. ion-releasing) and organisms from pelagic and benthic habitats. 

In order to achieve the goals of this dissertation the following sub-objectives were 

developed: 

- Assessment of fate and nanoparticle characteristics (size, surface area and 

crystalline structure composition) that trigger the acute ecotoxicity of nTiO2 

towards the pelagic and benthic organisms D. magna and G. fossarum 

[Appendix A.1]. 

- Assessment of fate and environmental conditions ‒ including the impact of 

ionic strength and presence of NOM during nanoparticle aging ‒ triggering the 

acute as well as chronic ecotoxicity of nTiO2 in experiments with D. magna 

[Appendix A.2]. 

- Assessment of ambient UV-light triggering the acute ecotoxicity of inert nTiO2 

towards G. fossarum [Appendix A.3]. 

- Assessment of nanoparticle related factors (inherent material-properties and 

nanoparticle characteristics: ion release, coating, size) as well as 
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environmental conditions (presence and absence of NOM, level of pH) that 

trigger the fate and the acute as well as chronic ecotoxicity of ion-releasing 

nAg during experiments with D. magna [Appendix A.4]. 

 

3. Layout and methods 

 

The present work is a cumulative thesis, which summarizes the results of four 

separate publications. These peer-reviewed publications are provided in Appendix 

A.1 ‒ A.4. The studies within the present thesis systematically investigated 

implications of inherent material-properties, nanoparticle characteristics, and 

environmental conditions on the fate and ecotoxicity of inert and ion-releasing 

nanoparticles during experiments with representative pelagic and benthic organisms 

(Figure 3.1). Therefore, the inert and ion-releasing nanoparticles, nTiO2 and nAg, 

both exhibiting different particle characteristics (e.g. crystalline structure composition, 

size, surface coating), were selected and applied during acute and chronic toxicity 

tests under varying environmental conditions (ionic strength, particle interaction time 

(=aging), NOM, UV-light, and pH). As test species D. magna and G. fossarum were 

chosen as representatives of two different aquatic habitats, namely pelagic and 

benthic zones. All toxicity tests were accompanied by a thorough particle 

characterization in terms of particle size measurements. 
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Figure 3.1: Flowchart visualizing the structure of the thesis and information transfer 
among included sub-objectives (PART I-IV). 
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1. PART I of the present thesis systematically assessed and differentiated the role of 

fate, inherent material-properties and varying particle characteristics, of 

nanoparticles during acute toxicity tests with inert nTiO2. Therefore, investigations 

with two different nTiO2 products (A-100: 99% anatase and P25: 70% anatase and 

30% rutile), at three different average initial sizes (55; 100 and 140 nm) using the 

pelagic and benthic test organisms (Figure 3.2) D. magna and G. fossarum, 

respectively, were conducted [Appendix A.1]. During the acute toxicity tests with 

daphnids immobility was assessed after 96 h as recommended for nanoparticle 

testing with nTiO2 (Dabrunz et al., 2011). The 7 d long experiments with 

gammarids focused on the animals’ mortality and feeding activity as those are 

frequently used sensitive endpoints (Maltby et al., 2002). Each experiment was 

additionally accompanied by particle surface area determination. 

 

Figure 3.2: Experimental derivation based on the aquatic life cycle of nTiO2 varying 
in initial size and crystalline structure composition (A-100 and P25). 
Experiment 1 of PART I covers potential particle characteristic and small 
agglomerate related effects of nTiO2 towards pelagic living organisms at 
an early stage of nanoparticle life cycle. Experiment 2 of PART I focuses 
a later stage of the latter named and hence potential toxic effects on 
benthic organisms after nanoparticle agglomeration and sedimentation 
[Appendix A.1]. 
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2. PART II focused on implications of different nTiO2 aging scenarios on the fate and 

resulting ecotoxicity of the nTiO2 product A-100 (~100 nm average diameter). The 

conditions were set at aging durations of 0, 1, 3 and 6 days while exhibiting 

varying levels of ionic strength (0.00 or 9.25 mmol/L) and NOM (0.00 or 8.00 mg 

total organic carbon/L). After aging, the material was assessed during acute and 

chronic toxicity tests with daphnids [Appendix A.2]. The endpoints were 

immobilization for the 96 h acute toxicity tests and mortality as well as reproduction 

for the 21 d chronic experiments. 

3. PART III investigated the implications of environmental conditions on the fate and 

resulting ecotoxicity of the inert but photocatalytically active nTiO2 product P25 

(~100 nm average initial size). Therefore, effects of nTiO2 on the mortality and 

feeding activity of the amphipod G. fossarum were assessed in absence and 

presence of ambient UV-light intensities (UV-A and UV-B: 28.0 W/m2 and 0.9 

W/m2) [Appendix A.3].  

4. PART IV assessed and differentiated the role of fate (in terms of inherent material-

properties), varying particle characteristics, and environmental conditions for the 

ecotoxicological potential of ion-releasing nanoparticles during acute and chronic 

toxicity test with nAg and Daphnia [Appendix A.4]. In detail, experiments were 

carried out using different (n)Ag materials (AgNO3, bare nAg and citrate coated 

nAg) exhibiting a variety of particle characteristics (e.g. surface coating but also 

different average initial particle sizes ranging from 20 to 140 nm). Additionally 48 h 

acute and 21 d chronic experiments were conducted under environmental 

conditions differing in pH (levels 6.5 and 8.0) and the absence and presence of 

NOM (0.00 or 8.00 mg total organic carbon/L). In order to evaluate the role of toxic 

ions, Ag+ was quantified for each nAg type and environmental condition. Thus 
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multiple factors investigated during PART I and II were combined and assessed in 

PART IV, which allowed to evaluate for the transferability of results from inert 

nanoparticles to ion-releasing nanoparticles. 

 

4. Assessment of factors influencing nanoparticle toxicity 

 

4.1 Role of particle characteristics for nTiO2 toxicity towards daphnids and 

gammarids 

 

Results of the acute experiments with daphnids and nTiO2 clearly displayed initial 

particle size related effects for both products. Thus, 55 nm sized particles showed, for 

both A-100 and P25, an up to 7-fold, and hence statistically significantly, higher 

toxicity compared 140 nm sized nTiO2 (Figure 4.1 A) [Appendix A.1]. Findings for 

the surface area normalized 96-h EC50 values showed that smaller particles (55 and 

100 nm) did not statistically differ, independent of the product investigated (A-100 

and P25). In contrast, the surface area normalized 96-h EC50 values of 140 nm 

particles meaningfully differed from smaller (55 and 100 nm) nanoparticles (Figure 

4.1 B).  
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Figure 4.1: (A) 96-h EC50-values with respective 95% CIs for the immobilization data 
of D. magna under either A-100 or P25 exposure. (B) Initial surface area 
normalized 96-h EC50-values with respective 95% CIs for the 
immobilization data of D. magna under either A-100 or P25 exposure. 
Asterisks (*) denote statistically significant differences [Appendix A.1]. 

 

Also the product itself and thus the particle characteristic, in terms of crystalline 

structure composition, influenced the toxicity. In detail, the EC50 values of P25 

showed for each initial particle size class an up to four times lower toxicity when 

compared to A-100 (Figure 4.2 A). The initial surface area normalized EC50 values of 

both products did not statistically significantly differ, even though values of A-100 

were always smaller than those of P25 (Figure 4.2 B), which also points towards the 

importance of the surface area for the nTiO2 toxicity. The experiments with 

gammarids did not reveal any statistically significant difference for the feeding activity 

of exposed animals, independent of the product or initial particle size applied 

[Appendix A.1]. 
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Figure 4.2: (A) percentage 96-h EC50 values (with 95% CIs) for the immobilization 
data of D. magna whereas gained 96-h EC50 values of A-100 were 
related to the respective 96-h EC50-value of P25. (B) Percentage initial 
surface normalized 96-h EC50-values (with 95% CIs) for the 
immobilization data of D. magna whereas gained 96-h EC50 values of A-
100 were related to the respective 96-h EC50-value of P25. Continuous 
and dashed lines indicate reference 96-h EC50-values and respective 
95% CI of P25, while filled symbols indicate the relativized 96-h EC50-
values of A-100. NA = not assessed due to missing initial surface 
normalized 96-h EC50 value for 140-nm sized P25. Asterisks (*) denote 
statistically significant differences [Appendix A.1]. 

 

4.2 Role of nanoparticle aging under varying environmental conditions for 

the fate and toxicity of nTiO2 towards daphnids 

 

Experiments with Daphnia showed that the aging of nTiO2 (in different media, 

exhibiting varying levels of ionic strength and NOM) can significantly influence the 

particles' fate (in terms of agglomeration and sedimentation; Table 4.1) and induce 

acute as well as chronic toxicity [Appendix A.2]. 
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Table 4.1: Nominal and mean measured (± SD; n=3) nTiO2 concentrations after 0, 

  1, 3 and 6 d aging in the respective aging medium, namely ASTM- 

  medium with  and without NOM (8.00 mg TOC/L) [Appendix A.2]. 

Aging medium 
Aging          

duration 
(d) 

Nominal 
concentration 

Mean measured                     
concentration (±SD; mg/L) 

    
Test start     

0 h 
 

Test end    
96 h 

Milli-Q without 
NOM 

0 4.00 3.82 ± 0.05 
 

0.04 ± 0.00 

1 4.00 3.80 ± 0.07 
 

0.04 ± 0.00 

3 4.00 4.02 ± 0.08 
 

0.06 ± 0.00 

6 4.00 3.90 ± 0.24   0.04 ± 0.01 

Milli-Q with NOM 

0 4.00 3.71 ± 0.04   0.04 ± 0.01 

1 4.00 3.80 ± 0.04 
 

0.05 ± 0.00 

3 4.00 3.80 ± 0.03 
 

0.14 ± 0.01 

6 4.00 3.61 ± 0.05   0.05 ± 0.00 

ASTM without 
NOM 

0 4.00 3.57 ± 0.07   0.05 ± 0.00 

1 4.00 3.56 ± 0.07 
 

0.05 ± 0.00 

3 4.00 3.57 ± 0.05 
 

0.09 ± 0.00 

6 4.00 3.43 ± 0.06   0.05 ± 0.00 

ASTM with NOM 

0 4.00 3.59 ± 0.06 
 

2.59 ± 0.04 

1 4.00 3.60 ± 0.04 
 

3.28 ± 0.05 

3 4.00 3.54 ± 0.05 
 

3.41 ± 0.06 

6 4.00 3.42 ± 0.02   3.21 ± 0.06 

 

A nTiO2 aging, under conditions excluding implications of ionic strength (Milli-Q-

water: 0.0 mmol/L) did not alter the acute toxicity compared to an unaged nTiO2 

control (Figure 4.3 A), irrespective of the aging duration and level of NOM applied. 

Contrary a 6 d aging in medium with high ionic strength (ASTM-medium, in absence 

of any NOM) statistically significantly reduced the toxicity by a factor of four (Figure 

4.3 B).  
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Figure 4.3: (A) 96-h EC50 values (± 95% CI) of nTiO2 aged for 0, 1, 3 or 6 d in Milli-Q 
with (■) or without (□) NOM. (B) 96-h EC50 values (± 95% CI) of nTiO2 

previously aged for 0, 1, 3 or 6 d in ASTM-medium with (●) and without 
(○)NOM. 96-h EC50 values followed by different lower case letters are 
significantly different [Appendix A.2]. 

 

The presence of NOM during nTiO2 aging in medium with high ionic strength 

generally reduced the nanoparticle toxicity for both, acute and chronic exposure 

scenarios [Appendix A.2]. However, if nTiO2 was aged for only 1 or 3 days in 

medium of high ionic strength and in presence of NOM, a statistically significant 

increase in nTiO2 toxicity (by ~ 30%) was observed if compared to unaged nTiO2 

(Figure 4.3 B). After 6 d of aging in the same medium the toxicity dropped again by 

~60% when compared to its unaged control. For the chronic experiments with 

Daphnia comparable results were observed [Appendix A.2]. These chronic data 

displayed a higher mortality and lower fecundity of Daphnia when exposed to unaged 

rather than 3 d aged nTiO2 in absence of any NOM. The presence of NOM during 

aging reduced the chronic toxicity significantly compared to its absence. 
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Nonetheless, a 3 d long aging in the presence of NOM significantly increased the 

toxicity when compared to a 0 d aging in the same medium [Appendix A.3]. 

 

4.3 Role of environmental conditions for the fate and toxicity of nTiO2 

towards gammarids 

 

The experiments with nTiO2 displayed significant implications for the survival and 

feeding activity of Gammarus in the presence of UV-light [Appendix A.3]. In this 

case the mortality of gammarids was by up to 90% statistically significantly increased 

(Figure 4.4) and the feeding activity was significantly reduced (≥50%; Figure 4.5).  

 

Figure 4.4: Proportion (with 95% CI) of dead gammarids exposed to different nTiO2 
concentrations in combination with UV-light. Asterisks denote significant 
differences between treatments [Appendix A.3]. 
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Figure 4.5: Mean (with 95% CI) feeding rate of G. fossarum exposed to 0.00, 0.20 or 
2.00 mg nTiO2/L for seven days in darkness or under ambient UV-light 
during the second feeding activity trial. Asterisks denote significant 
differences with p < 0.05 (*) and p < 0.001 (***) based on Dunnett’s test 
for multiple comparisons (n = 19-20), respectively. Due to the 90% 
mortality recorded in the 2.00 mg nTiO2/L with UV-light, this treatment 
was not included in the further statistical analysis [Appendix A.3]. 

 

4.4 Role of particle characteristics, environmental conditions and fate for 

nAg toxicity towards daphnids 

 

Also the acute and chronic effects of nAg on D. magna were statistically significantly 

influenced by particle characteristics, environmental conditions and fate (Figure 4.6) 

[Appendix A.4]. Acute experiments showed that AgNO3 ‒ as a pure Ag ion source 

(Table 4.2) ‒ was, with 48-h EC50 values ranging from 1.70 to 3.00 µg/L, the most 

toxic silver product independent of the environmental conditions (pH 6.5 or 8.0, NOM 

of 0.00 or 8.00 mg TOC/L). The 140 nm initial sized bare nAg, revealed 48-h EC50 

values ranging from 3.90 (pH 6.5 in absence of NOM) to 33.40 µg/L (pH 8.0 in 

presence of NOM) and showed the highest release of Ag+ among the nAg materials 
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tested (Table 4.2). Furthermore, the bare particles were significantly more toxic and 

released higher quantities of Ag+ compared to citrate coated nAg (Cit nAg), 

independent of the Cit nAg initial size and environmental condition applied (Table 

4.2; Figure 4.7 A). Comparisons among the different initial sizes of Cit nAg showed 

that particles of 20 nm were statistically significantly more toxic than 60 and 100 nm 

initial-sized particles (Figure 4.7 A). Also 60 nm particles displayed a higher toxicity 

compared to 100 nm Cit nAg. This particle-size-dependent toxicity of Cit nAg was 

only partly positively correlated with an increasing Ag+ release of smaller particles 

compared to larger ones (Table 4.2). 

Environmental conditions significantly altered the acute and chronic toxicity of the 

nAg materials tested. Generally higher levels of NOM and pH reduced the silver ion 

release (Table 4.2) and ecotoxicity (Figure 4.6 and 4.7 A-C) [Appendix A.4]. 

 

Figure 4.6: Schematic draft illustrating nanoparticle and environmental condition 
related factors that influence the silver (nanoparticle) toxicity [Appendix 
A.4]. 
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Table 4.2: Mean (±SE; n=3) Ag concentrations (µg/L) for each silver material and environmental condition (NOM and pH level) 
investigated. Measurements were performed at different time intervals during the acute and chronic experiments by 
inductively coupled plasma mass spectrometry (Seitz et al., 2013). All samples of the acute toxicity tests were also 
subjected to an ultracentrifugation process to analyze a respective Ag+ release after 48 h. NA: data not evaluated 
[Appendix A.4]. 

Acute toxicity test 

 Silver 
material 

- NOM   + NOM 

 
pH 6.5 

 
pH 8.0 

  
pH 6.5 

 
pH 8.0 

nominal 0 h 48 h 48 h
a
   0 h 48 h 48 h

a
   nominal 0 h 48 h 48 h

a
   0 h 48 h 48 h

a
 

AgNO3 32.4 
27.0     

(± 0.1) 
27.7    

(± 0.2) 
27.5     

(± 0.1)  
31.3         

(± 0.1) 
24.6     

(± 0.1) 
22.1    

(± 0.1)  
32.4 

27.3    
(± 0.1) 

24.6    
(± 0.1) 

18.0    
(± 0.1)  

30.0          
(± 0.1) 

24.8           
(± 0.14) 

32.0      
(± 0.2) 

140 nm 
bare nAg 

62.5 
42.8 

(±0.8) 
39.5 

(±0.6) 
5.5 

(±0.0)  
38.1 

(±0.4) 
29.5        

(±0.5) 
6.0      

(± 2.5)  
62.5 

70.2    
(± 0.5) 

58.9    
(± 0.4) 

3.7     
(± 0.1)  

64.1       
(± 0.13) 

40.7      
(± 0.7) 

3.1       
(± 0.0) 

20 nm 
Cit nAg 

80.0 
56.1     

(± 0.6) 
39.5 

(±0.4) 
3.4       

(± 0.9)  
50.8           

(± 0.6) 
37.1     

(± 0.6) 
5.0      

(± 0.0)  
80 

62.2    
(± 0.3) 

67.0    
(± 1.1) 

2.0     
(± 1.2)  

67.5       
(± 0.4) 

62.0     
(± 0.7) 

0.8       
(± 0.8) 

60 nm 
Cit nAg 

93.8 
27.0     

(± 0.7) 
22.0    

(± 0.6) 
0.3     

(± 0.0 )  
26.0         

(± 0.5) 
21.8     

(± 0.5) 
1.8     

(± 0.0)  
NA NA NA NA 

 
NA NA NA 

100 nm 
Cit nAg 

75.0 
41.3     

(± 0.8 ) 
33.7    

(± 0.8) 
2.4     

(± 0.0 )  
36.6         

(± 0.7) 
21.9     

(± 0.6) 
1.9      

(± 0.1)  
NA NA NA NA 

 
NA NA NA 

Chronic toxicity test 

    0 h   72 h   0 h   72 h     0 h   72 h   0 h   72 h 

~30 nm 
Cit nAg  

73.2     
(± 0.1 )  

49.2     
(± 0.1)  

73.2     
(± 0.1 )  

51.3    
(± 0.1)   

78.4    
(± 1.5)  

51.7    
(± 1.3)  

75.7  
(±0.1 )  

69.5            
(± 0.1) 

afollowing centrifugation,  resulting in an Ag concentration comprising of very small nAg (<2nm) and Ag+ ions. 
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Figure 4.7: 48-h EC50 values (with 95 % CIs) of different silver materials at varying 
pH levels 6.5 and 8.0 in the (+) presence and (-) absence of dissolved 
organic matter (NOM; 0.00 and 8.00 mg TOC/L). Asterisks (*) denote 
statistically significant differences between 48-h EC50 values [Appendix 
A.4]. 
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5. Synthesis 

 

5.1 Effects of the inherent material-properties and nanoparticle 

characteristics 

 

The results of the present thesis highlight the importance of inherent material-

properties and particle characteristics for the fate and ecotoxicological potential of 

inert and ion-releasing nanoparticles. 

As a consequence of their distinct inherent material-properties, resulting in different 

modes of toxic action, nTiO2 and nAg displayed varying levels of toxicity during both 

acute and chronic experiments with daphnids [Appendix A.1, A.2 and A.4]. Even 

after 96 h, the inert nTiO2 revealed higher EC50 compared to 48-h EC50 values of the 

ion-releasing nAg, independent of particle characteristics or environmental conditions 

applied [Appendix A.1, A.2 and A.4]. Explanations can be seen in the high toxicity of 

Ag+ ions (Ratte, 1999), that were released in meaningful amounts during the 

experiments with nAg [Appendix A.4]. These ions are known to induce ROS, interact 

with cellular enzymes and have the potential to mimic endogenous ions (Bianchini et 

al., 2002; Völker et al., 2013), inducing adverse effects in daphnids rapidly (Lam and 

Wang, 2006; Rosenfeldt et al., 2014). 

Furthermore, only limited quantities of harmful ROS may have been released under 

the light conditions in the experiments with daphnids and nTiO2 [Appendix A.1, A.2] 

(Seitz et al., 2012). Thus, other modes of toxic action can be suggested for nTiO2 

during those experiments. For instance, a biological surface coating of test organisms 

affecting the mobility and molting of the organisms can be seen as a potential 

pathway of toxicity (Dabrunz et al., 2011; Noss et al., 2013). This suggests that the 
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adsorption potential of nTiO2 on biota plays an important role during acute toxicity 

test with daphnids [Appendix A.1 and A.2]. Nevertheless, nTiO2 may act differently 

during chronic experiments due to the presence of algae. There, nTiO2 compete with 

algae and induces implications in the energy uptake after being consumed by 

Daphnia. In detail, ingested nTiO2 agglomerates can lower the amount of consumed 

algae (Rosenkranz et al., 2009; Zhu et al., 2010), blocking the gut and ultimately 

affecting the fecundity of the animals [Appendix A.2]. 

However, besides the inherent material-properties the investigated particle 

characteristics also play an important role for the nanoparticle fate and toxicity. Thus, 

independent of the nanoparticle used, the initial particle size of nTiO2 and (Cit) nAg 

statistically significantly affected the mobility of daphnids [Appendix A.1 and A.4]. 

For both materials, smaller initial particle sizes revealed a higher acute toxicity 

compared to larger ones. In the case of nTiO2, presumably an adsorption of smaller 

relative to larger nanoparticles on the test organisms' carapace, may have led to a 

more dense biological surface coating of the animals, affecting the extent of toxic 

potential. This is in line with findings of the nTiO2 surface area normalized EC50 

values, showing statistically significant differences for nanoparticles of <100 nm sizes 

and 140 nm. Thus the nanoparticle surface area serves as explanatory variable for a 

higher nTiO2 toxicity of particles smaller or equal to 100 nm. 

In case of the ion-releasing nAg, the surface area also played an important role 

(Hoheisel et al., 2012). Those materials are, amongst others, suggested to induce 

toxic effects according to the amount of Ag+ ions released (Völker et al., 2013; Yang 

et al., 2012). Other sole nanoparticle related aspects, such as size, surface, and 

shape are also suggested to induce nAg toxicity (Asharani et al., 2008; Fabrega et 

al., 2009). However, related to their particle size, smaller nAg exhibit a higher surface 
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to volume ratio, and therefore release a higher amount of Ag+ ions in a shorter time, 

which finally results in a significantly higher toxicity, when compared to bigger 

particles (Hoheisel et al., 2012; Kennedy et al., 2010). This was also displayed for the 

different Cit nAg initial sizes in the work of the present thesis [Appendix A.4]. 

The particle composition, including the crystalline structure of nTiO2, also significantly 

affected the extent of nanoparticle toxicity [Appendix A.1]. For those nTiO2 products, 

that contain higher quantities of the crystalline structure anatase, a higher toxicity can 

be suggested compared to compositions including rutile [Appendix A.1]. Other 

researchers have also observed this phenomenon, while their experimental approach 

did not allow for a separation of particle size and product composition (Bang et al., 

2011; Clément et al., 2013). The present work took care of this shortcoming and 

revealed clear differences in the toxicity of A-100 and P25, which can be mainly 

attributed to higher surface area [Appendix A.1] and reactivity of anatase when 

compared to rutile or a mixture of both (Cong and Xu, 2012). This may have 

promoted an increased toxicity for daphnids, by inducing a more dense biological 

surface coating or an elevated ROS release. 

Nanoparticle coatings also play an important role for the resulting ecotoxicity of 

nanoparticles. In the present work nTiO2 that was most likely naturally coated with 

NOM after its aging process revealed a significantly lower toxicity compared to bare 

nTiO2 [Appendiy A.2]. Also, bare nAg released higher quantities of ions compared to 

Cit nAg and consequently displayed a higher toxic potential. Moreover, during 

experiments with nAg and NOM, most likely an additional coating with organic matter 

of the nanoparticles took place and further decreased the toxicity of the nAg 

[Appendix A.4]. Coatings can limit the release of harmful ROS and metal ions 

(Brame et al., 2014; Liu and Hurt, 2010) and thereby lower their toxic potential. 
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Natural coatings with humic or fulvic acid contents can affect the surface charge and 

thereby the adsorption potential of nanoparticles onto aquatic biota (sensu Seitz et 

al., 2013), [Appendix A.2]. This alters their interaction potential with biological 

surfaces and hence the ultimate toxicity as seen for both materials, namely nTiO2 

and nAg, in the present work [Appendix A.2 and A.4]. However, when the coating 

itself has toxic properties, a higher nanoparticle toxicity may also be observed (sensu 

Cho et al., 2009). 

 

5.2 Effects of environmental conditions on fate and toxicity 

 

Environmental conditions can diversely alter the fate and toxicity of inert and ion-

releasing nanoparticles [Appendix A.1, A.2, A.3 and A.4]. For example, conditions 

exhibiting high ionic strengths (and low amounts of NOM) are known to induce a fast 

nanoparticle agglomeration (Petosa et al., 2010) and subsequent sedimentation 

(Dabrunz et al., 2011). Therefore, the concentration of nanoparticles during their 

suggested aquatic life cycle in surface waters may rapidly decrease in the water 

phase while increase at the bottom. Consequently, this alters the potential risk for 

pelagic and benthic life [Appendix A.1, A.2, A.3, and A.4]. The present work 

addresses this question, among others, by investigating: i) effects of unaged nTiO2 

towards pelagic (daphnids) and benthic organisms (gammarids) [Appendix A.1]; ii) 

effects of nTiO2 after their interaction with environmental conditions (ionic strength 

and NOM) for different periods of time (=aging) on the more sensitive organism 

Daphnia [Appendix A.2]; iii) effects of nTiO2 in the presence of UV-light using the 

benthic test organisms, namely Gammarus [Appendix A.3]. 
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The pelagic organism Daphnia was more sensitive towards unaged nTiO2 (96-h EC50 

values of 55 nm sized A-100: 0.74 mg/L) when compared to gammarids [Appendix 

A.1 and A.3]. In contrast, Gammarus showed no adverse effects – irrespective of the 

nTiO2 characteristics – on mortality and feeding activity at concentrations as high as 

5.00 mg nTiO2/L during PART I of the present work [Appendix A.1]. However, the 

findings of a combined exposure of gammarids to nTiO2 and UV-light during PART III 

indicated significant implications on gammarid mortality and feeding activity at nTiO2 

concentrations as low as 0.20 mg/L [Appendix A.3]. This is in line with other studies 

using the same test organism and similar testing conditions, detecting effects of 

nTiO2 only in the presence of UV-light (Kalčíková et al., 2014). The toxicity can be 

explained by the presence of harmful ROS, which are formed by the 

photocatalytically active nTiO2 under the given UV-light conditions (Feckler et al., 

2015). The ROS themselves may have either lowered the food quality (Feckler et al., 

2015) and thus the feeding activity of the organisms or induced toxicity by damaging 

biomembranes and causing lipid peroxidation (Cabiscol et al., 2010) in gammarids. 

Reasons for the difference in the sensitivity of Daphnia and Gammarus can be 

related to habitat specific adaptations. Whereas benthic life is most likely used to 

relatively high quantities of natural colloids or suspended sediments, pelagic living 

organisms might be more susceptible to ultra fine particles (in sensu Arruda et al., 

1983; Levine et al., 2005). 

Acute and chronic experiments with differently aged nTiO2 (A-100) and Daphnia 

[Appendix A.2] highlighted the role of environmental conditions for the fate and 

extent of nTiO2 toxicity. An aging in medium excluding implications of ionic strength 

(0.00 mmol/L) did not change the toxicity of A-100 independent from aging duration 

and the level of NOM applied (0.00 or 8.00 mg TOC/L). This can be attributed to a 
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largely unchanged particle size at the beginning of the respective experiments. In 

contrast, an aging in the presence of a high ionic strength (9.25 mmol/L) and 

absence of NOM induced a strong particle agglomeration during longer aging periods 

(6 d). This process reduced the toxicity drastically (by a factor of up to 4). 

Nevertheless, when the aging lasted 3 days and took place in presence of NOM an 

increased toxicity by up to 30% was observed, in comparison to the unaged control. 

Such an increase in toxicity after aging can be explained by a NOM induced 

stabilization of particles in a size range that is preferably ingested by daphnids 

(Figure 5.1). This may have led to an increased uptake of nTiO2 agglomerates, which 

affected the fecundity and survival of Daphnia most likely by limiting their energy 

availability (Rosenkranz et al., 2009; Zhu et al., 2010) [Appendix A.2]. 

 

Figure 5.1: Schematic draft of the preferably ingested particle size range of D. 
magna [Appendix A.2]. 
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The presence of NOM not only lowered the acute and chronic toxicity of the nTiO2 

product A-100 for Daphnia, it further decreased the toxicity of nAg [Appendix A.2 

and A.4]. This mitigation like effect of NOM for nanoparticle toxicity is in line with 

other studies (Gao et al., 2012; Hall et al., 2009). The phenomenon may be 

explained by the adsorption (=coating) of NOM onto the nanoparticles surface. When 

the NOM surface coating is dense enough (depending on the NOM and nanoparticle 

concentration given) the nanoparticles become charge stabilized (Erhayem and 

Sohn, 2014b). Furthermore, when NOM also adsorbs onto the surface of biota, 

electro static repulsion forces may act between nanoparticle and the organism (Lin et 

al., 2012). As a consequence NOM prevents a biological surface coating of 

nanoparticles on the organisms and thus can reduce the nanoparticle toxicity. 

Moreover, NOM can also act as ROS or ion scavenging/complexing material (Brame 

et al., 2014), making them less bioavailable and therefore less harmful (Gao et al., 

2012). 

Also, pH affected the toxicity of nanoparticles [Appendix A.4]. For instance, pH 

levels of 6.5 revealed a significantly higher toxicity compared to identical exposures 

at pH 8.0 for 20 nm Cit nAg and 140 nm bare nAg [Appendix A.4]. Explanations can 

be related to an increased nAg dissolution rate under lower pH levels (Liu and Hurt, 

2010). Thus under such environmental conditions higher amounts of toxic metal ions 

can be released in a shorter time from ion-releasing nanoparticles as e.g. displayed 

for zinc oxide or silver nanoparticles (Bian et al., 2011; Liu and Hurt, 2010). This 

increases their toxic potential immediately after their introduction in corresponding 

surface waters. 

Finally, nanoparticle toxicity is significantly affected by the environmental conditions, 

ionic strength, interaction time (=aging duration), NOM content pH and UV-light. 
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These factors changed the extent of the inherent material-properties (ROS or ion 

release), the particle characteristics (size, surface charge or dissolution rate) as well 

as the fate and thereby the toxic potential of nanoparticles [Appendix A.1, A.2, A.3 

and A.4]. 

 

6. Conclusion and perspective 

 

In summary the present thesis has comprehensively shown that nanoparticle toxicity 

not only depends on inherent material-properties and nanoparticle characteristics but 

also strongly on environmental conditions of the surrounding medium [Appendix A.1, 

A.2, A.3 and A.4]. Moreover, a partial transferability of results among inert and ion-

releasing nanoparticles was uncovered. In this respect, the nanoparticle initial size 

was a main driver for nTiO2 and nAg induced ecotoxicity towards Daphnia [Appendix 

A.1 and A.4]. Also, the presence of NOM meaningfully reduced nanoparticle toxicity, 

independent of the inherent material-properties or characteristics of the tested 

nanoparticles [Appendix A.1, A.2 and A.4]. 

Finally, when abstracting from the present thesis the lowest observed effect 

concentration (=LOEC; 0.20 mg nTiO2/L in presence of UV-light; [Appendix A.3]) 

and comparing this value with predictions for environmental concentrations (e.g. 

0.021 to 4.000 µg nTiO2/L in surface waters and sewage treatment effluents 

(Gottschalk et al., 2009)) a risk for aquatic life cannot be excluded (see also Feckler 

et al., 2015). Moreover, it suggests that a risk for aquatic life already exists, 

especially when considering the steadily increasing demand for nanoparticles 

(Scheringer, 2008), the varying toxic potential of different nanoparticle products and 

the potentially higher sensitivity of other organisms [Appendix A.1]. Consequently, 
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the currently applied approaches that widely disregard environmentally relevant 

conditions during the ecotoxicological evaluation of nanoparticles, may 

underestimate their potential risk in nature. 

Furthermore, the present thesis provides fundamental evidence that more research in 

the specialized field of "nanotoxicology" is urgently needed. Prospectively, further 

nanoparticle interactions considering various environmental conditions but also other 

chemical stressors should, due to its field relevant scenario, be systematically 

assessed. As a result of the tremendous diversity of nanoparticle characteristics they 

may further complicate the already existing challenge of mixture toxicology for 

classical chemicals (Schäfer et al., 2013). In this context, for instance, studies 

investigating the combined toxicity of nTiO2 and the heavy metal copper showed 

different outcomes for the mobility of Daphnia. The nTiO2 either enhanced (Fan et al., 

2011) or mitigated (Rosenfeldt et al., 2014) the copper toxicity. Further environmental 

conditions may additionally affect interactions of nanoparticles and chemical 

stressors (Rosenfeldt et al., 2015). For instance, an UV-light irradiation of nTiO2 and 

the carbamate Pirimicarb has shown to decrease the insecticide toxicity significantly 

compared to conditions of total darkness or absence of nTiO2 (Seitz et al., 2012). 

Thus, based on the findings of the present thesis and published data it seems 

sensible to revisit environmental risk assessment and adapt it to the special needs of 

nanoparticles, by considering, for instance, different characteristics and 

environmental conditions during their ecotoxicological testing. This would allow a 

more precise risk prediction of these novel stressors for aquatic life. 
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Highlights 

 nTiO2  toxicity is triggered inter alia by its initial particle size and surface area 

 Crystalline structure composition of nTiO2 products affects its ecotoxicological 

potential  

 Toxic potential of nTiO2 decreases during its aquatic life cycle (=after 

sedimentation)  

 nTiO2 toxicity differs among representatives of different spatial and ecological 

niches  
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Abstract 

 

Nanoparticle toxicity depends amongst others on particle characteristics and 

nanoparticle behavior during their aquatic life cycle. Aquatic organisms may be 

exposed to nanoparticle agglomerates of varying size, while lager agglomerates after 

settling rather affect benthic organisms. In this context, the present study 

systematically examined the role of particle characteristics, i.e. crystalline structure 

composition (anatase and mixture of anatase-rutile), initial particle size (55-, 100-, 

and 140-nm) and surface area, in the toxicity of titanium dioxide nanoparticles 

(nTiO2) to the pelagic filter feeder Daphnia magna (n=4) and the benthic amphipod 

Gammarus fossarum (n=30). Smaller initial particles sizes (i.e. 55-nm) and anatase 

based particles showed an approximately 90% lower Daphnia EC50-value compared 

to its respective counterpart. Most importantly, particle surface normalized EC50-

values significantly differed for nanoparticles equal to or below 100-nm in size from 

140-nm sized particles. Hence, these data suggest that the reactive initial surface 

area may explain the ecotoxicological potential of different particle size classes only if 

their size is smaller or around 100 nm. In contrast to Daphnia, Gammarus was not 

affected by nTiO2 concentrations of up to 5.00 mg/L, irrespective of their 

characteristics. This indicates fundamental differences in the toxicity of nTiO2 during 

its aquatic life cycle mediated by alterations in their characteristics over time.  

 

Keywords: Daphnia magna, Gammarus fossarum, crystallinity, toxicity, Crustacea  
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Introduction 

 

The utilization of engineered nanoparticles is still increasing and expected to reach a 

$2.4 trillion contribution to the global economy by 2015 (Pearce, 2012). Amongst 

others titanium dioxide nanoparticles (nTiO2) are heavily used as they have multiple 

advantageous properties (Fujishima et al., 2000; Schulz et al., 2002), making them a 

desirable additive for care-, remediation- and self-cleaning products (Di Paola et al., 

2012; Kaegi et al., 2008; Sun et al., 2007). This frequent application at high quantities 

(Scheringer, 2008) inevitably results in nTiO2-release into aquatic ecosystems for 

example through wastewater treatment plant effluents (Klaine et al., 2011; Westerhoff 

et al., 2011), wash off from facades (Kaegi et al., 2008) or major accidents during 

transport (Nowack et al., 2014).  

In this context, scientists investigated the acute and chronic ecotoxicological potential 

of nTiO2 on aquatic organisms mainly employing the standard test organism Daphnia 

magna (e.g. Dabrunz et al., 2011; Dalai et al., 2013). These studies exhibited median 

effective and lethal concentrations ranging from low mg/L to high g/L levels (cf. 

Dabrunz et al., 2011; Heinlaan et al., 2008). This broad range of nTiO2 

concentrations causing adverse effects among different studies is frequently 

attributed to varying particle properties such as initial particle size, surface area and 

crystalline structure composition, but was not yet empirically underpinned (cf. 

Dabrunz et al., 2011; Seitz et al., 2013). Moreover, once introduced into the aquatic 

environment, nTiO2 start their aquatic life cycle being subjected to transformation 

processes that may have substantial implications on their fate and toxicity (Fig. 1). In 

this regard, the agglomeration of particles (triggered for instance by the ionic strength 

in the surface water (Petosa et al., 2010)) affect their sedimentation as previously 
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shown for instance by Dabrunz et al. (2011). This suggests that nTiO2 pose initially, 

and hence directly following their release into the aquatic ecosystem, a risk for 

pelagic organisms such as daphnids (Dabrunz et al., 2011; Li et al., 2014a). At the 

later stages of their aquatic life cycle, nTiO2 will settle down as a result of 

agglomeration processes potentially threatening benthic life (e.g. leaf shredding 

amphipods) (Bundschuh et al., 2011b; Li et al., 2014b). 

 

 

Figure 1: Experimental derivation based on the aquatic life cycle of nTiO2 varying 
in initial size and crystalline composition (P25 and A-100). Experiment 1 
covers potential particle characteristic and small agglomerate related 
effects of nTiO2 towards pelagic living organisms at an early stage of 
nanoparticle life cycle. Experiment 2 focuses a later stage of the latter 
named and hence potential toxic effects on benthic organisms after 
nanoparticle agglomeration and sedimentation. 

 

However, virtually nothing is known on how nanoparticles, in particular nTiO2, with 

differing initial characteristics (e.g. initial particle size, surface area and crystalline 

structure composition) alter their ecotoxicological potential in the course of this 

aquatic life cycle.  
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Therefore, the present study assessed the role of nTiO2's initial size, total initial 

surface area, and crystalline structure composition systematically on its toxicity to the 

pelagic filter feeder D. magna and the benthic leaf shredding amphipod Gammarus 

fossarum. The scenarios were achieved by applying the nTiO2 products P25 and A-

100, which differed in their crystalline structure composition either containing a 

mixture of anatase (70%) and rutile (30%) or exclusively anatase (99%), respectively, 

at three initial particle size classes each (55-, 100-, 140-nm), which were chosen 

based on published studies (Dabrunz et al., 2011). Both test species experienced 

similar static nTiO2 exposure conditions. While daphnids were checked after 96 h for 

immobilization, for gammarids, a sublethal response in the species’ feeding rate on 

leaf material was chosen as endpoint since it is robust, sensitive and ecologically 

meaningful (Maltby et al., 2002).  
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Materials and Methods 

 

Nanoparticle characterization 

 

Both titanium dioxide products were purchased as powders, either from Evonik (P25, 

Germany) or Crenox GmbH (A-100, Germany), featuring an advertised primary 

particle size of 21 nm and 6 nm, for P25 (~70% anatase and ~30% rutile) and A-100 

(99% anatase), respectively. Their advertised surface area is approximately 50 (P25) 

and 230 m2/g (A-100). In order to compensate for the differences in the respective 

advertised primary particle sizes among both materials for each product, dispersant 

and additive free, size homogenized, stable suspensions of three particle size 

classes (namely 55-, 100- and 140-nm) were obtained by stirred media milling 

(PML2, Bühler AG, Switzerland). Subsequently centrifugation was accomplished in 

order to remove residual coarse material. Prior to their application each stock 

suspension was analysed for its particle size distribution (intensity weighted) as well 

as its average initial particle surface area per volume (cf. Treuel et al., 2010) using 

dynamic light scattering (DelsaNano C, Beckman Coulter, Germany) and 

nanoparticle tracking analysis (LM20, NanoSight Ltd., United Kingdom), respectively 

(Tab. 1). Additionally, scanning electron microscope analyses were performed to 

verify the initial particle size of each applied nTiO2 product (SI Fig. 1 A-F). Moreover, 

the average particle size in the test medium was monitored after 24 h and at test 

termination of all bioassays (Tab. 1). However for the particle size monitoring, 3-mL 

samples were taken 2 cm beneath the water surface (=middle of the water column) 

from the center of one randomly selected replicate of a 2 mg nTiO2/L concentration 

(enabling a sufficient intensity) ensuring a reliable monitoring of nTiO2 over the whole 

study duration.  
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Table 1: Mean particle size (±SD; n=3) and the respective polydispersity indices (=PI) of two different nTiO2 products (P25 and A-
100) with varying initial particle sizes (55-, 100- and 140-nm) applied to two different test media (ASTM-M and SAM-S5 
medium) in the time course of 0, 24, 96 or 168 h. NA indicates invalid DLS measurements due to low scattered light 
intensities. 

 

 

 

 

 

 

 

 

 

 

 

 

nominal initial 

particle  

size 

  ASTM medium 

P25  A-100 

 

measured size (nm) PI  

 

measured size (nm) PI 

t0 h t24 h t96 h   
 

t0 h t24 h t96 h   

55-nm 59.6 (± 1.9) 1576.3 (± 107.4)   NA 0.119 - 0.603  56.8 (± 3.7) 1947.8 (± 103.6) NA 0.040 - 0.601 

100-nm 95.4 (± 1.1) 1161.6 (±95.6) NA 0.139 - 0.443  80.0 (± 3.5) 1397.8 (± 153.2) NA 0.042 - 0.517 

140-nm 145.2 (± 3.2) 1222.9 (± 59.3) 1461.1 (± 90.2) 0.133 - 0.509  126.9 (± 2.1) 855.4 (± 7.5) NA 0.141 - 0.357 

 

  SAM-S5 medium 

 

t0 h t24 h t168 h 

 

 
t0 h t24 h t168 h 

 55-nm 59.6 (± 1.9) 946.8 (± 154.6) NA 0.119 - 0.469  56.8 (± 3.7) 1016.1 (± 122.8) NA 0.040 - 0.452 

100-nm 95.4 (± 1.1) 522.8 (± 87.0) NA 0.139 - 0.233  80.0 (± 3.5) 935.7 (± 150.9) NA 0.042 - 0.480 

140-nm 145.2 (± 3.2) 636.8 (± 83.2) NA 0.133 - 0.331  126.9 (± 2.1) 360.6 (± 34.1) NA 0.141 - 0.209 



54 
 

Test organisms 

 

Daphnia magna (Eurofins-GAB, Germany) were kept in permanent culture within 

climate controlled chambers (Weiss Environmental technology Inc., Germany) with a 

16:8 h (light:dark) photoperiod at 20±1°C. Organisms were cultured in groups of 25 

animals using 1.5 L reconstituted hard freshwater (=ASTM-M) according to the ASTM 

International standard guide E729 (ASTM, 2007) enriched with selenium, vitamins 

(thiamine hydrochloride, cyanocobalamine, biotine) and seaweed extract (Marinure®, 

Glenside, Scotland; cf. Seitz et al., 2013). The medium was renewed three times a 

week, while daphnids were fed with the green algae Desmodesmus sp. on a daily 

basis with an equivalent of 200 µg C per organism. 

 

Gammarus fossarum were obtained from the Hainbach (a near natural stream close 

to Landau, Germany; 49° 14' 19'' N, 8° 02' 59'' E) and stepwise acclimatized to 

reconstituted water (SAM-5S Borgmann et al., 1998) as well as given laboratory 

conditions. For toxicity testing only male gammarids (identified by their position in the 

precopular pair) with a cephalothorax diameter between 1.6 and 2.0 mm were used, 

whereas organisms were sorted using a passive underwater separation technique 

(Franke, 1977). During their acclimatization, gammarids were fed ad libitum with 

preconditioned black alder leafs (Alnus glutinosa L. Gaertn.).  
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Preparation of leaf discs 

 

Leaf discs, which served as food during the feeding activity tests with Gammarus, 

were prepared similar to the method described by Bundschuh et al. (2011a). Briefly, 

senescent but undecomposed leaves of A. glutinosa were collected shortly before 

leaf fall in October 2011 from a pristine area close to Landau, Germany (49°33'N, 

8°02'E). Leaves were frozen and stored at -20°C until further processing. After 

thawing, discs (2.0 cm diameter) were cut from leaves with a cork borer and 

subjected to a conditioning process using a nutrient medium (Dang et al., 2005) 

together with naturally inoculated alder leaves, previously exposed for two weeks in 

the Rodenbach (a near natural stream close to Mannheim, Germany; 49° 33' 59'' N, 

8° 02' 33'' E). This procedure ensured the establishment of a near natural microbial 

community, inter alia bacteria and fungi, on the surface of the discs that enhances 

their palatability for shredding macroinvertebrates (Bärlocher, 1985). After a 

conditioning period of 10 d, leaf discs were dried at 60 °C to constant weight and 

weighed to the nearest 0.01 mg, which ensured a precise measurement of the 

amphipods' feeding rate (cf. Maltby et al., 2002) after the feeding activity tests. 

However, prior to the use of the leaf discs they were re-soaked for 48 h in SAM-5S to 

avoid floating on the surface of the test medium (Bundschuh et al., 2011b).  
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Toxicity testing 

 

Experiment 1: acute toxicity tests with D. magna 

 

During a series of acute toxicity tests, daphnids were exposed to P25 or A-100 of the 

particle size classes 55-, 100- and 140-nm (Tab. 1). Briefly, ASTM-M was used (see 

section Test organisms), while neither food nor seaweed extract was added. Each 

acute toxicity test was conducted according to the OECD guideline 202 (OECD, 

2004), however, considering an elongated study duration of 96 h as proposed for 

nanoparticle testing (Dabrunz et al., 2011). Groups (n=4) of five juvenile daphnids 

(<24 h) were exposed to 0.0, 0.5, 1.0, 2.0, 4.0, 8.0 and 16.0 mg nTiO2/L and checked 

for immobilization every 24 h. During an additional experiment (SI section 1) potential 

effects of nTiO2 (P25 and A-100) on Daphnia's molting behavior were investigated 

(SI Tab. 1). All tests were conducted under temperature and light conditions 

described in section Test organism. 

 

Experiment 2: feeding activity tests with G. fossarum 

 

Each of the six feeding activity bioassays carried out here was initiated by placing 

one specimen of G. fossarum together with two preconditioned and preweighed leaf 

discs in the respective nTiO2 test solution. Therefore, 200-mL plastic beakers (n=30) 

were filled with 150 mL of SAM-5S and set to initial nTiO2 concentrations, namely of 

0.0, 0.1, 0.5, 1.0 and 5.0 mg nTiO2/L, which were selected based on published data 
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(cf. Bundschuh et al., 2011b). Moreover, for each of the treatments, five further test 

vessels only containing SAM-5S and two preweighed leaf discs were set up in order 

to account and correct for microbial decomposition and handling losses of leaf 

material during the experiment. All experiments were conducted in total darkness at 

20±1 °C, while each beaker was continuously aerated. After 7 d of exposure, all living 

animals, remaining leaf discs as well as any leaf tissue shredded off were removed 

and rinsed in distilled water. Afterwards, the leaf material was dried at 60 °C to 

constant weight and weighed to the nearest 0.01 mg. Finally, mortality, molting and 

the feeding rate were determined, whereas the latter was calculated as described in 

detail by Maltby et al. (2002). 

 

Data analysis 

 

In order to determine respective 96-h EC50-values for nTiO2, the immobilization data 

of each acute toxicity test with Daphnia was (if necessary) adjusted using Abbott's 

formula (correction for control mortality) and subsequently analyzed with adequate 

dose-response models (SI Fig. 2 A-F and 3 A-E), while considering Akaike’s 

information criterion and visual expert judgment as quality control  for model 

selection. Subsequently, gained EC50-values were compared and assessed for 

statistically significant differences among particle sizes and crystalline structure via 

confidence interval (CI) testing (Wheeler et al., 2006). The respective surface 

normalized 96-h EC50-values were similarly modeled, while the initially used 

independent variable "concentration" was replaced by a new variable, which resulted 

from a multiplication of the applied nTiO2 stock solution volume and the respective 
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initial surface area gained by NTA measurements (see the section Nanoparticle 

characterization). 

Feeding activity data of Gammarus was firstly checked for normal distribution and 

homoscedasticity by applying the Shapiro-Wilk and Bartlett's test, respectively. In 

case requirements for parametric testing were met, a one-way ANOVA was 

performed. If requirements were not met, a nonparametric alternative, namely the 

Kruskal-Wallis test, was accomplished. Finally, either Dunnett's (parametric) or 

pairwise Wilcoxon rank sum tests (nonparametric) were used as post-hoc analysis to 

assess for statistically significant differences (p<0.05) among the mean or median 

feeding rate of controls and the respective treatment groups. All tests were two sided, 

and if necessary, i.e. in case of multiple comparisons, Bonferroni adjusted (alpha-

threshold). Statistical analysis and figures in the present study base on the statistics 

program R version 2.15.3 (2013) and the respective extension packages (Helms and 

Munzel, 2008; Lemon, 2010; Ritz and Streibig, 2005). 

 

Results and Discussion 

 

Experiment 1: acute toxicity tests with D. magna 

 

The 96-h EC50 values for immobilized D. magna obtained from both nTiO2 products 

with an initial particle size of approximately 100-nm (Fig. 2 A; SI Fig 2 A-F; SI Tab. 2) 

are well in line with earlier studies performed under similar conditions (e.g. 

Bundschuh et al., 2012; Dabrunz et al., 2011) indicating the reproducibility of test 
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results in our laboratory. Moreover, the data indicate meaningful implications on the 

test organisms’ mobility, whereas the initial nTiO2 size and crystalline structure 

composition played an important role in terms of effect thresholds (Fig. 2 A and 3 A). 

These effects may in general be attributed to a combination of nTiO2 properties: 

nTiO2 has the potential to bind to the outer surface of daphnids carapaces 

(=biological surface coating), which is assumed to disrupt molting and swimming 

behavior of Daphnia (cf. Dabrunz et al., 2011; Noss et al., 2013; SI Tab. 1). In 

addition, nTiO2 can form reactive oxygen species (ROS), which cause oxidative 

stress (Kim et al., 2010). As at least small quantities of ROS may be released under 

the experimental conditions of the present study (cf. Seitz et al., 2012) this could be 

an additional trigger for the acute toxicity. 

Irrespective of the mode of action responsible for the nTiO2-induced toxicity, the 

EC50-values from the present and some published studies deviate by several orders 

of magnitude (e.g. Heinlaan et al., 2008; Zhu et al., 2009). This inconsistency is 

frequently attributed to e.g. study design (including study duration and preparation of 

nTiO2-stock suspensions prior to its application) but also particle size, surface area or 

crystalline structure composition of the product (cf. Dabrunz et al., 2011; Seitz et al., 

2013; Zhu et al., 2009). However, a systematic assessment of their importance, 

especially of the three latter factors, is still missing.  

The results of the present study suggest on the one hand, the initial particle size as 

one trigger of the nTiO2 toxicity: nTiO2 of the 55-nm particle size class displayed for 

both products with a factor of approximately seven (P25) and five (A-100) statistically 

significantly lower 96-h EC50-values (Fig. 2 A) relative to their respective 140-nm 

sized counterparts. Additionally, the 100-nm nTiO2 particles of both products were 

less toxic than the respective smallest size class – although only for P25 statistically 
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significant – and at the same time more toxic than the largest, i.e. 140-nm, nTiO2 size 

class (Fig. 2 A). These results underpin findings of earlier rather initial studies by a 

more comprehensive assessment involving amongst others dose-response modeling: 

For instance, Dabrunz et al. (2011) observed an approximately two-fold difference in 

the acute toxicity of 100- and 200-nm sized A-100 for Daphnia. However, these 

findings are limited to one nTiO2 product and one single concentration (2 mg/L). 

Nevertheless, the authors related the observed effects directly to the comparably 

higher surface area of smaller particles assuming a higher proportion of reactive sites 

attaching to the exoskeleton of Daphnia, which increased the probability of molting 

disruption (as also indicated in the present study (SI Tab. 1)) finally causing 

movement limitations (Noss et al., 2013), immobility and mortality. In addition, the 

potentially slightly elevated release of ROS (Seitz et al., 2012) as a result of a higher 

surface area reactivity of small nTiO2 size classes may (at least partly) explain the 

observed difference in toxicity among particle size classes. 

By normalizing nTiO2 toxicity for Daphnia to the initial nanoparticle surface area, the 

present study addressed for the first time empirically the underlying hypothesis of the 

interpretation by Dabrunz et al. (2011), i.e. the nanoparticle initial surface area is the 

sole driver of toxicity. If this assumption is correct, initial surface area normalized 96-

h EC50 values should be similar among particle size classes of the same nTiO2 

product. Indeed, small (55-nm) and medium (100-nm) sized nTiO2 showed 

(irrespective of the crystalline structure composition) no meaningful deviation in the 

initial surface area normalized EC50 (Fig. 2 B; SI Fig 3. A-E). However the difference 

in initial surface area normalized EC50 of the small (55 and 100-nm) and large (140-

nm) nTiO2 particles of both products was, with a factor of five (A-100) or even higher 

(P25; no EC50 was definable due to too low immobilization in the highest treatment), 
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statistically significant (Fig. 2 B; SI Fig. 3 A-E). These data suggest for particles 

exhibiting a mean particles size of approximately 100-nm and below the initial surface 

area as one important factor explaining the ecotoxicity of different particle size 

classes. However, our results do not support this assumption if the particle size 

exceeds 100-nm – here: 140-nm. As the surface area measurements widely ignore 

the surface roughness of the material by assuming a spherical shape of particles 

(Treuel et al., 2010), the data presented in the present paper should be carefully 

interpreted. Nonetheless, these results strongly support an initial surface area 

dependent toxicity for nanoparticles equal to and below a particle size of 100 nm. 

 

Figure 2: (A) 96-h EC50-values with respective 95% CIs for the immobilization 
data of D. magna under either P25 or A-100 exposure. (B) Initial 
surface area normalized 96-h EC50-values with respective 95% CIs for 
the immobilization data of D. magna under either P25 or A-100 
exposure. Asterisks (*) denote statistically significant differences. 

 

On the other hand the initial surface area may not represent a global trigger for the 

observed nTiO2 toxicity. Hence, further factors such as size and number of individual 

particles might additionally contribute to the nanoparticle related ecotoxicity (cf. 

Warheit et al., 2007). In this context, especially the quantity of small particles might 

act as a very important factor driving the extent of ecotoxicity towards Daphnia. For 

instance, a review by Auffan et al. (2009) suggested that only nanoparticles smaller 
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than 30 nm are likely to be of ecotoxicological concern. This size fraction shows 

unique changes in particle properties as e.g. an enhanced interfacial reactivity due to 

notable changes in the crystalline structure of the particles (Auffan et al., 2009) 

potentially altering their toxicity. Indeed, own calculations analyzing the particle 

fraction ≤30 nm (SI Tab. 3) displayed much higher portions of either 17 (P25) or 8% 

(A-100) for the smallest initial size class of 55-nm if compared to the respective 

bigger size classes of 100- and 140-nm (in any case 0%). Thus, the nanoparticle 

fraction below ≤30 nm might have contributed to the observed effects of nTiO2 with 

an initial size of 55-nm (Fig. 2 A). However, it is not able to explain either the 

differences between 100- and 140-nm sized nTiO2 (Fig. 2 A) or between the two 

nTiO2-products assessed (Fig. 3 A). Nevertheless, a high number of very small 

particles might significantly contribute to an enhanced uptake of reasonable particle 

amounts into more sensitive body areas or tissues. In this respect, a study of de Jong 

et al. (2008) displayed that intravenously injected gold nanoparticles of initially small 

particle size (10-nm) showed the most widespread organ distribution in the body of 

rats, when compared to bigger nanoparticles (50-, 100- and 250-nm). However, 

whether a similar explanation holds true for the present study can, due to the 

fundamental deviations in the experimental design, not reliably be concluded. 

On the other hand, also the product itself and therefore the crystalline structure 

composition significantly influenced the nTiO2 toxicity (Fig. 3 A). The nTiO2 product 

P25 (containing a mixture of anatase (~70%) and rutile (~30%)) revealed 96-h EC50-

values indicating for each initial particles size class an up to four times lower toxicity 

than A-100 (Fig. 3 A). At the same time P25 was with 30% more toxic than an 

additionally tested rutile product (R050P, MKnano, Canada; see also SI section 2), 

although the latter was only assessed with a particle size of 100 nm (SI Tab. 2).  
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Such product dependent toxicity of nTiO2, on the basis of 72-/96-h acute toxicity tests 

with daphnids, was also assumed by other authors (Bang et al., 2011; Clément et al., 

2013), while their experimental approach did not allow for a separation of particle size 

and product composition effects. In contrast, the present study eliminated the 

confounding effect of (primary advertised) particle size allowing for the conclusion 

that the two products exhibiting a differing crystalline structure composition deviated 

up to four-fold in their ecotoxicological potential independent of the particle size class 

(see also Seitz et al., 2013). 

 

Figure 3:  (A) percentage 96-h EC50 values (with 95% CIs) for the immobilization 
data of D. magna whereas gained 96-h EC50 values of A-100 were 
related to the respective 96-h EC50-value of P25. (B) Percentage initial 
surface normalized 96-h EC50-values (with 95% CIs) for the 
immobilization data of D. magna whereas gained 96-h EC50 values of A-
100 were related to the respective 96-h EC50-value of P25. Continuous 
and dashed lines indicate reference 96-h EC50-values and respective 
95% CI of P25, while filled symbols indicate the relativized 96-h EC50-
values of A-100. NA = not assessed due to missing initial surface 
normalized 96-h EC50 value for 140-nm sized P25. Asterisks (*) denote 
statistically significant differences. 
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The initial surface area normalized 96-h EC50 of A-100 (≤100-nm) showed always a 

lower value relative to the respective P25 particles, while these deviations were not 

statistically significant (Fig. 3 B). This observation may be explained by the higher 

surface reactivity (e.g. biological surface coating, ROS release) of anatase compared 

to rutile (Cong and Xu, 2012). Furthermore, the higher toxicity of A-100 relative to 

P25 observed in the present study (see also Seitz et al., 2013) may also be a result 

of the different properties of each crystalline structure of nTiO2. Braydich-Stolle et al. 

(2009) explained the comparably lower toxicity of rutile, by its formation of ROS, 

which may be controlled by defense mechanisms such as the production of 

antioxidants. In contrast, anatase leads to membrane leakage, which could not be 

controlled for by the immune system of the cell line investigated. Analogously, Sayes 

et al. (2006) explained a lower cytotoxicity of rutile-anatase mixtures (60:40 and 

20:80) compared to pure anatase by a higher photocatalytic potential of the latter, 

while the ecotoxicological potential of the nTiO2 composition seems, as shown in the 

present study, largely driven by its initial surface area if the particles are smaller or 

around 100 nm in size. 

 

Experiment 2: feeding activity tests with G. fossarum 

 

None of the investigated endpoints revealed lethal (SI Tab. 4) or sublethal (Tab. 2) 

effects of nTiO2 on Gammarus, while each experiment was conducted at least twice 

(data not shown). This contradicts earlier studies using the same experimental design 

and nTiO2 product (P25, 100 nm) as stressor as well as Gammarus as test species 

(Bundschuh et al., 2011b). In this previous study gammarids’ feeding rate was 
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reduced by about 40% already at 0.2 mg nTiO2/L. However, this discrepancy 

between the present study and the study of Bundschuh et al. (2011b) may be 

explained by the substantial variation in sensitivity of Gammarus among seasons. 

Prato and Blandolino (2009) uncovered a ten-fold higher tolerance of Gammarus 

aequicauda if collected in autumn compared to spring, summer or winter, which was 

attributed to a higher lipid content in autumn. As the present study was performed in 

autumn and those conducted by Bundschuh et al. (2011b) took place during winter, a 

similar mechanism may hold for the deviation between both studies.  
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Table 2: Mean feeding rate (in percent relative to the respective control; ±SD) of Gammarus being exposed for 7 d to different 

concentrations of either nTiO2 P25 or A-100, both exhibiting initial particle sizes of 55-, 100- or 140-nm. 

initial 

particle 

size 

P25 

  

A-100 

0.0 mg/L n 0.1 mg/L n 0.5 mg/L n 1.0 mg/L n 5.0 mg/L n 0.0 mg/L n 0.1 mg/L n 0.5 mg/L n 1.0 mg/L n 5.0 mg/L n 

55-nm 
100.00 

(± 75.00) 
25 

83.33 

(± 80.00) 
26 

87.50 

(± 76.20) 
19 

104.17 

(± 60.00) 
24 

100.00 

(± 58.33) 
25 

  

100.00 

(± 36.36) 
26 

109.10 

(± 36.11) 
26 

90.91 

(± 60.00) 
22 

93.94 

 (± 61.29) 
27 

93.94 

(± 51.61) 
27 

100-nm 
100.00 

(± 25.81) 
27 

96.77 

(± 31.67) 
28 

85.48 

(± 26.42) 
23 

87.10 

(± 31.48) 
26 

98.34 

(± 39.34) 
28 

100.00 

(± 52.17) 
23 

108.70 

(± 56.00) 
21 

86.96 

(± 65.00) 
19 

121.74 

(± 57.14) 
23 

86.96 

 (± 80.00) 
25 

140-nm 
100.00 

(± 34.88) 
29 

97.67 

(± 38.10) 
30 

67.44 

(± 51.72) 
22 

102.33 

(± 38.64) 
29 

104.65 

(± 40.00) 
28 

100.00 

(± 45.45) 
25 

87.88 

(± 51.72) 
22 

96.97 

(± 62.50) 
19 

124.24 

(± 36.59) 
27 

100.00 

 (± 48.48) 
25 



67 
 

The implication of the statistical tools used for the analyses of both studies may as 

well explain the results: A type II error (not detecting a statistically significant effect 

even though there is one) may have occurred in the present study. This however, 

seems rather unlikely as in none of the six experiments presented any tendency for 

adverse effects could be measured. It seems more likely that in the earlier study 

(Bundschuh et al., 2011b) a type I error (displaying a statistically significant effect 

although there is none) occurred. Hence, the present study probably uncovered 

falsely detected effects of P25 on Gammarus in an earlier study (Bundschuh et al., 

2011b), which is also supported by Li et al. (2014b) who reported 96-h median lethal 

concentrations of 631 mg nTiO2/L (P25, ~30 nm), a factor of 100 above the highest 

concentration tested in the present study, for another benthic amphipod, i.e. Hyalella 

azteca. Thus, the present study accentuates to seriously consider confounding 

biological as well as statistical implications during the choice of experimental designs. 

This however, is certainly not limited to nanoparticle related research. 

 

Contrasting effects of nTiO2 over its aquatic life cycle 

 

The anticipated aquatic life cycle of nTiO2, which covers introduction of nanoparticles 

into the surface water where they are subjected to agglomeration and sedimentation 

(e.g. Bundschuh et al., 2011b; Dabrunz et al., 2011; Kalčíková et al., 2014; Noss et 

al., 2013), calls for assessment of potential implications in pelagic and benthic 

species. A similar fate of nTiO2 was observable in the present study: Regardless of 

the initial particle size, product and test system, nTiO2 agglomerated within the first 

24 h (>360 nm; Tab. 1). Moreover, at the termination of each experiment the particle 
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size was, due to low particle densities, not measureable. This in turn indicates a 

considerable sedimentation of nTiO2, which is underpinned by a visually observable 

nanoparticle bottom layer and further by experiments conducted earlier in our 

laboratory (Noss et al., 2013).  

During the outlined aquatic life cycle of nTiO2 the exposure concentration decreases 

for pelagic and increases for benthic organisms. This, however, is not reflected by the 

ecotoxicological results for the species tested in the present study. Although 

Gammarus was shown to be more sensitive towards other chemical stressors, as for 

instance fungicides (Zubrod et al., 2014), the pelagic species D. magna seems (on 

the basis of the endpoints used in the present study) more sensitive than the benthic 

amphipod in the present study. This may be explained by the higher accessibility of 

the initially smaller particles for pelagic filter feeding organisms. In contrast, the 

deposited agglomerates are less bioavailable for pelagic organisms and seem to be 

(up to a concentration of 5.0 mg/L) uncritical for benthic species. On the other hand 

habitat specific adaptations of both species may have contributed to the observed 

differences. Pelagic organisms (here: from standing water bodies) mainly live in the 

water column, where they do usually experience exposure to micro- and macroscopic 

algae but not to relatively high quantities of e.g. natural colloids, inorganic fine 

particulate matter or suspended sediments (sensu Arruda et al., 1983; Levine et al., 

2005). Benthic species (here: from running water bodies), however, live in and on the 

substratum (Statzner and Bittner, 1983) having potentially developed strategies to 

cope with such conditions, which may explain the higher sensitivity of daphnids. 

Furthermore, an interspecies variability in sensitivity is likely to be an important factor 

explaining the observed difference in toxicity among the tested species. In addition, 

some minor differences in the experimental design may explain the observed effects: 
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during the experiments with Daphnia the presences of visible light may have initiated 

the formation of ROS at a low but relatively continuous level (cf. Seitz et al., 2012). 

Since the feeding activity experiments with G. fossarum were performed in complete 

darkness this particular process could not have taken place. 
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Conclusion 

 

The present study comprehensively assessed potential effects of nTiO2 during its 

aquatic life cycle and thereby underpinned the importance of nanoparticle fate and 

characteristics, namely initial size, initial surface area and crystalline structure 

composition, for their ecotoxicological potential. In this context, the results indicate 

the importance of initial surface area as explanatory variable for the ecotoxicological 

potential of nTiO2 towards Daphnia, particularly if the particles size is ≤100 nm. The 

findings for the tested particle sizes within this study further motivate the frequently 

applied size-threshold separating nanoparticles (defined as material with at least one 

dimension ≤100 nm) from bigger particles (The Royal Society & The Royal Academy 

of Engineering, 2004; Foss Hansen et al., 2007). Moreover, the presented data 

displayed a substantially lower sensitivity of Gammarus towards nTiO2 relative to 

Daphnia, indicating the global need to identify critical exposure and effect pathways 

for nanoparticles. This in turn will allow selecting the most sensitive test species 

further supporting a reliable risk assessment of nanoparticles. Finally, the currently 

applied approach for toxicity testing of nanoparticles seems to be improvable as 

differences in specific particle properties of apparently similar materials are frequently 

ignored even though they are decisively involved in the ecotoxicological potential of 

the respective product. 
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Supporting Information 

 

The supporting information contains further data on the characterization of P25, A100 

and R050P. Additionally a table of exact 96-h EC50 values and associated model 

figures as well as molting data of Daphnia is provided. Furthermore, additional data 

on the mortality and molting of Gammarus is included. 
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Figure S-1 A-F: Scanning electron microscopy images of all nTiO2 stock 
suspension tested (Hitachi SU8030): Either (A) 55- (B) 100- and (C) 
140-nm nominal sized P25 or (D) 55- (E) 100- and (F) 140-nm nominal 
sized A-100. 

  



80 
 

 

Figure S-2 A-F: Concentration (mg nTiO2/L) dependent dose response curves 
and corresponding 96-h EC50 values (●) with respective 95% CI 
(dashed line) for the   immobilization data (○) of Daphnia magna either 
exposed to P25 (A-C) and A-100 (D-E) at different initial particle size 
classes of 55-, 100-, 140-nm, respectively. 
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Figure S-3 A-E: Surface (mm2 nTiO2) dependent dose response curves and 
corresponding 96-h EC50 values (●) with respective 95% CI (dashed 
line) for the immobilization data (○) of D. magna either exposed to P25 
and A-100 at different initial particle size classes of (A) 55-nm and (B) 
100-nm for P25 and (C) 55-nm (D) 100-nm and (E) 140 nm for A-100. 
For P25 (140-nm) no EC50 could be calculated due to too low 
immobilization in the highest treatment. 
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Supplementary data Section S-1. Molting test with Daphnia magna 

 

During the acute toxicity test (96 h) the molting behavior (frequency) of Daphnia was 

investigated. Therefore, groups of five juveniles (<12 h; n=23) were exposed to either 

1.75 mg/L of P25 or A-100, while each product was applied at an initial particle size 

of 55-, 100- and 140-nm, respectively. As a consequence of pseudo replication, 

Daphnia's molting behavior was not perfectly relatable to their individual level. 

However the observed results are comparable to those gained during an earlier study 

in our laboratories (Dabrunz et al., 2011) considering the latter named difficulty.   The 

molting and immobility of Daphnia was recorded every 12 h, whereas the test was 

conducted under temperature and light conditions described in the manuscript. 

 

References: 

 

Dabrunz A, Duester L, Prasse C, Seitz F, Rosenfeldt R, Schilde C, et al. Biological 

surface coating and molting inhibition as mechanisms of TiO2 nanoparticle 

toxicity in Daphnia magna. PLoS ONE 2011; 6: e20112. 
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Table S-1: Percentage of second molting events and immobilization of Daphnia 
magna (n=23) after being exposed for 96 h to 0.00 (control) or 1.75 
mg/L of different nTiO2 products (P25 or A-100) exhibiting varying initial 
particle sizes (55-, 100-, 140-nm). 

product initial particle size (nm) 2nd molting (%) immobilized (%) 

control - 50 0 

    

P25  

55 1 35 

100 8 14 

140 28 4 

 

A100 

55 0 42 

100 3 41 

140 47 3 

 

 

Supplementary data Section S-2. Preparation and characterization of R050P 

 

The nTiO2 product R050P (99% rutile) was purchased as powder from MKnano 

Canada, exhibiting an advertised primary particle size of 50 nm. Similar to P25 and 

A-100, also for R050P a dispersant and additive free, size homogenized stable 

suspension (100-nm) was obtained using the method described in the material and 

method section. Also the product and sample preparation of R050P was carried out 

as described in the manuscript. However, for R050P only the initial particle size, i.e. 

at the start of the experiment, was assessed. 
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Table S-2: 96-h EC50-values and respective 95% CIs of different nTiO2 products 
(P25, A-100 and R050P) with varying initial particle size (55-, 100-, 140-
nm) for Daphnia magna. 

product 
initial 

particle 
size (nm) 

96-h EC50 (mg/L) 

P25 

55 1.79 (1.50 - 2.08) 

100 3.25 (2.11 - 4.39) 

140 13.52 (6.62 - 20.44) 

A-100 

55 0.74 (0.38 - 1.11) 

100 1.31 (0.72 - 1.89) 

140 3.69 (2.58 - 4.80) 

R050P 100 4.36 (2.70 - 6.03) 
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Table S-3: Mean particle size (±SD; n=3) for the nTiO2 products P25 and A-100 with nominal initial particle sizes of 55-, 100- and 
140-nm. Displayed are the respective percentiles (10th, 50th and 90th) of their particle size distribution as well as the 
percentage of particles below or equal to a size of 30 nm. 

 

nominal 
initial 

particle 
size 

P25   A-100 

measured 
initial size 

 (nm) 

10
th
 

percentile of 
the particle 

size 
distribution 

(nm) 

50
th
 

percentile of 
the particle 

size 
distribution  

(nm) 

90
th
  

 percentile of 
the particle 

size 
distribution  

(nm) 

percentage 
of 

particles 
≤30 nm 

 

measured 
initial size 

 (nm) 

10
th
 

percentile of 
the particle 

size 
distribution 

(nm) 

50
th
 

percentile of 
the particle 

size 
distribution  

(nm) 

90
th
  

 percentile 
of the 

particle size 
distribution  

(nm) 

percentage 
of 

particles 
≤30 nm 

55-nm 59.6 (± 1.9) 31.2 (± 8.2) 63.6 (± 1.1) 138.0 (± 35.6) 17.4 
 

56.8 (± 3.7) 35.8 (± 4.7) 57.7 (± 3.2) 94.6 (± 6.3) 7.9 

100-nm 95.4 (± 1.1) 59 (± 2.2) 99.4 (± 0.4) 169.0 (± 8.0) 0.0 
 

80.0 (± 3.5) 51.6 (± 7.7) 79.7 (± 1.6) 117.6 (± 7.5) 0.0 

140-nm 145.2 (± 3.2) 87 (± 4.9) 150.8 (± 1.6) 264.3 (± 7.9) 0.0   126.9 (± 2.1) 75.7 (± 3.5) 132.7 (± 1.6) 236.4 (± 7.9) 0.0 
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Table S-4: Percentage molting and mortality events of Gammarus fossarum during 
7-d feeding activity tests with two different nTiO2 products (P25 and A-
100) of varying primary particle size (55-, 100-, 140-nm). 

product initial particle size (nm) conc. (mg/L) molts (%) mortality (%) n 

P25 

55 

0.00 13.79 3.33 29 

0.10 14.29 6.67 28 

0.50 20.69 3.33 29 

1.00 13.33 0.00 30 

5.00 27.59 3.33 29 

100 

0.00 20.00 0.00 30 

0.10 16.67 0.00 30 

0.50 16.67 0.00 30 

1.00 13.33 0.00 30 

5.00 23.33 0.00 30 

140 

0.00 40.00 0.00 30 

0.10 35.71 6.67 28 

0.50 26.67 0.00 30 

1.00 34.48 3.33 29 

5.00 20.69 3.33 29 

A-100 

55 

0.00 16.67 0.00 30 

0.10 17.24 3.33 29 

0.50 10.34 3.33 29 

1.00 13.79 3.33 29 

5.00 3.45 3.33 29 

100 

0.00 24.14 3.33 29 

0.10 30.00 0.00 30 

0.50 23.33 0.00 30 

1.00 20.69 3.33 29 

5.00 20.00 0.00 30 

140 

0.00 18.52 10.00 27 

0.10 15.38 13.33 26 

0.50 8.00 16.67 25 

1.00 10.00 0.00 30 

5.00 18.52 10.00 27 
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Abstract 

 

During their aquatic life cycle, nanoparticles are subject to environmentally driven 

surface modifications (e.g. agglomeration or coating) associated with aging. Although 

the ecotoxicological potential of nanoparticles might be affected by these processes, 

only limited information about the potential impact of aging is available. In this 

context, the present study investigated acute (96 h) and chronic (21 d) implications of 

systematically aged titanium dioxide nanoparticles (nTiO2; ~90 nm) on the standard 

test species Daphnia magna by following the respective test guidelines. The nTiO2 

were aged for 0, 1, 3 and 6 d in media with varying ionic strengths (Milli-Q water: 

approx. 0.00 mmol/L and ASTM: 9.25 mmol/L) in the presence or absence of natural 

organic matter (NOM). Irrespective of the other parameters, aging in Milli-Q did not 

change the acute toxicity relative to an unaged control. In contrast, 6 d aged nTiO2 in 

ASTM without NOM caused a fourfold decreased acute toxicity. Relative to the 0 d 

aged particles, nTiO2 aged for 1 and 3 d in ASTM with NOM, which is the most 

environmentally-relevant setup used here, significantly increased acute toxicity (by 

approximately 30%), while a toxicity reduction (60%) was observed for 6 d aged 

nTiO2. Comparable patterns were observed during the chronic experiments. A likely 

explanation for this phenomenon is that the aging of nTiO2 increases the particle size 

at the start of the experiment or the time of the water exchange from <100 nm to 

approximately 500 nm, which is the optimal size range to be taken up by filter feeding 

D. magna. If subjected to further agglomeration, larger nTiO2 particles, however, 

cannot be retained by the daphnids’ filter apparatus ultimately reducing their 

ecotoxicological potential. This non-linear pattern of increasing and decreasing nTiO2 

related toxicity over the aging duration, highlights the knowledge gap regarding the 



89 
 

underlying mechanisms and processes. This understanding seems, however, 

fundamental to predict the risks of nanoparticles in the field. 

 

Introduction 

 

The enormous production of engineered nanoparticles is suggested to contribute 

trillions of dollars to the global economy [1]. This high production comes along their 

increasing use [2], which inescapably leads to their release into aquatic ecosystems 

via, for instance, wastewater treatment plant effluents [3]. On their way into as well as 

within aquatic ecosystems, nanoparticles are subject to environmentally driven 

modifications of their surface characteristics (e.g. size, surface area or charge) over 

time (=aging), which potentially alter their fate and toxicity. In this context, aging can 

include agglomeration and also coating of the particles’ surface with omnipresent 

natural organic matter (NOM) [4]. These processes are, for instance, triggered by the 

ionic strength and the quantity of NOM in the medium. In detail, high cation levels 

(high ionic strength) increase agglomeration speed [5], whereas NOMs stabilize or 

even disagglomerate particles [6] by inducing electrostatic repulsion [7]. 

Although these modifications are inevitable during the aquatic life cycle of such 

engineered nanoparticles, the resulting modification of their ecotoxicological potential 

is largely unknown. Only a few studies have documented the acute [8,9] or chronic 

[10] effects of aged nanoparticles, and the single chronic experiment considered only 

one particular aging condition [10], hampering extrapolation of the findings. To 

overcome this limitation, the present study systematically varied the properties of the 

medium during the aging of the nanoparticles, prior to testing their acute and chronic 

ecotoxicological potential. In the context of the present study, the standard test 
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organism Daphnia magna was used as model species to assess for both acute and 

chronic effects, while titanium dioxide nanoparticles (nTiO2, ~90 nm, ~99% anatase) 

served as model nanoparticles. This selection was motivated by (i) their frequent 

application in various products [2], (ii) the relatively good characterization of the 

potential effects on aquatic life (in particular D. magna) in an unaged form [e.g. 11,12] 

as well as (iii) their potential to cause adverse effects in aquatic organisms at 

environmentally relevant concentrations [13].  

It was hypothesized that higher ionic strength [14], which is considered as  

representative for natural freshwater environments, and the presence of a 

environmentally relevant NOM level [6,15] during aging as well as the longer duration 

of aging may decrease the nanoparticle-induced ecotoxicity to D. magna. Therefore, 

nTiO2 were aged for 0, 1, 3 and 6 d in media with varying ionic strength (Milli-Q water: 

approx. 0.00 mmol/L and ASTM: 9.25 mmol/L) with and without NOM and 

subsequently assessed for their acute toxicity (immobility). Based on these data, four 

scenarios were selected for the chronic studies, which showed particularly strong 

alterations in ecotoxicity. Accordingly, nTiO2 were aged for 0 or 3 d in ASTM with or 

without NOM prior to the evaluation of their respective chronic effects (reproduction, 

mortality) in daphnids. Both experimental setups were supplemented by particle size 

characterization before (acute toxicity tests) but also during the exposure (chronic) 

period. 
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Material and Methods 

 

nTiO2 preparation and characterization 

 

The titanium dioxide product A-100 (99% anatase) was provided as powder by 

Crenox GmbH (Germany), exhibiting an advertised primary particle size of 6 nm and 

a surface area of approximately 230 m2/g. Using this powder, a dispersant and 

additive free, size homogenized, stable suspension of ~90 nm was obtained by 

stirred media milling (PML 2, Bühler AG, Switzerland), and the resulting suspension 

was subsequently centrifuged (7500 rpm, ~20°C; Universal 320, Hettich, UK) in order 

to remove residual coarse material. Prior to its application the stock suspension (2 g 

nTiO2/L) was analysed for its particle size distribution (intensity weighted) using 

dynamic light scattering (n=3 á 60 measurements; temperature: 20°C; pinhole: 100 

µm; DelsaNano C, Beckman Coulter, Germany), which revealed a mean particle size 

of 87±1 nm (polydispersitiy index: 0.10-0.26). Moreover, before the start of each 

acute toxicity test and thus directly after (max. 3 min) the nTiO2 aging process (0, 1, 

3, 6 d; Table 1) the mean initial particle size (particle size at the start of the 

experiment) was also determined in the respective aging medium. For all chronic 

studies the particle size was additionally monitored during the bioassay, on three 

consecutive days (representative of the time interval between the two water 

exchanges; Table 2). In order to exclude any measurement bias (e.g. a shifted 

particle size distribution induced by algal food, animal excrements), 3-mL samples 

were taken from one additional replicate without daphnids of a 2.00 mg nTiO2/L 

concentration at the center of the water column. Further, samples of test medium with 

NOM but without nTiO2 were analyzed to determine any background signals, which 

were not quantifiable. Moreover, during additional experiments the concentrations of 



92 
 

aged nTiO2 were measured in the 4.00 mg/L treatment after 0 h and 96 h, 

representative of the start and the end of each acute toxicity test. For this purpose, 

inductively coupled plasma mass spectrometry (Table 3) was used according to 

methods described in detail by Rosenfeldt et al. (2014). As our chemical analysis 

revealed no substantial differences relative to the nominal concentrations, the 

present study is based on the nominal TiO2 concentrations exclusively. 
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Table 1: nTiO2 size after aging. Mean initial particle size (± SD; n=3) of nTiO2 aged for 0, 1, 3 and 6 d in different aging media with 
and without NOM (8 mg TOC/L), prior to its application in the respective acute toxicity test. 

Aging medium Acute toxicity tests 

  

0 d 
 

1 d 
 

3 d 
 

6 d 

Initial particle 
size 

PIa 

 

Initial particle 
size 

PIa 

 

Initial particle 
size 

PIa 

 

Initial particle 
size 

PIa 

Milli-Q without NOM 82 (± 2) 0.11-0.23 
 

81 (± 1) 0.13-0.19 
 

82 (± 1) 0.16-0.17 
 

81 (± 1) 0.16-0.17 

Milli-Q with NOM 83 (± 1) 0.16-0.20 
 

84 (± 1) 0.12-0.19 
 

85 (± 1) 0.13-0.18 
 

84 (± 1) 0.18-0.20 

ASTM without NOM 1593 (± 53) 0.46-0.50 
 

3712 (± 223) 0.89-1.00 
 

2921 (± 103) 0.68-0.83 
 

2530 (± 28) 0.67-0.74 

ASTM with NOM 576 (± 11) 0.25-0.27   587 (± 27) 0.27-0.36   548 (± 11) 0.24-0.30   571 (± 10) 0.24-0.27 
aPolydispersity index 
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Table 2: Particle size during chronic toxicity tests. Mean particle size (± SD; n=3) of aged nTiO2 (0 or 3 d) measured over 3 
consecutive days (representative for the time between a water exchange) in the respective aging-/test medium, namely 
ASTM with and without NOM (8 mg TOC/L), during all chronic experiments.  

Aging conditions 
 

Chronic toxicity tests 
 

Aging medium Aging duration (d) 

 
0 d 

 
1 d 

 
2 d 

 Initial  
particle 

 size 
PIa 

 

Initial  
particle  

size 
PIa 

 

Initial  
particle  

size 
PIa 

ASTM without NOM 0  1334 (± 73) 0.30-0.41 
 

1448 (± 90) 0.43-0.58 
 

1453 (± 89) 0.48-0.60 

ASTM without NOM 3  5567 (± 709) 0,74-1.00 
 

2992 (± 357) 0.42-1.00 
 

2583 (± 380) 0.38-1.00 

ASTM with NOM 0  181 (± 68) 0.12-0.36 
 

221 (± 46) 0.11-0.28 
 

116 (± 1) 0.15-0.25 

ASTM with NOM 3  498 (± 36) 0.26-0.30 
 

351 (± 21) 0.20-0.32 
 

311 (± 14) 0.21-0.28 
aPolydispersity index 
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Table 3: Measured concentrations of nTiO2. Nominal and mean measured (± SD; 
n=3) nTiO2 concentrations after 0, 1, 3 and 6 d aging in the respective 
aging medium, namely ASTM with and without NOM (8 mg TOC/L). 

Aging medium 
Aging          

duration 
(d) 

Nominal 
concentration 

Mean measured                     
concentration (±SD; mg/L) 

    
Test start     

0 h 
 

Test end    
96 h 

Milli-Q without 
NOM 

0 4.00 3.82 ± 0.05 
 

0.04 ± 0.00 

1 4.00 3.80 ± 0.07 
 

0.04 ± 0.00 

3 4.00 4.02 ± 0.08 
 

0.06 ± 0.00 

6 4.00 3.90 ± 0.24   0.04 ± 0.01 

Milli-Q with NOM 

0 4.00 3.71 ± 0.04   0.04 ± 0.01 

1 4.00 3.80 ± 0.04 
 

0.05 ± 0.00 

3 4.00 3.80 ± 0.03 
 

0.14 ± 0.01 

6 4.00 3.61 ± 0.05   0.05 ± 0.00 

ASTM without 
NOM 

0 4.00 3.57 ± 0.07   0.05 ± 0.00 

1 4.00 3.56 ± 0.07 
 

0.05 ± 0.00 

3 4.00 3.57 ± 0.05 
 

0.09 ± 0.00 

6 4.00 3.43 ± 0.06   0.05 ± 0.00 

ASTM with NOM 

0 4.00 3.59 ± 0.06 
 

2.59 ± 0.04 

1 4.00 3.60 ± 0.04 
 

3.28 ± 0.05 

3 4.00 3.54 ± 0.05 
 

3.41 ± 0.06 

6 4.00 3.42 ± 0.02   3.21 ± 0.06 

 

Test organism 

 

Daphnia magna (Eurofins-GAB, Germany) were kept in permanent culture within a 

climate controlled chamber (Weiss Environmental Technology Inc., Germany) at 

20±1°C with a 16:8 h (light:dark) photoperiod (visible light intensity, 3.14 W/m2; UVA, 

0.109 W/m2; UVB, 0.01 W/m2). Thereby, groups of 25 organisms were cultured in 1.5 

L of reconstituted hard freshwater (=ASTM) according to the ASTM International 

standard guide E729 [17]. The medium was additionally enriched with selenium, 

vitamins (thiamine hydrochloride, cyanocobalamine, biotine) and seaweed extract 

(Marinure®, Glenside, Scotland; cf. [18]) and was renewed three times a week. 
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Animals were fed on a daily basis with the green algae Desmodesmus sp. (200 µg C 

per organism). 

 

nTiO2 aging process 

 

Prior to the start of any bioassay, nTiO2 were aged for different time intervals, i.e., 0, 

1, 3 or 6 d (acute toxicity tests) and 0 or 3 d (chronic toxicity tests). Either Milli-Q 

water (solely used for the nTiO2 aging prior to the acute toxicity tests) or ASTM (as 

part of both: acute and chronic toxicity tests) was used as aging medium. The first 

represents a medium without ions (Milli-Q; nominally: 0.00 mmol/L) and the second a 

comparably high ionic strength (ASTM; nominally: 9.25 mmol/L; Table S1). 

Additionally, for both media, the absence and presence of NOM was obtained using 

seaweed extract addition (cp. section: test organism) at concentrations of 0.0 or 8.0 

mg TOC/L. The selection of this organic matter was based on (i) its recommendation 

as a medium additive during chronic metal toxicity tests with Daphnia [19,20] and (ii) 

its relatively balanced composition in terms of chromomorphic dissolved organic 

carbon, which is also representative for NOM released from waste water treatment 

plants (Table S2). The aging of nTiO2 in Milli-Q (with and without NOM) took place in 

15 mL centrifuge vials with a nominal concentration of 1.00 g nTiO2/L. In contrast, the 

nTiO2 (nominal concentrations: 0.00 - 128.00 mg nTiO2/L) aging in ASTM with and 

without NOM was accomplished in a 500 mL glass vessel. Independent of the 

medium, each aging process was performed in total darkness (excluding 

photoactivation of nTiO2 to avoid the oxidation of NOM during aging) on a horizontal 

shaker (50 rpm; VKS-B-50, Edmund Bühler GmbH, Germany). Prior to toxicity testing 
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all aged and unaged suspensions were vortexed for 30 seconds ensuring a 

homogenous distribution of nTiO2 (Table 3). 

 

Acute toxicity tests 

 

During all acute toxicity tests, groups (n=4) of five juvenile (<24 h) daphnids each 

were exposed for 96 h to different concentrations of 0, 1, 3 or 6 d aged nTiO2. Each 

acute toxicity test was conducted according to the OECD guideline 202 [21], during 

which daphnids were checked for immobilization every 24 h. In a first experiment 

(nTiO2 aged in Milli-Q with and without NOM), measured amounts of the aged and 

unaged nTiO2 stock suspension were added to ASTM (without NOM), resulting in a 

series of nominal nTiO2 concentrations with 0.0 (=control), 0.5, 1.0, 2.0, 4.0, 8.0 and 

16.0 mg/L. Subsequently, daphnids were carefully transferred to 50 mL of each 

treatment. In contrast, for experiments with nTiO2 aged in ASTM with and without 

NOM, juvenile daphnids were directly placed in the aged and unaged nTiO2 ASTM 

suspensions, which were evenly distributed in 50 mL volumes (using concentrations 

from 0.00 (=control) to 128.00 mg nTiO2/L). All acute toxicity tests were conducted at 

20±1°C with a 16:8 h (light:dark) photoperiod (visible light intensity, 3.14 W/m2; UVA, 

0.109 W/m2; UVB, 0.01 W/m2). 
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Chronic toxicity tests 

 

Each chronic toxicity test was conducted according to the OECD guideline 211 [19]. 

Briefly, during all chronic toxicity tests, daphnids were exposed for 21 d to different 

nominal concentrations (i.e., 0.00 (=control), 0.02, 0.06, 0.20, 0.60, 2.00 or 6.00 

mg/L) of 0 or 3 d aged nTiO2 using ASTM with and without NOM as aging medium. 

The aging duration was selected based on the outcome of the acute experiments, 

where nTiO2 aging for 3 d (ASTM with NOM) displayed an increased toxicity 

compared to unaged (0 d) nTiO2 in the presence of NOM. In detail, ten daphnids (<24 

h) were individually placed in 50 mL of aged and unaged nTiO2 and fed daily with 

Desmodesmus sp. (from 50 to 100 µg C/organism with increasing age). Dead 

animals as well as released offspring were counted and removed daily. The test 

medium was renewed three times a week, while adult daphnids were carefully 

transferred using plastic pipettes. Dissolved oxygen (median: 7.8 mg/L) and pH 

(median: 8.2) fulfilled the requirements of the guideline [19] (Table S3). Each chronic 

toxicity test was – similar to the acute toxicity tests – conducted at 20±1°C with a 16:8 

h (light:dark) photoperiod (visible light intensity, 3.14 W/m2; UVA, 0.109 W/m2; UVB, 

0.01 W/m2). 
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Statistical analysis 

 

Acute toxicity of differently aged nTiO2 suspensions was analyzed for the respective 

96-h EC50 values (concentration at which half of the tested organisms are affected). 

Therefore, immobilization data of each acute toxicity test was corrected for control 

mortality (never exceeding 20%) using Abbott's formula. Subsequently, adequate 

dose-response models were fitted to these data (Figure S1-4). The model selection 

was based on Akaike's information criterion and expert judgment (Table S4). Finally, 

EC50 values were assessed for statistically significant differences among aging 

conditions using confidence interval testing [22].  

For each chronic reproduction test, the cumulative mean offspring (after 21 d) was 

calculated separately (considering each treatment and aging process). Afterwards, 

differences in effect sizes (for the control and the highest nTiO2 concentrations, 

respectively; i.e., 2.00 and 6.00 mg nTiO2/L) among the different aging processes 

were statistically compared also using confidence interval testing [23]. Higher 

numbers indicate a higher effect size in terms of a decreased cumulative 

reproduction relative to the control. Additionally, a time to event analysis was 

accomplished by separately applying the Kaplan-Meier estimator for the data of each 

aging condition at the highest nTiO2 concentrations (2.00 or 6.00 mg/L). For all 

statistical analyses and figures the statistical software environment R for Windows 

[24] and corresponding packages [25,26,27] were used. 
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Results 

 

Toxicity of aged and unaged nTiO2: absence of NOM 

 

We detected similar 96-h EC50 outcomes (0.9 ‒ 1.4 mg nTiO2/L; Figure 1A) when 

using Milli-Q without NOM as an aging medium, independent of the applied aging 

duration. Aging of nTiO2 in ASTM without NOM revealed a lower ecotoxicity 

compared to Milli-Q without NOM (up to 7.5-fold; Figure 1A and 1B).  

 

Figure 1: Acute toxicity of aged nTiO2. (A) 96-h EC50 values (half maximal 
effective concentration ; ± 95% CI) of nTiO2 aged for 0, 1, 3 or 6 d in 
Milli-Q with (■) or without (□) NOM. (B) 96-h EC50 values (± 95% CI) of 
nTiO2 previously aged for 0, 1, 3 or 6 d in ASTM with (●) and without (○) 
NOM. 96-h EC50 values followed by different lower case letters are 
significantly different.  
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Further, the nTiO2 toxicity decisively dropped for a 3 and 6 d aging (~1.7 and ~4-fold; 

Figure 1B; see also supporting information Figure S5), when compared to the 0 d 

aging in ASTM without NOM. Similarly, 3 d aging of nTiO2 in ASTM without NOM 

reduced the chronic toxicity. In detail, 2.00 mg/L of 0 d aged nTiO2 caused 100% 

mortality in daphnids after six days of exposure (Figure 2) and thus there was no 

reproductive outcome. In contrast, at the same concentration of nTiO2 but aged for 3 

d the mortality dropped to only 50% at the termination of the experiment (see 

supporting information Figure S6) accompanied by an approximately 60% reduced 

fecundity compared to the respective control (Figure 3A).  

 

Figure 2: Survival time analysis during chronic exposure. Survival (%) of 
daphnids during the 21 d chronic toxicity tests with nTiO2. Lines 
represent the exposure to nTiO2 (i.e. 2.0 or 6.0 mg/L) aged under 
varying conditions (0 or 3 d) in ASTM with and without NOM. 
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Toxicity of aged and unaged nTiO2: presence of NOM 

 

When aging nTiO2 in Milli-Q with NOM, no statistical significant change in the acute 

toxicity became evident relative to the unaged control and the aging in Milli-Q without 

NOM (Figure 1A). In contrast, a 0, 1, 3 or 6 d aging of nTiO2 in ASTM with NOM, 

revealed a significantly lower acute toxicity (8 to 33-fold; Figure 1B, see also 

supporting information Figure S5) when compared to the aging in ASTM without 

NOM. This reduction in toxicity was also observed during the chronic experiment 

(ASTM with and without NOM). For instance, a 0 and 3 d aging of 2.00 and 6.00 

mg/L nTiO2 in ASTM without NOM displayed 100% mortality of daphnids after 21 

days (see supporting information Figure S6A and B), whereas the aging in presence 

of NOM led to a reduced mortality, which is – depending on the nTiO2 concentration 

– equal to or below 10% (Figure 2). Moreover, while the cumulative reproduction of 

Daphnia was significantly reduced (~60%; Bonferroni adjusted pairwise Wilcoxon 

rank sum test: p=0.027) at 2.00 mg/L of 3 d aged nTiO2 in ASTM without NOM when 

compared to the respective control, no reproductive implications became evident for 

the same concentration using ASTM with NOM as aging medium (Bonferroni 

adjusted pairwise Wilcoxon rank sum test: p=1; Figure 3A).  

When aged in ASTM with NOM, the acute toxicity of nTiO2 displayed a nonlinear 

pattern: relatively short aging durations of 1 or 3 d increased the acute toxicity of 

nTiO2 by up to 27% relative to the 0 d scenario (Figure 1B), whereas an extension of 

the aging duration to 6 d significantly reduced the acute nTiO2 toxicity (~two-fold) 

relative to all other scenarios (Figure 1B). In accordance with the acute toxicity data, 

chronic toxicity also increased for 3 d aged nTiO2 in ASTM with NOM (Figure 3A and 

B). In detail, an approximately 50% decline in reproduction of Daphnia was observed 
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at 6.00 mg nTiO2/L aged for 3 d compared to the respective control (Figure 3B; see 

supporting information Figure S7D, Bonferroni adjusted pairwise Wilcoxon rank sum 

test; p=0.003). In contrast, the same concentration of 0 d aged nTiO2 did not affect 

the animals' reproduction significantly (Figure 3B; see supporting information Figure 

S7C; Dunnett test: p=0.554). Moreover, a direct comparison of both scenarios (i.e. 0 

d aging vs 3 d aging) revealed a 60% higher effect size for a 3 d aging (confidence 

interval testing: p<0.05; Figure 3B). 
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Figure 3: Fecundity of Daphnia. Median difference in the reproduction of Daphnia 
(± 95% CI) after 21 d of exposure to (A) 2.0 and (B) 6.0 mg nTiO2/L 
expressed relative to the respective control containing 0.0 mg/L nTiO2. 
Higher numbers indicate a decreased cumulative reproduction 
compared to the control. NA=not assessed due to 100% mortality in the 
nTiO2 treatment. Values followed by different lower case letters denote 
a statistically significant. 
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Discussion 

 

Toxicity of aged and unaged nTiO2: absence of NOM 

 

Results of our acute toxicity tests showed that nTiO2 aged in Milli-Q without NOM did 

not influence the nanoparticles toxicity even after elongated aging periods (1, 3 and 6 

d) and thus revealed comparable 96-h EC50 values for Daphnia's immobility (Figure 

1A). These results can be attributed to largely unchanged nTiO2 characteristics after 

aging in Milli-Q without NOM. In particular, the nTiO2 initial size ‒ which has been 

suggested as an important factor driving the extent of nanoparticle toxicity [28,29] ‒ 

was similar to the original nTiO2 stock solution irrespective of the aging duration (see 

Table 1). These observations may be attributed to a lack of ions during aging (ionic 

strength: approx. 0.00 mmol/L), which accelerates nTiO2 agglomeration in liquid 

media [30].  

The importance of ions in the medium is also supported by the results of the present 

study. In contrast to the stable toxicity of nTiO2 aged in Milli-Q (aging medium of low 

ionic strength), nanoparticles aged in ASTM (aging medium of high ionic strength) 

showed a significant shift in their toxicity with aging duration. In particular, acute as 

well as chronic toxicity of nTiO2 aged in ASTM without NOM decreased with 

increasing aging duration (Figure 1B; Figure 2, Figure 3A and B). This reduced 

toxicity may be explained by altered nTiO2 characteristics, particularly the particle 

size at the initiation of the exposure of daphnids (Table 1). In other words, the 

relatively high ecotoxicity of 0 and 1 d aged particles can be associated with a 

potentially higher share of small sized nTiO2 in the water phase [see 11,28] when 
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compared to longer aging periods. As a result of the elongated aging duration, the 

particle size at the test initiation increases (e.g. after 6 d aging; ~2500 nm; Table 1) 

facilitating a fast sedimentation of nTiO2 agglomerates (as visually observed) and 

hence reduction of the nTiO2 concentration in the water column (the location where 

daphnids mainly dwell; Table 3). Moreover, such bigger particles are less likely to 

coat the surface of daphnids outer shell, a mode of toxic action of these 

nanoparticles suggested by Dabrunz et al. [11]. This in turn might affect the test 

species molting success [11] as well as their movement [31] and ultimately the 

mortality of Daphnia. 

 

Toxicity of aged and unaged nTiO2: presence of NOM  

 

The particle size of nTiO2 at the initiation of the bioassay did not change with aging 

duration in Milli-Q with NOM medium (Table 1), which probably also explains the 

absence of any difference in the EC50 values relative to nTiO2 aged in Milli-Q without 

NOM (Figure 1A). The rather stable particle sizes over 6 d of aging in Milli-Q with 

NOM can be attributed to the low ion concentration (ionic strength: approx. 0.00 

mmol/L) together with a NOM-induced particle size stabilization. In contrast to an 

aging in Milli-Q with NOM, the aging in ASTM with NOM generally reduced the acute 

and chronic toxicity of nanoparticles relative to ASTM without NOM (Figure 1B, 

Figure 2, Figure 3A and 3B). This result may directly be related to NOM coating both 

the nanoparticles (indicated by an decreased zeta potential of nTiO2; see [32]) and 

the test organisms [33]; coating which was largely absent for nTiO2 aged in Milli-Q 

with NOM due to the lower NOM concentrations in the test medium. In ASTM with 
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NOM, the electrosteric repulsion [34] kept nTiO2 in the water phase and prevented an 

attachment to the surface of Daphnia [33]. In addition, NOM coating may have limited 

irradiation of the nanoparticle surfaces and potentially scavenged harmful reactive 

oxygen species [35], which are usually formed by nTiO2 under the visible light 

conditions in our experimental facilities [36]. Moreover, the NOM may have served as 

a energy source for Daphnia [37], which may have lowered the overall toxicity of 

aged and unaged nTiO2 indirectly as a result of an increased fitness of the test 

organisms [38]. This assumption is also supported by an approximately 40% higher 

reproductive output of daphnids cultured under control conditions but in presence of 

NOM relative to its absence (see supporting information Figure S7A and C). 

Irrespective of the general tendency of NOM to reduce the ecotoxicity of nTiO2, 

especially after 6 d of aging in ASTM with NOM, an aging of these particles for 1 and 

3 d in the same medium induced an increased acute as well as chronic toxicity 

relative to the respective unaged particles (Figure 1B, Figure 2, Figure 3A and B). 

This pattern may be explained by (i) a relatively high number of small and 

ecotoxicological potent particles ‒ while the predominance of this size fraction likely 

decreased with increasing aging duration as well as (ii) size stabilized nTiO2 

agglomerates of ~500 nm size (due to NOM; Table 1). The smaller particles might 

have mainly contributed to the acute nTiO2 toxicity after 0 and 1 d of aging, while for 

3 d aged nTiO2 bigger agglomerates may have induced adverse effects. The latter 

suggestion may be explained by the mesh size of D. magna's filter apparatus ‒ 

displaying a range of 0.24-0.64 µm [39] ‒ which facilitates an uptake of ~500 nm 

agglomerates [in sensu 40,41] (Figure 4). However, the size range of the organisms 

filter apparatus also indicates that a limited amount of smaller particles of unaged 

nTiO2 (with a mean particle size of approximately 180 nm; Table 2) were actively 
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ingested by the test species (due to their filter passage). Hence, a higher mass of 

nTiO2 might have been taken up by daphnids if exposed to nTiO2 aged for 3 d (mean 

particle size: ~500 nm; ASTM with NOM; Table 2) relative to the same product aged 

for 0 d (mean particle size: ~180 nm; Table 2). During the acute experiments this 

hypothesized increased accumulation of nTiO2 in the gut [42,43] may have reduced 

their mobility [31] ultimately increasing the mortality (immobility) of daphnids. 

Similarly, during the chronic experiments such nTiO2 agglomerates may have 

decisively lowered the amount of ingested algae [cf. 40,43] limiting at the same time 

the energy availability for daphnids. Such implications in the energy processing might 

have led to a decreased fecundity [44] during the chronic investigations at nTiO2 

concentrations as high as 6.00 mg/L (Figure 3B). This is further supported by findings 

of previous investigations [13,18] where, nTiO2 agglomerates of ~330 nm revealed 

statistically significant implications in Daphnia’s reproduction output [18], while 

smaller agglomerates (~140 nm) did not affect the animals fecundity [13]. However, 

our findings are widely contrary to the common scientific assumption (especially 

when considering results obtained with nTiO2 aged for up to 3d), which expects 

stable or decreased toxicity of nanoparticles with aging duration and thus elevating 

agglomeration and sedimentation [8,14,45,46]. 
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Figure 4: Particle uptake of Daphnia. Schematic draft of the preferably ingested 
particle size range of Daphnia magna. 

 

Results of the present study thus showed that the aging duration as well as the 

properties of the medium (in terms of ionic strength and NOM content) alter the 

nTiO2-related toxicity. As the effect-size and -direction strongly varied, the 

hypothesis, that aging reduces nTiO2 toxicity, is not completely supported. Although it 

is obvious that the presence of NOM reduced the toxicity of nanoparticles 

substantially, the ultimate risk associated with their release may by underestimated 

when ignoring the aging history. Since similar patterns may also be relevant for other 

types of nanoparticles, it seems sensible to uncover the underlying mechanisms and 

assess for their transferability among different classes of nanoparticles. In the light of 

recent literature and the present study, it seems moreover crucial to consider the 

implications of environmental parameters such as differing ionic strengths 

(representing for instance fresh- and seawater) and NOM levels (being present in 

nature) – on the ecotoxicological potential of nTiO2 in particular and nanoparticles in 
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general. Moreover this may also account for ultraviolet irradiation, which likely 

potentiates negative effects [47]. Overall, the present study provides an example on 

how nanoparticle-typical environmental processes, such as agglomeration during 

aging, lead to a varying toxicity profile over time, which may be explained when 

coupled with ecological information, such as particle size selectivity of Daphnias’ 

filtering apparatus. 
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SUPPLEMENTARY MATERIAL 
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Figure S1: Dose-Response curves underlying the 96-h EC50 calculations for (A) 0, 
(B) 1, (C) 3 and (D) 6d aged nTiO2 in Milli-Q without NOM. 
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Figure S2: Dose-Response curves underlying the 96-h EC50 calculations for (A) 0, 
(B) 1, (C) 3 and (D) 6d aged nTiO2 in Milli-Q with NOM. 
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Figure S3: Dose-Response curves underlying the 96-h EC50 calculations for (A) 0, 
(B) 1, (C) 3 and (D) 6d aged nTiO2 in ASTM without NOM. 
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Figure S4: Dose-Response curves underlying the 96-h EC50 calculations for (A) 0, 
(B) 1, (C) 3 and (D) 6d aged nTiO2 in ASTM with NOM. 
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Figure S5: 96-h EC50 values (half maximal effective concentration; ± 95% CI) of 
nTiO2 previously aged for 0, 1, 3 or 6 d in ASTM with (●) and without (○) 
NOM. Asterisk (*) denotes statistical significant difference to the 
respective 96-h EC50 value. 
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Figure S6: Survival (%) of daphnids during 21 d of nTiO2 exposure. Different lines 
represent response of Daphnia in the respective nTiO2 treatment. (A) 
Animals exposed to nTiO2 previously aged for 0 d in ASTM without 
NOM media. (B) Animals exposed to nTiO2 previously aged for 3 d in 
ASTM without NOM media. (C) Animals exposed to nTiO2 previously 
aged for 0 d in ASTM with NOM media. (D) Animals exposed to nTiO2 

previously aged for 3 d in ASTM with NOM media. 
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Figure S7: Cumulative median (± SD) reproduction per test-organism after 21 d 
exposure to differently aged nTiO2. (A) Animals exposed to nTiO2 

previously aged for 0 d in ASTM without NOM media (○). (B) Animals 
exposed to nTiO2 previously aged for 3 d in ASTM without NOM media 
(□). (C) Animals exposed to nTiO2 previously aged for 0 d in ASTM with 
NOM media (●). (D) Animals exposed to nTiO2 previously aged for 3 d 
in ASTM with NOM media (■). Asterisks denote statistical significant 
difference to the respective control; p < 0.05 (*), p < 0.01 (**). NA 
indicates not calculable reproduction output due to 100% mortality of 
adult daphnids in the respective treatment. 
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Table S1: Composition and ionic strength of ASTM test medium. 

Component 
Concentration 

in mg/L 

NaHCO3 192 

CaSO4·2H2O 120 

MgSO4 120 

KCl 8 

Na2SeO3 0.00219 

Thiamine hydrochloride (B1) 0.075 

Biotin (B7) 0.00075 

Cyanocobalamine (B12) 0.001 

Ionic strength 9.25 mmol/L 
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Table S2: Dissolved organic carbon analysis (µg/L-C) for seaweed extract (SW).  

a specific UV absorbance;
 b

 hydrophobic organic carbon; 
c
 hydrophilic organic carbon; 

d
 low molecular weight 

 

  

 
 DOC  SUVA

a
 

(L/mg*m) 
  

NOM 

 

total 

 
HOC

b
 

 
CDOC

c
 

  
 

   
 

 
total 

 
total 

 
BIO-polymers 

 
Humic Substance 

  
Building Blocks 

 
LMW

d
 neutrals 

 
LMW

c
 acids 

  
 

    
 

    
  

      
total 

  
total 

  

aromaticity 
(L/mg*m) 

  
Mol-weight 

(g/mol) 
  

    
  

  
  

  
  

SW 
 

1276 
 

366 
 

911 
 

71 
 

196 
 

4.96 
 

954 
 

285 
 

312 
 

48 
 

2.13 
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Table S3: Mean (±SE; n = 3) water quality parameters measured over the entire test duration of each experiment. 

 

 

 

 

 

 

 

 

Aging conditions 
1

st
 Week  2

nd
 Week  3

rd
 Week 

pH 
Oxygen 
(mg/L) 

Temperature 
(°C) 

 
pH 

Oxygen 
(mg/L) 

Temperature 
(°C) 

 
pH 

Oxygen 
(mg/L) 

Temperature 
(°C) 

0 d aging ASTM                            
without NOM 

8.15 
(±0.03) 

7.41 
(±0.60) 

19.97 
(±0.09) 

 
8.14 

(±0.05) 
6.77 

(±1.03) 
19.67 

(±0.27) 

 
8.73 

(±0.30) 
8.32 

(±0.11) 
19.57 

(±0.24) 

3 d aging ASTM                           
without NOM 

8.29 
(±0.01) 

7.06 
(±0.21) 

19.57 
(±0.23) 

 
8.27 

(±0.08) 
7.67 

(±0.66) 
19.8 

(±0.26) 

 
8.35 

(±0.08) 
8.47 

(±0.12) 
19.47 

(±0.20) 

0 d aging ASTM   
with NOM 

8.23 
(±0.04) 

8.06 
(±0.35) 

20.00 
(±0.31) 

 
8.1 

(±0.03) 
7.48 

(±0.26) 
19.37 

(±0.32) 

 
8.18 

(±0.02) 
7.95 

(±0.09) 
19.83 

(±0.09) 

3 d aging ASTM   
with NOM 

8.35 
(±0.00) 

8.04 
(±0.12) 

19.80 
(±0.12) 

 
8.22 

(±0.05) 
7.59 

(±0.11) 
19.43 

(±0.48) 

 
8.2 

(±0.01) 
8.11 

(±0.09) 
19.8 

(±0.12) 
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Table S4: Model specification and Akaike’s information criterion used for the calculation of each EC50 value. 

Aging medium 
Aging  
duration (d) 

Model 
Akaike's 
information 
criterion 

Lack  
of fit 

Milli-Q without NOM 

0d two-parameter Weibull function W1.2 -15.93 0.82 

1d two-parameter Weibull function W2.2 -31.02 0.59 

3d two-parameter Weibull function W2.2 -58.13 0.67 

6d two-parameter Weibull function W2.2 -32.02 0.44 

Milli-Q with NOM 

0d log-normal dose-response model LN.2 -31.62 0.40 

1d two-parameter Weibull function W2.2 -21.28 0.96 

3d two-parameter Weibull function W1.2 -5.68 0.84 

6d two-parameter Weibull function W1.2 -6.49 0.46 

ASTM without NOM 

0d two-parameter Weibull function W1.2 -34.85 0.98 

1d log-normal dose-response model LN.2 -51.06 0.76 

3d two-parameter Weibull function W1.2 -3.18 0.03 

6d two-parameter Weibull function W2.2 -26.68 0.97 

ASTM with NOM 

0d two-parameter Weibull function W1.2 -37.23 0.74 

1d two-parameter Weibull function W2.2 -29.73 0.45 

3d two-parameter Weibull function W1.2 -38.00 0.84 

6d two-parameter Weibull function W2.2 -44.37 0.99 
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Abstract 

 

Production and use of engineered nanoparticles, such as titanium dioxide 

nanoparticles (nTiO2), is increasing worldwide, enhancing their probability to enter 

aquatic environments. However, direct effects of nTiO2 as well as ecotoxicological 

consequences due to the interactions of nTiO2 with environmental factors like 

ultraviolet (UV) irradiation on representatives of detrital food webs have not been 

assessed so far. Hence, the present study displayed for the first time adverse 

sublethal effects of nTiO2 at concentrations as low as 0.2 mg L-1 on the leaf 

shredding amphipod G. fossarum both in presence and absence of ambient UV-

irradiation following a seven-day exposure. In absence of UV-irradiation, however, 

the effects seemed to be driven by accumulation of nTiO2 at the bottom of the test 

vessels to which the gammarids were potentially exposed. The adverse sublethal and 

lethal effects on gammarids caused by the combined application of nTiO2 and 

ambient UV-irradiation are suggested to be driven by the formation of reactive 

oxygen species. In conclusion, both the accumulation of nTiO2 at the bottom of the 

test vessel and the UV induced formation of reactive oxygen species clearly affected 

its ecotoxicity, which is recommended for consideration in the environmental risk 

assessment of nanoparticles. 
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Keywords:  

 

nanoparticle – titanium dioxide – ultraviolet irradiation – Gammarus fossarum – 

accumulation – reactive oxygen species 

 

Abbreviations: 

 

nTiO2   Titanium dioxide nanoparticles  

ROS  Reactive oxygen species  

UV  Ultraviolet  

ANOVA Analysis of variance 

PNEC  Predicted no effect concentration 

 

Research Highlights: 

 

- effects of nTiO2 and ambient UV-irradiation affect representatives of detrital 

food webs 

- accumulation of nTiO2 at the bottom of the test vessel seems to affect 

ecotoxicity  

- nTiO2 & ambient UV-irradiation increases ecotoxicity due to the formation of 

ROS 
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Introduction 

 

Nanotechnological industry is emerging worldwide and is predicted to become a 

trillion US dollar industry in the near future (Schmidt, 2009). The resulting increased 

production of nanoparticles will finally enhance the likelihood of such compounds to 

enter the aquatic environment in meaningful quantities (Scown et al., 2010). Titanium 

dioxide nanoparticles (nTiO2,), for instance, are widely used as ingredients in 

personal care products (Zhu et al., 2010a) like sunscreens and cosmetics but also as 

façade paints (Serpone et al., 2007; Kaegi et al., 2008). Moreover, technologies 

involving the combined application of nTiO2 and ultraviolet (UV) irradiation are 

appropriate for decontamination of air, soil and (waste)water (Fujishima et al., 2000; 

Herrmann, 2005) due to the formation of reactive oxygen species (ROS) (Fujishima 

et al., 2000). 

Despite this wide range of nTiO2 applications, no study was so far technically capable 

of quantifying environmental nTiO2 concentrations. But they were predicted to be up 

to 0.021 µg L-1 in surface waters and up to 4 µg L-1 in European and American 

wastewater treatment plant effluents (Gottschalk et al., 2009). These nTiO2 

concentrations are relatively low and may hence not cause any direct 

ecotoxicological effect, which is indicated by e.g. a 21-d EC50-value of 0.46 mg L-1 for 

the reproduction of Daphnia magna (Zhu et al., 2010b). However, this and 

comparable studies have not taken the potentially increasing nTiO2 concentrations at 

the bottom of the test vessels into account, which can be assumed due to the rapid 

agglomeration (Velzeboer et al., 2008) and sedimentation of nTiO2 (Dabrunz et al., 

2011). This may result in the exposure of benthic invertebrates. It is however 

questionable whether nTiO2 agglomerates have the potential to exert appreciable 

toxic effects,  
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In addition, published ecotoxicological studies, which assess effects on aquatic 

organisms, consider exclusively species involved in food webs based on primary 

production in aquatic environments, like daphnids and algae (Scown et al., 2010). 

Hence, detrital food webs are so far largely ignored. Moreover, effects caused by the 

potential formation of ROS during ambient UV-irradiation of nTiO2 on invertebrates 

were indicated only by one study (Hund-Rinke and Simon, 2006), although UV is an 

important environmental factor (Häder et al., 2007). Hence, ecotoxicological 

consequences of the combined stress of nTiO2 and ambient UV-irradiation can also 

not satisfactorily be evaluated. 

The present study, therefore, investigated direct effects of nTiO2 on the feeding rate 

of the leaf shredding benthic amphipod Gammarus fossarum. One experiment 

considered the potential increase of the nanoparticle concentrations at the bottom of 

the test vessel. Another experiment assessed by means of a two factorial test design 

the combined effects of nTiO2 and ambient UV-irradiation. As G. fossarum is 

considered as a key species in the ecosystem function of leaf litter breakdown 

(Dangles et al., 2004), alterations in its feeding rate, which is a frequently used 

sublethal, ecotoxicological endpoint (e.g. Bundschuh et al., 2011a), may perpetuate 

to shifts in this ecosystem service and hence the energy provision for local and 

downstream communities (Bundschuh et al., 2011b). 

 

Material and Methods 

 

Preparation and analysis of nTiO2 

 

Titanium dioxide nanoparticles (P25; Degussa, Essen, Germany) were purchased as 

powder (anatase 80%, rutile 20%) to prepare a dispersant and additive free, size 
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homogenized stable suspension. This suspension was obtained by stirred media 

milling (PML2, Bühler AG, Switzerland). Particle size distributions in undiluted and 

monodisperse stock suspension were determined via dynamic light scattering 

(DelsaTM Nano C, Beckman Coulter, Germany) prior to each medium exchange. The 

stock suspension had a mean (± 95% confidence interval (CI)) particle diameter of 

approximately 97.16 (± 1.96) nm and a concentration of 6.9 g nTiO2 L
-1. Prior to its 

application and characterization the nTiO2 suspension was sonicated for 10 min to 

ensure a homogeneous distribution of particles. The nominal test concentrations 

were achieved by serial dilution. 

 

Preparation of leaf discs 

 

Leaf discs were prepared as described in detail in Bundschuh et al. (2011a). Briefly, 

senescent but undecomposed black alder (Alnus glutinosa L. Gaertn.) leaves were 

collected shortly before leaf fall in October 2008 from a group of trees near Landau, 

Germany (49°11’ N; 8°05’ E), and stored frozen at -20°C until further use. After 

thawing, discs (2.0 cm diameter) were cut from each leaf with a cork borer. To 

establish a microbial community on these leaf discs, they were conditioned in a 

nutrient medium together with alder leaves exhibiting a natural microbial community 

consisting of bacteria and fungi due to a three weeks exposure in the Rodenbach, 

located near Mannheim, Germany (49° 33’ N, 8° 02’ E). Prior to the laboratory 

conditioning period, the field conditioned leaves were kept for several weeks at 

15±1°C in aerated stream water from the same site. Following a conditioning period 

of 10 d, the discs were dried at 60°C to constant weight (~24 h), which ensured an 

accurate measurement of the amphipods’ feeding rate, and weighed to the nearest 

0.01 mg. After that the leaf discs were, if not stated otherwise, soaked in test medium 



135 
 

(= SAM-S5 medium) described by Borgmann (1996), for 48 h and randomly allocated 

to the respective treatment. 

 

Test organisms 

 

G. fossarum were chosen as test organisms since they are known as key species in 

the ecosystem function of leaf litter breakdown (Dangles et al., 2004). They were 

obtained from a near natural stream (Hainbach) near Landau, Germany (49°14’ N; 

8°03’ E), one week before the start of each bioassay and were checked visually for 

infection with acanthocephalan parasites. Infected specimens were excluded from 

the experiment as parasites may affect the behavior, amongst others the feeding 

rate, of its host (Pascoe et al., 1995). The remaining G. fossarum were divided into 

three size classes using a passive underwater separation technique (Franke, 1977). 

Only adults with a cephalothorax length between 1.2 and 1.6 mm were used. 

Subsequently, those animals were kept in test medium until the start of the 

experiment while preconditioned black alder leaves were provided ad libitum. 

 

Feeding activity trials 

 

Two feeding activity trials were conducted in the present study (Bundschuh et al., 

2011a). During the first experiment, one specimen of G. fossarum was placed 

together with two randomly allocated preconditioned leaf discs in a 250-mL glass 

beaker filled with 200 mL of test medium containing 0.0, 0.2, 2.0 or 20.0 mg nTiO2 L
-1 

for seven days in total darkness. Each vessel was aerated during the whole period. 

For each treatment 30 replicates were set up.  

In contrast to the first experiment, the test medium of the second experiment 
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containing 0.0, 0.2 or 2.0 mg nTiO2 L
-1 was renewed every 24 h. To ensure a careful 

transfer of the test organisms and leaf discs into the fresh medium, stainless steel 

(mesh size = 0.5 mm) cages were used. These cages additionally guaranteed that 

the gammarids and leaf discs never entered the lowest 1.0 cm medium layer (= test 

vessel bottom). The second feeding activity trial assessed in addition to nTiO2 toxicity 

the potential adverse effects of the interaction of nTiO2 and ambient UV-irradiation. 

Therefore, again 0.0, 0.2 or 2.0 mg nTiO2 L
-1 were assessed together with UV-A and 

UV-B irradiation at an intensity of 28.0 W m-2 and 0.9 W m-2 (measured with a RM12 

radiometer; Dr. Gröbel UV-Elektronic GmbH, Ettlingen, Germany), which is 25% 

below peak intensities measured during summer time in Central Europe (Häder et al., 

2007). The UV-irradiation period was set at 12 h per d. Mortality of the test organism 

G. fossarum was monitored every 24 h. Each treatment was replicated 20 times 

during the second feeding activity trial. Five additional beakers containing two leaf 

discs without G. fossarum were established to correct for microbial decomposition 

and handling losses in leaf mass for each treatment during both experiments. After 

seven days of exposure, the test organisms, remaining leaf discs and any leaf tissue 

shredded off were removed and dried at 60°C to constant weight and weighed to the 

nearest 0.01 mg. The feeding rate was calculated as described in Maltby et al. 

(2000). 

 

Food choice trial 

 

Preconditioned leaf discs were soaked for 48 h in seven mL of test medium 

containing 0.0 and 20.0 mg nTiO2 L
-1, while the medium was exchanged after 24 h. 

Following this soaking period, one leaf disc soaked in the control and one disc 

soaked in medium containing 20.0 mg nTiO2 L
-1 were paired and offered to a single 
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specimen of G. fossarum, which was starved for 96 h prior use in the food choice 

trial. Two other leaf discs soaked in test medium containing 0.0 and 20.0 mg nTiO2 L
-

1, respectively, were also introduced to the same feeding arena but protected from 

amphipod feeding by a 0.5-mm nylon mesh screen to account inter alia for microbial 

decomposition and abiotic leaf mass loss. The trial (n = 49) ran for 24 h at 20 ± 1 C in 

total darkness to avoid phototactic response of the test animals. After the feeding 

period, all leaf discs and animals were individually removed, dried separately to 

constant mass, weighed, and used to calculate leaf consumption per mg of 

Gammarus body dry mass and day (cp. Bundschuh et al., 2009).  

 

Statistical analysis 

 

Data were check for normal distribution and variance homogeneity using 

Kologmorov-Smirnov and Bartlett's test, respectively. Subsequently, differences in 

the mean feeding rates of gammarids exposed to different nTiO2 concentrations 

measured during the first feeding activity trial were assessed for statistical 

significance by ANOVA followed by Dunnett’s test for multiple comparisons. A two 

factorial ANOVA was applied to judge statistical significance of UV-irradiation, nTiO2 

as well as their interaction term during the second feeding activity trial. This two 

factorial ANOVA was supplemented by one-way ANOVAs, followed by Dunnett’s 

tests, separately for situation with and without ambient UV-irradiation among nTiO2 

treatments. Moreover, unpaired Student’s t-tests were performed to assess statistical 

significance between exposure scenarios with and without ambient UV-irradiation for 

each nTiO2 concentration separately. The proportion of dead gammarids following 

the seven days of exposure were compared among treatments exposed to nTiO2 and 

ambient UV-irradiation using the corresponding methods described by Altman et al. 
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(2000) by considering adjustments for multiple comparisons. If CIs of differences 

between two proportions did not include zero the test outcome was judged as 

significant. Finally, for the food choice trial also an unpaired Student’s t-test was used 

to assess statistical significance regarding the feeding preference of gammarids 

following the two leaf discs soaking scenarios. All tests were two-sided and 

significance level was set at p < 0.05. In the following chapter the expression 

“significant(ly)” is exclusively used in terms of “statistical significance”. 

 

 

Results and Discussion 

 

The present study assessed for the first time potential adverse effects of nTiO2 alone 

and in combination with ambient UV-irradiation on a key species in the ecosystem 

function of leaf litter breakdown, i.e. G. fossarum (Dangles et al., 2004). The first 

feeding activity trial of the present study revealed for all nTiO2 concentrations tested, 

namely 0.2, 2.0 or 20.0 mg nTiO2 L-1, mean feeding rates significantly reduced 

(Dunnett; p < 0.05, n = 30; Fig. 1) by approximately 40%. These effects seem to be 

caused by direct exposure of the test organism G. fossarum, as leaf associated 

nTiO2 did not affect the food selection of this species during the food choice trial (Fig. 

2). The lowest concentration displaying a significantly reduced mean feeding rate of 

G. fossarum, 0.2 mg nTiO2 L-1, is at the same level as those causing reduced 

numbers of living offspring for D. magna after 21 d of exposure (Zhu et al., 2010b). 

Accordingly, Dabrunz et al. (2011) reported a time weighted 96-h EC50-value of 0.24 

mg nTiO2 L
-1 for D. magna. In contrast, the second feeding trial of the present study 

displayed only a slight, non-significant decrease in the mean feeding rate of G. 

fossarum exposed in total darkness to 0.2 and 2.0 mg nTiO2 L
-1 if compared to the 
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respective control.  

 

 

Figure 1: Mean (±95% CI) feeding rate of G. fossarum exposed to 0.0, 0.2, 2.0 or 
20.0 mg nTiO2/L for seven days in darkness during the first feeding 
activity trial. Asterisks denote significant differences at p < 0.05 based 
on Dunnett’s test for multiple comparisons compared to the control (n = 
30). 

 
 

 
 

Figure 2: Mean (±95% CI) feeding rate of G. fossarum during the food choice trial 
following the 48 h soaking period in test medium containing 0.0 or 20.0 
mg nTiO2/L. No significant difference was obvious (t-test; p = 0.73; n = 
49). 
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As Dabrunz et al. (2011) have shown that nTiO2 and their agglomerates disappear 

from the water phase of the test medium during the first 24 h, it can be assumed that 

they accumulated on the bottom of the test vessels. However, during our second 

experiment, cages ensured that both the benthic test organism G. fossarum, which 

acts negatively phototactic (Franke, 1977), and the leaf discs were held 

approximately 1.0 cm above the bottom of the glass beakers. This procedure hence 

reduced the exposure of the test organism to nTiO2 or their agglomerates and finally 

any adverse ecotoxicological response. 

The two factorial design of the second feeding activity trial allowed the additional 

assessment of potential adverse effects due to ambient UV-irradiation in combination 

with different nTiO2 concentrations. This UV-irradiation alone - and hence without any 

nTiO2 – caused with approximately 50% a significantly reduced mean feeding rate 

compared to the  control (= without UV-irradiation and nTiO2) (t-test; p < 0.0001; n = 

20/19; Fig. 3).  
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Figure 3: Mean (±95% CI) feeding rate of G. fossarum exposed to 0.0, 0.2 or 2.0 
mg nTiO2/L for seven days in darkness or under ambient UV-irradiation 
during the second feeding activity trial. Asterisks denote significant 
differences with p < 0.05 (*) and p < 0.001 (***) based on Dunnett’s test 
for multiple comparisons (n = 19-20), respectively. Due to the 90% 
mortality recorded in the 2.0 mg nTiO2/L with UV-irradiation, this 
treatment was not included in the further statistical analysis 

 

This reduced feeding rate may be explained by the photoperiod applied in the 

present study, since UV-irradiation, especially UV-B (280 – 315 nm), is acutely toxic 

to amphipods and other invertebrates as shown by Cywinska et al. (2000) at 0.32 W 

m-2. Hurtubise et al. (1998) suggest that a shelter would reduce the adverse effects. 

Hence, it can be assumed – also based on the observations during the present study 

- that G. fossarum hid under and do not feed on the leaf discs provided as food 

during the 12 h UV-irradiation period, which finally resulted in the observed 50% 

reduced feeding rate. However, in presence of 0.2 and 2.0 mg nTiO2 L
-1 and ambient 

UV-irradiation a significant difference to the respective control (Dunnett; p = 0.029 & 

p < 0.0001; n = 19/20; Fig. 3) and the same nTiO2 concentrations not subjected to 

UV-irradiation were present (t-test; both p < 0.0001; n = 20/19; Fig. 3). This suggests, 

especially as the interaction term of UV-irradiation and nTiO2 concentrations were 
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significant (Tab. 1), a synergistic adverse effect of both stressors, which was e.g. also 

shown for a marine amphipod by Liess et al. (2001) with regards to copper and UV-B. 

Moreover, 90% of the gammarids exposed to 2.0 mg nTiO2 L
-1 in combination with 

UV-irradiation died during the study duration. This mortality rate was significantly 

higher than for all other treatments with UV-irradiation (Fig. 4).  

 

Table 1: Output of the two-factorial ANOVA assessing differences in the mean 
feeding rate of G. fossarum due to exposure to three levels of nTiO2 (0.0, 
0.2 or 2.0 mg nTiO2 L

-1) in combination with or without UV irradiation. 

 df SS MS F-value p-values 

UV irradiation 1 2.315 2.315 126.436 <0.0001 

nTiO2 2 0.434 0.217 11.840 <0.0001 

UV-irradiation x nTiO2 2 0.168 0.084 4.589 0.0121 

Residuals 114 2.087 0.018   

df = degrees of freedom; SS = sum of squares; MS = mean squares 
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Figure 4: Proportion (with 95% CI) of dead gammarids exposed to different nTiO2 
concentrations in combination with UV-irradiation. Asterisks denote 
significant differences between treatments. 

 

Furthermore, it is obvious that both nTiO2 concentrations assessed during the second 

experiment resulted in an increased ecotoxicity if applied in combination with UV-

irradiation. The mechanism of toxicity proposed during the first experiment of the 

present study was, however, excluded here as a reason. Although not analyzed, 

formation of ROS may be assumed to have occurred in the present study as the 

band gap energy of 3.0 – 3.2 eV for nTiO2, which is necessary to form ROS, is 

provided by photons, i.e. UV-irradiation (Ahmed et al., 2010). Hence, the observed 

increase in toxicity may be caused by this formation of ROS that damage amongst 

others cellular lipids and proteins (Kahru et al., 2008) as well as adversely affected 

the bacteria Bacillus subtilis (Adams et al., 2006). Moreover, Hund-Rinke and Simon 

(2006) attributed an increased immobilization of D. magna following a 30 min UV-pre-

irradiation in the presence of nTiO2 also to ROS. However, the authors were not able 

to identify a clear dose response relationship. As no further study was identified that 

addresses potential synergistic or antagonistic ecotoxicological effects of UV-
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irradiation and nTiO2 on aquatic invertebrates, the present study fills a relevant 

scientific knowledge gap by providing a clear reference that most data currently 

available in the literature may have underestimated toxic effect potentially associated 

with the nTiO2 exposure, since field relevant UV irradiation conditions were not 

considered. 

 

In conclusion, the present study displayed that the unavoidable accumulation of 

nTiO2 and other metal oxide nanoparticles at the bottom of test beakers may be the 

driving factor for adverse effects on test organisms. This is especially important for 

benthic organisms, which should also be considered in future experiments with 

nanoparticles. Moreover, it was empirically shown, by avoiding the exposure of G. 

fossarum to accumulated nTiO2 at the bottom of the test vessel, that UV-irradiation at 

ambient intensities causes adverse effects at 0.2 mg nTiO2 L
-1. Based on this effect 

concentration a predicted no effect concentration (PNEC) of 0.2 µg nTiO2 L
-1 will be 

obtained, if calculated according to established procedures on European chemical 

risk assessment (European Chemicals Bureau, 2003), including an assessment 

factor of 1000. As the predicted concentration of nTiO2 in surface waters is about 

0.021 µg L-1 (Gottschalk et al., 2009), it remains unlikely that environmental nTiO2 

levels will exceed this PNEC. Nevertheless, the present study showed that 

nanoparticles’ interactions e.g. with environmental factors need to be investigated 

also from an ecotoxicological viewpoint. Finally, both main conclusions drawn from 

the present study, that take the nanoparticles’ inherent properties into account, 

should carefully be considered during the environmental risk assessment of 

engineered nanoparticles.  
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Figure SD1: Proportion (with 95% CI) of dead gammarids exposed to different nTiO2 
concentrations in combination with UV-irradiation. Asterisks denote 
significant differences between treatments. 
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Abstract 

Studies assessing the acute and chronic toxicity of silver nanoparticle (nAg) materials 

rarely consider potential implications of environmental variables. In order to increase 

our understanding in this respect, we investigated the acute and chronic effects of 

various nAg materials on Daphnia magna. Thereby, different nanoparticle size 

classes with a citrate coating (20-, ~30-, 60- as well as 100-nm nAg) and one size 

class without any coating (140 nm) were tested, considering at the same time two pH 

levels (6.5 and 8.0) as well as the absence or presence of dissolved organic matter 

(DOM; <0.1 or 8.0 mg total organic carbon/L). Results display a reduced toxicity of 

nAg in media with higher pH and the presence of DOM as well as increasing initial 

particle size, if similarly coated. This suggests that the associated fraction of Ag 

species <2 nm (including Ag+) is driving the nAg toxicity. This hypothesis is supported 

by normalizing the 48-h EC50-values to Ag species <2 nm, which displays 

comparable toxicity estimates for the majority of the nAg materials assessed. It may 

therefore be concluded that a combination of both the particle characteristics, i.e. its 

initial size and surface coating, and environmental factors trigger the toxicity of ion-

releasing nanoparticles. 

Keywords: nanomaterial, silver, acute toxicity, crustacean, environmental conditions  
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Introduction 

 

Silver nanoparticles (nAg) are, amongst others driven by their antimicrobial properties 

(Morones et al., 2005), frequently used for e.g. textile and consumer products (Benn 

and Westerhoff, 2008). The increasing demand for nAg (Scheringer, 2008) may 

result in their unintentional release into aquatic environments potentially posing a 

significant threat to aquatic communities, although physical and chemical processes, 

such as sulfidation, might significantly lower its toxicity (Levard et al., 2012). With the 

purpose of characterizing potential environmental risks, several studies investigated 

the acute and chronic toxicity of different nAg materials to aquatic organisms mostly 

focusing on the standard test organism Daphnia magna (e.g. Asghari et al., 2012; 

Kennedy et al., 2010; Zhao and Wang, 2010). The outcome of such acute studies 

displayed highly variable 48-h median effective concentrations (48-h EC50) for nAg 

ranging from 0.75 to 187 µg/L (Asghari et al., 2012; Lee et al., 2012). Also chronic 

experiments investigating effects on the fecundity and growth of daphnids revealed 

comparable differences among studies showing adverse effects at nAg 

concentrations equal to or higher than 50 µg nAg/L (Blinova et al., 2012; Zhao and 

Wang, 2010). This highly variable toxicity may be attributed to specific nAg 

characteristics such as, initial particle size or surface coatings (e.g. Hoheisel et al., 

2012; Ma et al., 2011; Zhao and Wang, 2011) which are known to meaningfully 

influence the release of Ag ions (Ag+) from nAg (Hoheisel et al., 2012). These Ag+ are 

hypothesized as the driver for nAg toxicity (Kennedy et al., 2010). The fate and 

toxicity of such ions is in turn also determined by environmental parameters such as 

pH, the amount of organic matter or the presence of complexing agents such as 

chloride or thiosulfate (Erickson et al., 1998; Ratte, 1999). 

Some studies investigated the ion release kinetics of different nAg materials under 
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varying environmental conditions and observed notable differences (e.g. Dobias and 

Bernier-Latmani, 2013; Levard et al., 2012; Tejamaya et al., 2011; Thio et al., 2011). 

Recently Levard et al. (2012) pointed out that a systematic investigation, assessing 

the implications of nAg characteristics and environmental parameters on aquatic 

species is needed. This seems particularly important as this gap of knowledge may 

have unintentionally caused an over- or underestimation of the potential risks 

associated with the incorporation of nAg in our daily used products and their 

subsequent release into the aquatic environment. 

In this context, the present study investigated the acute and chronic toxicity of 

differently initially sized coated and uncoated nAg materials as well as silver nitrate 

(AgNO3) to D. magna using the respective standard test protocols (OECD, 2004 and 

2008). By doing so, two pH levels (6.5 and 8.0) as well as two DOM (<0.1 and 8.0 mg 

TOC/L) levels, which represent environmentally realistic concentrations (Ryan et al., 

2009), were considered. Potential effects of silver nitrate (AgNO3), a positive control 

for Ag+ toxicity, uncoated (~140 nm) and citrate coated silver nanoparticles (Cit nAg; 

20, 60, 100 nm) on D. magna were investigated during 48-h acute exposure periods. 

Subsequently, 21-d chronic experiments with the same test organism were 

conducted using ~30 nm laboratory synthesized Cit nAg, representing a citrate 

coated nAg material suggested to be rather toxic, that is also frequently used for 

toxicity testing (Kennedy et al., 2010; Pokhrel et al., 2013; Römer et al., 2013). 
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Material and Methods 

 

Material preparation and characterization 

 

Stock solutions of AgNO3 (American Chemical Society reagent, ≥99.0%, Sigma-

Aldrich) were prepared in Milli-Q water and similar to all other materials diluted to the 

desired test concentration in the respective test medium (varying in pH and DOM). 

The uncoated silver nanoparticle (140 nm uncoated nAg) dispersion was prepared by 

ultrasonication (amplitude set to 20% at 18°C; Sonopuls, Bandelin, Germany) of 200 

mL Milli-Q water amended with 10.0 mg of 35 nm sized nAg powder (99.5% purity; 

Ionic-Liquids-Technology) for 20 minutes. Subsequently the dispersion was filtered 

over a nitrocellulose membrane (0.22 µm pore size; Sigma). Exclusively the filtrate 

was used in the present study. The particles of the filtrate consisted of 90% (mass 

per mass) aggregates (50-160 nm) as described and characterized in detail by 

Abraham et al. (2013). The citrate coated silver nanoparticles (Cit nAg; Sigma-

Aldrich) with a primary particle size of 20, 60 and 100 nm were purchased as 20 mg/L 

dispersions. The preparation of the laboratory synthesized ~30 nm Cit nAg followed 

in general Turkevich et al., (1951) while it was adapted to silver. This procedure 

resulted in an initial concentration of 94.5 mg Ag/L. 

Prior to each experiment or water exchange, any nanoparticle dispersion was 

analyzed for its initial particle size distribution via dynamic light scattering (DelsaTM 

Nano C, Beckman Coulter; Tab. 1), whereas for the laboratory synthesized ~30 nm 

Cit nAg stock solution, additionally transmission electron microscope analyses were 

performed once to verify the primary particle size (Fig. A.1).  Moreover, the average 

particle size of each nAg material was monitored daily in the test medium during all 

acute tests (Tab. 1) and once over 3 days representing the time between two water 
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exchanges during the chronic tests (Tab. 1). To exclude any bias caused by algal 

food or excretions on the measurements, additional test vessels were used. Samples 

were taken 2 cm beneath the water surface, which is considered as appropriate for 

pelagic species such as Daphnia, of the respective highest test concentration (which 

ensured a sufficient intensity) and analyzed immediately. 
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Table 1: Mean particle size (±SD; n=3) and the 10th (D 10%) and 90th (D 90%) percentile of their particle size distribution for 
different nAg materials measured in the stock dispersions and test medium exhibiting different pH (6.5 and 8.0) and DOM 
levels (<0.1 and 8.0 mg TOC/L), respectively. The particle size was assessed over the entire study duration of either 48 h 
during the acute toxicity tests or representative for the time between a water exchange (over 72 h) during all chronic 
investigations (~30-nm-Cit nAg). 

a
Polydispersity Index 

 

silver material initial particle size [PdI]
a
 

    pH 6.5 

    - DOM 

 
+ DOM 

D 10% D 90% t 0 h D 10% D 90% t 48 h D 10% D 90% PdI
a
 

 
t 0 h D 10% D 90% t 48 h D 10% D 90% PdI

a
 

140-nm-bare nAg 144 (± 25) [0.227] 68 (± 1) 258 (± 51) 317 (± 12) 153 (± 8) 666  (± 13) 307 (± 8) 139  (± 11) 721  (± 26) 0.240 – 0.281 

 
236 (± 11) 109  (± 19) 674  (± 215) 389 (± 163) 79  (± 6) 793  (± 19) 0.287 – 0.333 

20-nm-Cit nAg 26 (± 1) [0.309] 12 (± 1) 64 (± 7) 67 (± 2) 24 (± 2) 299 (± 9) 258 (± 10) 54 (± 11) 292 (± 41) 0.137 – 0.349 

 
36 (± 1) 7 (± 3) 185 (± 38) 34 (± 1) 6 (± 3) 148 (± 24) 0.495 – 0.654 

60-nm-Cit nAg 68 (± 7) [0.149] 35 (± 7) 122 (± 43) 103 (± 38) 33 (± 2) 176 (± 50) 1010 (± 305) 67 (± 14) 27270 (± 10152) 0.083 – 0.615  

 
NA NA NA NA NA NA NA 

100-nm-Cit nAg 106 (± 2) [0.213] 61 (± 2) 156 (± 12) 206  (± 20) 76 (± 9) 149 (± 16) 315 (± 122) 75 (± 5) 551 (± 69) 0.107 – 0.231   NA NA NA NA NA NA NA 

    
t 0 h 

  
t 72 h 

  
PdI

a
 

 
t 0 h 

  
t 72 h 

  
PdI

a
 

~30-nm-Cit nAg 35 (± 8) [0.405] 8 (± 3) 204 (± 62) 332 (± 121) 37 (± 12) 390 (± 263) 1460 (± 300) 143 (± 70) 16263 (± 12272) 0.133 – 0.796   266 (± 186) 12 (± 1) 143 (± 42) NA NA NA 0.130 – 0.344 

    

pH 8.0 

140-nm-bare nAg 144 (± 25) [0.227] 68 (± 1) 258 (± 51) 283 (± 31) 112  (± 16) 1110  (± 10) 266 (± 28) 124  (± 30) 865  (± 221) 0.260 – 0.401 

 
242 (± 27) 67  (± 21) 648  (± 279) 252 (± 38) 121  (± 1) 1171  (± 221) 0.146 – 0.618 

20-nm-Cit nAg 26 (± 1) [0.309] 12 (± 1) 64 (± 7) 301 (± 43) 110 (± 12) 1756 (± 308) 1847 (± 220) 242 (± 42) 1029 (± 29) 0.177 – 0.842 

 
92 (± 2) 46 (± 1) 175 (± 11) 827 (± 203) 141 (± 6) 16337 (± 6000) 0.244 – 0.456 

60-nm-Cit nAg 68 (± 7) [0.149] 35 (± 7) 122 (± 43) 281 (± 22) 66 (± 2) 319 (± 15) 1013 (± 219) 91 (± 12) 7059 (± 1776) 0.138 – 0.555 

 
NA NA NA NA NA NA NA 

100-nm-Cit nAg 106 (± 2) [0.094] 61 (± 2) 156 (± 12) 405 (± 35) 93 (± 2) 2903 (± 396) 560 (± 11) 78 (± 18) 3822 (± 1795) 0.204 – 0.281   NA NA NA NA NA NA NA 

    
t 0 h 

  
t 72 h 

  
PdI

a
 

 
t 0 h 

  
t 72 h 

  
PdI

a
 

~30-nm-Cit nAg 35 (± 8) [0.405] 8 (± 3) 204 (± 62) 394 (± 231) 46 (± 10) 515 (± 186) 1045 (± 435) 132 (± 67) 20939 (± 16995) 0.130 – 0.749   320 (± 225) 16 (± 6) 181 (± 60) 257 (± 276) 25 (± 2) 253 (± 19) 0.157 – 0.394 
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For quantification of Ag, one water sample (finally resulting in three measurement 

replicates) originating from the median concentration tested, but separated by the 

nAg characteristics and combination of environmental factors (pH and DOM), was 

taken at the start (t0 h) as well as at the end (t48 h) of each acute toxicity test. Samples 

of t0 h were analyzed immediately, while samples of t48 h were split in two subsamples. 

One subsample was directly analyzed while the other was subject to 

ultracentrifugation (t=35 min; 546883 x g, Sorvall WX Ultra Series WX 90; Thermo 

Fisher Scientific) allowing for a separation of nanoparticles with a size ≥2 nm from 

Ag+ and nAg with a particle size <2 nm (Kennedy et al., 2010; Tab. 2). The 2 nm cut-

off was calculated considering the centrifugation duration, particle density, rotor 

radius and rotor speed. With this method and due to the low density of DOM (~ 1.5 

g/cm³) if compared to the nanoparticles (~ 10.5 g/cm³), DOM molecules or associated 

Ag+ complexes will remain in the supernatant. 
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Table 2: Mean (±SE; n=3) Ag concentrations (µg/L) for each silver material and environmental scenario (pH and DOM level) 

investigated. Measurements were performed at different time intervals during the acute and the semi-static experiments by 

inductively coupled plasma mass spectrometry (Seitz et al., 2013). All samples of the acute toxicity tests were also 

subjected to an ultracentrifugation process to analyze a respective Ag+ release after 48 h. NA: data not evaluated. 

acute toxicity test 

 silver 
material 

- DOM   + DOM 

 
pH 6.5 

 
pH 8.0 

  
pH 6.5 

 
pH 8.0 

nominal 0 h 48 h 48 h
a
   0 h 48 h 48 h

a
   nominal 0 h 48 h 48 h

a
   0 h 48 h 48 h

a
 

AgNO3 32.4 
27.0     

(± 0.1) 
27.7    

(± 0.2) 
27.5     

(± 0.1)  
31.3         

(± 0.1) 
24.6     

(± 0.1) 
22.1     

(± 0.1)  
32.4 

27.3    
(± 0.1) 

24.6    
(± 0.1) 

18.0    
(± 0.1)  

30.0          
(± 0.1) 

24.8           
(± 0.14) 

32.0      
(± 0.2) 

140 nm 
bare 
nAg 

62.5 
42.8 

(±0.8) 
39.5 

(±0.6) 
5.5 

(±0.1)  
38.1 

(±0.4) 
29.5        

(±0.5) 
6.0       

(± 2.5)  
62.5 

70.2    
(± 0.5) 

58.9    
(± 0.4) 

3.7     
(± 0.1)  

64.1       
(± 0.1) 

40.7      
(± 0.7) 

3.1       
(± 0.1) 

20 nm 
Cit nAg 

80.0 
56.1     

(± 0.6) 
39.5 

(±0.4) 
3.4       

(± 0.9)  
50.8           

(± 0.6) 
37.1     

(± 0.6) 
5.0       

(± 0.1)  
80 

62.2    
(± 0.3) 

67.0    
(± 1.1) 

2.0     
(± 1.2)  

67.5       
(± 0.4) 

62.0     
(± 0.7) 

0.8       
(± 0.8) 

60 nm 
Cit nAg 

93.8 
27.0     

(± 0.7) 
22.0    

(± 0.6) 
0.3     

(± 0.1 )  
26.0         

(± 0.5) 
21.8     

(± 0.5) 
1.8       

(± 0.1)  
NA NA NA NA 

 
NA NA NA 

100 nm 
Cit nAg 

75.0 
41.3     

(± 0.8 ) 
33.7    

(± 0.8) 
2.4     

(± 0.1 )  
36.6         

(± 0.7) 
21.9     

(± 0.6) 
1.9       

(± 0.1)  
NA NA NA NA 

 
NA NA NA 

chronic toxicity test 

    0 h   72 h   0 h   72 h     0 h   72 h   0 h   72 h 

~30 nm 
Cit nAg  

73.2     
(± 0.1 )  

49.2     
(± 0.1)  

73.2     
(± 0.1 )  

51.3     
(± 0.1)   

78.4    
(± 1.5)  

51.7    
(± 1.3)  

75.7  
(±0.1 )  

69.5            
(± 0.1) 

a
 Following centrifugation 
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During each chronic test one sample was taken at t0 h and t72 h, which reflects the 

time between two water exchanges over the course of the experiment, exclusively 

from the highest test concentration applied and processed as detailed above (Tab. 

2). Although different time periods were used we assumed a transferability in terms of 

dissociation of ions from nAg between the acute and chronic experiments, and hence 

the fraction of Ag+ and nAg with a particle size <2 nm was not quantified again. The 

final analytical quantification of Ag (mass 107) was carried out using a Quadrupole 

ICP-MS (XSeries2, Thermo Fischer Scientific, Germany) equipped with a FAST 

autosampler (ESI, Thermo Fischer Scientific, Germany), a peek spray chamber 

(Thermo Fischer Scientific, Germany) as well as a robust Mira Mist peek nebulizer 

(Burgener, United Kingdom). For the ultracentrifuged samples, speciation of Ag+ was 

calculated (Tab. A.1) based on the assumption that the particle size fraction <2 nm 

solely represents Ag+ species. The calculation was performed for each silver material 

and environmental scenario (pH and DOM level) considering the composition of the 

test medium at the highest test concentration, using Visual MINTEQ software version 

3.0 (Gustafsson, 2011; Tab. A.1). Formation of complexes between metal cations 

and DOM molecules was calculated using the Stockholm Humic Model (SHM; 

Gustafsson, 2001) assuming that all DOM is comprised of fulvic acid (FA) containing 

50% carbon. This assumption seems reasonable as seaweed extract is mainly 

composed of alginates with high amounts of carboxylic functional groups (Fourest 

and Volesky, 1996; Fourest and Volesky, 1997), which is in its properties comparable 

to fulvic acid. The calculations were performed for a CO2 equilibrium between air and 

aqueous phase. 
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Test organism 

 

Daphnia magna were cultured under standardized procedures in a climate controlled 

chamber (Weiss Environmental Technology, Germany) at 20±1°C with a 16:8 h 

(light:dark) photoperiod. Therefore, modified ASTM reconstituted hard freshwater 

(ASTM, 2007) amended with additions of selenium, vitamins and seaweed extract 

(Seitz et al., 2013) was used as culture medium. Daphnids were daily fed with the 

green algae Desmodesmus sp. (200 µg C/organism).  

 

General test design 

 

ASTM reconstituted hard freshwater (Bundschuh et al., 2012) containing selenium 

and vitamins (test medium) was used for all experiments. In order to account for 

varying pH levels the test medium was additionally buffered with 3-N-Morpholino-

propanesulfonic acid (De Schamphelaere and Janssen, 2004) and finally adjusted to 

a pH of either 6.5 and 8.0 using 2 molar hydrochloric acid and sodium hydroxide, 

respectively. Moreover, with respect to the wide presence of DOM in natural surface 

waters (Ryan et al., 2009), two levels of commercially available seaweed extract 

(Marinure®, Glenside), namely <0.1 (= absence of DOM) or 8.0 mg TOC/L (= 

presence of DOM), were established in the test medium. All experiments were 

conducted under temperature and light conditions, described in section 3.2. 

Dissolved oxygen and pH were measured using a WTW Multi 340i set (WTW Inc.; 

Germany) and met the water quality requirements (Tab. A.2) of the respective test 

guidelines (OECD 2004 and 2008). 
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48-h acute toxicity tests 

 

The 48-h acute toxicity tests were conducted according to the OECD guideline 202 

(OECD, 2004): Twenty juveniles (age <24 h) per treatment were placed in groups of 

five in 50 mL test medium, previously adjusted to one set of environmental conditions 

described in section 3.3. Each (n)Ag material tested in the present study was used in 

an acute toxicity test at pH levels of either 6.5 or 8.0 in the absence of DOM. In the 

presence of DOM at both pH levels only the most toxic materials were tested, namely 

AgNO3, 140 nm uncoated nAg and 20 nm Cit nAg. Based on the expected acute 

toxicity (relying on results of own preliminary tests; data not shown), the chosen test 

concentrations differed among all Ag materials applied and thus ranged from 0.4 to 

32.4 µg/L for AgNO3, from 0.1 to 62.5 µg/L for 140 nm uncoated nAg, from 10.0 to 

160.0 µg/L for 20 nm Cit nAg, from 47.9 to 750.0 µg/L for 60 nm Cit nAg and, from 

75.0 to 1200.0 µg/L for 100 nm Cit nAg. Mobility of daphnids was checked every 24 

hours. As our chemical analysis revealed significant differences between the nominal 

and measured initial concentrations for most of the silver materials applied in the 

present study (Tab. 2), the following results refer to the measured silver 

concentrations.  

 

21-d chronic toxicity tests 

 

The chronic reproduction experiments were performed using ~30 nm sized laboratory 

synthesized Cit nAg. This nAg material is (although it exhibits an approximately 

three-fold lower ecotoxicological potential relative to 20 nm Cit nAg) still considered 

as comparably toxic to daphnids (Tab. A.3). Each of the four semi-static reproduction 

tests (pH 6.5 or 8.0 with either a DOM level of <0.1 or 8.0 mg TOC/L) followed the 
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OECD guideline 211 (OECD, 2008), and fulfilled (irrespective of the environmental 

scenario applied) the validity criteria. At the initiation of each 21-d experiment, 10 

juvenile (age <24 h) daphnids were placed individually in 50 mL test medium 

amended with the respective nAg concentration (n=10). The test medium was 

renewed three times a week, including a careful transfer of adult daphnids to the new 

test medium by using disposable Pasteur pipettes. For each reproduction test, the 

test organisms were exposed to several concentrations of ~30 nm Cit nAg, i.e. 0.0, 

1.0, 3.0, 9.0, 26.0 to 78.0 µg/L. Daphnids were fed daily in an age dependent manner 

with Desmodesmus sp. (50–100 µg C/organism). Mortality as well as the number of 

released offspring was checked every 24 h. 

 

Statistical analyses 

 

Acute toxicity data was adjusted for control mortality with Abbott’s formula, if 

necessary (e.g. if exceeding 0% but no more than 20%), and analyzed for respective 

48-h effective median concentration (48-h EC50) by fitting adequate dose-response 

models. Model selection was based on Akaike information criterion and expert 

judgment. Gained EC50 values were compared among treatments via confidence 

interval testing to test for statistical significant differences (Wheeler et al., 2006). 

Similarly, confidence interval testing was applied to judge statistical significance 

among different exposure conditions during the chronic experiments, while the basis 

for these calculations was the mean differences in cumulative reproduction between 

the respective control and the lowest observed effect concentration (LOEC; in either 

case 78.0 µg Cit nAg/L; Altman et al., 2000). In addition a comparative time to event 

(death) analysis was performed by separately applying the Kaplan-Meier estimator 

for the data of each environmental scenario at 78.0 µg Cit nAg/L, as this was the only 
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concentration causing mortality during each chronic toxicity test. Statistical analyses 

and respective figures were accomplished with the statistical software environment R 

for Windows (Version 2.15.3; 2013) and corresponding packages (Hothorn et al., 

2008; Lemon, 2010; Ritz and Streibig, 2005; Therneau, 2013). 

 

Results and Discussion 

 

Nanoparticle characteristics affect their ecotoxicity 

 

The acute toxicity of AgNO3 and the role of silver ions 

 

Independently of the composition of the test medium, AgNO3 always displayed the 

highest toxicity of all silver materials investigated in the present study. AgNO3 

revealed 48-h EC50 ranging from ~1.7 (at lower levels of pH and DOM; Fig. 1A-B; 

Tab. A.3 and A.4) to ~3.0 µg Ag/L (at higher levels of pH and DOM; Fig. 1A-B; Tab. 

A.3 and A.4). These results are in accordance with literature data for D. magna 

reporting 48-h EC50 values of up to 2.5 µg/L (Zhao and Wang, 2010, 2011) and other 

studies (e.g. a review by Ratte, 1999) that indicate environmental parameters such 

as pH and DOM influencing heavy metal related toxicity by controlling the 

bioavailability of their toxic ions. In detail, AgNO3 toxicity has been attributed to free 

Ag+, which can induce ion regulatory disturbances in the gill system of Daphnia by 

mimicking endogenous ions (Bianchini et al., 2002; Völker et al., 2013). In contrast, 

the mechanism of nAg related toxicity is not yet fully understood. Völker et al. (2013) 

suggested that adverse effects (e.g. oxidative stress, damage of proteins, etc.) can 

frequently be explained by a combination of Ag+ released from the nanoparticle into 

the test medium and the silver nanoparticles themselves, as both have the potential i) 
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to induce reactive oxygen species (ROS), ii) to interact with cellular enzymes and iii) 

to mimic endogenous ions. Irrespective of the underlying mechanisms, the acute 

toxicity tests of the present study suggest an approximately 6 and 40 times higher 

ecotoxicological potential of AgNO3 relative to uncoated nAg and 20 nm Cit nAg, 

respectively (Fig. 1A-B; Tab. A.4).  
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Figure 1A-C: 48-h EC50 values (with 95 % CIs) of different silver materials at varying 
pH levels 6.5 and 8.0 in the (+) presence and (-) absence of dissolved 
organic matter (DOM; <0.1 and 8.0 mg TOC/L ). Asterisks (*) denote 
statistically significant differences between 48-h EC50 values. 
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The role of particle coating and initial particle size for the acute toxicity of nAg 

 

The 140 nm uncoated nAg delivered (irrespective of the environmental conditions 

assessed) 48-h EC50 values (3.9 - 33.4 µg/L; Fig. 1A-C; Tab. A.3 and A.4) in 

agreement with literature data on nAg in general (0.75 to 187 µg/L; cf. Allen et al., 

2010; Asghari et al., 2012; Gaiser et al., 2011; Lee et al., 2012). The broad range of 

EC50 values among published studies can be explained by differing particle 

characteristics, e.g. particle coating and initial particle size (Allen et al., 2010), 

triggering agglomeration state and finally nanoparticles’ surface-to-volume ratio 

(Hoheisel et al., 2012). The latter in turn has been related directly to the Ag+ release 

from the nAg into the test medium (Hoheisel et al., 2012; Kennedy et al., 2010; Zhao 

and Wang, 2011), which may trigger nAg related effects. 

This assumption is further underpinned by the generally lower toxicity of citrate-

coated nAg relative to uncoated nAg. The 20 nm Cit nAg-treatment, which 

represented the most toxic citrate coated nAg, exhibited an up to ~10-fold lower 

toxicity relatively to the 140 nm uncoated nAg (Fig. 1A-B; Tab. A.4). Moreover, larger 

citrate-coated nAg, i.e. 60 and 100 nm Cit nAg, were again up to a factor of 

approximately 7.5 less toxic than their smaller counterpart, namely 20 nm Cit nAg 

(Fig. 1A; Tab. A.4). This phenomenon was observed for a majority of Cit nAg except 

for 60 and 100 nm Cit nAg at a pH of 6.5 in the absence of DOM, which we attribute 

to methodological shortcomings of the nAg analysis as discussed further below. This 

relation distinctly underpins the importance of determining the particle size at the test 

initiation, especially as the particle size and the respective polydispersity index of all 

Cit nAg products increased over time (Tab. 1). The nAg initial size inversely 

correlates with their capability to release Ag+ (Hoheisel et al., 2012), and thus 

explains to some extent the induced toxicity of nAg since the type of coating was the 
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same for these Ag materials. Furthermore, besides citrate other types of coating are 

available, that may alter the ecotoxicological potential of nAg by their efficiency of 

limiting Ag+ release (Liu et al., 2010).  

In addition, our Ag analysis, which displayed a higher fraction of Ag+ and nAg <2 nm 

in the test medium for 140 nm uncoated nAg (Ag+ and nAg <2 nm fraction: ~ 16% at 

pH 8.0 in absence of DOM) and for smaller initial size classes of citrate-coated nAg 

(up to 10% for 20 nm Cit nAg) compared to the other nAg materials investigated in 

the present study (i.e. 60 and 100 nm Cit nAg at pH 8.0 in the absence of DOM; Tab. 

2; Tab. A.4) support this hypothesis. Moreover, as the majority of 48-h EC50 values 

normalized to the Ag concentration with a particle size <2 nm, composed of Ag+ and 

very small nAg, were  (independent of the environmental conditions) at a similar level 

as AgNO3, especially uncoated and 20 nm citrate coated nAg (Fig. A.2), this 

hypothesis is further facilitated. However, also considerable deviations among the 

normalized 48-h EC50 values (e.g. 20 or 60 nm Cit nAg at pH 8.0 in the absence of 

DOM) were observed (Fig. A.2). This may be explained by the analytical method 

applied (cf. Kennedy et al., 2010) which may have overestimated the Ag+ 

concentration, and hence underestimated the observed toxicity, as no additional 

filtering step prior to the analysis was involved potentially including fractions of nAg 

slightly larger than 2 nm (e.g. Allen et al., 2010). Nonetheless, the results of the 

present study suggest that a large proportion of nAg related effects are attributed to 

the concentrations of Ag+ and nAg <2 nm. 
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Environmental parameters affect ecotoxicity of nAg 

 

Effects on the acute nAg toxicity  

 

As both the Ag+ and the nanoparticle itself are supposed to contribute to the 

observed ecotoxicity of nAg, environmental conditions in the test medium, which 

trigger the fate and release of metal ions from e.g. nAg (Levard et al., 2012), might go 

along with alterations in toxicity, as reported for silver and copper (e.g. De 

Schamphelaere and Janssen, 2004; Ratte, 1999). Indeed, the present study 

uncovered that higher levels of pH and DOM meaningfully reduced the acute but also 

chronic ecotoxicity of Ag materials (Fig. 1A-C and 2A-B; Tab. A.4), underpinning the 

importance of environmental conditions and their interaction for the ecotoxicological 

potential of both AgNO3 and more importantly nAg. 

In detail, at a pH of 8.0, the acute toxicity of AgNO3 was approximately 1.5-fold lower 

in the presence of DOM (48-h EC50: 3.02 µg Ag/L) relative to all other exposure 

scenarios (i.e. pH of 6.5 in presence or absence of DOM; pH of 8.0 in absence of 

DOM; Fig. 1B, Tab. A.3), which may be explained by a reduced bioavailability of free 

Ag+ (e.g. review by Ratte, 1999). This is, however, not supported by our ICP-MS 

analysis, which uncovered no meaningful reduction (when directly related to the 

observed toxicity) of the Ag+ and nAg < 2 nm fraction in the medium in presence of 

DOM (Tab. 2). As this method measures Ag+, irrespective of whether the ions are 

bioavailable or complexed by DOM, the observations do not contradict each other. 

Nevertheless, Ag species modeling suggests a maximal percentage of Ag+ 

complexed and electrostatically (weakly) bound to DOM of 5% and 0.05% 

respectively (Tab. A.1). Thus, the observed reduction in toxicity cannot solely be 

explained by a decreased availability of Ag+ due to the formation of Ag-DOM 



171 
 

complexes. However, DOM was hypothesized to reduce the interaction of free Ag+ 

with the sodium uptake pathway in fish (i.e. Oncorhynchus mykiss) and respective 

toxicity (Janes and Playle, 1995). As likewise mechanisms are suggested to be the 

driving factor for the acute toxicity of AgNO3 towards Daphnia (Bianchini and Wood, 

2003) similar explanations may hold also true for the present study, while this effect 

was not observable at the low pH-level.  

In contrast to this observation, the approximately 9-fold reduced toxicity of uncoated 

nAg in the presence compared to the absence of DOM (Fig. 1C; Tab. A.4) comes 

along with a reduction of the Ag+ and nAg <2 nm by 33% (pH 6.5; Tab. 2). This effect 

may thus be explained by the relevance of Ag+ for the toxicity of nAg (Tab. 2). 

Dissolved organic matter may have coated the initially uncoated nAg and thereby 

blocked oxidation sites finally reducing a further Ag+ release from the material (Liu 

and Hurt, 2010). This explanation seems reasonable on the basis of the chemical 

analysis (Tab. 2). A similar process may have occurred for most of the Cit nAg 

materials investigated in the present study further reducing the release of Ag+ (cf. 

Fabrega et al., 2009; Newton et al., 2013) and subsequently also toxicity in the 

presence of DOM as well as at higher pH-levels (Fig. 1A-C; Tab. A.4), which is widely 

underpinned by our analytical results (Tab. 2).  

 

Effects on the chronic nAg toxicity  

 

The previously stated hypothesis is further supported by our chronic investigations: 

Concentrations of ~30 nm Cit nAg as high as 26.0 µg/L (no observed effect 

concentration) did not adversely affect the reproductive output of D. magna (Tab. 

A.5). However, at the highest test concentration, which is equivalent to the LOEC 

(pairwise Wilcoxon rank sum tests: p<0.05), lower levels of pH and DOM significantly 
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decreased the number of offspring released (Fig. 2A). Additionally, the time to death 

analysis showed a similar tendency (Fig. 2B): A pH of 6.5 caused 90% (without 

DOM) or 40% (with DOM) mortality of adult daphnids (Fig. 2B) after 21 d exposure to 

78.0 µg ~30 nm Cit nAg/L. A higher pH of 8.0 at the same concentration displayed 

mortalities ranging from 20% (with DOM) to 30% (without DOM).  

 

Figure 2:  (A) Mean difference in the reproduction of Daphnia (±95 % CIs; n=10) 
to the respective control, when exposed to 78.0 µg/L (●) 30-nm-Cit nAg 
under differing pH (6.5 or 8.0) and DOM (<0.1  or 8.0 mg TOC/L) levels 
after 21 days of exposure. Asterisks (*) denote statistically significant 
differences between respective environmental scenarios.(B) Proportion 
survival distribution of Daphnia in the time course of a 21-d exposure to 
78.0 µg/L 30-nm-Cit nAg under different environmental scenarios 
exhibiting pH levels of either 6.5 or 8.0 in the absence (-) or presence 
(+) of DOM. Censored individuals that survived beyond the end of the 
experiment are indicated by +. 
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These data suggest that the presence of DOM can reduce toxicity of Cit nAg up to 

50% (Fig. 2B), which is in accordance with an earlier study by Blinova et al. (2012): 

These authors observed a decreasing toxicity of two differently coated nAg with 

increasing concentrations of DOM (5-35 mg C/L) in different natural surface waters, 

while not considering among others the factor pH. Those observations may be 

explained, in addition to the factors detailed above, by the utilization of DOM by 

Daphnia as energy source potentially resulting in a higher tolerance of the test 

specimen (Bergman Filho et al., 2011). 

 

Conclusion 

 

The present study clearly showed how particle characteristics (i.e. the presence or 

absence of particle surface coating and initial particle size) as well as varying 

environmental conditions (i.e. pH and DOM) considerably influence the 

ecotoxicological potential particularly of silver nanoparticles. As a consequence, 

future investigations are urged considering the diversity of nanoparticle 

characteristics, their fate and ecotoxicological potential under varying, field relevant 

environmental conditions, which are by no means limited to pH and DOM. This would 

result in a scientifically sound basis allowing for a more precise, but also reasonable 

risk prediction under near natural conditions. 
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Appendix A. Supplementary data 

 

The supplementary data contains further details about the initial particle size of 

laboratory sysnthesized ~30 nm Cit nAg (Fig. A.1), the results of the species 

calculation for ultracentrifuged samples (Tab. A.1), the applied statistical analyses, 

measured environmental parameters (Tab. A.2), acute toxicity data of all Ag 

materials (Tab. A.3), an overview of their statistical comparisons (Tab. A.4) as well as 

Ag+/nAg <2 nm normalized EC50 values (Fig. A.2). Furthermore respective data for 

the chronic toxicity tests with 30 nm Cit nAg are provided in Tab. A.5. 
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1. Sample preparation  

 

As described in the manuscript, one subsample was directly analyzed for Ag content 

while the other was subject to ultracentrifugation (t=35 min; 80000 rpm, Sorvall WX 

Ultra Series WX 90; Thermo Fisher Scientific). The latter step allowed for a 

separation of nanoparticles with a size ≥2 nm from Ag+ and nAg with a particle size 

<2 nm (Kennedy et al., 2010; Table 2). In order to exclude loss of any (n)Ag in terms 

of adsorption to e.g. the wall of the test vessel or analysis container, each subsample 

was prior to its analysis two-fold diluted using acidified (HNO3) MILI-Q water.  

 

Reference: 

Kennedy, A.J., Hull, M.S., Bednar, A.J., Goss, J.D., Gunter, J.C., Bouldin, J.L., 

Vikesland, P.J., Steevens, J.A., 2010. Fractionating nanosilver: Importance for 

determining toxicity to aquatic test organisms. Environ. Sci. Technol. 44, 9571-9577. 

 

 

Figure A.1: Transmission electron microscopy image of the laboratory synthesized 
30 nm Cit nAg stock solution (LEO 922 OMEGA, Germany). For 
respective analysis samples were placed onto carbon coated copper 
grid using applying ultrasonic nebulisation.  
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2. Statistical analyses 

 

Reproduction data was initially assessed for normal distribution and variance of 

homogeneity using the Shapiro-Wilk- and Bartlett-Test, respectively. If requirements 

for parametric testing were met, one-way ANOVAs and subsequent Dunnett’s post 

hoc tests were accomplished to determine statistically significant differences (p<0.05) 

among all tested treatments. In case the requirements were not met nonparametric 

alternatives, namely Kruskal-Wallis tests and pairwise Wilcoxon rank sum tests, were 

performed. 
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Table A.1: Speciation of silver (in % of total Ag+ species concentration) for each silver material and environmental scenario (pH and 
DOM level). Calculations were performed based on the assumption that the ultracentrifuged samples (<2 nm) solely 
contain Ag+ species. 

silver material Ag 
<2nm

a
 

Ag
+
 AgCl(aq) AgSO4

-
 AgCl2

-
 AgCl3

2-
 AgOH(aq) Ag(OH)2

-
 AgSeO3

-
 Ag(SeO3)2

3-
 Ag-FA

b
 Ag-FA(el)

c
 

AgNO3 

pH 6.5 - DOM 28 82.03 16.20 1.62 0.15 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0 0 

+ DOM 18 77.86 15.38 1.54 0.15 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 5.04 0.04 

pH 8.0 - DOM 22 82.08 16.15 1.61 0.15 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0 0 

+ DOM 32 78.04 15.35 1.54 0.15 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 4.87 0.05 

140 nm 

uncoated 

nAg 

pH 6.5 - DOM 5 82.02 16.20 1.62 0.15 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0 0 

+ DOM 4 77.82 15.37 1.54 0.15 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 5.08 0.04 

pH 8.0 - DOM 6 82.07 16.15 1.61 0.15 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0 0 

+ DOM 3 77.97 15.35 1.54 0.15 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 4.94 0.05 

20 nm  

Cit nAg 

pH 6.5 - DOM 3 82.02 16.20 1.62 0.15 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0 0 

+ DOM 2 77.81 15.37 1.54 0.15 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 5.09 0.04 

pH 8.0 - DOM 5 82.07 16.15 1.61 0.15 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0 0 

+ DOM 1 77.97 15.35 1.54 0.15 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 4.95 0.05 

60 nm  

Cit nAg 

pH 6.5 - DOM 0.3 81.97 16.19 1.62 0.15 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0 0 

+ DOM NA NA NA NA NA NA NA NA NA NA NA NA 

pH 8.0 - DOM 2 82.08 16.15 1.61 0.15 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0 0 

+ DOM NA NA NA NA NA NA NA NA NA NA NA NA 

100 nm 

Cit nAg 

pH 6.5 - DOM 2 82.02 16.20 1.62 0.15 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0 0 

+ DOM NA NA NA NA NA NA NA NA NA NA NA NA 

pH 8.0 - DOM 2 82.06 16.15 1.61 0.15 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0 0 

+ DOM NA NA NA NA NA NA NA NA NA NA NA NA 
aAg concentrations in µg/L (48 h) after centrifugation (values from Tab. 2); bAg complexed with fulvic acid; c electrostatically bound 

silver to fulvic acid; NA = not assessed 

  



185 
 

Table A.2: Environmental quality parameters under different testing conditions, adhering to pH levels of either 6.5 or 8.0 in the 
absence (-) or presence (+) of dissolved organic matter (DOM; <0.1 or 8 mg TOC/L). Measurements were made at the 
beginning of the bioassay (t0 h) as well as after 48 h of exposure (t48 h) to the respective silver product. NA = not 
assessed. 

 

 

 

 

 

  

 nominal pH 6.5 

 -DOM +DOM 

 t0 h t48 h t0 h t48 h 

silver material O2 (mg/L) Temp. (°C) pH pH O2 (mg/L) Temp. (°C) pH pH 

AgNO3 7.2 19.4 6.5 6.6 7.1 19.4 6.5 6.5 

140 nm uncoated nAg 6.5 19.5 6.5 6.7 6.9 19.5 6.3 6.6 

20 nm Cit nAg 8.4 19.7 6.5 6.7 8.2 20.1 6.4 6.6 

60 nm Cit nAg 7.3 20.0 6.4 6.7 NA NA NA NA 

100 nm Cit nAg 7.9 20.0 6.4 6.7 NA NA NA NA 

30 nm Cit nAg 7.9 20.0 6.4 6.7 8.0 20.1 6.4 6.7 

         

 nominal pH 8.0 

AgNO3 7.1 19.4 8.0 8.0 7.0 19.6 7.9 8.0 

140 nm uncoated nAg 6.6 19.5 8.0 7.9 7.0 20.3 8.0 7.9 

20 nm Cit nAg 8.2 20.1 8.0 8.0 8.2 20.6 8.0 8.0 

60 nm Cit nAg 7.1 19.9 8.0 8.1 NA NA NA NA 

100 nm Cit nAg 7.9 19.7 8.0 8.2 NA NA NA NA 

30 nm Cit nAg 7.9 20.0 8.0 8.1 8.0 20.1 8.0 8.0 
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Table A.3: 48-h EC50 values (and respective 95% CI; µg/L) of each nAg material tested under varying environmental conditions, 
exhibiting pH levels of either 6.5 or 8.0 in the absence (-) or presence (+) of dissolved organic matter (DOM; <0.1 or 8 mg 
TOC/L). 

silver material 

48-h EC50 (95% CI) 

pH 6.5 pH 8.0 

-DOM +DOM -DOM +DOM 

AgNO3 1.7 (1.7 -1.8) 1.7 (1.7 - 1.8) 1.9 (1.9 - 2.0) 3.0 (1.5 - 4.6) 

140 nm bare nAg 3.9 (3.8 - 3.9) 33.4 (32.2 - 34.6) 8.1 (5.3 - 10.9) 19 (0.0 - 39.9)  

20 nm Cit nAg 28.9 (24.4 -33.3) 34.7 (13.8 - 55.6) 80.6 (50.3 - 110.9) NA 

30 nm Cit nAg 125.8 (66.3 - 185.4) 105.3 (35.5 – 175.0) 374.2 (213.8 - 534.7) NA 

60 nm Cit nAg 77.6 (39.1 - 116.06) NA 91.6 (69.78 - 113.32) NA 

100 nm Cit nAg 216.1 (203.4 - 228.7) NA 185.9 (165.0 - 206.8) NA 

NA = not assessed 
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Table A.4: Comparison between 48-h EC50 values of each silver material at 
varying environmental conditions. Thereby, X indicates a statistical 
significant difference between 48-h EC50 values of those products and 
environmental conditions listed in the respective column and row. NS 
represents a non statistical significant difference and NA a non 
computable comparison. Remaining empty fields represent not 
assessed comparisons. 
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AgNO3 (pH 6.5; -DOM)         X       X                       

AgNO3 (pH 6.5; +DOM)           X       X                     

AgNO3 (pH 8.0; -DOM)             X       X                   

AgNO3 (pH 8.0; +DOM)               NS       NA                 

140 nm bare nAg (pH 6.5; -DOM) X         X X   X       X       X       

140 nm bare nAg (pH 6.5; +DOM)   X     X         NS                     

140 nm bare nAg (pH 8.0; -DOM)     X   X           X       X       X   

140 nm bare nAg (pH 8.0; +DOM)       NS               NA                 

20 nm Cit nAg (pH 6.5; -DOM) X       X           X                   

20 nm Cit nAg (pH 6.5; +DOM)   X       NS                             

20 nm Cit nAg (pH 8.0; -DOM)     X       X   X                       

20 nm Cit nAg (pH 8.0; +DOM)       NA       NA                         

60 nm Cit nAg (pH 6.5; -DOM)         X                   NS           

60 nm Cit nAg (pH 6.5; +DOM)                                         

60 nm Cit nAg (pH 8.0; -DOM)             X           NS               

60 nm Cit nAg (pH 8.0; +DOM)                                         

100 nm Cit nAg (pH 6.5; -DOM)         X                           NS   

100 nm Cit nAg (pH 6.5; +DOM)                                         

100 nm Cit nAg (pH 8.0; -DOM)             X                   NS       

100 nm Cit nAg (pH 8.0; +DOM)                                         
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Table A.5: Mean reproduction, expressed in percent relative to the respective control (±sd; %; initial n = 10) of D. magna after 21 d 
exposure to different 30 nm Cit nAg concentrations. 

concen-
tration         

(µg nAg/L) 
0.00 1.00 3.00 9.00 26.00 100.00 

  
0.00 1.00 3.00 9.00 26.00 100.00 

product 
pH 6 

-DOM 

 
+DOM 

30 nm Cit 
nAg 

100 
(±21.8) 

102.2 
(±33.2) 

101.4 
(±19.0) 

108.0 
(±12.9) 

128.7 
(±27.0) 

NA 

 

100 
(±5.2) 

107.3 
(±6.7) 

100.2 
(±9.3) 

103.8 
(±6.2) 

100.1 
(±19.2) 

22.3 
(±19.0) 

pH 8 

100 
(±10.8) 

101.3 
(±13.1) 

100.4 
(±12.1) 

92.8 
(±7.2) 

99.8 
(±20.8) 

38.7 
(±24.6)   

100 
(±8.3) 

96.7 
(±8.7) 

96.7 
(±10.9) 

96.0 
(±7.9) 

92.62 
(±16.0) 

71.1 
(±22.2) 

 NA= not calculable due to too low number of survivors 
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Figure A.2: 48-h EC50 values (with 95 % CIs) of Daphnia magna for each silver 
material as well as under varying environmental conditions which were 
assessed in the present study, i.e. pH levels of either 6.5 or 8.0 in the 
absence or presence of dissolved organic matter (DOM; <0.1 or 8 mg 
TOC/L). The 48-h EC50 values were normalized to the Ag concentration 
with a particle size below 2 nm, and are hence potentially composed of 
Ag+ ions and very small nAg. 
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