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Abstract 

Cancer development is a multistep process which leads to tumors composed of 

diverse cell populations originating from one cell which underwent differential 

genetic changes over time. Within one tumor, such heterogeneity provides 

distinct subpopulations with selection advantages promoting metastasis as well 

as therapy resistance. In the course of targeted cancer therapies tumor 

composition is meanwhile monitored via circulating tumor DNA from blood 

samples during treatment and accordingly allows adjustment of therapy. In 

experimental models of solid tumor xenografts in mice, however, this method is 

not applicable as required blood volumes exceed blood volume of animals, 

hence limiting investigation of tumorrelevant genes in preclinical mouse models. 

Here, a method was developed which facilitates simultaneous monitoring of 

growth dynamics of two distinct tumor cell populations within one tumor 

xenograft. Therefore, cells were labelled by stable expression of either Gaussia 

luciferase (GLuc) or Cypridina luciferase (CLuc) prior to injection. Both 

luciferases are secreted into the blood stream of transplanted mice. This allows 

asessment of tumor composition by enzyme activity of both luciferases requiring 

only very low blood volumes. Moreover, to facilitate investigation of the impact 

of targeted genetic manipulations luciferases were linked with (non)-targeting 

shRNAs. To establish this method, shRNAs were used targeting the p53 familiy 

members p53 and p73. Whereas p53 is acknowledged as the most important 

tumor suppressor, p73 can occur in two N-terminally different isoforms with 

opposing attributes: the tumorsuppressive full length isoform TAp73 and the N-

terminally truncated tumorpromoting isoform Np73. The dominant negative 

function of Np73 includes its ability to form hetero-oligomers with its family 

members p53 and TAp73, thereby interfering with their transcriptional activity. 

Linking the luciferases to (non)-targeting shRNAs, the differential growth 

properties of transplanted cells in presence and absence of p53 (or p73) can be 

monitored simultaneously. The here established method was successfully 

validated in a model of experimental metastasis as well as under therapeutic 

conditions. 

Moreover, it could be demonstrated that the growth behaviour of p73-high-

expressing cells Hs 766T is highly dependent on the relative abundance of both 
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N-terminal isoforms. The shRNA-mediated reduction of both isoforms strongly 

reduces tumorigenicity of these cells. In accordance with previous publications, 

the reintroduction of Np73 rescued this growth defect, whereas ectopic 

expression of TAp73 further attenuates proliferation. 

In order to further investigate Np73´s role in tumor development, an inducible 

Np73 transgenic mouse model was characterized. Whereas mere 

overexpression of Np73 exhibited no tumorrelevant properties, the 

combination with heterozygous knockout of p53 entailed earlier and accelerated 

tumor development particularly of lung tumors and lymphoma. The loss of the 

second p53 allele in lung tumors suggests that the dominant negative effect of 

Np73 rather impacts TAp73 than p53. Accordingly, the observed fertility and 

embryonic developmental defects in this transgenic model rather pointed 

towards a TAp73-dependent effect of Np73 as, in contrast to p53-deficient 

mice, severe and partially comparable defects have been described in TAp73- 

and complete p73-deficient mice. 

Finally, transcriptomewide analysis of Np73-overexpressing murine embryonic 

fibroblasts revealed positive regulation of metastasis-promoting factors like 

ITGB4, JAG1 and 2. This tumorpromoting property of Np73 goes in line with 

accelerated dissemination of lymphoma into lungs of Np73;p53+/- mice.  

Taken together, these results clearly demonstrate growth- as well as 

metastasis-promoting traits of Np73. However, the specific virtue of Np73 are 

largely cell context-dependent. 
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Zusammenfassung 

Die Tumorentwicklung ist ein mehrstufiger Prozess, bei dem sich aus einer 

einzigen Ursprungszelle durch Akkumulierung diverser Mutationen Tumoren 

entwickeln, die aus mehreren Populationen unterschiedlichen genetischen 

Status bestehen. Diese Heterogenität führt zu Selektionsvorteilen einzelner 

Subpopulationen innerhalb eines Tumors, die unter anderem Metastasierung 

sowie Therapieresistenz begünstigen. Zur Verbesserung der gezielten 

Krebstherapie von Patienten kann mittlerweile während des Therapieverlaufs 

die Zusammensetzung der Tumoren durch im Blut zirkulierende Tumor DNA 

verfolgt und die Therapie demensprechend angepasst werden. In 

experimentellen Ansätzen, wie Transplantationsmodellen solider Tumoren in 

Mäusen, kann diese Methode allerdings nicht angewandt werden, da das 

Blutvolumen der Versuchstiere zu klein ist. Dies limitiert die Untersuchung 

tumorrelevanter Faktoren in präklinischen Studien im Mausmodell. 

In dieser Arbeit wurde eine Methode entwickelt, mit deren Hilfe die 

Wachstumsdynamiken zweier unterschiedlicher Zellpopulationen in einem 

einzigen Tumorzellimplantat simultan verfolgt werden können. Hierzu wurde vor 

der Transplantation jeweils eine Zellpopulation durch stabile Expression von 

Gaussia Luziferase (GLuc) oder Cypridina Luziferase (CLuc) markiert. Beide 

Luziferasen werden aus den Zellen sezerniert und ins Blut der Versuchstiere 

abgegeben. Kleinste Blutproben sind bereits ausreichend, um die 

Tumorkomposition mittels Messung der Enzymaktivität beider Luziferasen zu 

bestimmen. Um die Auswirkungen gezielter genetischer Manipulationen 

untersuchen zu können wurden die Luziferasen zusätzlich an (un)spezifische 

shRNAs gekoppelt. Zur Etablierung wurden shRNAs verwendet, die sich gegen 

die p53 Familienmitglieder p53 und p73 richten. Während p53 als der wichtigste 

Tumorsuppressor bekannt ist, gibt es von p73 zwei N-terminal unterschiedliche 

Isoformen, die entgegesetzte Funktionen besitzen: das ebenfalls 

tumorsuppressive TAp73 und das tumorfördernde Np73. Die dominant 

negative Wirkung von Np73 liegt unter anderem in der Komplexierung seiner 

Familienmitglieder p53 und TAp73, wodurch diese die Fähigkeit verlieren an 

ihre Zielgene zu binden. Durch Kopplung der Luziferasen an unspezifische bzw. 

experimentelle shRNAs konnte die unterschiedliche Wachstumsdynamik 
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transplantierter Zellen in An- bzw. Abwesenheit von p53 (oder p73) simultan 

verfolgt werden. Die in dieser Arbeit etablierte Methode wurde sowohl in einem 

Modell der experimentellen Metastasierung als auch unter therapeutischen 

Bedingungen erfolgreich validiert. 

Darüberhinaus konnte gezeigt werden, dass das Wachstumsverhalten p73-

hochexprimierender Hs 766T Zellen abhängig vom relativen Verhältnis beider 

N-terminaler Isoformen zueinander ist. Eine shRNA-vermittelte Reduktion 

beider Isoformen hemmt die Tumorigenität dieser Zellen. In Übereinstimmung 

mit dem aktuellen Wissensstand wurde dieser Effekt durch ektopische 

Expression von Np73 wieder aufgehoben, wohingegen die Wiedereinführung 

von TAp73 die Proliferation noch weiter reduzierte.  

Um die Rolle von Np73 während der Tumorentwicklung genauer zu 

untersuchen, wurde zudem ein induzierbares Np73-transgenes Mausmodell 

charakterisiert. Obwohl die alleinige Überexpression von Np73 keinen 

tumorigenen Effekt aufwies, führte die Kombination mit heterozygotem Verlust 

von p53 zu einer früheren und verstärkten Tumorentstehung, insbesondere von 

Lungentumoren und Lymphomen. Der Verlust des zweiten p53 Allels in den 

Lungentumoren lässt eher auf eine dominant negative Wirkung von Np73 auf 

TAp73 als auf p53 schließen. Auch die beobachteten Fertilitäts- und 

embryonalen Entwicklungsdefekte dieser transgenen Mäuse weisen vielmehr 

auf einen TAp73-abhängigen Effekt von Np73 hin, da im Gegensatz zu p53-

defizienten Mäusen bereits ähnliche Defizite in TAp73- und gesamt-p73-

defizienten Mäusen beschrieben wurden.  

Letztlich wurde durch die transkriptomweite Analyse Np73-überexprimierender 

muriner embryonaler Fibroblasten eine positive Regulation 

metastasierungsrelevanter Faktoren (ITGB4, JAG1, JAG2) festgestellt. Diese 

onkogene Eigenschaft von Np73 geht einher mit der Beobachtung dass 

Lymphome aus Np73;p53+/- Mäusen verstärkt in die Lungen disseminierten. 

Insgesamt zeigen diese Ergebnisse, dass Np73 sowohl wachstums- als auch 

metastasierungsfördernde Eigenschaften besitzt, die genauen 

Wirkungsmechanismen allerdings abhängig vom Zellkontext sind.  
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1 Introduction 

1.1 Cancer 

The latest worldwide cancer statics from 2012 reveal 32.6 million patients living 

with cancer, 14.1 million newly diagnosed cancer patients and 8.2 million 

cancer caused deaths (www.globocan.iarc.fr). Apart from cardiovascular 

diseases and hunger, these numbers make cancer a leading cause of death. 

On the one hand, modern lifestyle (e.g. stress, less physical activity and wrong 

nutrition/obesity) steadily increases the cancer risk especially in industrial 

countries (Countries et al. 2007)(http://canceratlas.cancer.org/risk-factors/). On 

the other hand, the access to healthy food and common health care constantly 

  

Figure 1: 40 years to improve cancer therapies: Ten-year survival rates of 
selected cancers in 1971 and today (2011) 
Changes of ten-year net survival of selected cancers in adults (aged 15-99) from 
England and Wales in 1971 and 2011; data from Cancer Research UK, 
(http://www.cancerresearchuk.org/health-professional/cancer-
statistics/survival/common-cancers-compared#heading-Three.) 
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improved cancer therapy during the last decades. Thus, despite elevated 

numbers of cancer patients, improved cancer therapies continuously increase 

their 5-year survival rate (Quaresma et al. 2015). The success of treatment is 

closely related to the tumor stage at which the patient is diagnosed. The later a 

tumor is detected, the higher is the probability of infiltrative growth, resistance 

and distant metastases. Apart from the tumor grade, the cancer type is also 

very critical. Whereas prostate cancer, testicular cancer and many lymphomas 

became well treatable diseases within the last years, the therapy of cancers 

affecting the lung or the pancreas has barely progressed (Figure1)(DeSantis et 

al.; Quaresma et al. 2015).  

1.2 Limitations of cancer treatment 

Successful cancer treatment is heavily impeded by the genetic diversity of cell 

populations within a primary tumor and its distant metastases. As described 

above (see 1.1), tumor stage and type are import factors which need to be 

considered when deciding for the therapeutic strategy 

(http://www.cancer.org/treatment/understandingyourdiagnosis/staging). Curative 

surgery is applied at early tumor stages, when the tumor mass is restricted to 

one part of the body and it is likely to remove the cancer by excision. This 

treatment can be further supported by radio- or chemotherapy 

(http://canceratlas.cancer.org/taking-action/management-and-treatment). 

However, in a progressed disease with distant metastases, surgery or locally 

restricted irradiation are not sufficient to cure the patient. In this case, a 

systemic chemotherapy needs to be applied which also reaches disseminated 

degenerated cells. But even this treatment can fail: while the cytotoxic/cytostatic 

drug hits the majority of malignant cells, few cells escape treatment due to their 

progressed mutational status (see 1.2.1), thus leading to relapse of the disease 

with poor outcome for the patients as recurring tumors are virtually always 

therapy resistant. 

1.2.1 Cancer - a war on multiple fronts 

Cancer is a complex disease caused by the deregulation of intertwining 

pathways which control cell growth, proliferation and DNA-damage repair in 

order to maintain cell homeostasis. The phenotypic changes which emerge from 

these alterations were summarized by Hanahan and Weinberg (Figure 
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2)(Hanahan & Weinberg 2011): Sustained proliferative signalling is caused by 

accelerated growth factor receptor stimulation and enhanced activation of their 

downstream effectors. In a healthy cell, such a cellular stress leads cell cycle 

regulators to halt cell cycle progression. But in tumor cells, such growth 

suppressors are frequently lost or inactivated by other means, thus allowing 

hyperproliferation. Yet another safety mechanism to prevent excessive cell 

divisions is replicative senescence, a state in which cells remain metabolically 

active but undergo irreversible cell cycle arrest (Bringold & Serrano 2000). It is 

caused by the shortening of telomeres during each division cycle but is 

counteracted in malignant cells by enhanced telomerase activity resulting in 

telomere maintenance (Kim et al. 1994; Shay 2001).  

 

Figure 2: Hallmarks of cancer 

(Hanahan & Weinberg 2011) 

Finally, cell death remains as the last emergency exit to prevent erratic growth. 

Yet, cancer cells become also largely resistant against apoptosis by 

downregulation of cellular stress sensors and/or proapoptotic factors as well as 

by upregulation of antiapoptotic factors (Fulda 2009). As the tumor gains size, 

tumor cells at the centre of the tumor mass suffer shortage of oxygen- and 

energy supply. On the one hand, this leads to necrosis in the inner tumor mass 

which -at first sight- seems to be advantageous for the patient. Yet, necrosis 
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also attracts immune cells which secrete growth-stimulating factors further 

boosting tumor growth (Leek et al. 1999; Scaffidi et al. 2002; Vakkila & Lotze 

2004). On the other hand, immune cells and tumor cells secrete angiogenesis-

stimulating factors which lead to enhanced vascularization and thus to 

restoration of nourishment (Karin 2006; Mantovani et al. 2008). Additionally, 

metabolic changes within the cells can help to adapt to the changing 

environment with reduced resources (Eales et al. 2016; Vander Heiden et al. 

2009). Another characteristic of progressing disease is infiltrative and metastatic 

growth. For example, malignant cells of epithelial origin undergo epithelial-to-

mesenchymal-transition (EMT) which results in the loss of important adhesion 

molecules sustaining tissue integrity (E-Cadherin) and overexpression of 

migration-promoting adhesion molecules (N-Cadherin) (Kang & Massagué 

2004; Cavallaro & Christofori 2004). 

Self-evidently, a single genetic alteration is not sufficient to match all these traits 

characterizing malignancy. It is rather the accumulation of several genetic 

insults, the combination of functional loss of tumor-suppressors and sustained 

activation of (proto-) oncogenes, which drives malignant transformation 

(Nordling 1953). This is achieved by the iterative process of (epi-) genetic 

changes and sequential clonal selection, a model already described very early 

by P. C. Nowell (Nowell 1976). In a first step, a healthy cell undergoes a genetic 

or epigenetic change due to failure in DNA repair or methylation machinery 

upon intrinsic stress (e.g. ROS (reactive oxygen species), replication errors, 

mutagen exposure). Next, as a result of genomic instability, the proliferating 

neoplastic cells acquire more mutations. Most of them are silent mutations -

which do not affect cell growth- or adverse mutations which reduce cell fitness 

leading to clearance from the tumor (Greenman et al. 2007). Still, few genetic 

alterations occur which provide further advantage to withstand the constant 

selective pressure prevailing in the tumor microenvironment: sustained 

competition for limited space, oxygen and energy supply as well as growth 

factors (Greaves & Maley 2012). Thus, the cells which adapted best, display a 

selective growth advantage over normal and premalignant ancestor cells, 

undergo clonal expansion and become the predominant cell population within 

the arising tumor (Figure 3). Accordingly, cells which developed metastatic 

properties exploit new niches in lymph nodes and/or distant organs.  
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The application of chemo- or radiotherapy applies an additional selective 

pressure on the heterogeneous tumor composition. As rapidly-dividing cells are 

particularly sensitive to DNA-damage induced by chemotherapeutic drugs and 

irradiation, a large proportion of the fast-proliferating cell populations becomes 

eradicated from the tumor, whereas quiescent and therapy-resistant cell 

populations might escape cell death. The surviving cells can now benefit from 

the rapid change in the tumor microenvironment and foster their clonal 

expansion claiming all resources while repopulating the tumor (Gerlinger & 

Swanton 2010; Morelli et al. 2015). Moreover, the application of genotoxic 

agents provokes enhanced genetic diversity by introduction of further mutations 

resulting in further progression of the disease.  

Taken together, the accumulation of genetic alterations and the sequential 

subclonal selection lead to a clonal diversity which makes cancer treatment a 

war on multiple fronts as some clonal tumor cell populations may respond to 

chemotherapy, while others do not. Hence, there is an urgent need to 

understand the dynamics of the clonal diversification which promotes neoplastic 

progression, metastasis and therapy resistance. 

 

Figure 3: Sequential mutations and clonal expansions leading to tumor 
heterogeneity 
Adapted from (Greaves & Maley 2012) 
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1.2.2 Methods for monitoring and modelling of tumor heterogeneity 

As described above the heterogeneous nature of tumors significantly hampers 

successful cancer treatment. Thus, there is an urgent need to better understand 

the complexity and interplay of all genetic changes which cause tumorigenesis, 

resistance and metastatic spread. Hence, it was a huge leap forward when next 

generation sequencing was developed as a cost-effective method rapidly 

delivering a large amount of data (Shyr & Liu 2013)(see 

http://cancergenome.nih.gov). Genetic alterations as well as gene expression 

profiles are easily assessed in patients´ tumor samples, even single cell 

sequencing is possible nowadays (Navin 2014). Still, there are hurdles to 

overcome. The profiling of formalin-fixed tissue after surgery may give insight in 

the heterogeneous tumor composition when samples from different tumor areas 

are sequenced. But this gives only a snapshot in time, it does not provide any 

information about the changes a tumor goes through during treatment and 

relapse. To pursue these changes, sequential biopsies are needed. But 

biopsies only represent a very restricted area of the tumor and would miss to 

give information about the heterogeneous composition. Therefore, the 

discovery of circulating nucleic acids originating from the tumor in the 

bloodstream was a great success. The tumor-specific genomic DNA and mRNA 

extracted from patients´ blood samples can give valuable information about the 

overall tumor composition, detect rare mutations and can even be decisive for 

the choice of therapy (Pereira et al. 2015; Tie et al. 2015; Olsson et al. 2015; 

Bettegowda et al. 2014). Hence, this approach embodies a great opportunity for 

improving personalized treatment of cancer patients, as already few millilitres of 

a patients´ blood sample suffice to detect specific tumor markers.  

Still, experimental approaches to model and monitor the complexity of tumor 

progression have to be implemented. Here, mouse models are of particular 

importance, as the diversified influence of the tumor microenvironment can 

hardly be simulated in cell culture experiments. Transplantation experiments of 

patient-derived xenografts or established cancer cell lines are a commonly used 

method to assess tumorigenicity, metastatic potential or chemosensitivity in vivo 

(Frese & Tuveson 2007; Siolas & Hannon 2013). Moreover, targeted genetic 

manipulation of such cells either by RNA interference (RNAi) or gene transfer is 

a well-used tool to identify and validate tumor-relevant genes (Zender et al. 
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2008). Nevertheless, monitoring of the growth dynamics is technically restricted. 

The total size of a tumor which is injected close to the body surface (e.g. 

subcutaneous, mammary fat pad) can easily be measured with calipers. 

However, this method harbours a high variance of results (Ayers et al. 2010). 

Even more important, if the competitive growth dynamics of 2 or more distinct 

genetically manipulated cell populations in a mixture is to be followed, caliper 

measurements are not able to provide any information about tumor 

composition. Additionally, tumors of inner organs (e.g. induced by intravenous 

injection or direct application of cancer cells to the lung or pancreas) are not 

accessible for such measurements. Here, tumor growth has to be monitored 

with costly methods like MRT (magnetic resonance tomography) or ultrasound 

(Ayers et al. 2010).  

Alternatively, cells can be labelled with fluorescent or bioluminescent markers 

prior to transplantation. This facilitates the monitoring of tumor growth upon 

repeated bioimaging of a living experimental animal and, depending on the 

sensitivity of the marker, can be even suitable to localize metastases (Jenkins 

et al. 2003; M. Yang et al. 2000). Moreover, the application of a secreted 

luciferase originating from the copepod Gaussia princeps as a marker for 

transplanted tumor cells improved experimental procedures and the data output 

a lot (Tannous 2009; Wurdinger et al. 2008; Chung et al. 2009). Beyond 

bioluminescent imaging, Gaussia luciferase activity can be assessed in small 

blood samples of transplanted mice as the luciferase is transported out of the 

cell into the surrounding milieu. Moreover, it has been shown that the number of 

injected cells directly correlates with Gaussia luciferase activity measured in the 

blood sample, thus enabling a reliable quantification of tumor cells (Wurdinger 

et al. 2008). Even though the application of a marker like Gaussia luciferase 

provides a more reliable and more sensitive quantification of tumor cell 

abundance than a caliper, an evaluation of a heterogeneous tumor mass as 

described above is still not approachable with this method. Even the previously 

mentioned investigation of tumor-specific genomic DNA or mRNA from blood 

samples is not able to address this problem, as the required blood volume 

exceeds the total blood volume of a mouse. To this point, the only option to 

evaluate the heterogeneous composition of transplanted tumors does not 

permit repeated measurements as it comes in form of endpoint analyses: after 
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sacrificing the experimental animal, the tumor is isolated and investigated by 

molecular biological methods (e.g. sequencing, immunohistochemistry). A 

solitary exception is made in the context of haematological malignancies: here, 

labelling of different tumor cell populations with different fluorescent markers 

like GFP and RFP has proven to facilitate the repeated monitoring of 

heterogeneous tumor cell mixtures by flow cytometry of blood samples (Zuber 

et al. 2011). Yet, this method addresses only a small proportion of human 

cancers: leukemias account for less than 5% of all malignancies 

(http://globocan.iarc.fr) whereas 95% of cancer patients suffer from solid 

tumors.  

Hence, methods need to be established especially for solid tumors which are 

able to detect changes in tumor composition in mouse models of human cancer.  

1.3 The p53 family members 

As described above, the progression of malignant disease requires not only 

hyperactivation of oncogenic signalling but also disruption of tumor suppressive 

pathways (see 1.2.1). The p53 family is a multifaceted group of transcription 

factors which inherit both, oncogenic as well as tumor suppressive traits.  

The most noted and likewise eponymic member p53 is known as (one of) the 

most important tumor suppressors protecting the organism from the aberrant 

growth of degenerated cells. Extrinsic as well as intrinsic cellular stresses like 

UV-radiation, tobacco smoke, oncogenic signalling, oxidative stress or hypoxia 

lead to stabilization and activation of p53 (Maltzman & Czyzyk 1984; Hermeking 

& Eick 1994; Lowe & Ruley 1993; Graeber et al. 1994; Serrano et al. 1997). 

Depending on quality and severity of the cellular stress, p53 induces a 

transcriptional program leading to DNA repair, senescence, cell cycle arrest or 

even apoptosis in order to eliminate damaged cells from the organism (Ford & 

Hanawalt 1997; Shay et al. 1991; Kastan et al. 1991; Yonish-Rouach et al. 

1991). The other two family members p63 and p73 inherit similar tumor 

suppressive functions due to their high structural homology with p53 and among 

each other (Mourad Kaghad et al. 1997; C. A. Jost et al. 1997; Yang, Kaghad, 

Wang, Gillett, Fleming, Dötsch, et al. 1998). All three family members comprise 

an N-terminal transactivation domain (TAD), a proline rich region (PR), a central 

DNA binding domain (DBD) and a C-terminal oligomerization domain (OD) 

(Figure 4) (A. Yang et al. 2002). Additionally, p63 and p73 contain a sterile 
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alpha motif (SAM) which mediates protein-protein interactions and is known to 

play a role in developmental programs (Schultz et al. 1997). Likewise, the PR 

region is also a docking site for signalling modules (Kay et al. 2000).  

 

Figure 4: Structure of p53-famliy members 
Protein domains of p53-family members p53, p63 and p73 are composed of a 
transactivation domain (TAD), a proline-rich region (PR), a DNA-binding domain (DBD), 
an oligomerization domain (OD) and C-terminal-domain (CTD) which additionally 
contains a sterile alpha-motif within the p63 and p73 family members. Percentages 
reflect homologies between family members. Adapted from (A. Yang et al. 2002). 

In contrast to the aforementioned protein interaction sites, the OD serves as an 

interaction site for tetramerization of the transcription factors predominantly as 

homo-oligomers, but also as hetero-oligomers. This tetrameric conformation is 

essential for transcriptional activity. The highest homology is reached within the 

DBD which is important for recognition and binding to specific promoter or 

enhancer elements in the DNA. Indeed, all p53 family members can attach to 

p53 response elements thereby sharing many target genes (Levrero et al. 2000; 

Yang et al. 2010). Still, the induction of these target genes differs depending on 

the family member (Yu et al. 1999; Zhu et al. 1998). Thus, one family member 

alone is not able to compensate for the others. 

The TAD acts as a binding site for co-regulatory proteins and exerts a pivotal 

role in cell fate decisions mediated by p53 family members as its presence or 

absence is largely decisive for their anti- or pro-tumorigenic function. Each 

family member possesses antagonistic isoforms which lack the N-terminal TA 

domain either due to alternative splicing or the use of a second intronic 

promoter (Bourdon et al. 2005; Yang, Kaghad, Wang, Gillett, Fleming, Dötsch, 

et al. 1998; A. Yang et al. 2000). Whereas the full length proteins p53, TAp63 

and TAp73 induce cell cycle arrest, DNA repair, senescence and apoptosis 
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upon cellular stress, the N-terminally truncated isoforms D133p53, Np63 and 

Np73 oppose their tumor suppressive siblings in a dominant negative manner 

with rather antiapoptotic and oncogenic functions (Aoubala et al. 2011; Yang, 

Kaghad, Wang, Gillett, Fleming, Dötsch, et al. 1998; Mundt et al. 2010; Grob et 

al. 2001a). 

1.3.1 p53 

The indispensable role for p53 in counteracting neoplastic growth becomes 

evident regarding the fact that more than 50% of human malignancies harbour 

p53 mutations or even deletions (Greenblatt et al. 1994). Most mutations are 

located within the DBD and 75% of them are missense mutations leading to 

amino acid substitutions and thus to the accumulation of a defective p53 protein 

lacking the capacity to bind to p53 consensus sequences in the DNA 

(Greenblatt et al. 1994). One possible explanation for the advantage of a 

missense mutation over a simple deletion is the dominant effect of mutant p53: 

it is able to form inactive hetero-oligomers with wildtype p53 expressed from the 

remaining wildtype allele, thus inhibiting the transactivation of tumor 

suppressive target genes (Milner & Medcalf 1991). This dominant negative 

effect has also been shown to target TAp63 and TAp73 (Strano et al. 2002; 

Gaiddon et al. 2001; Como et al. 1999). Moreover, in addition to the loss of its 

tumor suppressive function, mutant p53 often acquires oncogenic features 

which promote metastasis and chemoresistance. Additionally, in line with 

Knudson's Two-Hit-Hypothesis (Knudson 1971), loss of the wildtype p53 allele 

(loss of heterozygosity, LOH) is frequently observed in malignant cells with 

mutated p53, indicating a strong selection against the merest tumor suppressive 

activity from residual wildtype p53. Tumors retaining wildtype p53 frequently 

display an inactivation of p53 by other mechanisms like nuclear exclusion, 

amplification of its negative regulators Mdm2 and Mdm4 (mouse double minute 

2 and 4 homolog) or viral inhibition (Moll et al. 1995; Oliner et al. 1992; Hoppe-

seyler & Butz 1993; Danovi et al. 2004). In addition, germline mutations in the 

p53 locus have been identified to be the leading cause of the Li-Fraumeni 

syndrome, a hereditary disease predisposing patients to cancer (Malkin et al. 

1990; Li & Fraumeni 1969).  
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Ultimately, the generation of a p53-deficient mouse model delivered final 

evidence for p53´s tumor suppressive function: half of heterozygous knockout 

mice (p53+/-) develop spontaneous tumors within 18 months whereas the 

remaining half develops tumors within 2 years of age at the latest (Donehower 

1996; Donehower et al. 1992; Jacks et al. 1994). In fact, the homozygous 

knockout (p53-/-) prepones the tumor onset to the age of 6-10 months in all 

mice depending on the background of the mouse model. Comparable to 

patients' tumor samples, analyses of tumors from p53+/- mice revealed a loss of 

the remaining p53 wildtype allele in 50-90% of all cases being accompanied 

with an earlier tumor onset and enhanced genomic instability (Donehower 1996; 

Jacks et al. 1994). Moreover, the prevalent tumor entities in p53-/- mice, 

lymphomas and - to a lower extent - soft tissue sarcomas and osteosarcomas, 

closely resemble the tumor spectrum of Li-Fraumeni patients. 

Based on these observations, p53 became one of the most extensively 

investigated tumor relevant factors during the last decades: In unstressed cells, 

a negative feedback loop -mediated by the p53 target gene Mdm2- is 

responsible for the short half-life of p53 protein. Mdm2 is an E3 ubiquitin protein 

ligase which ubiquitinates p53 leading to its proteasomal degradation. In 

addition, MDM2 as well as MDM4 interfere with p53's transcriptional activity, 

thereby preventing target gene activation. However, upon cellular stress p53 

undergoes various phosphorylations and acetylations preventing the binding 

and consequently the ubiquitination of p53 by Mdm2, thereby protecting p53 

from proteasomal degradation (Shieh et al. 1997). The DNA-damage induced 

activation of ATM (ataxia telangiectasia mutated), ATR (ATM-Rad3 related) and 

DNA-PK (DNA-dependent protein kinase) kinases, for example, leads to direct 

and indirect phosphorylation of several serines in p53 (Canman 1998; Tibbetts 

et al. 1999; Lees-miller et al. 1992). Further posttranslational modifications like 

the acetylation of several lysines by histone acetyltransferases p300 and PCAF 

subsequently activate p53-mediated transcription (Sakaguchi et al. 1998). 

Eventually, the induction of p53 target genes like Cdkn1a, Gadd45 and 14-3-3  

prevents the cell cycle progression of damaged cells to gain time for DNA 

damage repair. In case the damage is too severe to be fixed, cells undergo 

p53-mediated apoptosis by induction of proapoptotic genes like Puma, Bax and 
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Noxa, thus averting corrupted cells to pass on mutations acquired by DNA 

damage.  

The restoration of p53 function is hence a highly desirable goal for cancer 

therapy. Various small molecules have been developed which disrupt the 

protein-protein interaction of p53 and its negative regulator MDM2 by blocking 

the binding pockets of either p53 (RITA) or MDM2 (e.g. nutlin3a)(Issaeva et al. 

2004; Vassilev et al. 2004). In fact, these compounds stabilize p53 in p53wt 

cancer cells resulting in an anti-proliferative and pro-apoptotic response.  

1.3.2 p73-a complicated gene 

The data about p73 are less conclusive than for p53, and thus TP73 is not 

unambiguously described as a tumor suppressor gene. Unlike p53, p73 has 

been found to be rarely mutated in cancer (M Kaghad et al. 1997; Ichimiya et al. 

1999; Stiewe & Pützer 2002).The notion of p73 being a tumor suppressor rather 

arose by the finding that the chromosomal region 1p36, where the TP73 gene is 

located, is frequently deleted in human tumors, especially in neuroblastoma (M 

Kaghad et al. 1997; Schwab et al. 1996; Ichimiya et al. 1999). Moreover, p73 

expression is silenced by hypermethylation of the 5´ CpG island in a large 

proportion of Acute Lymphoblastic Leukemias and Burkitt´s Lymphoma (Corn et 

al. 1999). Yet, in contrast to these observations, p73 has also been found to be 

upregulated in various tumor entities like breast, bladder, ovarian and lung 

cancer and even in some neuroblastoma (Casciano et al. 2002; Concin et al. 

2004; Yokomizo et al. 1999; Zaika et al. 1999; Zaika et al. 2002; Tokuchi et al. 

1999). Consequently, the low mutational rate and contradictive observations of 

either loss or overexpression in tumor samples led to the question whether 

TP73 can really be classified as a tumor suppressor gene or also inherits 

oncogenic features. 

Tumorigenicity studies in a Trp73 knockout mouse model, however, also largely 

failed to deliver a clear answer. First of all, 75% of homozygous total-p73 

knockouts (Trp73-/-) die within the first two months of age due to severe 

developmental defects which makes it very difficult to obtain reliable results on 

spontaneous tumorigenesis (A. Yang et al. 2000). Yet, the first characterization 

of Trp73-/- mice surviving beyond this time did not reveal any signs of 

spontaneous tumorigenesis up to the age of 15 months (A. Yang et al. 2000), 

whereas a second characterization surprisingly reported a 60% incidence of 
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small lung adenocarcinoma in Trp73-/- mice at the age of 10 months (Flores et 

al. 2005). Additionally, the median survival of Trp73+/- mice in this report was 

significantly reduced to 14 months compared to wildtype animals. This 

accelerated mortality was accompanied by benign lung adenoma and malignant 

lung adenocarcinoma as well as lymphoma and hemangiosarcoma.  

The initially conflicting observations made in cancer patients - on the one hand 

deletion or silencing of the TP73 locus, on the other hand overexpression of 

p73 in various tumors- can partially be explained by the N-terminal diversity of 

p73 (Figure 5). P73 isoforms are grossly divided into two subgroups based on 

the presence or absence of the N-terminal transactivation domain: the tumor 

suppressive full length isoform TAp73 and the tumor-promoting N-terminally 

truncated isoform Np73. Both isoforms positively regulate each others' protein 

levels: the intronic promoter P2 within the TP73 locus contains a p53-

responsive element which is bound and transactivated by TAp73 and p53, 

leading to Np73 expression (Seelan et al. 2002; Grob et al. 2001b). Np73, in 

turn, stabilizes TAp73 but not p53 protein (Slade et al. 2004). Yet, Np73 

interferes with both, p53- and TAp73-induced target gene expression in a 

dominant negative manner (see 1.3.4).  

Independently from the intronic P2 promoter, additional N-terminally truncated 

isoforms 2, 2/3 and N´ are generated by alternative splicing of the TAp73-

transcript, the latter leading to a protein being functionally identical to the Np73 

protein transcribed from P2 (M Kaghad et al. 1997; Ng et al. 2000; Stiewe, 

Zimmermann, et al. 2002). Moreover, C-terminal splicing variants  

and  further enlarge the diversity of p73 isoforms (De Laurenzi et al. 1998; M 

Kaghad et al. 1997), which allows a precise fine-tuning of p73´s biological 

functions (Ueda et al. 1999; Murray-Zmijewski et al. 2006). Still, suitable 

antibodies for specific detection of the various isoforms are very restricted and 

thus, most expression analyses from human tumor samples have to be 

considered cautiously. More recent studies, however, revealed that both N-

terminal isoforms are upregulated in cancer which goes in line with their mutual 

induction and stabilization. Regarding these data, TP73 is rather a "two-in-one" 

gene encoding for both, tumor suppressive as well as tumor promoting factors.  

Apart from mutual regulation of TAp73 and Np73, protein levels and activity 

are also modulated by other factors. The p53 regulators Mdm2 and 4 also bind 
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to p73. However, this interaction does not result in proteasomal degradation but 

impedes p73-mediated transcription (Bálint et al. 1999). Protein stability of both 

N-terminal p73 isoforms is regulated by the E3 ubiquitin ligase Itch and the F-

Box protein FBXO45 (Rossi et al. 2005; Peschiaroli et al. 2009). Moreover, 

Np73 is degraded via the polyamine-induced antizyme pathway upon 

genotoxic stress (Dulloo et al. 2010). 

 
Figure 5: Isoforms of the TP73 gene 
Structure of the TP73 locus encoding for p73 isoforms: N-terminal isoforms are derived 

either by alternative promoter usage (P1 for TAp73, P2 within exon 3b for Np73) or 

alternative splicing (2, 2/3 and N´), arrows indicate transcriptional start sites. 

Additional variation is given by alternative splicing of the C-terminus ( and 

). Transactivation domain (TAD), DNA-binding domain (DBD), oligomerization domain 
(OD) and C-terminal-domain (CTD), (adapted from Stiewe, Theseling, et al. 2002) 

1.3.3 TAp73-a bird in the hand is worth two in the bush 

Similar to p53, the N-terminal full-length isoform TAp73 exhibits primarily tumor-

suppressive functions by induction of cell cycle arrest and proapoptotic genes 

(M Kaghad et al. 1997; C. a Jost et al. 1997; Yang, Kaghad, Wang, Gillett, 

Fleming, Do, et al. 1998). Even more, it has been shown that p53 requires 

TAp73 for DNA-damage induced apoptosis (Flores et al. 2002).  

In contrast to the Trp73-knockout model which lacks both N-terminal isoforms, 

the isoform-specific TAp73-knockout revealed the tumor suppressive character 

of the full length isoform: loss of TAp73 resulted in enhanced tumor formation in 

30% of heterozygous and 70% of homozygous knockout mice (Tomasini et al. 

2008). Again, lung adenocarcinoma were the predominant tumor type observed 
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in homozygous knockouts of TAp73, followed by (thymic) lymphoma. Further 

analyses exhibited a fundamental role of TAp73 in the maintenance of genomic 

stability as the loss of TAp73 entailed elevated genomic instability and 

aneuploidy in murine oocytes leading to female infertility. During mitosis and 

meiosis, the spindle assembly checkpoint (SAC) complex regulates the correct 

distribution and segregation of the sister chromatids. It impedes metaphase-to-

anaphase transition until all kinetochores are properly attached to the spindle to 

ensure proper chromatid distribution to the daughter cells. TAp73 interacts with 

the SAC-component BubR1 directing its localization and activity and thus 

supports genomic stability (Tomasini et al. 2009).  

Another feature of TAp73 is the repression of angiogenesis by downregulation 

of proinflammatory and proangiogenic cytokines (Stantic et al. 2015). Apart from 

limiting growth of the primary tumor - as reduced vascularization restricts 

oxygen and energy supply - this characteristic also confines invasion and 

metastasis. Moreover, TAp73 has directly been linked to interference with 

invasion and metastasis via expression of FOXO1 (Forkhead box protein 

F1)(Tamura et al. 2013). 

Upon DNA damage, TAp73 induces a proapoptotic response in a cell cycle-

dependent manner: during G1/S-phase transition, the tumor suppressor Rb 

(retinoblastoma protein) becomes inactivated by phosphorylation and releases 

the transcription factor E2F1 and the tyrosine kinase c-Abl. E2F1 subsequently 

binds to the P1 promoter upstream of exon 1 and transactivates transcription of 

TAp73 (Stiewe & Pützer 2000; Irwin et al. 2000; Seelan et al. 2002). DNA-

damage activates c-Abl facilitating phosphorylation and stabilization of TAp73, 

eventually leading to induction of proapoptotic genes (Wang & Ki 2001; Agami 

et al. 1999; Gong et al. 1999).  

However, as described above, TAp73 has also been found to be co-expressed 

with Np73 in many tumors, which raises the question whether this is only a 

secondary effect of Np73-mediated stabilization of TAp73 or whether 

malignant cells can even profit from TAp73 upregulation. In fact, depending on 

the context, TAp73 can also execute pro-tumorigenic functions either by 

induction of cell cycle promoting genes (e.g. Cyclin D1) or by counteracting 

apoptosis (Subramanian et al. 2015; Koeppel et al. 2011; Nyman et al. 2005). 

P73 target genes have been identified which contain AP1 binding sites close to 
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their p73-binding motifs. Elevated levels of TAp73 increasingly recruit c-Jun to 

these binding sites which is followed by enhanced induction of cancer-

promoting genes (Subramanian et al. 2015; Koeppel et al. 2011). Moreover, 

TAp73 impedes drug-induced apoptosis by interfering with Bax and caspase 

activation, but also mitochondrial dysfunction in small cell lung cancer cells 

(SCLC) (Nyman et al. 2005). In addition, hypoxia-mediated stabilization of 

TAp73 induces angiogenic genes leading to enhanced vascularization of 

tumors (Dulloo et al. 2015).  

Taken together, most data prove that TAp73 can largely be considered as a 

tumor suppressor although it should not be forgotten that TAp73 also inherits 

pro-tumorigenic potential. 

1.3.4 Np73-the bad apple 

High expression of the N-terminal truncated isoform Np73 has been correlated 

with chemoresistance and poor prognosis in various cancer types (Müller et al. 

2005; Concin et al. 2005; Dominguez et al. 2006). Moreover, recent work has 

linked Np73 to promote skin cancer metastasis by induction of an EMT-like 

phenotype in melanoma cells (Steder et al. 2013). As a dominant negative 

inhibitor of TAp73 and p53, Np73 competes with both factors for DNA-binding 

sites, thus preventing transcriptional activation of cell cycle arrest- and 

apoptosis-inducing genes (Figure 6). Additionally, Np73 complexes TAp73 in 

transactivation-deficient hetero-oligomers, again interfering with its tumor 

suppressive function (Kartasheva et al. 2002; Zaika et al. 2002; Stiewe, Carmen 

C. Theseling, et al. 2002).  

Accordingly, overexpression of Np73 initiates immortalization in primary 

fibroblasts and even causes enhanced proliferation in E1A- or myc-immortalized 

cells (Petrenko et al. 2003). Moreover, Np73 abrogates oncogene-induced 

senescence and cooperates with oncogenic Ras leading to malignant 

transformation and enhanced tumorigenicity of xenografts in nude mice. 

Likewise, the overexpression of Np73 accelerates tumorigenicity of NIH3T3 

fibroblasts, whereas the tumorigenic potential of E1A/Ras-transformed MEFs 

drops upon isoform-specific Np73 loss (Stiewe, Zimmermann, et al. 2002; 

Wilhelm et al. 2010).  
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Figure 6: Dominant negative effect of Np73 on its family members p53 and 
TAp73 
adapted from (Stiewe, Carmen C Theseling, et al. 2002) 

Expectedly, the isoform-specific knockout in mice did not lead to enhanced 

tumorigenesis nor did Np73-/- mice display reduced survival for any other 

reason (Wilhelm et al. 2010). Yet, mild neurodegeneration has been observed, 

which is being reflected in reduced neuronal density and thickness of the motor 

cortex and underlines Np73's anti-apoptotic function (Wilhelm et al. 2010). 

Supporting this finding, Np73 has been shown to prevent p53-induced cell 

death in sympathetic neurons (Pozniak et al. 2000). In myoblasts, Np73 also 

thwarts p53-induced cell death and, moreover, inhibits differentiation (Belloni et 

al. 2006; Cam et al. 2006).  

In contrast, liver-specific overexpression of 2/3 causes a very high penetrance 

of hepatocellular liver adenoma which progress to hepatic adenocarcinoma in ~ 

80% of mice (Tannapfel et al. 2008). Thus, Np73 inherits strong oncogenic 

potential which becomes fully deployed when supported by cooperative events. 

As p73 has been implicated not only in hepatocellular carcinoma but also in 

many other cancer types, a mouse model ubiquitously overexpressing Np73 is 

investigated here in order to better understand Np73´s role in tumorigenesis. 
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 Median 
survival 

Tumor incidence LOH 

Trp53+/- TFS: 18 
months 

Osteosarcoma (~30%) 
Lymphoma (~30%) 
Soft tissue sarcoma (~30%) 
Carcinoma (~10%) 

50% (Donehower) 
80-90% (Flores) 

Trp53-/- TFS: ~5 
months 

Lymphoma (~70%) 
Soft tissue sarcoma (~20%) 
Osteosarcoma (~10%) 

 

Trp73+/- OS: 14 months 
(Flores) 
 

Lung adenoma (40%) 
Squamous cell hyperplasia (30%) 
Lymphoma (12%) 
Sarcoma (12%) 
Lung adenocarcinoma (10%) 

80-100% (Flores) 

Trp73-/- OS: ~ 25 days 
(Yang; Flores) 

Lung adenocarcinoma (60% of 
mice surviving beyond 2 months, 
Flores) 
No tumors (Yang) 

 

TAp73+/- OS: 22 months Lymphoma (15%) 
Lung adenocarcinoma (5%) 
Colon carcinoma (5%) 
Sarcoma (5%) 

66% 

TAp73-/- OS: 19 months Lung adenocarcinoma (32%) 
Lymphoma (32%) 
Colon carcinoma (9%) 

 

Np73-/- Normal life 
span 

None reported  

Alb 

p732/3

Not specified Hepatic adenocarcinoma (80%)  

Table 1: Tumor incidence in mouse models of the p53-family 
Median tumor-free survival (TFS), overall survival (OS) and tumor spectra of mouse 
models with hetero- and homozygous knockouts of individual members of the p53-
family according to (Donehower et al. 1992; Flores et al. 2005; A. Yang et al. 2000; 
Wilhelm et al. 2010; Tomasini et al. 2008; Tannapfel et al. 2008). 

1.4 Developmental defects in mouse models of the p53 family 

The targeted deletion of various p53 family members in mice demonstrated an 

indispensable role for p53 and p73 in reproduction and development.  

Breeding of heterozygous p53 knockout mice results in a largely normal 

mendelian ratio of genotypes with a slightly enhanced mortality of female p53-/- 

embryos during early development. These embryos die from exencephaly of the 

midbrain as neuronal overgrowth causes defects in neural tube closure (Sah et 

al. 1995). Still, p53-/- females show a reduced pregnancy rate accompanied by 

reduced litter size. Here, the implantation of embryos is severely disrupted by 

the absence of the p53-target LIF1 which prepares the uterus for blastocyst 

implantation into the endometrium (Hu et al. 2007).  
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Mice with a complete p73 knockout were generated by an exchange of exon 5 

and 6 with a neomycin-resistance gene, rendering these mice deficient for both 

isoforms TA- and Np73 (A. Yang et al. 2000). Although breeding of 

heterozygous Trp73 knockout mice leads to the expected ratio of genotypes, 

homozygous knockouts suffer from hippocampal dysgenesis, hydrocephalus, 

neuronal loss and strong immunological defects leading to a high mortality rate 

within the first weeks of life due to intracranial and gastrointestinal bleeding. 

Additionally, Trp73-/- males reaching adulthood display a disorder in 

pheromonal perception due to neuronal loss in the vomeronasal organ. This 

deficit leads to an indifferent sexual interest in females and a lack of territorial 

behaviour against other males. In contrast, Trp73-/- females fail to conceive 

most likely due to hormonal disorders (A. Yang et al. 2000).  

 Prenatal 
defects 

Postnatal 
defects 

Infertility of -/-
males 

Infertility of -/- 
females 

p53-/- Neural tube 
closure 
defects, 
slightly 
reduced 
number of -/- 
females 

- - Disturbed 
uterine 
decidualization 
impede 
blastocyst 
implantation 

Trp73-/- - Hippocampal 
dysgenesis, 
Hydrocephalus, 
Intestinal 
hemorrhages, 
Immunological 
defects,  
75% die within 2 
months 

Disturbed 
pheromone 
signaling 
(dysfunction of 
vomeronasal 
organ) 

Hormonal 
imbalance 

TAp73-/- - Hippocampal 
dysgenesis 

Disturbed germ 
cell 
differentiation 
and maturation 

Reduced 
follicular pool 
size, 
Decreased 
ovulation, 
Genomic 
instability of 
oocytes 

Np73-/- - - - - 

Table 2: Developmental phenotypes and cause of infertility in mouse models of 
the p53-family 
Data from (Tomasini et al. 2008; Holembowski, Kramer, Riedel, Sordella, Nemajerova, 
Dobbelstein & Ute M Moll 2014; Inoue et al. 2014; A. Yang et al. 2000; Hu et al. 2007; 
Sah et al. 1995) 
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The generation of mice selectively deficient for only one of both isoforms helped 

to decipher their particular role in fertility and embryonic development. In mice 

with a specific knockout of TAp73, the neomycin resistance gene was used to 

substitute exons 2 and 3 thereby retaining the expression of Np73 (Tomasini 

et al. 2008). Similar to Trp73-/- mice, TAp73-/- mice are characterized by 

hippocampal dysgenesis as well as infertility of both genders. Nevertheless, 

these mice show a much milder phenotype than Trp73-/- mice as they do not 

display any signs of neuronal loss, enlarged ventricles or 

intracranial/gastrointestinal bleedings and thus survive much longer. In females, 

the loss of TAp73 leads to a reduced number of primordial and primary follicles 

resulting in a decreased ovulation rate. Additionally, the few ovulated oocytes 

are trapped under the bursa preventing them to reach the fallopian tubes and 

consequently the uterus. In vitro fertilization (IVF) of TAp73-/- oocytes shows a 

normal fertilization but spindle abnormalities lead to an arrest in early cleavage 

leading to multinucleated blastomeres and abnormal blastocysts (Tomasini et 

al. 2008). Furthermore, it has been shown that maternal aging leads to the loss 

of p73 in oocytes resulting in the same poor oocyte quality. In contrast, male 

infertility is based on impaired germ cell differentiation and maturation in the 

testes leading to the loss of vital spermatids (Inoue et al. 2014; Holembowski, 

Kramer, Riedel, Sordella, Nemajerova, Dobbelstein & Ute M Moll 2014).  

Interestingly, the knockout of the Np73 isoform did not lead to any 

developmental failures or infertile phenotypes whereas the overexpression of 

Np73 leads to early embryonic lethality (Hüttinger-Kirchhof et al. 2006; Erster 

et al. 2006; Tissir et al. 2009; Wilhelm et al. 2010). The attempt to create a 

transgenic mouse strain overexpressing Np73 repeatedly failed as the 

microinjection of constitutive promoter-driven Np73 constructs in zygotes and 

their subsequent implantation in pseudopregnant mice did not lead to any viable 

transgenic litter. Further analyses revealed developmental failures at 

gastrulation stage as the embryos become absorbed at the implantation sites 

between E8.5 and E10 leaving empty uterine sacs. This strong phenotype is not 

unexpected taking into account that loss of p53 or p73 affects normal 

development and Np73 acts as a pan-inhibitor on all p53 family members. 

Hence, the transgenic Np73 mouse model used in this work has been created 

as a Cre-inducible expression model in order to circumvent embryonic lethality. 
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2 Material and Methods 

2.1 Material 

2.1.1 Mouse strains 

Strain Description Backgroun
d 

Source 

C57BL/6J 
 

Inbred wildtype strain C57BL/6J Charles 
River 

EF1-Np73 Inducible (Cre/Lox) 
knockin of human 

Np73 under EF1 
promoter 

FVB/N Created in 
Stiewe lab 

FVB/N 
(Taketo et al. 1991) 

Inbred wildtype strain FVB/N  

Gt(ROSA)26Sortm1(cre/ERT)Brn 
(Vooijs et al. 2001) 

CreERT knockin at the 
ROSA26 locus; Cre 
recombinase is fused 
to the mutant estrogen 
hormone binding 
domain (ERT) 

FVB/N Anton Berns 

Gt(ROSA)26Sortm1(cre/ERT2)Tyj 
(Ventura et al. 2007) 

CreERT2 knockin at 
the ROSA26 locus; Cre 
recombinase is fused 
to the mutant estrogen 
hormone binding 
domain 2 (ERT2) 

C57BL/6J Provided by 
Stefan 
Gaubatz 

Rag2tm1.1Flv ;Il2rgtm1.1Flv 

(Song et al. 2010) 
Immunodeficiency 
caused by 
homozygous knockout 

of Rag2 and IL2 chain 

BALB/C Provided by 
Cornelia 
Brendel 

Trp53tm1Brd 

(Donehower et al. 1992) 
 

Heterozygous Trp53 
knockout 

C57BL/6J Allan 
Bradley 

 

2.1.2 Cell lines 

Cell line Description Source 

B16-F10 Murine melanoma from skin of 
C57BL/6J 

ATCC 

HCT 116 p53-/- Human colorectal carcinoma from 
colon, p53 was inactivated by 
homologous recombination 

Provided by Bert Vogelstein 

HCT 116 p53+/+ Human colorectal carcinoma from 
colon with endogenous wildtype 
p53 

Provided by Bert Vogelstein 

HEK 293T Human embryonic kidney, 
contains SV40 large T antigen 

ATCC 

Hs 766T Human pancreatic carcinoma from 
lymph node metastases 

Provided by Matthias Lauth 
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MDA-MB-231 Human mammary 
adenocarcinoma from pleural 
effusion 

Provided by Andreas 
Burchert 

MEFs Murine embryonic fibroblasts 
obtained at E14.5 

Own establishment from 
timed matings 

NCI-H187 Human small cell lung cancer 
(SCLC) from pleural effusion 

Provided by Andreas 
Burchert 

NCI-H69 Human small cell lung cancer 
(SCLC) from the lung 

Provided by Andreas 
Burchert 

 

2.1.3 Bacterial strains 

The E.coli strains used in this work were ordered from Life Technologies. 

Bacterial 
strain 

Description 

TOP10F´ F'[lacI
q

 Tn10(tet
R
)] mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 

deoR nupG recA1 araD139 Δ(ara-leu)7697 galU galK rpsL(Str
R
) endA1 λ

-
  

DH10B F
-
 endA1 recA1 galE15 galK16 nupG rpsL ΔlacX74 Φ80lacZΔM15 

araD139 Δ(ara,leu)7697 mcrA Δ(mrr-hsdRMS-mcrBC) λ
- 

 

 

2.1.4 Plasmids 

Plasmid Backbone Insert Source 

pCLucIPZ-nsh pCLucIPZ CLuc-IRES-Puro-nsh AG Stiewe 

pENTR/D-TOPO Np73 pENTR/D-
TOPO 

Np73 AG Stiewe 

pENTR/D-TOPO TAp73 pENTR/D-
TOPO 

TAp73 AG Stiewe 

pENTR4 T2A pENTR4 T2A AG Stiewe 

pGIPZ-nsh pGIPZ GFP-IRES-Puro-nsh Dharmacon 

pGLucIPZ-nsh pGLucIPZ GLuc-IRES-Puro-nsh AG Stiewe 

pGLucIPZ-shp53.1 pGLucIPZ GLuc-IRES-Puro-shp53.1 AG Stiewe 

pGLucIPZ-shp53.5 pGLucIPZ GLuc-IRES-Puro-shp53.5 AG Stiewe 

pInducer10 CLuc-nsh pInducer10 CLuc-nsh AG Stiewe 

pInducer10 GLuc-nsh pInducer10 GLuc-nsh AG Stiewe 

pInducer10 GLuc-
shp73.3 

pInducer10 GLuc-shp73.3 AG Stiewe 

pInducer10 GLuc-
shp73.5 

pInducer10 GLuc-shp73.5 AG Stiewe 

pInducer20 pInducer20  Stephen J. 
Elledge 

pInducer20 Np73 pInducer20 DNp73a This work 

pInducer20 T2A pInducer20 T2A This work 

pInducer20 TAp73 pInducer20 TAp73a This work 

pMD2.G pMD2.G VSV-G Didier Trono 

psPAX2 psPAX2  Didier Trono 
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2.1.5 Oligonucleotides 

2.1.5.1 siRNAs 

The siRNAs are derived from Dharmacon/Thermo Scientific. 

Name/Gen
e 

Target sequence (5´► 3´) Modification Supplier 

nsi UGGUUUACAUGUCGACUAA 

UGGUUUACAUGUUGUGUGA 

UGGUUUACAUGUUUUCUGA 

UGGUUUACAUGUUUUCCUA 

OnTargetPlus Pool Dharmacon 

p73 si8 GGCCATGCCTGTTTACAAG siGENOME Dharmacon 

 

2.1.5.2 shRNAs 

The shRNAs are derived from the Pooled Human GIPZ Whole Genome Library 

(Thermo Scientific). Individual plasmids were picked from the pGIPZ plasmid 

library and shRNAs were cloned into pGLucIPZ or pCLucIPZ vectors via 

EcoRI/XhoI digestion and ligation. 

shRNA # shRNA (sense)- 
loop-  
shRNA (antisense) (5´► 3´) 

Oligo ID 

nsh TCTCGCTTGGGCGAGAGTAAG- 

TAGTGAAGCCACAGATGTA- 

CTTACTCTCGCCCAAGCGAGA 

 

shp53.1 GGAGGATTTCATCTCTTGTAT- 

TAGTGAAGCCACAGATGTA- 

ATACAAGAGATGAAATCCTCC 

V2LHS217 

shp53.5 CCCGGCGCACAGAGGAAGAGAA- 

TAGTGAAGCCACAGATGTA- 

TTCTCTTCCTCTGTGCGCCGG 

V3LHS333920 

shp73.3 GGACTGGAAATTGTCAATATT- 

TAGTGAAGCCACAGATGTA- 

AATATTGACAATTTCCAGTCC 

V2LHS-181826 

shp73.5 CCGCACAGTTCGGCAGCTACA- 

TAGTGAAGCCACAGATGTA- 

TGTAGCTGCCGAACTGTGCGG 

V3LHS-330453 

 

2.1.5.3 Primers 

Primers and probes were designed with the GenScript Real-time PCR Primer 

Design tool (https://www.genscript.com/ssl-bin/app/primer) and tested for 

specificity by alignment to the human or murine genome using the BLAST 

alignment tool 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastHome). 
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Oligonucleotides were synthesized by Sigma-Genosys if not indicated 

otherwise. 

Genotyping primers 

Target Forward primer (5´► 3´) Reverse primer (5´► 3´) 

CreERT  
or  
CreERT2 

transgene 

GCACGTTCACCGGCATCAAC CGATGCAACGAGTGATGAGGTTC 

EF1-Np73 
transgene 

TAGGCCAGCTTGGCACTTG TGGAGCTGGGTTGTGCGTA 

Trp53  KO allele 
CAGGCTAACCTAACCTACCAC 

TGAAGAGCTTGGCGGCGAATG 

Trp53 wt allele ACAGCGTGGTGGTACCTTAT  

 
qPCR and semiquantitative (sq) PCR primers 

Target Forward primer (5´► 3´) Reverse primer (5´► 3´) 

HA-Flag-Np73 GTACCCATACGACGTCCCAG TCATCTGGTCCATGGTGCT 

hNp73 3´UTR CAAACGGCCCGCATGTTCCC TTGAACTGGGCCGTGGCGAG 

hGAPDH AATGGAAATCCCATCACCATC

T 

CGCCCCACTTGATTTTGG 

hp73 (sqRT) GACGGAATTCACCACCATCCT CCAGGCTCTCTTTCAGCTTCA 

hp73 3´UTR AGGCTGAGGAAGCTGAGTGA CTGCAGATTTGCCTGGATTT 

hTAp73 3´UTR GGCTGCGACGGCTGCAGAGC GCTCAGCAGATTGAACTGGGCCA

TG 

mActin CCTGAGCGCAAGTACTCTGTG

T 

GCTGATCCACATCTGCTGGAA 

mID41 AGGGTGACAGCATTCTCTGC CCGGTGGCTTGTTTCTCTTA 

mITGB41 TTGCGACTACGAAATGAAGG TGCGTCACCGTAGAAGAGAC 

mJAG11 AAATGGCTGGAAAGGAAAGA CGGGACACATGCACTTAAAC 

mJAG21 GACATCAATCCCAACGACTG TAGGCGTCACACTGGAACTC 

mKDR1 TGATTTCACCTGGCACTCTC TTTCACATCCCGGTTTACAA 

mSerpinB101 GAAGCAATAGATGGCCTGGA TGTCTGCACTGGTCCACTTATC 

mSerpinB21 CACCACAAGAAACCCAGAGA CTCCTGCTTGTGCCTGTAAA 

mWnt7a1 CGCTGGGAGAGCGTACTG CGATAATCGCATAGGTGAAGG 

 

ChIP primers 

Binding site Forward primer (5´► 3´) Reverse primer (5´► 3´) 

mCdkn1a -1920 
site 

ATCCGAGGAGGAAGACTGG TGCTTTGGAGAAGCTGTGAG 

mCdkn1a -2850 
site 

CTGCATCAGTCCTCCCATC ATGTTCCTGAAGGCCAGAAA 

 

Digital PCR primers and probes 

Unlike the probe design described before (2.1.5.3), GFP and viral integration 

sites were detected using short hydrolysis probes from the Universal Probe 

Library (UPL #149, Roche #04694350001). For target detection, a third primer 

                                            
11 5% DMSO 
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was used composed of the particular forward primer sequence extended by the 

complementary sequence of the UPL #149 probe (White et al. 2009).  

The VIC-labeled TaqMan Copy Number Reference Assay (Life Technologies 

#4458366) served as reference. 

Target  Primers (5´► 3´) Probe (5´► 3´) 
[dye] sequence 
[quencher] 

CLuc for AGCTGAACGACTCTGCAATAG [6FAM]TCGCCGGTCAAAGT

GATCTTGATCA[BHQ1]  

or 

[JOE]TCGCCGGTCAAAGTG

ATCTTGATCA[BHQ1] 

rev CTTGTGGCACACGTTACATTTC 

GFP for GATGAAGAGCACCAAAGGCG 
UPL#149: 

[6FAM]CCGCCGCT[BHQ1]  

 

rev GGTAGAAGCCGTAGCCCATC 

UPL_for GGCGGCGAGATGAAGAGCACCAA

AGGCG 

GLuc for GATCGTCGACATTCCTGAGATT [6FAM]TCCATGGGCTCCAA

GTCCTTGAAC[BHQ1] rev GATCGACCTGTGCGATGAA 

Viral 
integra
tion 

for GGGCTAATTCACTCCCAACGA 

UPL#149: 

[6FAM]CCGCCGCT[BHQ1]  

 

rev CCTCTGGTTTCCCTTTCGCT 

UPL_for GGCGGCGAGGGCTAATTCACTCC

CAACGA 

 

2.1.6 Antibodies 

2.1.6.1 Primary antibodies 

Antigen Clone/ 
Order no 

Host Supplier Western 
Blot 

ChIP IHC 

p53 DO-1 mouse Dr. B. Vojtesek 1:5000  1:1000 

total p73 EP436Y rabbit Epitomics 1:500  1:1000 

TAp73 A300-126A rabbit Bethyl 1:500   

Np73 #986 rabbit custom made 
by Eurogentec 

1:300 20 µl  

Gaussia 
luciferase 

401P rabbit NanoLights 1:1000  1:1000 

-actin AC-15/ ab-
6276 

mouse Abcam 1:10000   

 

2.1.6.2 Secondary antibodies  

Antigen Linked to Clone/ 
Order no 

Host Supplier Wester
n Blot 

IHC 

mouse IgG HRP NA9310 sheep Amersham 1:5000  

rabbit IgG HRP NA9340 donkey Amersham 1:5000  

mouse IgG Alexa 680 A10038 goat Molecular 
Probes 

1:5000  

mouse IgG Alexa 488 A11029 goat Molecular 
Probes 

1:5000  
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mouse IgG Biotin EO46401 rabbit Dako  1:500 

rabbit IgG Biotin EO43201 goat Dako  1:500 

 

2.1.7 Chemicals 

All chemicals were ordered from AppliChem, Carl Roth or Sigma unless 

indicated otherwise. 

 Nutlin-3, racemic (cell culture) InSolution Nutlin-3 (Merck #444151) 

 Nutlin-3, racemic (in vivo)  (APAC Pharmaceutical #665451) 

 Klucel     (Fagron, Hydroxpropylcellulose GF) 

2.1.8 Consumables 

384 well qPCR plates 4titude 

96 well plates, white, V-bottom Greiner 
cDNA Microarray Slides SurePrint G3 Mouse GE 
8x60K Agilent Technologies 

Cuvettes for Bradford Sarstedt 

Digital PCR Chips QuantStudio 3D  Life Technologies 

Electroporation cuvettes for bacteria 1 mm Eurogentec 

Eppendorf reaction tubes (1.5 & 2 ml)  Eppendorf 

Experion RNA StdSens Analysis Kit Biorad 

Falcons (15 & 50 ml)  Sarstedt 

Filters Filtropur 0.45 µm Sarstedt 

Microscope slides SuperFrost Plus Thermo Fisher 

Needles Braun 

Nitrocellulose Membrane Hybond ECL Amersham 

Pipette tips  Life Technologies 

Syringes Braun/BD 

Tissue culture multi-well plates Greiner 

Tissue culture dishes  Sarstedt 

Tissue Lyser Stainless Steel Beads 5 mm Qiagen 
 

2.1.9 Hardware and devices 

Benchtop Tissue Processor TP1020 Leica 

Binocular microscope SZ Olympus 

Tissue culture Hood MSC advantage  Thermo 

Tissue culture Incubator HERAcell 240  Thermo 

Tissue culture Incubator HERAcell 240i CO2 Incubator  Thermo 

Centrifuge 5415R  Eppendorf 

Centrifuge 5810R  Eppendorf 

Centrifuge J2-21 Beckman 

ChemiDoc MP BioRad 

Canon Eos 70D digital single lens reflex camera Canon 

Digital PCR Chip Loader QuantStudio 3D  Life Technologies 

Digital PCR Chip Reader QuantStudio 3D  Life Technologies 
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DNA Microarray Slide Scanner  Agilent Technologies 

Electrophoresis Chamber DNA Gels Biometra Whatman 

Electrophoresis Chamber Xcell 4 Sure Lock Midi Cell Invitrogen 
Electrophoresis Chamber Xcell Sure Lock Novex Mini 
Cell Invitrogen 

Electroporator Micro Pulser BioRad 

Embedding Cooling station EG 1150C Leica 

Embedding station EG 1150H Leica 

Freezer HERA Freeze TOP, -80°C Thermo 

In vivo Imaging System IVIS 50 Caliper 

Isoflurane Vaporizer Dräger 19.1  Dräger 

LabChip XT  Caliper 

Luminometer Orion II Berthold 

Magnetic Mixer Ikamag REO IKA 

Microscope CKX41 Olympus 

Microscope ICC 50HD Leica 

Microwave Severin 

Milli-Q Biocel  Millipore 

Mouse restrainer University Marburg 

Needle RN 22/51/4 or RN 27/25/4 Hamilton 

Photometer Eppendorf 

Power Supply Power Pac 200 BioRad 

Power Supply Power Pac 300 BioRad 

QIAcube Qiagen 

QIAxcel  Qiagen 

Roller Mixer SRT2 Stuart 

Rotary Microtome RM 2235 Leica 

Scale PLB 1000-2 Kern 

Sonopuls Bandelin 

Sonorex RK100 Bandelin 

Special accuracy scale New Classic MS Mettler Toledo 

Spectrophotometer NanoDrop ND-1000 Nanodrop 

Syringe for tumor cell injection 100µl Hamilton 

Tank Blot  PeqLab 

Tank Blot Criterion Blotter  BioRad 
Thermocycler GeneAmp PCR System 9700 with Flat 
Block  Life Technologies 

Thermocycler Light Cycler 480 II  Roche 

Thermocycler Mastercycler gradient  Eppendorf 

Thermocycler Mx3005P  Stratagene 

Thermomixer comfort  Eppendorf 

Tissue Lyser LT Qiagen 

Gel iX Imagersystem Intas 

Vortexer REAX 2000 Heidolph 
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2.2 Methods 

2.2.1 Molecular Biology 

2.2.1.1 Genotyping PCR 

For genotyping of genetically engineered mice, tail biopsies were taken at the 

age of 2-3 weeks and lysed over night at 65 °C in 200 µl PBND buffer/60 µg 

proteinase K. Proteinase K was then inactivated by incubation at 95°C for 10 

minutes. 1 µl of the lysed biopsy was taken for PCR. For primers see 2.1.5.3. 

EF1-Np73: 

21.5 µl H2O 
1 µl tail biopsy 
0.6 µl for primer [10 µM] 
0.6 µl rev primer [10 µM] 
3 µl HotStarTaq Plus buffer (10x)  
0.6 µl dNTPs [10 mM] 
1.5 µl DMSO 
0.2 µl HotStarTaq Plus DNA Polymerase 
 
94°C  15 min 
95°C  15 sec 
60°C  30 sec  x 10, -0.5 °C/cycle 
72°C  2 min 

95°C  15 sec 
55°C  30 sec  x 25 
72°C  2 min 
4°C  forever 

1500 bp = floxed Np73 transgene 

450 bp = recombined Np73 transgene 
 
CreERT/CreERT2: 

14.75 µl H2O 
1 µl tail biopsy 
1.25 µl for primer [10 µM] 
1.25 µl rev primer [10 µM] 
5 µl GoTaq buffer (5x)  
0.5 µl dNTPs [10 mM] 
0.25 µl GoTaq DNA Polymerase 
 
95°C  2 min 
95°C  30 sec 
64°C  30 sec  x 30 
72°C  1 min 
72°C  2 min 
4°C  forever 
300 bp = CreERT transgene  
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Trp53: 

8.25 µl H2O 
1 µl tail biopsy 
0.75 µl for primer [10 µM] 
0.75 µl rev primer (wt) [10 µM] 
0.75 µl rev primer (KO) [10 µM] 
3 µl GoTaq buffer (5x)  
0.3 µl dNTPs [10 mM] 
0.2 µl  GoTaq DNA Polymerase 
 
94°C  3 min 
94°C  1 min 
58°C  30 sec  x 30 
72°C  1 min 
72°C  2 min 
4°C  forever 
600 bp = p53 wt allele 
750 bp = p53 knockout allele 

The size of amplified products was assessed either by QIAxcel capillary 

electrophoresis with precast gel cartridges (Qiagen) or by agarose gel 

electrophoresis (2.2.1.2). 

 PBND buffer  50 mM KCl, 10 mM Tris HCl pH8.3, 2.5 mM   
    MgCl2 x 6H2O, 0.45% NP-40, 0.45% Tween 20 

 Proteinase K  20 mg/ml (AppliChem #A4392,0010) 
 HotStarTaq Plus   

reagents  (Qiagen #203605) 
 GoTaq reagents (Promega #M3178) 

2.2.1.2 Separation of nucleic acids by agarose gel electrophoresis 

DNA fragments were resolved by size using agarose gel electrophoresis. 

Agarose was melted in 1x TAE buffer with a final concentration of 0.5-2% 

agarose, depending on expected fragment size. Lukewarm liquid gel was 

supplemented with ethidium bromide for visualization of DNA fragments and 

poured in a gel cast. DNA samples were supplemented with DNA loading buffer 

and fragments were separated under constant voltage in the gel in a gel 

chamber filled with 1x TAE buffer. UV light illuminated ethidium bromide 

intercalating in the DNA using Gel iX Imagersystem (Intas). 

Agarose   NEEO Ultra Quality (Carl Roth #2267.4) 
50x TAE   2 M Tris HCl, 1 M acetic acid, 50 mM EDTA pH 8.0 
Ethidium bromide 0.025% (Carl Roth #HP47.1) 
DNA loading buffer  Loading Buffer DNA IV (AppliChem #A3481,0010) 
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DNA ladder  GeneRuler DNA Ladder Mix (Fermentas #SM0332) 

2.2.1.3 Genomic DNA (gDNA) isolation from mammalian cells 

Isolation and purification of gDNA derived from cell culture or murine tissue was 

conducted according to manufacturers protocol using either the peqGold tissue 

DNA Mini Kit (PeqLab #12-3096-01) or the QIAamp DNA blood Mini Kit (Qiagen 

#51104). 

2.2.1.4 RNA Isolation from mammalian cell culture 

For isolation of mRNAs from cell culture, cells were washed once with 

phosphate-buffered saline (PBS), then lysed directly on the cell culture dish by 

adding 600 µl RLT buffer (Qiagen #79216) and scraped from the dish. RNA was 

isolated from cell lysates with the RNeasy Mini Kit (Qiagen #74106) according 

to manufacturer´s protocol using the QIAcube (Qiagen). RNA quality and yield 

were evaluated by spectrophotometric measurement (Nanodrop ND-1000). 

2.2.1.5 RNA isolation from tissue 

For murine tissue samples, mRNA was isolated using TRIzol (Life Technologies 

#15596026) in combination with the Tissue Lyser (Qiagen). Therefore, 10-30 

mg of tissue were first stored at -80°C for 30 min for better tissue disruption. 

After addition of 1 ml TRIzol, tissue was comminuted by a 5 mm steel ball 

(Qiagen) on the Tissue Lyser for 2-6 minutes at 50 Hz depending on 

consistency of the tissue. 200 µl chloroform were added, samples were 

vortexed for 15 sec and incubated for 2-3 minutes. After centrifugation (15 min 

at 4°C and 12000 g), the mixture separated in 3 phases: the lower red phase 

containing protein, the interphase containing DNA and the upper aqueous 

phase containing RNA. The upper phase was then transferred carefully into a 

fresh tube. RNA was precipitated by adding 500 µl isopropanol. After 

centrifugation (10 min at 4°C and 12000 g), supernatant was discarded and the 

RNA pellet was washed with 1 ml 75% Ethanol and centrifuged (5 min at 4°C 

and 7500 g). The pellet was then air-dried and dissolved in 25 µl RNase free 

water at 55°C for 10 min. RNA quality and yield were determined by 

spectrophotometric measurement (Nanodrop ND-1000). For a more accurate 

analysis of mRNA quality and quantity in microarray samples, purified nucleic 

acids were evaluated with the Experion RNA StdSens Analysis Kit (Biorad 
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#700-7103). Only samples with a RQI ≥ 9 were used for Microarray 

experiments. 

2.2.1.6 cDNA synthesis 

To obtain cDNA for expression analysis in semiquantitative PCR or qPCR, RNA 

was reversely transcribed into cDNA with the Omniscript RT Kit (Qiagen 

#205111). 

Reverse Transcriptase mix: 

1 µg  RNA 
2 µl  Buffer RT (10x) 
2 µl  dNTP Mix [10 mM] 
2 µl  Oligo-dT Primer 
0.2 µl  RNase Inhibitor 
1 µl  Reverse Transcriptase 
ad 20 µl with RNase free water 

For semiquantitative PCR, a control RT reaction without reverse transcriptase 

was prepared for every sample to exclude contamination by residual genomic 

DNA. 

The RT reaction was then incubated at 37°C for one hour. cDNA was diluted 

1:1 with RNase free water and used for qPCR or semiquantitative PCR. 

2.2.1.7 qPCR 

In qPCR, gene expression is analyzed by detection of amplification products at 

the end of every single amplification cycle. SYBR Green dye was used to 

quantify double-stranded amplicons. This fluorophore binds primarily to double-

stranded DNA, independent from the DNA sequence. When complexed with 

DNA, the fluorophore can be excited by blue light, thereby emitting green light. 

Amplification and detection was performed on a Thermal LightCycler 480 

(Roche).  

For gene expression analysis on mRNA levels, RNA samples were prepared 

and cDNA was synthesized as described above (2.2.1.6). Each sample was 

measured in triplicates using the SYBR Green JumpStart Taq ReadyMix (Sigma 

#205111).  
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qPCR Mastermix: 

5 µl  2x SYBR Green Mix 
0.2 µl  for primer [10 µM] 
0.2 µl  rev primer [10 µM] 
3.6 µl  H2O 
0.05 µl  VisiBlue dye (tebu bio, #K101) 

Some primers were used with 5% DMSO to decrease unspecific binding of 

primers to DNA and to prevent secondary structure formation of 

primers/template, thereby enhancing target amplification (2.1.5.3). 

First, the mastermix for each primer pair was pipetted in 384 well plates and 

then 1 µl of diluted cDNA was added to every single well. For most target 

genes, qPCR was run on the Thermal LightCycler 480 with the following 

programs: 

qPCR standard cycler program: 

 94°C  2 min 

 94°C  20 sec 
amplification 60°C  20 sec       x 45 
 72°C  20 sec 

 95°C  15 sec 
melting curve 60°C  30 sec 
 60°C to 95°C(0.11°C/sec) continuous detection 

 
TAp73 qPCR cycler program: 

 94°C  2 min 

 94°C  20 sec 
touchdown 70°C  20 sec       x 10, -0.5°C/cycle 
 72°C  20 sec 

 94°C  20 sec 
amplification 65°C  20 sec        x 30 
 72°C  20 sec 

 95°C  15 sec 
melting curve 60°C  30 sec 
 60°C to 95°C (0.11°C/sec) continuous detection 
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Np73 qPCR cycler program: 

 94°C  2 min 

 94°C  20 sec 
touchdown 68°C  20 sec       x 10, -0.5°C/cycle 
 72°C  20 sec 

 94°C  20 sec 
amplification 63°C  20 sec        x 30 
 72°C  20 sec 

 95°C  15 sec 
melting curve 60°C  30 sec 
 60°C to 95°C (0.11°C/sec) continuous detection 

The analysis of data is based on the Ct method. Therefore, the thermal cycler 

measured the Ct value for each sample. This value represents the PCR cycle in 

which the detected fluorescent signal exceeds the background threshold. After 

calculation of the average of all triplicates, the Ct value was calculated by 

subtraction of the Ct values of the target gene from Ct values of the reference 

gene (-actin for mouse, GAPDH for human): 

Ct = Cttarget gene - Ctreference gene 

In the next step, a reference sample is used for further calculations (e.g. 

untreated samples, input controls):  

Ct = Ctsample – Ctreference sample 

The standard deviation was calculated as follows: 

StDev Ct,Ct =√StDev target gene2 + StDev reference gene2 

To allow comparisons between different samples, linear values were calculated: 

relative expression = 2-Ct 
 error on relative expression = 2-(CtStDev Ct) 

2.2.1.8 Semiquantitative PCR 

In contrast to qPCR, gene expression analysis by semiquantitative PCR is an 

endpoint analysis where the PCR product is quantified by agarose gel 

electrophoresis. To compare the amount of amplified DNA, it is an absolute 
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requirement to end the PCR during its exponential amplification phase before it 

reaches the plateau phase. Therefore, the number of amplification cycles must 

be adjusted carefully depending on the amount of transcripts in the sample. 

Semiquantitative PCR was performed for expression analysis of the HA-Flag-

Np73 transgene in murine tissue and cells. RNA was isolated and reversely 

transcribed into cDNA (2.2.1.6). For detection of the transgenic mRNA, primers 

were used which bind within the region of the HA-Flag tag (forward primer) and 

the Np73 sequence (reverse primer). As the transgene encodes for the 

cDNA of Np73, -RT controls were used to exclude contamination by genomic 

DNA additionally to DNase digestion performed during RNA purification (2.2.1.4 

and 2.2.1.5) 

semiquantitative PCR mix: 

16 µl  H2O 
2 µl  HotStarTaq Plus buffer (10x) 
0.4 µl  dNTPs [10mM] 
0.4 µl  for primer [10 µM] 
0.4 µl  rev primer [10 µM] 
0.13 µl  HotStarTaqPlus DNA Polymerase (Qiagen) 
1 µl  cDNA 
 
Cycler program: 

95°C  5 min 
95°C  30 sec 
62°C  30 sec          x10, -0.5°C/cycle 
72°C  1 min 

95°C  30 sec 
57°C  30 sec       x25 
72°C  1 min 
72°C  2 min 
4°C  forever 

10 µl per reaction were then loaded on a 1% agarose gel. 

2.2.1.9 Two-color based Microarray 

Expression analysis of the whole transcriptome was performed by cDNA 

Microarray analyses (Schulze & Downward 2001). Here, a whole library of 

oligonucleotides complementary to cDNAs is spotted on a solid phase (e.g. 

glass slide). Fluorescently labeled cDNAs of samples hybridize to the spotted 

oligonucleotides which are then detected in a microarray slide scanner. 
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Differential expression was evaluated on single gene level as well as for whole 

gene sets (GSEA) in canonical pathways.  

Starting material was amplified and fluorescently labeled with Cy5-CTP by T7 

RNA polymerase using the Quick Amp Labeling Kit (Agilent #5190-0444). The 

Universal Mouse Reference (Agilent # 740100) served as reference control and 

was labeled likewise with Cy3-CTP. The synthesized complementary RNAs 

(cRNAs) were purified with the RNeasy Mini Kit (Qiagen #74106) and then 

hybridized to SurePrint G3 Mouse GE 8x60K Microarray slides (Agilent 

#G4852A). Fluorescence intensities R (Cy5-red labeled samples) and G (Cy3-

green labeled reference) were detected for every single probe on the Microarray 

with the slide scanner (Agilent #G2565CA) and processed with the Feature 

Extraction software tool (Agilent). Microarrays were performed in collaboration 

with the Genomics Unit Marburg (formerly Michael Krause). 

Microarray analysis: differential expression on single-gene level 

Data first underwent LOESS normalization to minimize intensity-dependent 

variations of the dyes (Y. H. Yang et al. 2002). For any further analysis 

normalized, log2 transformed data were used. The quality of the microarrays 

was determined by MA plots. Therefore, M and A values for every single probe 

were calculated and plotted against each other in a graph.  

M reflects the difference of the log intensity values, the expression: 

M = log2 (R/G) = log2 (R) – log2 (G) 

And A is the average log intensity: 

A = ½ log2 (RG) = ½ (log2 (R) + log2 (G)) 

The samples were then divided in two groups: Np73 high (rec-Np73) and 

Np73 low (LSL-Np73 or CreERT) expressing cells. To exclude weak 

background signals, only probes were analyzed in which at least one sample 

showed an average intensity (A) ≥ 5. Next, averages of log intensity values (M) 

for both groups were calculated and differential expression between both 

groups (log2 fold change, log2(FC)) was assessed to identify up- and down-

regulated genes: 

log2(FC) = M (Np73 high) – M (Np73 low) 
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To get an overview, the ranked gene list of all differentially expressed genes 

which were significantly up- or downregulated by at least 2-fold (log2(FC) ≥ 1 or 

≤ -1; p ≤ 0.05) was used to create a heatmap with the HeatMapImage module 

from Gene Pattern 

(http://www.broadinstitute.org/cancer/software/genepattern/modules). 

Microarray analysis: differential expression of whole gene sets (GSEA) 

Gene set enrichment analysis was conducted to discover differentially regulated 

pathways from Microarray data (Subramanian et al. 2005). Using this 

computational method, a collection of samples belonging to two groups (e.g. 

Np73 high versus Np73 low expressing cells) is investigated for enrichment 

of genes from beforehand defined gene sets with common biological functions. 

Depending on whether the genes within a gene set are enriched rather at the 

top or the bottom of the rank-ordered gene list, a gene set is found to be up- or 

downregulated in one of the two groups. In this work, the curated gene sets of 

canonical pathways (C2.CP) from the Molecular Signature Database (MSigDB 

v4) were analyzed with default settings except the permutation type which was 

changed to "gene sets". Again, only probes with A≥ 5 for at least one sample 

were included in the analysis. The networks of significantly up- and 

downregulated gene sets with a p-value ≤ 0.005 and a false discovery rate 

(FDR) ≤ 0.1 were visualized by Cytoscape v 3.2.0 (Cline et al. 2007) using the 

Enrichment Map plugin v 2.0.1 (Merico et al. 2010). 

2.2.1.10 Digital PCR 

Digital PCR is used for exact quantification of DNA target sequences. Like in 

qPCR, primers are designed to produce a specific 50-150 bp amplicon of the 

target sequence. For further specificity, a fluorescently labeled probe is added 

to the PCR reaction, which is composed of a fluorescent dye at the 5´end and a 

corresponding quencher at the 3´end, comparable to TaqMan probes. During 

the amplification process, the probe binds specifically to the amplicon. When 

the polymerase exerts it´s 5´-to-3´exonuclease activity during amplification, the 

probe is degraded and the fluorophore released from the quencher, thereby 

emitting light. 

In contrast to other (semi-) quantitative PCRs, digital PCR does not perform one 

single PCR reaction for one sample. With the here used QuantStudio3D Digital 
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PCR platform from Life Technologies, each sample is loaded on a 

QuantStudio3D Digital PCR Chip (#4485507) with 20000 independent 

nanoscale reaction wells, thus providing 20000 data points for one sample in 

one run. Unlike qPCR, emitted light does not have to reach a defined threshold 

in a linear range. Instead, the chip is read out in the QuantStudio 3D Digital 

PCR Instrument (#A25606) after the amplification process and every single 

reaction compartment is measured separately and either rated as “positive” or 

“negative” for light emission, like a binary code (→ digital PCR) (Baker 2012). 

Furthermore, the chip reader distinguishes two dyes, FAM and VIC, thus 

facilitating simultaneous quantification of two targets in one sample. 

In this work, digital PCR was used to analyze the tumor composition from 

transplantation experiments in mice. For determination of the ratio between 

GLuc- and CLuc-positive cells, both targets were measured simultaneously in 

one reaction using a FAM-labeled GLuc and a JOE-labeled CLuc probe 

(2.1.5.3). In experiments with more than two targets, each target was quantified 

in a separate reaction. Apart from the FAM-labeled primer/probe mix detecting 

the target, a VIC-labeled primer/probe mix detecting murine Tfrc (Life 

Technologies #4458366) was employed as reference for relative quantification.  

Digital PCR was performed according to manufacturer´s protocol. Primer mixes 

contained a10 µM concentration of each primer, whereas probes were used in a 

2.5 µM concentration if not indicated otherwise. 

 digital PCR mix for simultaneous GLuc/CLuc quantification: 

7.5 µl  QuantStudio 3D digital PCR master mix (2x) 
0.75 µl  Primer mix (GLuc_for, GLuc_rev, CLuc_for & CLuc_rev) 
1.5 µl  Probe mix (FAM-GLuc & JOE-CLuc) 
100 ng  gDNA (human) 
ad 15 µl  H2O 

 digital PCR mix with target specific probe and Tfrc reference: 

7.5 µl  QuantStudio 3D digital PCR master mix (2x) 
0.75 µl  Primer mix (for_primer & rev_primer) 
1.5 µl  FAM-labeled probe 
0.75 µl  VIC-labeled Tfrc reference assay 
250 ng  gDNA (murine) 
ad 15 µl  H2O 
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 digital PCR mix with UPL#149 probe and Tfrc reference: 

7.5 µl  QuantStudio 3D digital PCR master mix (2x) 
1.73 µl  Primer/Probe mix (see below) 
0.75 µl  VIC-labeled Tfrc reference assay 
250 ng  gDNA (murine) 
ad 15 µl  H2O 

 Primer/Probe mix: 

3 µl for_primer 
6 µl rev_primer 
3 µl for_primer_UPL 
5.25 µl VIC-labeled UPL#149 probe 

The whole reaction was then loaded on the PCR chip and run under the 

following program: 

digital PCR cycler program: 
96°C  10 min 
60°C  2 min 
98°C  30 sec x40 
60°C  2 min 
4°C  forever 

After readout in the chip reader, data were analyzed online with the 

QuantStudio 3D Analysis Suite Cloud Software 

(https://www.lifetechnologies.com/iaam/loginDisplay). For calculation of 

GLuc/CLuc ratios obtained from the same PCR reaction, absolute values 

(copies/reaction) were used: 

G/C ratio in gDNA = 
GLuc (FAM) copies/reaction 

CLuc (VIC) copies/reaction 
  

When FAM-labeled targets were measured in independent reactions, relative 

quantification was performed involving the VIC-labeled Tfrc reference: 

rel. [target] = 
target (FAM) copies/reaction 

Tfrc (VIC) copies/reaction 
 

G/C ratio in gDNA = 
rel.[GLuc] 

rel.[CLuc]
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2.2.1.11 Gateway cloning 

The LR clonase II enzyme mix (Life Technologies #11791-100) was used for 

recombination of an entry clone, containing the gene of interest flanked by attL 

sites, and a destination vector containing attR sites. Recombination was 

performed according to manufacturer’s guidelines. The product was then 

transformed into electrocompetent bacteria. 

2.2.1.12 Transformation of E.coli by electroporation 

To screen for desired clones and to propagate plasmid DNA, cloning products 

were transformed into electrocompetent bacteria. Frozen bacteria were thawed 

on ice and supplemented with 1-2 µl of cloning product. Bacteria were then 

transferred into a chilled electroporation cuvette and pulsed with 1.8 kV in a 

Micropulser (BioRad). After addition of 0.5 ml pure LB medium, bacteria were 

incubated on a shaker for 30-60 minutes at 37°C and 300 rpm. 50-100 µl of 

transformed bacteria were then plated on LB agar plates supplemented with 

antibiotics for selection of positive clones. Agar plates were incubated over 

night at 37°C and clones were picked for small scale plasmid preparations 

(2.2.1.13).  

 LB medium 5 g/l NaCl, 5 g/l yeast extract, 10 g/l Bactotryptone 
 Agar Plates 1.5% agar-agar in LB medium either with Kanamycin  

   (50µg/ml) or Ampicillin (100µg/ml) 

2.2.1.13 Plasmid DNA isolation from bacteria  

Small scale plasmid preparation  

To obtain small amounts of plasmid DNA, e.g. to screen for correct clones by 

restriction digest or sequencing, small scale plasmid preparation was applied. 

Overnight cultures were inoculated with liquid LB containing antibiotics to 

maintain selective pressure for positive clones. Liquid cultures were then 

processed by alkaline lysis method. 2 ml of the overnight culture were 

centrifuged and resuspended in 300 µl P1 Buffer. Addition of 300 µl P2 Buffer 

lysed the bacteria for 5 min on ice. 300 µl P3 buffer were added to neutralize 

the reaction. The suspension was then centrifuged (10 min at full speed) and 

supernatant was transferred into a fresh tube. DNA was precipitated with 700 µl 

isopropanol and pelleted by centrifugation at full speed for 30 min at 4°C. The 

pellet was washed once with 70% ethanol, dried at 37 °C for 10-20 min and 
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resuspended in 50 µl ddH2O. DNA yield and quality were assessed at the 

Nanodrop ND-1000.  

 P1 buffer  50 mM Tris HCl pH 7.5, 10 mM EDTA pH 8.0, 100 µg/ml  
   RNaseA 

 P2 buffer 200 mM NaOH, 1% SDS 
 P3 buffer 3 M KAc pH 5.5 

Medium scale plasmid preparation 

Medium scale plasmid preparations were used to obtain larger and cleaner 

amounts of plasmids, e.g. for cloning or transfection of eukaryotic cells. For this 

purpose, 100 ml liquid cultures were inoculated with small scale overnight 

precultures (see "Small scale plasmid preparation"). Lysis and purification was 

performed by anion-exchange technology using Nucleobond Xtra Midi Kit 

(Macherey-Nagel #740410.100) according to manufacturer´s protocol. 

Large scale plasmid preparation 

Large scale preparations were needed for immunization of C57BL/6J mice with 

plasmid DNA. Here, 500 ml LB medium were inoculated with small scale 

overnight pre-cultures (see "Small scale plasmid preparation"). The liquid 

cultures were then purified via anion exchange-based EndoFree Plasmid Mega 

Kit (Qiagen #12381). 

2.2.2 Proteinbiochemistry 

2.2.2.1 Preparation of protein lysates 

Tissue culture cells were washed once with chilled PBS and were harvested 

directly from tissue culture plates by adding NP-40 lysis buffer. To exclude cell 

debris, lysates were centrifuged for 5 min (4°C with 1500 rpm) and supernatant 

was transferred into a fresh tube.  

For protein detection in organs, 20-30 mg of tissue were put in a 2 ml tube 

together with NP-40 lysis buffer and a 5 mm stainless steel bead (Qiagen). 

Tissue was then broken up on the Tissue Lyser (Qiagen) for 2 minutes at 50 

Hz, centrifuged and supernatant was transferred into a fresh tube. 

Total protein was quantified in a colorimetric assay using Bradford. The 

Coomassie blue dye in the acidic Bradford solution complexes proteins, thus 

turning from red to blue colour. This shifts the absorption maximum from 470 

nm to 595 nm which is then measured in the photometer (Eppendorf). 
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 NP-40 lysis buffer 50 mM Tris, pH 8.0, 150 mM NaCl, 5 mM EDTA pH  
    8.0, 2% NP-40 

 Protease Inhibitor 1 tablet cOmplete Protease Inhibitor Cocktail (Roche  
    #04693116001) diluted in 5 ml ddH2O 

 Bradford reagent Quick Start Bradford 1x Dye Reagent (BioRad #500- 
    0205) 

2.2.2.2 Protein separation by SDS Page  

For preparation of protein samples, 20-50 µg of protein were supplemented with 

Rotiload as sample reducing agent, denatured at 95°C for 5 min and then 

loaded on precast NuPAGE Novex 4-12% Bis-Tris Gels. For separation of 

proteins by size, gels were run under constant voltage (100-150 V) in NuPAGE 

SDS MOPS Running Buffer for 1-2 hrs.  

 Rotiload  4x Rotiload 1 (Carl Roth #K929.1) 
 SDS-Page gels NuPAGE® Novex® Bis-Tris Mini and Midi Gels  

    (Life Technologies) 
 Running buffer NuPAGE® MOPS SDS Running Buffer (Life   

    Technologies) 
 Protein ladder  PageRuler Prestained Protein Ladder (Thermo  

    Scientific #26616) 

2.2.2.3 Protein detection by Western Blot 

Proteins were transferred from SDS Page gels to nitrocellulose membranes (GE 

Healthcare #RPN303D) in XCell II Blotting modules. Tankblotting was 

performed in NuPAGE Transfer Buffer/15% methanol under approximately 100 

V and constant ampere for 60-90 minutes, depending on protein size. All 

antibodies were diluted in TBST/5% nonfat dry milk if not indicated otherwise 

(2.1.6) 

To avoid unspecific binding of primary antibodies, membranes were blocked in 

TBST/10% nonfat dry milk prior to overnight-incubation with the primary 

antibody at 4°C. After three washing steps in TBST, HRP- or fluorescence-

coupled secondary antibodies were incubated for 1 hour at room temperature, 

again followed by 3 washing steps with TBST. Finally, chemiluminescent 

signals were detected either by X-Ray films or at the Gel Doc XR (Biorad). 

Fluorescent signals were imaged either at the Infrared Scanner Odyssey (LI-

COR) or the Gel Doc XR (Biorad). 
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Transfer buffer NuPAGE® Transfer Buffer (Invitrogen) 
TBS   15 mM NaCl, 5 mM Tris HCl pH 7.5 
TBST   1x TBS with 0.1% Tween 20 
nonfat dry milk  Skim Milk Powder (Sigma #70166) 
HRP substrate Western Bright Chemiluminescence Substrate Sirius  
    (Biozym #541021) 

2.2.2.4 Chromatin immunoprecipitation 

Before harvesting the cells, cell culture medium was exchanged to make sure 

that cells are covered with 20 ml of medium. For fixation of cells, 1 ml PFA was 

added and incubated for 10 minutes. 2 ml of 2x glycine were added and after 5 

minutes of incubation sample preparation continued at 4°C. Medium was 

removed and cells were washed twice with chilled PBS. 1.3 ml PBS/4% 

Protease Inhibitor was added and cells were scraped into a 2 ml Eppi. After 

centrifugation (5 minutes at 4°C and 700 g), pellets were stored at -80°C. 

Cell pellets were dissolved in SDS Lysis Buffer/4% Protease Inhibitor with a 

final concentration of 2x107 cells per 1 ml. Samples were then sonicated in the 

bioruptor (Diagenode) for 9 cycles. After centrifugation (room temperature, 

10000 g for 10 minutes), sheared chromatin was transferred in fresh reaction 

tubes as 100 µl aliquots.  

For pre-clearing, 900 µl of Dilution Buffer and 30 µl of BSA-blocked Protein G 

Sepharose beads were added to the chromatin and subsequently incubated for 

1 hour at 4°C on a rotating wheel. After short centrifugation, 950 µl of the pre-

cleared chromatin was transferred into a fresh reaction tube and additional 10 µl 

were stored aside (4°C), serving as 1% input later on. Finally, the antibody was 

added for immunoprecipitation over night at 4°C on a rotating wheel.  

On the following day, 55 µl of fresh sepharose beads were pre-blocked in BSA, 

added to the chromatin and incubated for 4 additional hours at 4°C on a rotating 

wheel. After centrifugation (1 min at 4°C at 3000 g), supernatant was removed 

using a syringe with a 27 g needle. Each sample and each input were then 

mixed with 100 µl 10% Chelex, vortexed and incubated at 99°C for 10 minutes. 

After protein digestion with 1 µl Proteinase K (20 µg/µl) for 30 minutes at 55°C, 

Proteinase K was inactivated for 10 minutes at 99°C. 80 µl of supernatant were 

transferred carefully into a fresh reaction tube, thereby avoiding any Chelex 

carry-over. For a second elution step, 120 µl H2O were added to the Chelex, 

vortexed, centrifuged and supernatant was pooled with the previous 80 µl.  
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For qPCR, 1µl Chromatin was added to the PCR reaction (see 2.2.1.7).  

 18.5% PFA   18.5% PFA, 7 mM KOH, 5 ml H2O 
 Glycine    1.25 M Glycine  
 SDS Lysis buffer  1% SDS, 10 mM EDTA, 50 mM Tris HCl pH  

     8.1 
 Dilution buffer   0.01% SDS, 1.1% Triton X-100, 1.2 mM  

     EDTA, 16.7 mM Tris HCl pH 8.1, 167 mM  
     NaCl 

 Beads    Protein G Sepharose 4 Fast Flow (GE   
     Healthcare #17-0618-05), 50% slurry 

 Blocking buffer beads  0.5% BSA in PBS 
 10% Chelex   Chelex 100 Resin (BioRad #142-1253) in 10  

     ml ddH2O 

2.2.2.5 Histopathology and Immunohistochemistry (IHC)  

Tissue preparation and fixation 

All tissues from experimental animals were fixed in 10% buffered Formalin 

shortly after necropsy for at least 2 days at 4°C. Tissues were first rinsed in tab 

water for 2 hrs and then dehydrated according to the following steps and 

subsequently embedded in paraffin: 

Solution Incubation 

70% ethanol 90 min 

80% ethanol 90 min 

96% ethanol 90 min 

1rst isopropanol 90 min 

2nd isopropanol 90 min 

Roticlear 90 min 

First paraffin (56°C) 4 hrs 

Second paraffin (56°C) 4 hrs 

 
Paraffin-embedded tissues were cut with a rotary microtome (Leica RM2235) to 

obtain sections of 5 µm thickness. Samples were then fixed to glass slides 

overnight at 37°C.  

To prepare sections for further processing (hematoxylin/eosin (H&E) staining or 

immunohistochemistry (IHC)), specimen first underwent rehydration: 

Solution Incubation 

1rst Roticlear 10 min 

2nd Roticlear 10 min 

96% isopropanol 5 min 

80% isopropanol 5 min 

70% isopropanol 5 min 

 
 10% Formalin  10% neutral buffered Formalin pH 6.9 (Merck   

    #100496) 
 Roticlear  (Carl Roth #A538) 
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H&E staining  

For illustration of tissue structures, microscopic specimen were stained with 

H&E. Basic hematoxylin (Merck) was used to display cell nuclei in a blue color, 

whereas acidic eosin stains (Merck) the cytoplasm red. Fixed specimen (see 

"Tissue preparation and fixation") were first immersed in hematoxylin for 45 sec 

and after 10 min rinsing under fresh tab water treated eosin for 30 sec. Samples 

were then washed in 96% isopropanol for 5 min followed by 2x 5 min washing 

steps in xylol and finally mounted in Entellan (Merck). Images were taken with 

the Leica ICC50 camera and white balance was adjusted in Adobe Photoshop 

CS6. Histopathological examination of tumors was carried out by Prof. Dr. 

Andreas Rosenwald (Universität Würzburg). 

 hematoxylin Mayer´s hemalaun (Merck # 1092491000) 
 eosin  0.5% aqueous Eosin-G solution 0.5% (Merck    

   #1098441000) 
 Entellan mounting medium (#107961) 

Protein detection by immunohistochemistry 

Antigen-retrieval was performed to retrieve epitopes which might be masked 

due to fixation and embedding procedures by incubation in 10 mM citrate buffer 

for 30 min in a steamer. Sections were cooled down slowly and immersed in tab 

water and distilled water. For double staining of sections, DAB 

(diaminobenzidine) and Fast Red were used for antigen detection respectively. 

To prevent cross reactions, primary antibodies originating from two different 

species were chosen. To avoid unspecific signals from endogenous alkaline 

phosphatases and peroxidases during antigen detection with Fast Red or DAB, 

3% H2O2 (in aqua dest.) was used for blocking for 10 min. Washing steps 

always included two washing cycles with TBST and one cycle with TBS for 10 

min each. All antibodies were diluted in Dako REAL antibody diluent. After 

incubation of the primary antibody over night at 4°C, specimen were washed 

and incubated for 30 min with the corresponding biotinylated IgG antibody. For 

signal amplification, specimen were incubated with streptavidin-coupled 

peroxidase for 30 minutes. Antigens were then visualized by subsequent 

substrate addition of DAB. Washing the samples with TBS stopped the reaction 

when brown signals were observed under the microscope. 

For the second antigen detection, the whole procedure was repeated with the 

corresponding primary antibody. A secondary biotinylated IgG antibody was 
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added and after binding of streptavidin-tagged phosphatase for 30 minutes, 

detection of the second antigen followed by addition of Fast Red substrate for 3 

minutes. Again, washing with distilled water stopped the reaction.  

Counterstaining of sections was performed with Mayer´s Hematoxylin (Merck) 

and sections were finally mounted in Mowiol. Again, image acquisition was 

performed with the Leica LCC50 camera and white balance was adjusted in 

Adobe Photoshop CS6. 

 10 mM citrate buffer 10 mM citric acid, 0.05% Tween 20, pH 6.0 
 Blocking reagent Dual Endogenous Enzyme Blocking Reagent (Dako  

    # S200380) 
 TBST   TBS/0.5% Tween 20 
 TBS   5 mM Tris, 15 mM NaCl, pH 7.6 
 Antibody diluent Dako REAL antibody diluent (#S202230-2) 
 DAB   DAB Plus Substrate Kit (Life Technologies #00-2020) 
 Fast Red  liquid Permanent Red Substrate-Chromogen (Dako   

    #K064011-2) 
 streptavidin-tagged  

peroxidase  (KPL #71-00-38) 
 streptavidin-tagged  

phosphatase  (KPL #71-00-45)  
 Mowiol   6 g Glycerol, 2.4 g Mowiol 4-88 (Carl Roth # 0713.1), 

    6 ml aqua dest, 12 ml Tris HCl pH 8.5 

2.2.3 Cell biology 

2.2.3.1 Cultivation of mammalian cells 

All cells were kept in RPMI or DMEM supplemented with 10%FCS/PenStrep in 

cell culture incubators at 37°C with 5% CO2 and 20% O2. For subcultivation, 

cells were splitted every second or third day keeping cells at 60-90% 

confluency. Therefore, cells were dispersed in 2x Trypsin-EDTA solution or 

Accutase for 5-15 min at 37°C. Addition of full cell culture medium inactivated 

Trypsin/Accutase and cell suspensions were splitted in a 1:5 -1:10 ratio.  

For cryopreservation, cells in subconfluent state were taken up in 

cryopreservation medium containing 20% FBS and 10% DMSO. Cells were 

then slowly cooled down to -80°C in an isopropanol-filled cryopreservation 

container (Nalgene). For long-term storage, cells were transferred to liquid 

nitrogen tanks. 

 PBS    1x Dulbecco´s phosphate buffered saline, no  
     calcium, no magnesium (Life Technologies  
     #14190) 

 Trypsin-EDTA   2x Trypsin-EDTA in PBS (Sigma Aldrich  
     #T4174) 
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 Accutase   Accutase solution (Sigma Aldrich #A6964) 
 DMEM Dulbecco´s  

Modified Eagle Medium  (Life Technologies #41966) 
 RPMI    RPMI-1640 Medium, GlutaMAX (Life   

     Technologies #61870) 
 PenStrep   Penicillin/Streptomycin (Life Technologies  

     #15140-122) 
 FBS    (Sigma Aldrich #F0804) 
 Full medium   DMEM or RPMI/1% PenStrep/10% FBS 
 Cryopreservation medium DMEM/1% PenStrep/20% FBS/10% DMSO 

2.2.3.2 Preparation of murine embryonic fibroblasts (MEFs) 

MEFs were isolated from E14.5 embryos from timed matings. First, embryos 

were decapitated and the liver was removed. The remains were then minced 

with a surgical scissor and further dispersed in 2x Trypsin-EDTA solution for 30 

min at the thermomixer at 800 rpm and 37°C. Cells were then plated on 15 cm 

plates in full medium and medium was exchanged the following day. For 

genotyping of the embryo, the liver was lysed in PBND buffer/Proteinase K and 

used for genotyping PCR (2.2.1.1). To achieve recombination and thus 

expression of the Np73-transgene, cells were treated with 1 µM 4OHT (4-

Hydroxytamoxifen) for 5 days. 

 4OHT stock solution 1 mM 4OHT (Sigma H7904) in 99% ethanol 

2.2.3.3 Manipulation of cells 

Transient transfection of siRNAs 

Transient transfection of cells was performed using Lipofectamine RNAiMax 

(Life Technologies #13778150). Suspension cells were detached by Accutase 

and seeded on 6 well plates with 5-7x 105 cells per well in 3.4 ml full medium. 

For transfection, 4 µl 20 µM siRNA and 10 µl RNAiMax transfection reagent 

were diluted in 300 µl OptiMEM each. After 5 min incubation, both reactions 

were mixed and incubated for 20 min prior to addition to cell suspensions. 

Establishment of stable cell lines by lentiviral transduction 

Lentiviral constructs were used to introduce shRNAs or cDNAs into human and 

murine cell lines. To obtain virions, 293T cells served as virus-producing cell 

line. Depending on the amount of required virus, 293T cells were seeded either 

on 10 or 15 cm cell culture dishes (3.5x 106 or 0.75x 107 cells). Next day, cells 

were transfected with Arrest-In transfection reagent (Open Biosystems). 

Therefore, full medium was exchanged by DMEM/10% FBS (8 ml/10 cm dish, 
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12 ml/15 cm dish) and the plasmid DNA of lentiviral vector, envelope and 

packaging plasmids were diluted in pure DMEM (1 ml for 10 cm dish, 3,85 ml 

for 15 cm dish). As DNA is employed in a 1:5 ratio to Arrest-In transfection 

reagent, 70,8 µl or 128,8 µl Arrest-In were diluted in the same volume of DMEM 

like the DNA. Diluted DNA and diluted Arrest-In were then mixed and incubated 

for 20 min at room temperature prior to addition to cells. 

 plasmids for 10 cm cell culture dish: 

6.9 µg  2nd generation lentiviral vector 
2.07 µg  pMD2.g 
5.19 µg  pSPAX2  
14.16 µg DNA 

 plasmids for 15 cm cell culture dish: 

18.1 µg  2nd generation lentiviral vector 
6.37 µg  pMD2.g 
11.73 µg pSPAX2 
36.56 µg DNA 

The transfection medium was exchanged by full medium 6 hours later. Medium 

containing the lentivirus was collected 2 and 3 days after transfection, filtered 

through a 0.45 µm filter and purified and concentrated via PEG 

(polyethyleneglycol) precipitation (Kutner et al. 2009). Therefore, filtered tissue 

culture medium was pooled and supplemented with the following components 

(indicated volumes refer to 1 ml of collected cell culture medium): 

250 µl  50% PEG8000 (autoclaved) 
106.4 µl  4M NaCl (autoclaved) 
114.2 µl  PBS  

For precipitation of the virus, the mixture was stored at 4°C for 1.5 hours and 

inverted every 20-30 min. After incubation, the precipitated lentivirus was 

centrifuged (10 min at 4°C at 7000 g) and the white precipitate was dissolved in 

50 mM Tris HCl pH 7.4 (5.9 µl per ml of collected supernatant). After vortexing 

for 20 seconds, lentiviral aliquots were stored at -80 °C. 

For stable transduction of established cell lines, 2.5-3.5x 104 cells were seeded 

on 6 well plates the day before infection. Before spin infection, full medium was 

exchanged by full medium containing polybrene (8 µg/ml) for higher infection 
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efficiency. After addition of 0.1-1 µl purified virus, cells were centrifuged for 1 

hour at 37°C and 1500 rpm. The medium was exchanged the next day and 2-3 

days after infection, Puromycin- (1 µg/ml) or Geniticin- (500 µg/ml) selection 

was started. 

Arrest-In  (Thermo Scientific) 
Puromycin  (Life Technologies, #A1113803) 
Geniticin  (Life Technologies, #10131035) 

2.2.3.4 Luminescent cell viability assay 

The CellTiter-Glo assay (Promega #G7571) was used for assessment of viable 

cells in cell culture. This assay measures metabolically active cells by 

quantitation of present ATP: an ATP-dependent luciferase reaction produces a 

luminescent signal proportional to abundant ATP. The emitted light was then 

quantified in the Orion II luminometer (Berthold). For this assay, cells were 

seeded in triplicates on 96-well plates and were measured according to 

manufacturer’s protocol. For analysis, the background value (medium only) was 

subtracted from all samples and values were normalized to untreated controls. 

2.2.3.5 Monitoring of luciferase-labeled tumor cells 

Gaussia luciferase (GLuc) converts its substrate coelenterazine to 

coelenteramide via oxidative decarboxylation, thereby emitting blue light at a 

wavelength of ~480 nm. A similar enzymatic reaction is executed by Cypridina 

luciferase (CLuc) when it encounters its substrate Cypridina luciferin (also 

called Vargulin) leading to Cypridina oxyluciferin. Here, the emitted wavelength 

is slightly shorter, ~460 nm. The enzymatic reaction of both luciferases is ATP- 

and cofactor-independent (Figure7).  

All quantitative measurements of Luciferase activities were performed in a 

Berthold Luminometer Orion II with indicated dilutions of substrate stock 

solutions. As the enzyme activity of GLuc shows flash kinetics, all 

measurements in the Berthold Luminometer were performed under reproducible 

conditions by automated injection of substrate stock solutions and detection of 

luciferase activity (GLuc for 10 sec, CLuc for 5 sec). Coelenterazine (PJK) was 

prepared as a 10 mM stock solution in acidified ethanol, whereas Cypridina 

luciferin (NEB) was prepared according to manufacturer´s protocol.  

To monitor GLuc and CLuc activity in cell culture supernatant, cells were 

seeded in triplicates on 96-well plates. Complete medium was collected several 
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times per week in 96-well PCR plates and was either measured directly after 

sample collection or stored at -20°C for long-term experiments. Frozen samples 

were thawed and shaken on a Thermomixer for 5 min at 600 rpm before 

measurement. Depending on the amount of luciferases within the samples, the 

supernatant was diluted 1:10-1:200 in PBS to guarantee measurement in the 

linear range of detection. 5 µl of each sample were provided in white 96-well 

plates with V-bottom (Greiner) and measured separately for GLuc and CLuc 

activity in the luminometer.  

 

Figure 7: Enzymatic reactions of Gaussia Luciferase and Cypridina Luciferase 
Luciferases specifically oxidize their particular substrates Coelenterazine (a) or 
Cypridina luciferin (b) thereby emitting a bioluminescent signal (adapted from NEB). 

For luciferase activity in cell culture medium, the coelenterazine stock solution 

was used 1:500 in PBS with an injection volume of 50 µl, Cypridina luciferin with 

the same dilution in Cypridina Buffer/PBS (1:5) with an injection volume of 25 

µl. 

 Coelenterazine Stock solution 10 mM Colenterazine (PJK # 102172)  
      in Ethanol/120 mM HCl 

 Cypridina luciferin   (NEB # E3309L) 

2.2.4 Animal experiments 

Animal housing, breeding and experiments of all laboratory animals used in this 

study were conducted in the animal facilities of the Philipps University Marburg 

in accordance with the Regional Board Giessen. Breeding and housing of 

CreERT-, Np73- and p53-/- mice was performed under basic hygienic 

standards whereas mice involving transplantation experiments were breed 
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under specific pathogen free (SPF) conditions in the facility "IMT". Improving 

social behavior, mice were kept in groups when possible and cages were 

enriched with nesting material.  

All animal experiments subjected to approval were performed according to 

regulations and guidelines of the German Protection of Animals Act and were 

approved by the Regional Board Giessen.  

Notifiable and approved animal experiments: 

Reg. Number Title 

V54-19c2015h01MR20/27 A1/2009 
and A46/2012 

Breeding and housing of transgenic mice 

V54-19c2015h01MR20/27 
Nr.61/2012 

Establishment of a dual luciferase shRNA 
assay for validation of tumor relevant genes 
in mouse models 

V54-19c2015h01MR20/27 
Nr.83/2014 

Monitoring syngenic tumors with secreted 
luciferases 

 

2.2.4.1 Breeding of mice 

Mice of the immunodeficient Rag2tm1.1Flv;Il2rgtm1.1Flv strain were mated among 

each other to maintain the homozygous double-knockout of the Rag2- and 

IL2rg-alleles. All other strains were bred in heterozygous matings with the 

respective wildtype inbred strain FVB/N or C57BL/6J (2.1.1). 

2.2.4.2 Induction of the EF1-Np73 transgene 

For induction of the Np73 transgene, LSL-Np73 mice were mated with 

CreERT mice. Litters obtained from these matings were intraperitoneally 

injected with 1 mg tamoxifen for 5 consecutive days at the age of 4-6 weeks to 

induce recombination and thus to turn on transgene-expression.  

 Tamoxifen 10 mg/ml tamoxifen (Sigma #T5648) in 95% Corn oil/5%  
   Ethanol 

2.2.4.3 Survival analysis of transgenic mice 

Overall (OS) and tumor-free (TFS) survival analyses were performed using 

Prism 6 (GraphPad). Tumor-free mice were censored to assess tumor-free 

survival (TFS). 

2.2.4.4 Transplantation of established tumor cell lines 

All xenograft experiments were conducted in immunodeficient 

Rag2tm1.1Flv;Il2rgtm1.1Flv mice. Human cancer cells HCT 116, MDA-MB-231 or Hs 
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766T were prepared in ice-cold PBS (1x 107 cells/ml) and 100 µl cell 

suspension were injected subcutaneously or intravenously into the tail vein of 

mice. Concerning syngenic/allogenic transplantations of murine B16-F10, 2 x 

105 cells were injected intravenously into Rag2tm1.1Flv;Il2rgtm1.1Flv or C57BL/6J 

mice. Health condition of experimental animals was monitored daily and mice 

were sacrificed by cervical dislocation upon reaching endpoint criteria. 

2.2.4.5 Monitoring of luciferase-labeled tumor cells in vivo  

Luciferase activity in plasma 

For quantitative measurement of luciferase activities in vivo, plasma/blood 

samples were collected from experimental animals by punctuation of the tail 

vein. For each animal and time point, 20 µl of whole blood were collected and 

mixed with 0.5 IE heparin to prevent coagulation. To obtain plasma, solid blood 

components were separated from liquid blood components by centrifugation (15 

min, 3600 g, 4°C). Samples were then stored in 96-well PCR plates at -20°C 

until the end of the experiment. Again, depending on luciferase amounts, 

samples were diluted 1:10-1:100 in PBS for repeated measurements. For each 

luciferase, 2x 5 µl diluted plasma were taken for analysis. GLuc activity was 

determined by injection of 100 µl coelenterazine (1:200 in PBS), whereas for 

CLuc activity 25 µl Cypridina luciferin (1:200 in Cypridina Buffer/PBS (1:5)) were 

sufficient.  

 Heparin     Heparin Natrium 5000 (Ratiopharm  
      PZN 3029820) 

 Coelenterazine stock solution  see 2.2.3.5 
 Cypridina stock solution   see 2.2.3.5 

Luciferase activity in tumor lysates 

To determine the G/C activity ratios in transplanted tumors, whole tumors were 

excised from mice and coarsely chopped with scissors, followed by further 

shearing with a teflon pestle. Together with a 5 mm stainless steel bead 

(Qiagen), 10-20 mg of tissue were then transferred to a precooled 2 ml tube. 

After addition of 100 µl Passive Lysis Buffer (Promega, #E1941), the samples 

were finely mashed in the Tissue Lyser (Qiagen) for 2 min with 40 Hz. Again, 2x 

5 µl of the crude tissue lysate were taken for quantification of luciferase 

activities in the luminometer under the same conditions as described for plasma 

samples.  
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Bioluminescence imaging (BLI) 

All bioluminescent imaging procedures were performed with the Xenogen IVIS 

50 (Caliper). As emission spectra of both luciferases overlap, it is not possible 

to image both luciferases simultaneously. Moreover, since CLuc signals are 

much more stable than GLuc signals, all experimental animals/tumors/tissues 

were first imaged for GLuc activity. Only upon exclusion of any residual 

bioluminescent GLuc-signal, CLuc activity was measured.  

The Xenogen IVIS 50 is equipped with a highly sensitive CCD Camera with a 

quantum efficiency of over 85% between 500-700 nm. During acquisition, the 

camera was kept at -90°C to reduce noise and dark charge signals. Within one 

experiment, all acquisition parameters were kept constant. Immunodeficient 

mice injected with luciferase expressing tumor cells were bred on BALB/C 

background. Using albino mice prevented disturbing absorption of 

bioluminescent signal by skin pigmentation. As light emitted from tumors in vivo 

was expected to be partially absorbed by surrounding tissue and hemoglobin, 

pictures were acquired with medium binning (CCD resolution). The sensitivity 

was further enhanced by keeping F/Stop at 1, although these parameters 

further reduced resolution. For imaging of tumors ex vivo, the CCD resolution 

was kept on low binning. 

BLI in vivo 

Prior to BLI of experimental animals with GLuc and CLuc expressing 

metastases, mice were anesthetized in an isoflurane-flooded chamber. 

Inhalational anesthesia was maintained during the whole BLI procedure. 

Therefore, the IVIS 50 was equipped with an isoflurane vaporizer (Dräger 19.1) 

and used with 1-1.5 vol% of isoflurane/O2 at a flow rate of 50-100 ml/min. 

Anesthetic depth was checked by toe pinch reflex. To prevent cooling of mice 

during anesthesia, the sample stage of the Xenogen IVIS 50 was heated to 

37°C. For imaging of whole mice, the sample stage was moved to position B 

(field of view 7.5 x 7.5 cm). To prevent corneal damage, eyes were covered with 

eye ointment (Bepanthen). When mice showed no response to foot pad pinches 

anymore, GLuc substrate coelenterazine (11.8 µl stock solution with 78.2 µl 

PBS, ≙ 50 µg) was injected into the tail vein and imaged instantly with an 

acquisition time of 5 min. Since the exposure time was sufficient to convert the 

whole coelenterazine to coelenteramide, CLuc activity was imaged shortly 
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afterwards. Cypridina luciferin was also injected into the tail vein (100 µl of 

Custom VLuc injectable (Targeting Systems) 1:500 in Cypridina Substrate 

Dilution Buffer) and imaged immediately with the same acquisition time as for 

GLuc. After imaging procedure, animals were allowed to wake up again under 

red light to prevent cooling. Mice were sacrificed by cervical dislocation the next 

day, as GLuc and CLuc activities were meant to be measured either by BLI of 

tumors ex vivo and/or by measurement of tumor lysates in the luminometer. 

This time interval guaranteed absence of any residual CLuc signal from in vivo 

BLI. 

 Isoflurane (Baxter PZN 6497131) 

BLI ex vivo 

After mice were dispatched by cervical dislocation, organs/tumors were excised 

and stored in ice-cold PBS in 24-well plates. Like BLI in vivo, GLuc was imaged 

first. Therefore 24-well plates were supplemented with 1 ml of coelenterazine 

(1:1000 in PBS) per well, tumors/organs were transferred to the wells as quickly 

as possible and were subsequently imaged with 1 sec exposure time on sample 

stage position C (field of view 10x 10 cm). As emitted light from excised tumors 

is not absorbed by surrounding tissue, exposure time was strongly reduced 

compared to in vivo BLI. After acquisition of GLuc activity, organs/tumors were 

bathed in PBS for at least 1 hr. To image CLuc activity, the imaging procedure 

was repeated with Cypridina Luciferin (1:1000 in Cypridina Buffer/PBS (1:5)). 

For quantification of BLI results, each well was marked as a region of interest 

(ROI) and total counts of every ROI were determined for calculation of G/C 

ratios of every single organ/tumor. 
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3 Results 

3.1 Establishment of an assay to monitor the dynamics of clonal 
tumor evolution in vivo using secreted luciferases 

3.1.1 Characterization of combined applications of GLuc and CLuc 
in vitro 

The aim of this study was the establishment of an assay that uses two secreted 

luciferases to label two distinct cell populations and monitor their development 

over a certain period of time. Therefore, the luciferases Gaussia luciferase 

(GLuc) and Cypridina luciferase (CLuc) were chosen as they are known to be 

secreted from cells and exhibit very high sensitivity (Nakajima et al. 2004; 

Tannous et al. 2005).  

For constitutive expression of luciferases, cells were stably transduced with the 

lentiviral constructs pGLucIPZ or pCLucIPZ, encoding for either one luciferase, 

a puromycin selection marker and a short hairpin RNA (shRNA) (Figure 8a). 

Initially, for an in depth evaluation of this reporter system, only constructs with a 

non-silencing shRNA (nsh) were used. In following experiments, functional 

shRNAs were used in order to perform comparative analysis of pointedly 

manipulated cell populations (Figure 14). 

At first, the luciferases were tested for their emission spectra to ensure proper 

bioluminescent signal detection in the luminometer and the bioluminescent 

imaging system. Therefore, the supernatants of transduced cells were 

supplemented with their particular luciferase substrate coelenterazine (for 

GLuc) or Cypridina luciferin (for CLuc) and emitted wavelengths were detected 

in a spectrofluorophotometer. The emission curves of both luciferases largely 

overlap displaying emission peaks in the blue spectrum at a wavelength of 459 

nm for CLuc and 479 nm for GLuc, respectively (Figure 8b). Accordingly, 

bioluminescent signals from both luciferases are readily detected by standard 

luminometers, but both luciferases have to be measured in separate reactions 

as the overlap of emission spectra renders the distinct detection of both 

enzymatic reactions within one reaction impossible. 

Since both luciferases were planned to be used in a dual luciferase assay, the 

substrate specificity of both enzymes had to be assessed to exclude cross 

reactivities. Thus, luciferase-expressing HCT 116 cells were either mixed with 
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each other or with parental cells (Figure 8c). Again, luciferase activities were 

measured in cell culture supernatants by addition of substrates. The 

bioluminescent signal was then quantified in a luminometer as relative light 

units per second (RLU/s). Supernatant from parental cells exhibited only very 

low background levels of luciferase activity, whereas GLuc activity was detected 

exclusively in mixtures containing GLuc transduced cells as well as CLuc 

activity was only obtained from cell mixtures containing CLuc transduced cells, 

reflecting a high substrate specificity (Figure 8c). Additionally, luciferase 

activities in GLuc/CLuc mixtures were equal to activities in mixtures with 

parental cells, thus demonstrating that there is no cross reactivity or mutual 

inhibition in combined applications of both luciferases.  

 
Figure 8: Specificity of Gaussia and Cypridina luciferase 
a) Lentiviral constructs pGLucIPZ and pCLucIPZ for stable transduction of eukaryotic 
cells to express secreted luciferases in combination with a selection marker (Puro) and 
an shRNA; 5´long terminal repeats (5´LTR), cytomegalovirus promoter (CMV), Gaussia 
luciferase (GLuc), Cypridina luciferase (CLuc), internal ribosomal entry site (IRES), 
puromycin resistance (Puro), miR30 structure (miR30), short hairpin RNA (shRNA), 
3´long terminal repeats (3´LTR). 
b) Emission spectrum of enzymatic reaction of Gaussia luciferase converting 
coelenterazine to coelenteramide (GLuc) and Cypridina luciferase converting Cypridina 
luciferine to Cypridina oxyluciferine (CLuc).2 
c) Specificity of luciferases: parental, GLuc- and CLuc- expressing HCT 116 were 
mixed in a 1:1 ratio as indicated at the bottom of the graph; activity of both luciferases 
was measured by addition of corresponding substrates (mean + s.d.), RLU/s relative 

light units per second, n=3. 
 

                                            
2experiment performed by Dr. Frithjof Scheer 
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A major characteristic of Gaussia and Cypridina luciferase is their secretion 

from cells. As the luciferases were ultimately planned to be measured in the 

blood stream of mice being transplanted with luciferase labeled cells, the 

availability of the luciferases in the surrounding milieu had to be determined. To 

assess to which extend luciferases are transported out of the cell, GLuc- and 

CLuc-transduced cells were seeded at similar cell numbers and cultured for 1 

day. Cells were lysed in a volume equal to the collected supernatant (see 

2.2.3.5) and equal volumes of cell lysates and supernatants were tested for 

luciferase activity. The calculation of the cell/supernatant ratio revealed that 

approximately 1/3 of GLuc remains within the cells, whereas only 1/30 of CLuc 

is retained in the cells (Figure 9a). This result ensured sufficient luciferase 

abundance in the extracellular milieu.  

 
Figure 9: Stability of Gaussia and Cypridina luciferase in cell culture supernatant 
HCT 116 cells were stably transduced with pGLucIPZ or pCLucIPZ for stable 
expression of luciferases. 
a) Ratio of luciferase activities (mean + s.d.) in equal volumes of lysed cells and 
conditioned medium (24 hours); luciferase assay was performed to calculate relative 
retention of luciferases within the cells, n=2. 
b)+c) GLuc (b) and CLuc (c) activity (mean + s.d.) in complete medium of luciferase 
expressing cells upon different storage conditions, n=3.3 

For optimization of the experimental handling procedure, luciferase stability was 

tested upon different storage conditions. The GLuc activity in the supernatant of 

GLuc-positive cells remained stable for one week when stored at 4°C or -20°C 

                                            
3experiment performed by Mirjam Hefter 
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but dropped to approximately 50% upon storage at 37°C (Figure 9b). CLuc 

showed an even higher stability, as the activity remained stable not only at 4°C 

and -20°C but even upon storage at 37°C (Figure 9c). Based on these results, 

luciferase-containing cell culture supernatant was stored at -20°C in the 

following experiments. 

It has already been shown that luciferase activity of GLuc-transduced cells 

directly correlates with the cell number (Tannous 2009). However, this has not 

been evaluated for CLuc yet. Therefore, luciferase expressing HCT 116 cells 

were seeded at cell numbers ranging from 5000-50000 cells and luciferase 

activity was measured in the supernatant on the following day. Calculation of 

the Pearsons correlation coefficient r revealed a correlation of cell numbers and 

corresponding luciferase activities not only for GLuc (r=0.9827) but also for 

CLuc (r=0.9993) at a highly significant level (Figure 10a). In a further 

 

Figure 10: Luciferase activity directly correlates with cell number 
HCT 116 cells stably transduced with pGLucIPZ or pCLucIPZ were seeded at different 
cell numbers/ratios and analyzed for luciferase activity. 
a) GLuc (left graph) and CLuc (right graph) activities (mean ± s.d.) correlate directly 
with cell numbers shown by Pearsons correlation coefficient (r), p<0.0001, n=3.4 
b) Normalized GLuc/CLuc activity ratios (mean ± s.d.) from supernatant of GLuc/CLuc 
cell mixtures of different ratios (1000:1-1:1000), ratios of each day were normalized to 
the corresponding average G/C ratio of the 1:1 mixture, n=3.5 

                                            
4experiment performed by Joël Charles 
5experiment performed by Maximilian Kleint 
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experiment, GLuc- and CLuc- expressing HCT 116 cells were seeded in 

different ratios ranging from 1000:1 to 1:1000 to investigate whether GLuc/CLuc 

ratios remain stable over time even at very extreme ratios of both luciferases. 

Therefore, supernatant was collected regularly in the course of passaging cell 

mixtures for 18 days and G/C ratios were calculated from luciferase activities. 

Indeed, the measured GLuc/CLuc activity ratios remained stable over time and 

moreover reflected the actually seeded cell ratios, thus suggesting that none of 

the luciferases affects proliferation (Figure 10b). 

3.1.2 Characterization of combined GLuc/CLuc applications in vivo 

After characterization of GLuc and CLuc for dual applications in cell culture 

experiments, the luciferases were further investigated for tumor cell monitoring 

by blood sampling or bioluminescent imaging (BLI). 

Firstly, the luciferases were tested for their substrate specificity when being 

secreted into the blood stream instead of cell culture medium. Therefore, GLuc- 

or CLuc-expressing HCT 116 cells were injected subcutaneously into mice and 

plasma was investigated for GLuc- and CLuc-activity upon outgrowth of tumors. 

Mice without transplants served as controls to assess unspecific background 

signal. Only the plasma of mice injected with GLuc-positive cells revealed a 

strong luciferase activity when supplemented with GLuc substrate 

coelenterazine, whereas the addition of CLuc substrate Cypridina luciferin 

exhibited a luminescent signal only in plasma from mice injected with CLuc-

positive cells (Figure11a). As the detected luciferase activities exceeded the 

background signals by 3 orders of magnitude, both luciferases were considered 

to be specific not only in cell culture medium but also in plasma samples. 

Secondly, specificity was tested for BLI. Accordingly, GLuc-labeled cells were 

injected into the right and CLuc-labeled cells into the left flank of the very same 

mouse. When tumors reached a size of approximately 3-4 mm, the GLuc 

substrate coelenterazine was injected intravenously followed by BLI. Here, only 

the GLuc-labeled tumor cells exhibited a bioluminescent signal (Figure11b, 

middle panel). After confirmation that the enzymatic reaction between GLuc and 

its substrate was complete, the substrate Cypridina luciferin was injected 

intravenously followed by BLI. This time, the bioluminescent signal was 

restricted to the CLuc expressing tumor (Figure11b, right panel). Hence, the BLI 

demonstrated the substrate specificity of both luciferases in vivo, as the 
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injection of the substrates led to a very specific bioluminescent signal restricted 

to the particular tumor (Figure11b). 

 

Figure 11: Luciferase specificity in vivo 
a) Luciferase activities in plasma of mice 3 weeks after transplantation of GLuc- or 
CLuc-expressing HCT 116 cells or of mice without transplants (control); each bar 
shows luciferase activities (mean ± s.d.) of one representative mouse.6 
b) Pseudocolour images overlaid with grayscale photographs obtained from 
bioluminescent imaging (BLI) of a single representative mouse injected subcutaneously 
with GLuc- (right flank) and CLuc- (left flank) labeled HCT 116; imaging was performed 
with the IVIS50 after administration of either Coelenterazine (substrate for GLuc) or 
Cypridina luciferin (substrate for CLuc); scalebar represents the counts (raw amplitude 
of detected signal). 

For optimization of experimental procedures, the luciferases were investigated 

for stability and potential interference with blood/plasma components ex and in 

vivo. For this purpose, supernatant from luciferase expressing cells was mixed 

either with PBS - serving as positive control - or freshly prepared blood or 

plasma from non-injected control mice. The mixtures were then tested for their 

luciferase activities at the indicated time points after mixing (Figure 12a). Time 

point zero exhibits a low background signal of approximately 100 RLU/s for the 

different solvents (PBS, blood, plasma) before the luciferases were added. 

Regardless of the solvent, both luciferases exhibited stable activity for at least 

one hour. Moreover, the activities in PBS and plasma were comparable to each 

other, whereas the intensities in the blood samples were reduced to a tenth 

                                            
6experiment performed by Mirjam Hefter 
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most likely due to light absorption by the presence of hemoglobin. Thus, for all 

further experiments involving measurement of luciferase activities in the 

bloodstream of mice, plasma samples were used instead of whole blood. 

 

Figure 12: Stability of luciferases ex vivo and in vivo 
a) Stability of luciferases in PBS, plasma or whole blood ex vivo; luciferase containing 
cell culture supernatant was mixed with indicated solvents and measured for luciferase 
activity after indicated timepoints, n=2. 
b) Luciferase activities (mean ± s.d.) of mice injected intravenously with luciferase 
containing supernatant, plasma samples were collected at indicated timepoints to 
assess the half-life of the luciferases in vivo (T1/2 (GLuc) = 10 minutes; T1/2 (CLuc) = 90 
minutes), n=3. 

To determine the half-life of the luciferases in vivo, the supernatant from GLuc- 

and CLuc-labeled cells was injected into the right tail vein of mice and plasma 

samples were withdrawn from the left tail vein at the indicated time points 

(Figure 12b). Luciferase activities were measured simultaneously at the end of 

the experiment. Gaussia luciferase exhibited a short half-life of approximately 

10 minutes, whereas Cypridina luciferase is slightly more stable with a half life 

of approximately 90 minutes. Considering these results, the luciferases provide 

enough stability in vivo for reliable quantification of enzymatic activity in blood 

samples as they are not immediately metabolized (e.g. by the liver) and 

eliminated from the organism (e.g. the kidneys). Additionally, it can be assumed 

that the relatively short half-life prevents strong accumulation of either one 
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luciferase thus preventing falsification of the actual abundance of luciferase-

labeled tumor cells and providing sensitive monitoring of dynamic processes. 

Addressing the sensitivity of the luciferases in vivo, GLuc- and CLuc-labeled 

HCT 116 cells were subcutaneously injected into mice at different GLuc/CLuc 

ratios (1:1000-1000:1) and plasma samples were collected during the whole 

course of the experiment. The luciferase activities in mice injected with equal 

amounts of GLuc- and CLuc-labeled cells (1:1) increased similarly and 

exponentially over the time (Figure 13a). Additionally, the increase of both 

luciferase activities run parallel with the increase of the tumor volume measured 

by a caliper, hereby underlining that the luciferases are suitable as a direct 

measure for luciferase-labeled tumor cells in vivo. Notably, the detection of 

GLuc and CLuc activities is much more sensitive than the caliper 

measurements as luciferases are detectable approximately 1 week before 

tumors become palpable. Considering the luciferase activity ratios measured in 

the plasma of mice injected with different cell ratios, the correlation of injected 

and measured ratios reveals a high sensitivity of luciferases even at very high 

dilutions of the luciferases (Figure13b). 

 

Figure 13: Sensitivity of luciferases in vivo 
a) Luciferase activities in plasma (mean ± s.d.) of mice injected subcutaneously with 
GLuc- and CLuc-labeled HCT 116 mixed in a 1:1 ratio; tumor volume was measured in 
parallel by a caliper, n=10.7 
b) Normalized G/C ratios (mean of 5 animals on 5 different days ± s.d.) in the plasma 
of mice injected subcutaneously with GLuc- and CLuc-labeled HCT 116 cells in 
different ratios (1:1000-1000:1); correlation of data calculated by Pearsons correlation 
coefficient (r), n=5 per group.8 

                                            
7experiment performed by Mirjam Hefter 
8experiment performed by Maximilian Kleint 
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These promising results demonstrate high specificity and sensitivity of both 

luciferases in combined applications not only in cell culture but also in vivo. 

3.1.3 Monitoring shRNA-induced heterogeneity of tumors under 
chemotherapy 

To test the dual luciferase assay for its applicability in an experimental setting, 

tumor cells were transduced with the previously mentioned lentiviral constructs 

carrying either a non-silencing shRNA or shRNAs targeting p53 (Figure 14). 

Introduction of these constructs into cells expressing p53 leads to cell 

populations differing in their p53-expression. Mixing of these cell populations 

differing in their p53-status mimics the heterogeneous composition of a tumor. 

The cell mixtures were then put under selective pressure by chemotherapy to 

monitor the influence of the p53 status on the therapeutic response. In detail, 

HCT 116 cells - expressing wildtype p53 -were stably transduced with 

constructs carrying either CLuc combined with a non-silencing shRNA (CLuc-

nsh), GLuc with a non-silencing shRNA (GLuc-nsh) or GLuc with two 

independent shRNAs targeting p53 (GLuc-shp53.1 and GLuc-shp53.5). Cells 

were then treated with nutlin-3, an Mdm2 antagonist, which induces p53 

stabilization and subsequent cell cycle arrest and apoptosis (further details: see 

1.3.1)(Vassilev et al. 2004). 

 

Figure 14: Lentiviral pGLucIPZ and pCLucIPZ constructs for comparative 
analyses of cell populations differing in their p53-status 
For detailed description of the constructs see Figure 8a; pGLucIPZ and pCLucIPZ are 
abbreviated as pGLuc and pCLuc, respectively. 

First, knockdown efficiencies of the shRNAs directed against p53 were tested 

by Western Blot. Compared to control cells transduced with GLuc- and CLuc-

nsh constructs, the p53 protein levels were markedly reduced in GLuc-shp53.1 

cells and even more in –shp53.5 cells (Figure 15a). Accordingly, nutlin-3-

mediated stabilization of p53 led to a strongly reduced number of viable GLuc- 
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and CLuc-nsh control cells within 3 days, whereas GLuc-shp53.1 and –shp53.5 

cells showed a less pronounced effect due to p53 knockdown (Figure 15b). 

 
Figure 15: Monitoring shRNA-induced heterogeneity of HCT 116 under nutlin-3 
therapy in vitro 
a) Western Blot of HCT 116 cells stably transduced with GLuc-nsh, GLuc-shp53.1, 

GLuc-shp53.5 and CLuc-nsh for knockdown efficiencies of shRNAs against p53; -
actin served as loading control; for lentiviral constructs see Figure 14. 
b) Cell viability assay of stably transduced HCT 116 cells upon 3 days of nutlin-3 
treatment at indicated concentrations, values (mean) were normalized to untreated 
cells, n=3 
c) Normalized G/C activity ratios (mean ± s.d.) of untreated HCT 116 cells (upper left), 
nutlin-3 treated HCT 116 cells (upper right) or nutlin-3 treated isogenic HCT 116 p53-/- 
(lower left), n=3.9 

To test whether this effect can also be monitored by the dual luciferase assay 

established in this work, CLuc-nsh cells were either mixed with GLuc-nsh cells 

                                            
9experiment performed by MirjamHefter 
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or with GLuc-shp53.1 or -shp53.5 cells and seeded for cell culture experiments. 

The cell mixtures were then either left untreated (normal full medium) or were 

treated with 10 µM nutlin-3. The supernatant was collected regularly during 10 

days at indicated time points and was replaced either by fresh medium or nutlin-

3 supplemented medium (Figure 15c, upper images). At the end of the 

experiment all supernatants were measured in one run and the G/C ratios were 

normalized to the G/C ratios of the GLuc-nsh/CLuc-nsh control mixture of each 

day. Under normal conditions, the knockdown of p53 in HCT 116 had no effect 

on cell proliferation as the ratios of all three groups remained stable during the 

course of the experiment (Figure 15c, upper left image). The G/C ratios of the 

nutlin-3 treated GLuc-nsh/CLuc-nsh mixture also remained stable over time, as 

both cell populations responded similarly to the treatment (Figure 15c, upper 

right image). However, nutlin-3 treatment led to an increase of the G/C ratios in 

cell mixtures of CLuc-nsh cells with GLuc-shp53.1 or –shp53.5 cells. In detail, 

p53-depleted cells are not affected by nutlin-3 and thus proliferate at a normal 

rate, whereas p53 becomes stabilized in CLuc-nsh cells leading to cell cycle 

arrest and apoptosis. A control experiment with isogenic HCT 116 p53-/- cells 

transduced with the same constructs and treated with the same conditions 

confirmed that this effect is indeed p53-dependent as the p53-shRNAs had no 

effect on the G/C ratios (Figure 15c, lower image). 

To assess whether the dual luciferase assay is also suitable for the monitoring 

of therapeutic effects in vivo, a mixture of CLuc-nsh and GLuc-shp53.5 HCT 

116 was engrafted subcutaneously into mice. Two weeks after tumor cell 

injection, mice were treated either with vehicle (2% Klucel/0.2 % Tween-80) or 

nutlin-3 (200mg/kg) twice daily. Up to this timepoint, the luciferase activities in 

the plasma of both groups developed equally (Figure 16a+b). This development 

remained unchanged in the vehicle treated cohort as both luciferase activities 

increased similarly. In contrast to that, the administration of nutlin-3 led to an 

overgrowth of GLuc-shp53 cells over CLuc-nsh cells (Figure 16a). Additionally, 

the calculation of the G/C activity ratio in plasma displays a two-fold increase 

upon 10 days of nutlin-3-treatment, whereas the ratio in the vehicle group 

remained unchanged (Figure 16b). Thus, the growth advantage of p53-depleted 

cells over p53-proficient cells under nutlin-3 therapy is also detectable in 

plasma. Furthermore, the G/C activity ratios in tumor lysates also revealed a 
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Figure 16: Monitoring shRNA induced heterogeneity of HCT 116 under nutlin-3 
therapy 
a) Luciferase activities (mean ± s.e.m.) in plasma of mice injected subcutaneously with 
a 1:1 mixture of CLuc-nsh and GLuc-shp53.5 HCT 116; vehicle control (2%Klucel/0.2% 
Tween-80) or nutlin-3 (200 mg/kg body weight) were administered orally twice daily 
starting on day 13; tumor growth curves were analyzed by two-way-ANOVA 
(p**<0.005). 
b) Normalized G/C ratios (mean ± s.d.) from plasma samples before and after 
vehicle/nutlin-3 treatment; one-way ANOVA corrected for multiple comparisons by 
Bonferroni (p****<0.00005). 
c) Normalized G/C ratios (mean ± s.d.) from tumor lysates of vehicle/nutlin-3 treated 
mice; one-tailed Mann-Whitney t-test (p*<0.05). 
d) Immunohistochemical double stainings of representative tumors after vehicle/nutlin-
3 treatment; tumors were stained for p53 (DAB, brown) and Gaussia luciferase (Fast 
Red, red); scale bars 200 µm (lower magnification) and 10 µm (higher magnification). 
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significantly 1.5-fold higher abundance of GLuc-shp53.5 cells in nutlin-3 treated 

samples compared to vehicle treated samples (Figure 16c). To evaluate tumor 

compositions independently from luciferase activities, immunohistochemical 

(IHC) stainings for GLuc and p53 were performed in tumors excised from 

vehicle- and nutlin-3-treated mice. Tumors from the control group showed a 

balanced composition of Gaussia-positive/p53-negative (GLuc-shp53.5) and 

Gaussia-negative/p53-positive (CLuc-nsh) cells, whereas tumors from nutlin-3 

treated mice were depleted from Gaussia-negative/p53-positive (CLuc-nsh) 

cells consisting mostly of Gaussia-positive/p53-negative(GLuc-shp53.5) cells 

(Figure 16d). Hence, IHC double stainings for GLuc and p53 were able to 

confirm the results from luciferase measurements in plasma in an independent 

readout. 

3.1.4 Application of the GLuc/CLuc assay in experimental 
metastasis 

In a further approach, the applicability of the dual luciferase assay was tested in 

a setting of experimental metastasis. For this purpose, the breast cancer cell 

line MDA-MB-231 was chosen. Upon injection into the tail vein of mice, these 

cells leave the blood stream in the capillary bed of the lungs and colonize the 

lung tissue resulting in the formation of metastases. MDA-MB-231 cells harbor 

an endogenous p53 mutation (R280K, hereinafter mutp53) which is a key 

player for the metastatic phenotype of this cell line (Adorno et al. 2009).  

For evaluation of the GLuc/CLuc assay in this context, MDA-MB-231 cells were 

stably transduced with the same constructs as shown above (CLuc-nsh, GLuc-

nsh, GLuc-shp53.1 or GLuc-shp53.5, Figure 14) to confer a stable knockdown 

of the metastasis-promoting mutp53 in comparison to the non-targeting shRNA. 

All constructs simultaneously express secreted luciferase reporters GLuc and 

CLuc as indicated. The knockdown efficiencies of the two independent shRNAs 

were confirmed by Western Blot (Figure 17a). Independent of the co-expressed 

luciferase, the MDA-MB-231 cells carrying the control shRNA showed a high 

abundance of p53 protein, whereas the introduction of shp53.1 reduced p53 to 

barely detectable levels, an effect even more pronounced by the shp53.5. 

Additionally, the cells were tested for their Gaussia protein levels to ensure 

comparable infection efficiencies with equal amounts of the reporter being 

expressed among the three cell populations GLuc-nsh, GLuc-shp53.1 and  
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Figure 17: Monitoring clonal evolution in metastasis 
a) Western Blot of MDA-MB-231 cells stably transduced with GLuc-nsh, GLuc-shp53.1, 
GLuc-shp53.5 and CLuc-nsh to compare infection rate (by expression levels of 

Gaussia luciferase) and knockdown efficiencies of shRNAs against p53; -actin served 
as loading control. 
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b) Luciferase activities in the plasma of mice injected intravenously with MDA-MB-231 
cell mixtures (GLuc-nsh/CLuc-nsh, GLuc-shp53.1/CLuc-nsh and GLuc-shp53.5/CLuc-
nsh); GLuc and CLuc activities (means ± s.e.m.) are plotted on the same axis; Two-
way-ANOVA shows a statistically significant underrepresentation of GLuc-shp53.1 and 
GLuc-shp53.5 cells compared to CLuc-nsh cells (p*<0.01), n=5 (n=4 for shp53.5). 
c) IHC double stainings of representative lung metastases for p53 (DAB, brown) and 
Gaussia luciferase (Fast Red, red); scale bars 200 µm. 

GLuc-shp53.5 (Figure 17a). Finally, CLuc-nsh cells were mixed in a 1:1 ratio 

either with GLuc-nsh, GLuc-shp53.1 or GLuc-shp53.5 cells and injected into the 

tail vein of immunodeficient mice for lung colonization. To monitor the extent of 

total tumor burden of cells with and without mutp53, blood samples were taken 

three times per week. The parallel increase of GLuc and CLuc in the plasma of 

GLuc-nsh/CLuc-nsh injected mice showed an equal growth of both cell 

populations in the injected mice (Figure 17b, top). In case of GLuc-

shp53.1/CLuc-nsh and GLuc-shp53.5/CLuc-nsh engrafted mice the GLuc 

activities in the plasma increased to a much lesser extent than the CLuc 

activities due to mutp53 depletion (Figure 17b, middle and bottom). This effect 

was statistically significant for both GLuc constructs targeting p53, although the 

loss of metastatic growth was even more pronounced in GLuc-shp53.5 cells 

caused by a stronger knockdown efficiency of shp53.5 (Figure 17a). 

Immunohistochemical double stainings of explanted lungs for p53 and Gaussia 

luciferase confirmed the results obtained from the plasma activities (Figure 

17c). The lung metastases of GLuc-nsh/CLuc-nsh injected mice display an 

equal distribution of GLuc-positive and -negative MDA-MB-231 cells, all being 

positive for mutp53. Metastases of GLuc-shp53.1/CLuc-nsh and GLuc-

shp53.5/CLuc-nsh engrafted mice are also positive for mutp53 but negative for 

GLuc, thus representing CLuc-nsh cells. GLuc-positive cells without mutp53 are 

hardly detectable in those sections, hence confirming the reduced metastatic 

potential of cells lacking mutp53. 

The intravenous injection of these tumor cells might, besides lung colonization, 

also facilitate the colonization of other organs, e.g. the liver or the lymph nodes. 

To detect the tumor cells not only in the lungs but also in other organs, mice 

underwent BLI. Therefore, mice were injected with the GLuc substrate 

coelenterazine and imaged for bioluminescent signals one day before mice 

were sacrificed (Figure18a). The bioluminescent signal of GLuc-nsh cells was 

restricted to the lungs, whereas GLuc-labeled cells depleted from mutp53 were  
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Figure 18: Detection of metastasis by bioluminescent imaging in a competitive 
GLuc/CLuc assay 
a) In vivo BLI for GLuc activity upon intravenous injection of coelenterazine in mice 20 
days upon injection of MDA-MB-231 cell mixtures (GLuc-nsh/CLuc-nsh, GLuc-
shp53.1/CLuc-nsh and GLuc-shp53.5/CLuc-nsh); scalebar represents the counts. 
b) Ex vivo BLI of metastasized lungs explanted from a) before substrate administration 
(left), upon bathing in coelenterazine (middle) and after bathing in Cypridina luciferin 
(right); scalebar represents the counts. 
c) Normalized G/C ratio generated from BLI data in b) (mean ± s.d., non-parametrical 
Kruskal-Wallis test and Dunn´s post test for multiple comparisons, p*<0.01) of total 
counts from b); data normalized to mean G/C ratio of control mixture. 
d) Normalized G/C activity ratio of lung lysates (mean ± s.d., non-parametrical Kruskal-
Wallis test and Dunn´s post test for multiple comparisons, p*<0.01) 
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e) Normalized G/C ratio of gDNA from lung lysates (mean ± s.d., non-parametrical 
Kruskal-Wallis test and Dunn´s post test for multiple comparisons, p*<0.01) measured 
by digital PCR. 

barely detectable in BLI. In one case, the signal seems to arise additionally from 

a lymph node (Figure 18a, arrow). Imaging of CLuc upon injection of Cypridina 

luciferin did not lead to any useful data, since at this stage of tumor burden the 

CLuc content in the blood stream exceeds the amount of CLuc at the tumor site 

leading to an overall illumination of the experimental animals (data not shown). 

This observation might be a result of CLuc stability in vivo (Figure 12b) and the 

highly efficient secretion of CLuc, resulting in very low levels of intracellular 

luciferase (Figure 9a). In addition, ex vivo imaging of explanted lungs confirmed 

the results from BLI in vivo: the strongest signal was obtained from GLuc-

positive cells containing mutp53 (Figure 18b, middle). In contrast to the GLuc 

signal, the CLuc imaging showed an equal abundance of CLuc positive cells in 

all three groups as all CLuc-nsh cells had the same mutp53 status (Figure18b, 

right). To obtain statistically evaluable results from these imaging procedures, 

the total counts of emitted light within a defined region of interest (ROI) of every 

single lung were used to calculate corresponding G/C ratios. These ratios were 

significantly reduced in lungs from mice injected with GLuc-shp53.1/CLuc-nsh 

or GLuc-shp53.5/CLuc-nsh cell mixtures, as the GLuc-shp53 cells lacking 

metastasis-promoting mutp53 are strongly underrepresented compared to 

mutp53 proficient GLuc-nsh or CLuc-nsh cells (Figure 18c).  

The same lungs were washed to prevent background signals from residual 

substrates and homogenized tissue was used for additional quantification of 

luciferase activities in the luminometer. The normalized G/C ratios of lung 

lysates reflect the previously obtained results with comparable differences in 

G/C ratios and significance (Figure18d).  

Finally, the genomic DNA (gDNA) of the tumor bearing lungs was extracted to 

investigate the clonal composition of the tumors by digital PCR. This 

measurement is totally independent from the luciferase activities as this method 

quantifies the copies of integrated luciferase sequences within the gDNA of the 

tumor cells (Figure18e). The GLuc/CLuc gDNA ratio, assessed by digital PCR, 

gave a similar result as the evaluations of the luciferase activities in ex vivo BLI 

or tumor lysates (Figure 18c, d), demonstrating that the measurement of GLuc 

and CLuc luciferase activities indeed reflects the clonal composition of a tumor. 
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3.1.5 Expanding the GLuc/CLuc assay to an inducible system for 
knockdown of essential tumor genes 

The lentiviral constructs used in this work were created to provide stable and 

continuous expression of luciferases and shRNAs. Yet, if the applied 

experimental shRNA targets a gene being essential for the survival or the 

proliferation of the cell, the transduced cells will immediately die or be unable to 

proliferate, thus making it impossible to proceed with further experiments. To 

overcome this problem, the luciferases were cloned into the backbone of the 

tetracycline (tet)-inducible lentiviral vector pInducer10 (Figure 19a). Upon 

integration of the lentiviral particles into the hosts’ genome, the puromycin-

resistance gene is steadily expressed and allows the selection for stably 

transduced cells. Additionally, the reverse tetracycline transactivator3 (rtTA3) is 

present but not functional until tetracycline is added. Under normal conditions, 

neither the luciferases nor the shRNAs are expressed. In presence of 

tetracycline, rtTA3 binds to the tetracycline responsive element (TRE2) leading 

to a transient expression of the luciferases and the shRNAs as long as 

tetracycline is present. 

3.1.5.1 Knockdown of p73 reduces tumorigenicity in Hs 766T cells 

As p73 has been shown to be highly upregulated in many different tumor 

entities (Yokomizo et al. 1999; Casciano et al. 2002; Concin et al. 2004; Zaika 

et al. 2002), we investigated whether this overexpression is essential for the 

tumorigenicity in such tumor cells. As a model we used the pancreatic cancer 

cell line Hs 766T, which exhibits high expression levels of both N-terminal 

isoforms TAp73 and Np73. In order to test whether p73-depletion leads to 

proliferative disadvantages in these cells, cells were transduced with 

pInducer10 constructs expressing either GLuc or CLuc combined with a non-

coding shRNA (nsh) or GLuc coupled to two different shRNAs targeting p73 

(Figure 19a). Upon transduction with the aforementioned constructs, cells were 

tested for the knockdown efficiency of the introduced shRNAs. Experiments 

proved 5 days of tetracycline treatment to be enough to obtain a strong 

reduction of TA and Np73 levels in GLuc-shp73.3 or GLuc-shp73.5 cells 

compared to control cells with GLuc-nsh or CLuc-nsh (Figure 19b). As the p73 

expression of all cell lines remained on the same level in absence of 

tetracycline, the inducible system is considered to be non-leaky.  
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Figure 19: Inducible luciferase reporter constructs for evaluation of essential 
tumor genes 
pInducer10 lentiviral constructs were designed for tetracycline (tet)-inducible 
expression of luciferases and shRNA for evaluation of TP73 as an essential gene in 
the pancreatic cancer cell line Hs 766T harboring high levels of p73. 
a) pInducer10 lentiviral constructs for inducible luciferase and shRNA expression; 
5´long terminal repeats (5´LTR), tetracycline responsive element 2 (TRE2), 
Gaussia/Cypridina Luciferase gene (GLuc/CLuc), miR30 structure (miR30), non-
silencing shRNA (nsh), shRNA targeting p73 (shp73), Ubiquitin C promoter (Ubc), 
reverse tetracycline transactivator 3(rtTA3), internal ribosomal entry site (IRES), 
puromycin resistance gene (Puro), 3´long terminal repeats (3´LTR). 
b) Knockdown efficiency of lentiviral constructs ± 5 days tetracycline treatment 

(2mg/ml) in Hs 766T cells detected by an antibody against total p73; -actin served as 
loading control. 
c) Normalized G/C activity ratios (mean ± s.d.) of stably transduced Hs 766T cell 
mixtures seeded in a 1:1 ratio as indicated in the figure legend (GLuc-nsh/CLuc-nsh, 
GLuc-shp73.3/CLuc-nsh and GLuc-shp73.5/CLuc-nsh); for induction of luciferases and 
shRNAs cells were treated continuously with tetracycline (2mg/ml), n=3. 

To analyze whether the knockdown of p73 has an impact on the 

survival/proliferation of the Hs 766T cells, CLuc-nsh cells were mixed in a 1:1 

ratio either with GLuc-nsh cells (control) or with GLuc-shp73.3 or GLuc-shp73.5 

cells and seeded in cell culture. During the course of the experiment the cells 

were treated continuously with tetracycline and the medium was collected 

several times per week. At the end of the experiment, the luciferase activities of 

all collected supernatants were measured and G/C ratios were calculated and 

normalized to the GLuc-nsh/CLuc-nsh ratio. The decrease of the G/C ratio in 

cell mixtures containing GLuc-shp73 cells demonstrated a strong growth 
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disadvantage towards CLuc-nsh control cells (Figure 19c). Thus, the inducible 

expression system for GLuc and CLuc proved valuable to identify p73 as an 

essential factor for Hs 766T cells. 

 

Figure 20: Inducible constructs validate p73 as essential tumor gene in Hs 766T 
for tumorigenicity in vivo 
a) Luciferase activities in the plasma mice injected subcutaneously with indicated 
mixtures of Hs 766T (means ± s.e.m, Two-way-ANOVA(p*<0.01)); mice received 
tetracycline from day of injection on; GLuc and CLuc activities are plotted on the same 
axis; n=5 (n=4 for shp73.5). 
b) Normalized G/C activity ratio of lysates from explanted tumors (mean ± s.d., non-
parametrical Kruskal-Wallis test and Dunn´s post test for multiple comparisons, 
p*<0.05). 
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To see whether p73 is also essential for the tumorigenicity of this cell line, the 

same cell mixtures were injected subcutaneously into immunodeficient mice 

and blood samples were collected several times per week. Beginning with the 

day of tumor engraftment, tetracycline was given to the mice via the drinking 

water to induce the knockdown of p73 and simultaneous expression of the 

luciferase reporters. The luciferase activities in the plasma of mice injected with 

the control mixture (GLuc- nsh/CLuc-nsh) revealed a parallel increase of both 

luciferases to the same extent (Figure 20a, upper graph) and thus a 

comparable tumorigenicity of both cell populations independent from the 

luciferases being expressed. In contrast to that, the GLuc activity of p73-

depleted cells remained on a very low level in mice injected with GLuc-

shp73.3/CLuc-nsh or GLuc-shp73.5/CLuc-nsh cells, whereas the CLuc activities 

increased to the same extent as in the control cohort (Figure 20a middle and 

lower graph). Even with small group sizes of 4-5 animals the growth-inhibitory 

effect of p73-depletion was proven to be significant. The G/C activity ratios in 

lysed tumors from this experiment confirmed this result: the normalized ratios 

display a significant underrepresentation of GLuc-labeled cells when p73 was 

depleted (Figure 20b). Taken together, the dual luciferase assay was 

successfully improved for the monitoring of growth-inhibiting effects provided by 

inducible silencing of essential genes in cell culture experiments as well as in in 

vivo applications, which was demonstrated by the identification of p73 being an 

essential factor for tumorigenicity in Hs 766T cells. 

3.1.5.2 Reintroduction of p73 isoforms identifies Np73 as essential 
tumor factor in Hs 766T 

The previously shown data demonstrated a growth promoting effect of p73 in 

Hs 766T cells. Still, it remained unclear whether both N-terminal isoforms are 

essential for this phenotype or whether the presence of one of these isoforms is 

sufficient. For this purpose, TAp73 and Np73were reintroduced into p73-

depleted Hs 766T either separately or in combination with each other. This was 

carried out by lentiviral transduction of GLuc-shp73.3 cells with pInducer20 

constructs (Figure 21a). As the shRNA p73.3 binds to the 3´UTR of p73 

transcripts, it targets only endogenous but not the reintroduced p73 cDNAs. 

Integration of pInducer20 constructs in Hs 766T cells allows transient 

expression of p73 isoforms in the presence of tetracycline.  
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Figure 21: Dissecting the function of N-terminal isoforms in Hs 766T by 

reintroduction of TA and Np73in p73-depleted cells 
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GLuc-shp73.3 Hs 766T were additionally transduced with pInducer20 constructs for 

inducible expression ofNp73, TAp73, Np73+TAp73or empty vector (T2A) 
a) Lentiviral constructs pInducer10 (description see Figure 19) for tet-inducible 
luciferase- and shRNA expression and pInducer20 for tet-inducible expression of p73 
isoforms or empty vector. 
b) p73 protein levels in Hs 766T carrying constructs as indicated above detected by 

Np73- or TAp73-specific or total p73 antibody; Gaussia levels were also detected 

from cell lysates; -actin served as loading control; cells received tetracycline (2 mg/ml) 
for 5 days. 
c) qPCR for endogenous p73 expression in the same cells as in b). 

Additionally, pInducer20 carries a neomycin-resistance gene allowing for 

selection of successfully transduced cells. To obtain cells expressing both 

isoforms, GLuc-shp73.3 cells were first reintroduced with TAp73, underwent 

neomycin-selection and were finally transduced with the Np73 vector. As the 

constructs for both isoforms harbor the same selection marker, single cell 

clones were picked and investigated for their TA and Np73 content upon 

tetracycline- treatment (Figure 21b+c). The T2A sequence, a 54 bp sequence 

encoding for the self-cleaving 2a peptide, served as an empty vector control. 

Firstly, Hs 766T cells were analyzed for their p73 expression levels upon 

reintroduction of p73-isoforms. Therefore, Western Blots were performed to 

assess the protein levels of total, N and TAp73 (Figure 21b). Independent 

from the isoform, the reintroduction of p73 led to a strong overexpression 

exceeding the physiological p73 levels in Hs 766T. However, the Np73 levels 

of the GLuc-shp73.3/Np73 and GLuc-shp73.3/Np73+TAp73 were 

comparable to each other, which is also true for TAp73 levels in GLuc-

shp73.3/TAp73 and GLuc-shp73.3/Np73+TAp73 cells (Figure 21b). 

Unexpectedly, the detection of total p73 further revealed a reconstitution of 

Np73 to basal levels in GLuc-shp73.3/TAp73 cells although only TAp73 

was reintroduced. This result raised the question, whether the knockdown 

conferred by the pGLuc-shp73.3 construct was still present in these cells. 

Hence, Gaussia luciferase was detected by Western Blot in order to assess the 

abundance of the GLuc-shp73.3 construct (Figure 21b). Compared to the other 

cell lines, GLuc was slightly reduced in GLuc-shp73.3/Np73+TAp73 cells, 

but still present.  

Based on this indefinite result, qPCR experiments were performed to re-assess 

the p73-knockdown efficiencies in the different cell populations (Figure 21c). To 

exclude detection of reintroduced cDNAs, primers were used specifically 
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detecting endogenous p73. As expected, shp73.3 displayed a high knockdown-

efficiency in the empty vector control (GLuc-shp73.3/T2A), an effect which was 

also observed in Np73-reconstituted Hs 766T Yet, the reintroduction of 

TAp73 caused a strong upregulation of endogenous p73 compared to basal 

levels in GLuc-nsh/T2A cells (Figure 21c, upper panel). Isoform-specific PCR 

revealed that this induction is primarily caused by the upregulation of 

endogenous Np73 (Figure 21c, middle panel). Considering this result, the 

abundance of Np73 protein in GLuc-shp73.3/TAp73 cells is most likely 

caused by TAp73-mediated activation of the Np73 promoter as was previously 

reported (Grob et al. 2001a; Kartasheva et al. 2002) rather than by the loss of 

the knockdown efficiency. This assumption was further supported by the finding 

that the combined reintroduction of both isoforms reconstituted endogenous 

Np73 almost to basal levels (Figure 21c, middle panel), whereas GLuc-

expression confirmed high abundance of the GLuc-shp73.3 construct (Figure 

21b). 

After reconstitution of N-terminal p73 isoforms, a dual luciferase assay was 

performed in cell culture to see whether the restoration of the different p73 

isoforms rescues the proliferative phenotype in p73-depleted Hs 766T. 

Therefore, CLuc-nsh/T2A cells were mixed in a 1:1 ratio either with GLuc- 

nsh/T2A cells (basal levels of p73), with GLuc-shp73.3/T2A cells (no p73), with 

GLuc-shp73.3/Np73 cells (highNp73), with GLuc-shp73.3/TAp73 cells 

(TAp73 high, Np73 basal) or with GLuc-shp73.3/Np73 +TAp73 (high 

TAp73 and high Np73). Again, cells were kept under tetracycline during the 

course of the experiment and supernatants were collected several times per 

week. The G/C ratios of each mixture were normalized to the G/C ratio of the 

control mix (GLuc-nsh/T2A+CLuc-nsh/T2A). As expected from previous results 

(Figure 19), the G/C ratio of GLuc-shp73.3/T2A+CLuc-nsh/T2A diminished over 

time due to p73-depletion in GLuc-expressing cells (Figure 22). The 

overexpression of Np73 in GLuc-shp73.3 cells was able to rescue the growth 

disadvantage as the G/C ratios remained stable during the course of the 

experiment. In contrast to that, the G/C ratios in GLuc-

shp73.3/TAp73mixtures declined much faster than in GLuc-shp73.3/T2A  
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mixtures, thus indicating an additional growth-inhibitory effect of TAp73in 

GLuc-shp73.3 cells. Surprisingly, the simultaneous overexpression of both 

isoforms had no effect on the proliferation of GLuc-shp73.3 cells. 

 

Figure 22: Np73 restores cell growth in p73-depleted Hs 766T cells 
Normalized G/C activity ratios (mean ± s.d.) of stably transduced Hs 766T cell mixtures 
seeded in a 1:1 ratio; CLuc-nsh/T2A cells were either mixed with GLuc-nsh/T2A, GLuc-

shp73.3/T2A, GLuc-shp73.3/TAp73(upper graph), GLuc-shp73.3/Np73(middle 

graph), or GLuc-shp73.3/Np73+TAp73(lower graph) cells; for induction of 
luciferases, shRNAs and cDNAs cells were treated continuously with tetracycline (2 
mg/ml), n=3 

 

 



Results 

80 
 

3.1.6 Low immunogenicity of luciferases in immunocompetent mice 

Up to this point, all experiments of the dual luciferase assay in vivo were 

performed by xenotransplantation of luciferase-labeled human cancer cells into 

immunodeficient Rag2tm1.1Flv;Il2rgtm1.1Flv mice. In order to use these luciferases 

in future experiments for the monitoring of endogenously growing tumors in 

transgenic mice possessing a fully functional immune system, the luciferases 

were investigated for their potential to provoke an immune response, which 

might result in an experimental bias due to the rejection of luciferase expressing 

cells. Therefore, syngenic transplantations of luciferase labeled B16-F10 

melanoma cells were conducted in immunocompetent C57BL/6J mice. 

 

Figure 23: Experimental setup for evaluation of immunogenic properties of GLuc 
and CLuc 
B16-F10 melanoma cells were stably transduced with the lentiviral constructs 
pGLucIPZ, pCLucIPZ or pGIPZ (upper scheme) and a 1:1:1:1 mixture of parental 
(brown), pGLucIPZ (blue), pCLucIPZ (orange) and pGIPZ (green) transduced cells was 
injected intravenously into immunodeficient Rag2tm1.1Flv;Il2rgtm1.1Flv mice and 
immunocompetent C57BL/6J mice; 17 days after tumor cell application, mice were 
sacrificed and lungs excised for further analyses. 

Prior to transplantation, the cells were stably transduced with lentiviral 

pGLucIPZ or pCLucIPZ constructs encoding either for GLuc or CLuc, a 

puromycin selection marker and a non-coding shRNA (Figure 23). To exclude 

immunogenic effects of the selection marker or the shRNA, an additional 

construct was used which carries a GFP sequence in place of the luciferases 

(pGIPZ), as GFP is known to be poorly immunogenic (Skelton et al. 2001). 

Parental cells served as an additional control to rule out any immunological 
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effects caused by the lentiviral transduction of the cells. As B16-F10 cells have 

been shown to colonize the lungs upon tail vein injection (Fidler & Nicolson 

1978), a 1:1:1:1 mixture of parental, pGLucIPZ, pCLucIPZ and pGIPZ cells was 

injected intravenously into immunocompetent C57BL/6J mice to obtain lung 

metastases. The very same cell mixture was also injected into immunodeficient 

Rag2tm1.1Flv;Il2rgtm1.1Flv mice to compare tumor burden and tumor composition of 

both groups.  

 
Figure 24: Syngenic transplantation of luciferase-labeled B16-F10 cells in 
immunocompetent C57BL/6J mice 
Representative photographs of lungs from mice injected intravenously with B16-F10 
melanoma cells (melanin-expressing metastases in dark brown); Immunodeficient 
(Rag2tm1.1Flv;Il2rgtm1.1Flv) and immunocompetent (C57BL/6J) mice were injected 
intravenously with a 1:1:1:1 mixture of parental, pGLucIPZ-, pCLucIPZ- or pGIPZ-
transduced B16-F10 cells; C57BL/6J mice were either untreated (a) or inoculated by 
intramuscular injection (b) of pGLucIPZ, pCLucIPZ or pGIPZ plasmid DNA 3 weeks 
prior to tumor cell injection (immunized pGLucIPZ, pCLucIPZ or pGIPZ). 

Due to highly expressed melanin pigment, B16-F10 metastases were easily 

detectable. At first sight, lungs from immunodeficient Rag2tm1.1Flv;Il2rgtm1.1Flv 

mice displayed a much higher tumor burden compared to lungs excised from 

immunocompetent C57BL/6J mice (Figure 24a). In order to investigate whether 

this observation was a result of tissue rejection caused by luciferase- or GFP-

expression, the tumor compositions were investigated by copy number 

quantification of GLuc, CLuc and GFP by digital PCR (Figure 25). To assess 

exclusively transduced B16-F10 cells, the copy number of lentiviral integration 
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sites in B16-F10 cells was also quantified by digital PCR (Figure 25a-c) and 

used for normalization. Assuming that the reduced tumor cell abundance in 

lungs obtained from C57BL/6J mice was indeed caused by an immune 

response against one or both luciferases, the proportion of the affected cell 

population(s) would be underrepresented in samples from C57BL/6J mice. 

Thus, the normalized copy numbers of GLuc and/or CLuc would be reduced, 

whereas the copy numbers of GFP would be elevated. In fact, lung lysates from 

immunocompetent C57BL/6J mice did not show any significant 

underrepresentation of GLuc-, CLuc-, or GFP-positive cells compared to those 

from immunodeficient mice (Figure 25a-c). Thus, the similar tumor compositions 

of both cohorts rejected the initial hypothesis of an immunogenic effect of the 

luciferases. 

 

Figure 25: Immunotolerance of C57BL/6J mice against Gaussia and Cypridina 
luciferase 
Digital PCR of gDNA from lungs lysates (Figure 24); The transferrin receptor gene 
(Tfrc) served as reference for relative quantification; samples with < 3% transduced 
B16-F10 content (measured by relative quantification of integration sites by digital 
PCR) were excluded from analyses. 
a-c) Normalized copy numbers of GLuc (a), CLuc (b) and GFP (c) (mean ± s.d., no 
significant differences detected by non-parametrical Kruskal-Wallis test and Dunn´s 
post test for multiple comparisons) in gDNA of lung lysates. 
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d) G/C ratio of copy numbers (mean ± s.d., no significant differences detected by non-
parametrical Kruskal-Wallis test and Dunn´s post test for multiple comparisons, 
p*<0.05). 

However, as mice were sacrificed 17 days after tumor cell transplantation, this 

short time period might be not sufficient to induce tissue rejection by the 

immune system. In order to ascertain the previous finding of immunotolerance 

towards GLuc and CLuc, three additional cohorts of C57BL/6J mice were 

inoculated with plasmid DNA of pGLucIPZ, pCLucIPZ or pGIPZ vectors 3 weeks 

before administration of the B16-F10 cell mixture. Like a vaccination, the 

intramuscular injection of the plasmid DNA leads to a first immune response 

against the injected plasmid-encoded protein (Danko et al. 1997) and thus 

triggers an enhanced immune reaction as soon as the organism encounters the 

same antigen for a second time-in this case by injection of the luciferase- or 

GFP-expressing B16-F10. Yet, macroscopic investigation of isolated lungs 

revealed no difference between untreated C57BL/6J mice and mice being 

vaccinated with pGLucIPZ or pCLucIPZ, reinforcing previous results of 

immunotolerance towards GLuc and CLuc. Unexpectedly, the vaccination with 

the low-immunogenic GFP-vector strongly reduced the tumor burden. Lungs 

from pGIPZ-immunized mice had to be excluded from further analyses, as the 

abundance of tumor cells -and consequently GLuc/CLuc/GFP copy numbers- 

fell below the detection limits of digital PCR. 

Neither pGLucIPZ- nor pCLucIPZ-inoculated mice showed any significant 

reduction of luciferase-labeled cells. (Figure 25b). The vaccination of C57BL/6J 

mice with pGLucIPZ did not further reduce the G/C ratio, neither did the 

vaccination with pCLucIPZ increase the ratio (Figure 25d) as would be expected 

in case of an enhanced immune response. Taken together, neither GLuc nor 

CLuc induced any significant immune response in the C57BL/6J inbred strain 

that could cause an experimental bias when using these secreted luciferases 

for monitoring tumors in immunocompetent mice. 
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3.2 Characterization of a mouse model overexpressing oncogenic 

Np73 

Within the p73 family, full length TAp73 is considered to execute tumor 

suppressive functions, whereas N-terminally truncated Np73 presumably 

exerts oncogenic functions (see 1.3.2). This finding was further underlined by 

the results obtained from tumorigenicity studies in Hs 766T, as the growth- 

 

Figure 26: Breeding scheme for induction of the Np73 transgene 

Heterozygous CreERT transgenic mice were mated with heterozygous LSL-Np73 

transgenic mice to obtain Np73 overexpressing litter. Schematic transgenic constructs 
for both strains are shown below the mice; Rosa26 locus for ubiquitous expression 
(Rosa26), Cre recombinase fused to the tamoxifen-inducible estrogen receptor 

(CreERT), promoter of elongation factor 1 (EF1), recognition sites for Cre 
recombinase (loxP), enhanced green fluorescent protein (eGFP), stop cassette 

(STOP), human HA-Flag-tagged Np73(HF-Np73), poly-adenosine-
monophosphate tail (pA);Below the constructs the potential gametes carrying either the 
transgenic or wildtype allele are depicted as well as embryonic genotypes (wt;wt, 

CreERT;wt, wt;LSL-Np73, CreERT;LSL-Np73); treatment of double transgenic 

progeny (CreERT;LSL-Np73) with tamoxifen leads to recombination of the loxP sites 

thus enabling Np73 expression (CreERT;rec-Np73). 
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inhibitory effect of p73-depletion in these cells was amplified by reintroduction of 

TAp73, whereas the reintroduction of Np73 restored cell growth (3.1.5.2). 

Additionally, Np73 has been found to be upregulated in various tumor types 

(see 1.3.2). To further decipher the distinct role of Np73 in tumorigenesis, a 

Np73-overexpressing mouse model was characterized in this thesis. The 

attempt to create a mouse model overexpressing Np73 constitutively failed 

repeatedly as no founder mice could be obtained (Hüttinger-Kirchhof et al. 

2006). As a consequence, an inducible mouse model was deployed, which 

provides inducible Np73 expression by the Cre-loxP system (Figure 26+Figure 

27).  

 

Figure 27: Inducible recombination of the Np73-transgene by the Cre-loxP 
system 

a) Scheme of the Np73transgene before (upper graph) and after (lower graph) 
recombination; arrows indicate primer binding sites and fragment size in genotyping 
PCR. 
b) Genotyping PCR of single and double transgenic MEFs from timed matings of LSL-

HF-Np73 and CreERT transgenic mice; recombination was achieved by 5 days 4-
hydroxytamoxifen (4OHT) treatment of MEFs and verified by PCR product size (floxed 
allele 1500 bps, recombined 450 bps). 

The CreERT strain used in this work yields a Cre recombinase transgene 

inserted into the murine ROSA26 locus, thereby providing constitutive 
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expression of the transgene (Badea et al. 2003). The Cre recombinase is fused 

to a modified murine estrogen receptor (ERT), which retains the recombinase in 

the cytoplasm due to interactions with heat shock proteins. Upon administration 

of the anti-estrogen tamoxifen, the enzyme is released and translocates to the 

nucleus where it catalyzes the recombination of loxP sites.  

The EF1-Np73 mouse strain (short: LSL-Np73) carries a transgene 

composed of three major parts: an HA-Flag-tagged human Np73 transgene 

(HF-Np73), an EF1 promoter to drive transgene expression and a loxP-

STOP-loxP (LSL) cassette which prevents Np73 expression under normal 

conditions (Figure 27). To induce Np73 expression, LSL-Np73 mice were 

crossbred with CreERT mice. Administration of tamoxifen to double transgenic 

mice (CreERT;LSL-Np73) induced Cre-mediated recombination of the loxP 

sites, thereby eliminating the LSL cassette. The recombined state of the 

transgene is further referred to as rec-Np73.  

3.2.1 Impact of the Np73-transgene on murine embryonic 
fibroblasts 

First, in order to verify the functionality of this mouse model, the recombination, 

expression and functionality of the transgene were tested in MEFs obtained 

from timed matings of CreERT with LSL-Np73 mice (Figure 26). MEFs of all 

four possible genotypes - either wildtype for both transgenes (wt;wt), single 

transgenic for one of both transgenes (CreERT;wt or wt;LSL-Np73) or for both 

transgenes (CreERT;LSL-Np73) were treated with 4-hydroxytamoxifen (4OHT) 

to achieve recombination of the floxed allele in double transgenic cells (Figure 

27a). Genotyping PCR (for primer binding sites see Figure 27a) demonstrated 

that 4OHT-treatment had no impact on the floxed Np73 allele in single 

transgenic MEFs, whereas double transgenic MEFs exhibited recombination of 

the loxP sites, thus eliminating the stop cassette (Figure 27b). 

3.2.1.1 Validation of the Np73-transgene expression and 
functionality in MEFs 

All genotypes of MEFs were investigated specifically for mRNA-expression of 

the HA-Flag-Np73-transgene by reverse transcription-qPCR using primers 

which bind within the HA-Flag-tag sequence (forward primer) and Np73 

(reverse primer). 4OHT-treated double transgenic MEFs displayed a high 
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abundance of the HF-Np73 transcript, whereas neither 4OHT-treated 

wildtype and single transgenic MEFs nor untreated double transgenic MEFs 

exhibited any Np73 expression (Figure 28a). This expression pattern was 

further confirmed on protein level, as p73 protein was detected exclusively in 

rec-Np73 MEFs (Figure 28b).  

 

Figure 28: Expression and functionality of the Np73-transgene in MEFs 
MEFs of all genotypes were treated with 1μM 4OHT for 5 days. 

a) Relative expression of the HA-Flag-Np73-transgene (mean ± s.d.) assessed by 
qPCR in wildtype, single and double transgenic MEFs (untreated or treated with 
4OHT); data normalized to untreated wildtype MEFs. 
b) Representative Western Blot for total p73 expression in single and double 
transgenic MEFs; β-Actin served as loading control. 

c) Representative Western Blot for comparative protein expression analysis of Np73 

levels in CreERT;Np73 MEFs (Np73 MEF) and human small cell lung cancer cell 
lines H187 and H69 treated with a non-silencing control siRNA (nsi) or an siRNA 
targeting p73 (sip73); β-actin served as loading control. 

d) ChIP analysis for evaluation of Np73 binding ability to chromatin in Np73 MEFs 
(mean % of input ± s.d.) at the -1920 site (negative control) and the -2850 site 
(established p73 binding site) of the murine Cdkn1a promoter; ChIP was performed 

with a Np73-specific antibody, n=2. 

Moreover, to evaluate whether p73-expression in rec-Np73 MEFs is in a 

physiological range, protein levels were compared with small cell lung cancer 

cell lines (SCLC) H187 and H69 which are known to exhibit high p73 

expression. In parallel, the specificity of detected bands was verified by siRNA-

induced depletion of p73 in SCLC samples (sip73). Western Blot analysis 
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clearly demonstrated that, even if overexpressed, the level of the transgene is 

physiological (Figure 28c). 

In order to assess whether the expressed human Np73-transgene is functional 

in murine cells, chromatin immunoprecipitation (ChIP) was performed in rec-

Np73 and wildtype (negative control) MEFs. Np73 bound effectively (0.35% 

of input) to the known p53-response element at the -2850 region within the 

Cdkn1a promoter whereas only poor binding was observed at the -1920 region 

which served as negative control (Figure 28d). Thus, it can be assumed that the 

Np73 transgene is able to execute its function as a transcription factor and, as 

a consequence, to regulate gene expression. 

3.2.1.2 Whole transcriptome analysis of Np73-overexpressing 
MEFs 

In order to investigate the effects of the Np73-transgene on global gene 

expression, cDNA microarray analysis was performed. The expression profiles 

of 4 independent rec-Np73 MEFs were compared with those from 4 

independent single transgenic MEFs (2 LSL-Np73 and 2 CreERT). Np73-

regulated genes were identified by calculation of the fold change of log2-

transformed (log2(FC)) data from rec-Np73 versus control MEFs (see 2.2.1.9). 

The differential regulation of all genes being up- or downregulated by at least 2-

fold was then visualized in a heatmap (Figure 29a). Expectedly, Trp73 was 

found on top of the upregulated genes in rec-Np73 MEFs and semiquantitative 

PCR -specifically amplifying the HF-Np73a transcript- ascribed this result to 

transgene expression (Figure 29b).  

To identify biological processes regulated by Np73, microarray data were 

evaluated by Gene Set Enrichment Analysis (GSEA) and interactions of 

regulated canonical pathways were visualized in an enrichment map (Figure 

30). As Np73 is known to exert oncogenic functions, it was not expected to 

find replication- and mitosis-related gene sets to be repressed in rec-Np73 

MEFs. On single gene level, the reduced expression of mitosis-promoting 

genes like CENPA, TGFB3, CCNB1 and CCNB2 in rec-Np73 MEFs supported 

this finding (Figure 29a). Related to replication, gene sets annotated with DNA-

repair and chromosome maintenance were also negatively regulated by Np73. 
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Figure 29: Differentially regulated genes in Np73-overexpressing MEFs 
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a) Heatmap of up- (red) and downregulated (blue) genes (log2(FC) >1 or <-1, p-val ≤ 

0.05) in 4 independent double transgenic (recNp73;CreERT) versus 4 independent 

single transgenic (LSL-Np73 or CreERT) control MEFs obtained from Microarray 
analysis. 

b) Semiquantitative PCR for quantification of HA-Flag-Np73 expression in MEFs from 

a); one LSL-Np73 MEF was not analyzed (NA) in a). 

c) Validation of selected Np73-induced genes by qPCR (one-tailed t-test, *p-val ≤ 
0.05, **p ≤ 0.05). 

Apart from this, Np73 repressed metabolic pathways, especially those 

involved in glycolysis and gluconeogenesis.  

Ultimately, cancer-promoting characteristics of Np73 were identified after 

consideration of the pathways which were induced by Np73. In detail, 

migration- and cell adhesion-related gene sets were upregulated, thus 

connecting high Np73 levels with enhanced metastasis (Figure 30). Within 

these pathways, the transmembrane receptor integrin 4 (ITGB4) was one of 

the commonly regulated factors and additionally the most upregulated gene 

next to Trp73. QPCR in MEFs further confirmed this result, as ITGB4 was highly 

upregulated in rec-Np73 cells (Figure 29c). 

In summary, these data suggest that Np73 exerts its oncogenic function rather 

by induction than by repression and accordingly further validation experiments 

focused exclusively on Np73-induced factors (Figure 29c). 
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Figure 30: Gene Set Enrichment Analyses of Np73-overexpressing MEFs 
Up- (red nodes) and downregulated (blue nodes) canonical pathways computed by 

GSEA of microarray data from rec-Np73 MEFs; Enrichment map was created by 
integration of GSEA results in Cytoscape (Cutoff p-value ≤ 0.005, FDR ≤ 0.1); The size 
of nodes reflects the number of regulated genes in a particular gene set, the thickness 
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of connecting lines in green represent the number of commonly regulated genes 
between two gene sets. 

3.2.2 Expression analysis of the Np73-transgene in murine organs 

For analysis of Np73-overexpressing mice, LSL-Np73 mice were mated with 

CreERT mice. Double transgenic pups were subjected to tamoxifen treatment 

for 5 consecutive days at the age of 4-6 weeks for recombination of the loxP-

flanked STOP cassette in front of the transgene (Figure 26). Single transgenic 

siblings were treated likewise to serve as control mice. 

Two weeks after the last tamoxifen application, mice were sacrificed and 

genomic DNA was isolated from different organs to verify recombination 

efficiency in whole animals by genotyping PCR. The tamoxifen treatment of 

double transgenic mice led to a complete recombination (rec-Np73) in almost 

every organ, except the brain, which might be limited due to the blood-brain-

barrier (Figure 31a). In contrast, single transgenic floxed mice kept their floxed 

allele (LSL-Np73).  

To test whether the recombination subsequently leads to transcription of the 

Np73-transgene, mRNA was isolated from organs and analyzed using 

semiquantitative PCR. Most organs show a strong upregulation of the Np73 

transcript in rec-Np73 samples compared to LSL-Np73 (Figure 31b). 

Occasionally, signals were also detected in some organs derived from LSL-

Np73 mice (e.g. testis, brain and lung) which is most likely due to 

contamination with genomic DNA as the PCR is not able to distinguish between 

genomic DNA or cDNA from transcripts. In contrast to elevated mRNA levels of 

the transgene, protein levels were barely detectable in most organs of rec-

Np73 mice (Figure 31c). Only testes showed a strong Np73 expression 

which was also confirmed by immunohistochemistry (Figure 31d). While the 

spermatozoa-nourishing Sertoli cells within the seminiferous tubules, 

testosterone-producing Leydig cells between the tubules and mature 

spermatozoa were negative for p73, it was found to be highly expressed 

throughout all developmental stages of male germ cells including 

spermatogonia, spermatocytes and spermatids. 
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Figure 31: Np73 expression in organs of transgenic mice 
Recombination of the floxed allele and transgene expression was evaluated in 

Np73;CreERT transgenic mice after application of tamoxifen for 5 consecutive days 

a) Genotyping PCR for the floxed and recombined Np73 allele in different 
organs/tissue of single and double transgenic mice, (sk. muscle = skeletal muscle); for 
primer binding sites see Figure 27a). 

b) Semiquantitative PCR for HA-Flag-Np73 expression. 

c) Protein levels of total p73 in different organs of LSL- and rec-Np73 mice, β-actin 
served as loading control. 

d) Immunohistochemical staining of p73 in the testis of LSL- and rec-Np73 mice (200x 
magnification); different cell types are highlighted by arrows. 
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3.2.3 Reproductive defects of Np73 transgenic mice 

3.2.3.1 Infertility of Np73-overexpressing males 

The high expression of Np73 throughout the testes of rec-Np73 mice raised 

the question whether this overexpression has any effects on fertility. Therefore, 

9 matings were set up, each consisting of two wildtype females and one rec-

Np73 male. The transgenic males used for these breeding experiments were 

obtained from matings of CreERT mice with LSL-Np73 mice. As described 

before (see Figure 27), pups have been treated with tamoxifen to achieve 

recombination. Additionally, 10 single transgenic male siblings (5 CreERT and 5 

LSL-Np73) were used for control mating trios (Figure 32a). When fertility 

studies started, all mice were between 6-8 weeks of age to ensure sexual 

maturity and exclude age-related effects. Furthermore, all matings were set up 

at the same time to prevent seasonal effects on the mating behavior of rec-

Np73 and control males. From 9 mating triplets in total, none of the rec-Np73 

males produced any litter. The Np73-overexpressing males showed absolutely  

 
Figure 32: Infertility of Np73-overexpressing males 

Single and double transgenic males were treated with tamoxifen to induce Np73 
expression; 6-8 week old males were mated with two FVB/N females each for 6 
months; genotypes of males are depicted below each graph, "LSL" and "rec" define 

status of the Np73-transgene; the numbers below the graphs display the total 
numbers of matings (b) and litters (c). 
a) Breeding scheme of transgenic males with wildtype females. 

b) Number of litters per mating (mean ± s.d.); 9 rec-Np73 males failed completely to 
produce any litter. 
c) Litter size of matings (mean ± s.d.). 
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normal mating behavior, including scenting and mounting of the females, but 

none of the females gave birth to any pups, whereas single transgenic males 

produced on average 6 (CreERT sires) and 2 (LSL-Np73 sires) litters per 

mating (Figure 32b). Beside the total amount of litters, LSL-Np73 single 

transgenic males averaged 4 pups per litter opposing an average litter size of 8 

pups from CreERT males (Figure 32c). However, although the amount of litters 

and the corresponding litter size from LSL-Np73 males was reduced 

compared to CreERT matings, genotyping of the offspring arising from these 

matings exhibited a completely expected mendelian ratio of genotypes, half 

wildtype, half transgenic (Figure 33). 

 

Figure 33: Genotype distribution of litters from CreERT and LSL-Np73 males 
Frequency of transgene transmission of pups from mating experiments in Figure 32 
(mean of each litter ± s.d.). 

3.2.3.2 Embryonic lethality of Np73-overexpressing offspring from 

recNp73 females 

The same fertility tests were performed with Np73-overexpressing females. 5 

rec-Np73 females were mated with 1 wildtype male each. For control matings, 

single transgenic (either CreERT or LSL-Np73) siblings were mated with 

wildtype males (Figure 34a). Again, all matings were set up with mice of 6-8 

weeks of age for 6 months.  

In contrast to Np73-overexpressing males, rec-Np73 females did not display 

enhanced Np73-expression in their reproductive organs (data not shown) and 

were able to breed. Rec-Np73 dams delivered on average 5 times compared 

to single transgenic dams which delivered 6 (CreERT) and 7 (LSL-Np73) times 

(Figure 34b). Despite the comparable amount of litters, the litter size from rec-

Np73 females was significantly reduced compared to control matings (Figure 

34c). All pups arising from these matings were genotyped and the obtained 

fractions of genotypes were compared to the expected mendelian ratio. The 
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offspring from single transgenic dams showed the expected 1:1 distribution of 

transgenic and wildtype mice (Figure 35b). In contrast to that, the progeny of 

rec-Np73 dams displayed an unexpected distribution of genotypes. Here, two 

transgenic alleles are involved, resulting in four different possible combinations 

of transgenic and wildtype alleles with equal likelihood (1:1:1:1): the oocyte is 

either completely wildtype, single transgenic for CreERT or rec-Np73 or 

double transgenic harboring one CreERT and one rec-Np73 allele (Figure 

35a+b). Genotyping of rec-Np73-derived pups revealed a strong 

underrepresentation of mice carrying a recombined Np73 allele. In total, only 

two mice with a rec-Np73 allele were born, whereas the remaining 66 animals 

were either completely wildtype or single transgenic for CreERT (Figure 35b). 

 

Figure 34: Np73-overexpressing females deliver viable litters of reduced size 

Single and double transgenic females were treated with tamoxifen to induce Np73 
expression; 6-8 week old FVB/N males were mated with two transgenic females each; 
genotypes of dams are depicted below each graph, "LSL" and "rec" define the status of 

the Np73-transgene; the numbers below the graphs display the total numbers of 
matings (b) and litters (c) 
a) Breeding scheme of transgenic dams with wildtype males. 
b) Number of litters per mating (mean ± s.d.). 
c) Litter size of matings (mean ± s.d.); Kruskal Wallis test corrected for multiple 
comparisons with Dunn´s post test, p**<0.005, p*<0.05, ns = non-significant. 
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Figure 35: Np73 overexpression leads to embryonic lethality 
Genotyping of litters obtained from single and double transgenic dams 

a) Scheme of gametes in matings of Np73-overexpressing dams (red) with wildtype 
sires (blue); genotypes of the progeny are expected to occur at the same rate (25% 
each). 
b) Genotyping results of pups from matings of single and double transgenic females 
(mean of each mating ± s.d.); „expected genotype“ reflects expected mendelian ratio 

from matings of Np73-overexpressing females as described in a); genotypes of dams 
are depicted below the graphs, numbers reflect the number on genotyped pups. 

c) Genotyping results of pups obtained from matings of the two rec-Np73 females 
from the previous mating experiment (b) with wildtype males. 

As rec-Np73 dams gave birth to an expected extent of pups being wildtype or 

transgenic for CreERT, the lack of rec-Np73 pups must be due to the genetic 

status of the embryos and not the status of the dams. This result confirms 

former findings of embryonic lethality caused by the overexpression of Np73 
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(see 1.3.4). Nevertheless, there were two females born with the double 

transgenic status rec-Np73;CreERT. These were further mated with wildtype 

males and their litters underwent genotyping as well. Surprisingly, these 

females were able to deliver rec-Np73 positive mice in the expected 

mendelian ratio (Figure 35c). 

In sum, the mouse model being created for ubiquitous overexpression of Np73 

exhibited only barely detectable Np73 protein levels in most organs. However, 

the high Np73 expression within the testis shed new light on Np73 as an 

important factor in reproductive biology, which was further emphasized by the 

high mortality rate of Np73-overexpressing embryos.  

3.2.4 Np73-overexpressing mice lack a tumorigenic phenotype 

The Np73-strain was developed to investigate potential oncogenic properties 

of Np73 during tumor formation in long-term studies. Therefore, Np73-

overexpressing mice were bred as described before (see 3.2.2) and single 

transgenic siblings were used as control groups, independent of gender. All 

mice were treated with tamoxifen and were subsequently monitored for medical 

conditions. Mice were euthanized reaching endpoint criteria (tumor size 

exceeding 1 cm3, ulcerating tumors, heavily impaired motility, cachexy, lethargy 

or bowel prolapse). After autopsy of animals, organs were prepared for 

histological analysis. The Kaplan-Meier curves of these mice display a slight 

disadvantage of rec-Np73 mice in overall (OS) and tumor-free (TFS) survival 

before the median survival is reached: control mice exhibited prolonged survival 

compared to rec-Np73 mice at the age between 400 and 650 days (Figure 

36). Nevertheless, these observable trends did not reach statistical significance, 

which was also confirmed by the median OS/TFS of the three different groups: 

half of rec-Np73 mice were dead after 673/812 days, LSL-Np73 after 

687/845 days and CreERT mice after 653/801 days. Comparison of tumor 

incidence between the groups revealed no tumor-promoting effect of Np73 in 

this mouse model. 
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Figure 36: Overexpression of Np73 has no effect on overall or tumor-free 
survival 
Kaplan-Meier Plot for overall survival (OS, upper) and tumor-free survival (TFS, lower) 
of double and single transgenic mice; all mice received tamoxifen for 5 consecutive 
days at the age of 4-5 weeks; tumor-free animals were censored for TFS; the size of all 
cohorts included in the analysis are given in the legend, numbers in brackets show 
number of mice before censoring; log-rank test does not detect significant differences 
in OS nor in TFS between single and double transgenic mice. 

3.2.5 Impact of the Np73-transgene on the tumor phenotype of the 
p53-knockout mouse model 

Carcinogenesis is caused by multiple genetic alterations. Thus, the 

overexpression of an oncogene like Np73 may not be sufficient to induce 

malignant cell growth but requires additional inactivation of a tumor suppressor 

gene. As the Np73-transgenic strain did not show shortened lifespan due to 

enhanced tumor formation, we aimed to investigate whether Np73 

overexpression has an impact on the tumor phenotype of heterozygous p53-

knockout mice (p53+/-).  

To generate p53+/- mice with concomitant Np73 overexpression and 

corresponding control animals, breedings were performed in two steps (Figure 

37). First, p53+/- mice were interbred with CreERT mice to obtain CreERT;p53+/- 

mice. These animals were then further crossed with LSL-Np73 mice to obtain 

LSL-Np73;CreERT;p53+/- mice which were then treated with tamoxifen for 
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Figure 37: Breeding scheme for p53+/- mice overexpressing Np73 
Heterozygous p53 knockout mice (p53+/-) were mated with heterozygous CreERT mice 
(CreERT+/tg, += wildtype allele, tg= transgenic allele) to obtain CreERT-expressing mice 
with a heterozygous p53 knockout (CreERT+/tg;p53+/-); crossbreeding of 

CreERT+/tg;p53+/- mice with heterozygous LSL-Np73mice was performed to obtain 

p53+/- mice additionally carrying the CreERT or the LSL-Np73transgene alone 

(Np73+/+;CreERT+/tg;p53+/- and (Np73+/LSL;CreERT+/+;p53+/-) or both transgenes 

(Np73+/LSL;CreERT+/tg;p53+/-); tamoxifen treatment of these mice led to recombination 

of the LSL-Np73 allele (→rec-Np73) and thus induced the overexpression of the 
transgene. 

recombination of the LSL cassette (short: rec-Np73;p53+/-). LSL-Np73;p53+/- 

and CreERT;p53+/- siblings from these matings were treated likewise and 
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served as control groups. Like in 3.2.4, the health status of mice was monitored 

regularly and mice were sacrificed reaching endpoint criteria.  

In the context of a heterozygous knockout of p53, Np73-overexpressing mice 

exhibited a significantly reduced OS and TFS compared to control groups 

(Figure 38). Furthermore, autopsy and pathological examination showed that 

Np73 increased the tumor burden and shifted the tumor spectrum towards 

lymphoma and lung tumors at the expense of soft tissue tumors (Figure 39). 

Histopathology identified the lung tumors as adenoma, low and high grade 

adenocarcinoma as well as papillary adenocarcinoma which is an unusual 

phenotype for p53 knockout mice (Figure 40a). 

 

 
Figure 38: Overexpression of Np73 reduces survival of p53+/- mice 
Kaplan-Meier Plot for overall survival (OS, left) and tumor-free survival (TFS, right) of 

rec-Np73;p53+/-, LSL-Np73;p53+/- and CreERT;p53+/- mice; all mice received 
tamoxifen for 5 consecutive days at the age of4-5 weeks; tumor-free animals were 
censored for TFS; the size of all cohorts included in the analysis are given in the 
legend, numbers in brackets show number of mice before censoring; Log-rank test 
detected a significant difference in OS (p<0.005) as well as in TFS (p<0.0005). 
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Figure 39: Np73 alters the tumor spectrum of p53+/- mice 

Pie charts reflecting the tumor incidence and type of rec-Np73;p53+/-, LSL-

Np73/p53+/- and CreERT/p53+/-mice; values in brackets depict number of affected 
mice. 

The mice in this experiment harbor a heterozygous knockout for p53. With 

progressing disease, tumor cells often lose the second allele leading to a 

survival advantage of the knockout cells. As Np73 has been shown to inhibit 

p53 it was predicted that rec-Np73 mice do not show loss of heterozygosity 

(LOH) and retain the p53 wildtype allele (Stiewe, Zimmermann, et al. 2002; 

Stiewe, Carmen C. Theseling, et al. 2002; Kartasheva et al. 2002; Zaika et al. 

2002). To test whether LOH occurred within the lung tumors which arose from 

rec-Np73/p53+/- mice, genomic DNA was isolated from tumor samples and 

genotyped for p53 (Figure 40b). Most tumors showed prominent signals for the 

p53 knockout allele but only weak signals for the wildtype allele. Weak signals 

for the wildtype allele are most likely the result of stromal contamination rather 

than p53-maintenance in tumor cells arguing for an unexpectedly frequent loss 

of heterozygosity also in the presence of rec-Np73. 

Taken together, the Np73 mouse model by itself lacks a tumor-promoting 

phenotype which might be based on low expression of the transgene in most 

organs. Yet, the crossbreeding of Np73 mice with the p53+/- strain 

demonstrated that the supportive deregulation of further tumor-relevant factors 

endorses Np73 to carry out its oncogenic potential. 
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Figure 40: Analysis of lung tumors from rec-Np73/p53+/- mice 

a) Left panel: exemplary photographs of tumor-bearing lungs from rec-Np73;p53+/- 
mice (eartag #6602 high grade carcinoma, #8108 papillary adenocarcinoma, #8966 
high grade carcinoma, #9761 carcinoma); dashed lines encircle tumor tissue; right 
panels: corresponding hematoxilin & eosin (H&E) stainings of lung tumors from the left 
panel in different magnifications; bars depict size; H&E´s at the bottom represent 
healthy lung tissue. 
b) Loss of heterozygosity (LOH) analysis for p53 status by genotyping PCR of a panel 

of lung tumors from rec-Np73;p53+/- mice; NTC (non-template control), p53+/- ctrl (tail 
biopsy from a genotyped healthy p53+/- mouse, positive control); upper band reflects 
the knockout allele, lower band the wildtype allele. 
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4 Discussion 

4.1 A dual luciferase assay to monitor tumor heterogeneity in solid 
tumors in vivo 

It is crucial to understand the processes regulating tumor heterogeneity as the 

abundance of tumor cells with differing mutational status cause tumor 

progression, promote metastasis and, worst of all, therapy resistance. In 

patients, tumor development and composition, e.g. during cancer treatment or 

relapse, can be investigated by sequencing of circulating tumor DNA or cells. 

However, this method is not applicable for research in mouse models for human 

cancer as the required blood volumes exceed murine blood volume. Here, we 

developed a system which allows the monitoring of two different tumor cell 

populations of solid tumors in vivo using secreted luciferases (Charles et al. 

2014). Additionally, this system allows targeted genetic manipulation of the 

tumor cells by application of shRNAs helping to identify and validate the 

oncogenic or tumor suppressive potential of individual genes. Previous methods 

use fluorescent markers to monitor growth dynamics by flow cytometry either in 

cell culture or in blood samples of mouse xenografts (Zuber et al. 2011). 

Nevertheless, in vivo applications remained restricted to hematological 

malignancies, as tumor cell composition of solid tumors in mice cannot be 

assessed by blood samples. 

4.1.1 Limitations of imaging techniques for solid tumors in small 
experimental animals 

Various imaging techniques like MRT (magnetic resonance tomography), CT 

(computed tomography) and PET (positron emission tomography) have been 

proven very useful in the clinics to discover, locate and monitor cancerous 

masses in patients (www.cancer.gov, www.cancer.org). Further refined in their 

spatial resolution, these techniques became also applicable tools to monitor 

solid tumor growth in mouse models of human cancer (Balaban & Hampshire 

2001; Puaux et al. 2011). Both, MRT and CT display high resolution (Table 3) 

and deliver 3-dimensional information about tumor location and volume with a 

detection limit of ~1mm in tumor size. MRT uses a strong magnetic field in order 

to excite the tissue to emit radio waves and is very accurate in distinguishing 

soft tissues. In contrast, CT measures tissue-absorption of X-Rays and the poor  
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Method MRT PET-CT/ 
PET-MRT 

CT BLI FLI 

Spatial 

resolution 

100µm 1-2mm 150µm 1-10mm 

depending on 

tissue depth 

and luciferase 

expression 

1-10mm 

depending on 

tissue depth and 

fluorescent 

marker 

expression 

Reporter gene - - - Luciferase Fluorescent 

marker 

Detection 

limits 

(diameter) 

1mm <1mm <1mm <1mm 2mm 

Analysis time 3hrs/mouse 3hrs/mouse 30min/mouse 30-

60min/mouse 

depending on 

luciferase 

kinetics 

30min/mouse 

Equipment 

costs 

1-2 million 

US $ 

0.4-1.2 

million US $ 

Not specified <0.5 million 

US $ 

<0.5 million US $ 

Main 

advantages 

High 

resolution, 

anatomy, 

tumor size 

and 

morphology 

Detection of 

non-

palpable 

tumors, 

measures 

tumor cell 

metabolism, 

tumor 

localization 

High 

resolution, 

anatomy, 

tumor size 

and 

morphology 

Detection of 

nonpalpable 

tumors, 

relative 

measure of 

tumor size, up 

to 5 mice can 

be measured 

simultaneously 

Up to 5 mice can 

be measured 

simultaneously 

Main 

disadvantages 

Low 

throughput, 

respiratory 

motion 

makes 

imaging 

challenging 

High 

background 

in some 

regions 

(brain, 

bladder) 

Poor contrast 

of soft tissue, 

Radiation 

damage 

Light emission 

dependent on 

tissue depth 

and substrate 

availability 

Light emission 

dependent on 

tissue depth, 

autofluorescence 

of tissue 

Table 3: Main characteristics of imaging techniques used in experimental 
animals (adapted from (Puaux et al. 2011; Wessels et al. 2007) 

contrast in soft tissues often needs to be enhanced by application of contrast 

agents. Moreover, the combination of MRT or CT with PET can give additional 

information on the metabolic activity, proliferation and angiogenesis within a 
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tumor (Yao et al. 2012). This is achieved by administration of radioactively 

labelled sugars, fluorothymidines or antibodies against VEGF (vascular 

endothelial growth factor) which accumulate in metabolically highly active, fast 

proliferating and highly vascularized tumors. Finally, monoclonal antibodies 

targeting tumor-specific markers are also used in PET to locate cancerous 

tissue.  

A different approach to monitor tumor growth in small experimental animals is 

optical imaging by detection of bioluminescent (BLI) or fluorescent (FLI) signals 

(Puaux et al. 2011). In contrast to the aforementioned methods, this technique 

requires constitutive expression of luciferases or fluorescent markers to label 

the cells of interest. Hence, the sensitivity of this assay strongly depends on 

enzymatic activity (BLI), expression and stability of the applied reporters. 

Moreover, the detection limit depends on tissue depth and emitted wavelengths 

as emitted light is attenuated by the surrounding tissue. Additionally, tissue 

autofluorescence and absorption of exciting light signals render sensitivity of 

FLI more susceptible to tissue depth than sensitivity of BLI (Puaux et al. 2011).  

In fact, BLI and PET jointly inherit the highest sensitivity for solid tumor 

detection in small experimental animals as both of them are capable to detect 

microscopic tumors, whereas MRI and FLI require larger tumor volumes (Puaux 

et al. 2011). Notably, the luciferases GLuc and CLuc used in this work display 

up to a 1000-fold higher sensitivity compared to other commonly used 

luciferases like Firefly or Renilla luciferase (Tannous et al. 2005; Tanahashi et 

al. 2001). Therefore, these luciferases are remarkably useful to detect small 

tumor volumes. 

Still, the means of BLI using these two highly sensitive luciferases remains 

limited: The emitted light from the enzymatic reaction of both luciferases with 

their respective substrate emits light in the blue spectrum. Depending on the 

depth of the tumor within the body, the blue light becomes absorbed by the 

surrounding tissue it has to pass through on its way to the CCD camera sensor 

which makes BLI in vivo less suitable for quantification of tumor volumes. To 

circumvent this problem, the used GLuc and CLuc could be substituted by 

luciferases emitting red light (e.g. red-shifted Firefly luciferase), thus preventing 

absorption of bioluminescent signals by the tissues. Yet another critical 

disadvantage for BLI is the high secretion rate and stability of Cypridina 
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luciferase. Even a small tumor mass of CLuc-labelled cells secretes such a high 

rate of CLuc that the signal from the tumor is drowned out by circulating 

luciferases in the blood stream. There are several reasons which might account 

for this problem. On the one hand, CLuc is secreted at a much higher rate than 

GLuc, on the other hand, CLuc has a prolonged half-life in vivo. Both 

characteristics can lead to the accumulation of CLuc in the blood stream and 

thus perturb the signal-to-noise ratio. In addition, absorption of bioluminescent 

signals from blood vessels close to the body surface is much lower than from 

the inner body mass, which further elevates the background signal. 

Nevertheless, BLI of GLuc is a versatile tool to locate GLuc-labelled metastases 

ex vivo which can be detected in isolated organs at the end of an experiment. 

However, plasma samples remain the first choice to monitor tumor growth in 

experimental animals over time by luciferase activities.  

4.1.2 Combined applications of GLuc and CLuc to monitor tumor 
composition 

Both luciferases, GLuc and CLuc, are commonly used markers in a large set of 

applications in biological and biomedical research, e.g. as markers for 

transcriptional activity, for protein-protein interactions or simply for labelling 

tumor cells to assess cell growth (Wu et al. 2007; Remy & Michnick 2006; 

Tannous 2009). Previous work demonstrated that both luciferases can be used 

in combination with each other to study promoter activities in cell culture assays 

over time (Wu et al. 2007). Yet, this study did not investigate the applicability for 

comparative tumor cell quantification in vivo. Such an approach has been 

performed using only GLuc, providing multiplexing by tagging GLuc with 

different epitopes (van Rijn et al. 2013). Strikingly, this epitope-tagging allows 

reliable detection of up to 6 different transplanted cell populations by blood 

sampling. As the quantification for each cell population relies on GLuc activity, 

the signals have to be separated by ELISA (Enzyme-linked immunosorbent 

assay): 96-well plates are coated with antibodies directed against the respective 

tags which specifically bind their particular epitope-tagged GLuc. Although this 

approach offers the opportunity to monitor more than 2 different cell populations 

in vivo, it is not possible to perform BLI -as all cells are labelled with the same  
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Figure 41: Experimental read-outs for in vivo applications of GLuc and CLuc 
Tumor compositions are assessed in the luminometer, the bioluminescent imager, by 
IHC or digital PCR. The luminometer and bioluminescent imager measure luciferase 
activities. IHC detects presence/absence of luciferases on protein level, digital PCR 
quantifies copy numbers of luciferases in genomic DNA. *applications for endpoint 
analyses. 

luciferase- and, even more important, the ELISA-based differentiation is very 

costly and labour-intensive.  

A recent publication demonstrated that the combination of the two luciferases 

GLuc and CLuc is an excellent tool to monitor different cell populations 

simultaneously in the blood stream of transplanted mice (Bovenberg et al. 

2013), very similar to the results achieved in the scope of this work (Charles et 

al. 2014). Beyond, they used SEAP (secreted embryonic alkaline phosphatase) 

as an additional bioluminescent blood reporter for a third tumor cell population. 

Blood sampling of mice inoculated with differentially labelled therapy-responsive 

and -resistant glioma cells prove the applicability of this multiplexed reporter 

assay. Consistent with our findings, the markers reveal high sensitivity, 

substrate specificity, short half-life and absence of mutual inhibition or 

activation, thus facilitating reliable tumor cell quantification and monitoring of 

dynamic processes in vivo in a minimally invasive manner. Standing out from 

Bovenberg´s approach, we endowed our lentiviral constructs for tumor cell 
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labelling additionally with shRNAs to permit targeted constitutive or inducible 

genetic manipulation. 

4.1.3 Endpoint analyses confirm results from luciferase activities in 
plasma samples 

In order to confirm results obtained from plasma samples from long-term 

experiments, additional read-outs were established for endpoint analyses of 

isolated tumors (Figure 41). As mentioned above, BLI is very applicable for 

evaluation for tumor tissue ex vivo. The calculated GLuc:CLuc activity ratios of 

RLU´s detected by the CCD sensor are comparable to luciferase activities in 

final plasma samples. Moreover, these values are consistent with GLuc:CLuc 

activity ratios from homogenized tumors measured in the luminometer. Thus, 

the quantification of bioluminescent signals from plasma samples as well as 

tumor tissue delivers very precise and reliable results to evaluate tumor burden. 

Beyond these read-outs, further methods were established in order to evaluate 

results independently from luciferase activities. Immunohistochemistry reveals 

information about tumor composition by presence or absence of GLuc-labelled 

cells. Moreover, double-staining can give additional information about GLuc-

positive and -negative cell populations within a tumor. Immunodetection of p53, 

for example, confirmed knockdown-efficiencies of shRNAs directed against p53 

whereas p53 was readily detectable in control cells. Thus, tumor cell 

populations can also be investigated for potential deregulation of downstream 

effectors of genetically manipulated targets like p53 to get deeper insight into 

their mode of action during tumor progression, resistance mechanisms and 

metastasis. Another measure for tumor composition independent from 

luciferase activity is conducted by digital PCR. This method quantifies the copy 

numbers of both luciferases in the gDNA from tumor lysates. The calculation of 

GLuc:CLuc abundance is consistent with measures relying on luciferase 

activities. 

4.1.4 Application of GLuc and CLuc provide refinement and 
reduction of animal experiments 

The high sensitivity of luciferases massively contributes to the refinement of 

animal experiments as demanded by Russell and Burch (The principles of 

humane experimental technique). As the collection of data points begins only a 



Discussion 

111 
 

few days after transplantation and blood samples can confidently be collected 

three times per week, experiments can be terminated to an earlier time point 

without losing reliability of results. Admittedly, the duration of the experiment 

depends on the strength of the investigated effect. Here, another exceptional 

advantage of the invented method becomes clear: the application of two 

luciferases allows simultaneous monitoring of two different cell populations, the 

exploratory cell line and a control cell line (e.g. nsh-transduced or therapy-

sensitive cell line). This allows normalization to control cells by calculation of the 

ratios of both cell populations. Compared to ordinary xenograft experiments in 

which tumor size of one cell population is assessed by caliper measurements, 

such a normalization reduces the variance of data points to a minimum. 

Additionally to the advantage of refinement, this feature also strongly reduces 

the number of test animals in two different ways, again supporting the 3R´s from 

Russell and Burch. On the one hand, cohorts of animals transplanted with 

control cells are to be discontinued, thereby reducing the amount of test 

animals to 50 % as the control cells are transplanted together with the 

exploratory cells. On the other hand, the low variance of values (2) alleviates 

the capability to detect statistically significant differences on the significance 

level 𝛼, thus allowing a reduction of group sizes (n) without losing statistical 

power: 

𝑛 =
z² × ²

ME²
 

(n=group size, z=standard score for which cumulative probability is 1 − 𝛼 (or 

1 −
𝛼

2
), 2=variance, ME=margin of error). 

4.1.5 Evaluation of essential genes by tet-inducible genetic 
manipulation 

The lentiviral constructs to label tumor cells with luciferases were designed to 

facilitate targeted genetic manipulation by shRNAs. While this is an excellent 

tool to study enhanced tumor progression upon knockdown of a tumor 

suppressor like p53, the knockdown of oncogenic factors is likely to cause 

problems in experimental setups as cells forfeit their growth or survival 

advantage. Here, the invention of a tetracycline-inducible system facilitated 
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timed knockdown of essential genes which allows propagation of stably 

transduced cells to obtain sufficient cell numbers for experiments.  

4.1.6 Identification of p73 as an essential factor for cell growth in Hs 
766T cells 

High p73 expression in various cancer types clearly implicates p73 in 

tumorigenesis and raises the question whether p73 is an essential factor whose 

abundance is indispensable for survival and tumorigenicity of cancer cells. In 

fact, application of the dual luciferase assay with the inducible system identified 

p73 as an essential factor in Hs 766T pancreatic adenocarcinoma cells. The 

knockdown of total p73 lead to a severely impaired cell growth compared to 

control cells both in cell culture and in vivo.  

4.1.6.1 An unlikely couple: growth-inhibitory TAp73 versus growth-

promoting Np73 

Early studies of p73 levels in patient-derived tumors did not discriminate 

between N-terminally truncated and full-length isoforms (Tokuchi et al. 1999; 

Yokomizo et al. 1999; Zaika et al. 1999). More recent studies, however, reveal 

an upregulation of both isoforms whereby Np73 levels frequently exceed 

TAp73 levels (Zaika et al. 2002; Tomasini et al. 2008). This finding is 

reasonable with respect to the opposing functions of both isoforms as Np73´s 

oncogenic features are able to outweigh TAp73´s tumor suppressive functions. 

The reintroduction of full length and N-terminally truncated p73 isoforms support 

the previous findings: TAp73 exerts an additional growth-inhibitory effect 

whereas Np73 rescues cell growth to a normal level. Interestingly, the 

reintroduction of both isoforms was not able to re-establish cell growth. Here, a 

very precise fine tuning of both isoforms would be beneficial in order to 

investigate at which ratio of isoforms the tumor suppressive or tumor promoting 

function prevails. However, such a fine tuning is very complex. The 

reintroduction of TAp73, for example, triggers expression of endogenous Np73 

(Seelan et al. 2002). But as TAp73 protein levels still exceed Np73 by far, the 

growth inhibitory effect of the full length isoform superimposes Np73´s tumor 

promoting function.  
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Similar experiments conducted in small cell lung cancer cells with high levels of 

p73 failed to proof a universal essential tumorigenic function for total p73. Here, 

the loss of p73 had only minor effects on cell growth (Grit Pattschull, data not 

shown). Thus, the function of p73 is considered to be cell context dependent.  

4.1.7 Perspectives of the dual luciferase assay beyond 
transplantation experiments 

The dual luciferase assay is a unique method which facilitates monitoring of two 

different cell populations in transplanted solid tumors in vivo. The highly 

sensitive system was proven to capture differences in cell growth in order to 

evaluate differences in (shRNA-induced) tumorigenesis, chemosensitivity and 

metastasis of different cell populations, but applications in remote disciplines 

like developmental biology or immunology are also conceivable. Raw data as 

well as normalization to control cells by calculation of GLuc:CLuc ratios deliver 

highly reliable results. Moreover, this cost-effective method is distinguished by 

very simple operating procedure and enables refinement of animal experiments 

as well as substantial reduction in test animal numbers.  

Still, transplantation experiments of human cancer cell lines or patient-derived 

xenografts into immunocompromised mice are limited in their scientific validity 

(Kerbel n.d.). On the one hand, the immune system affects tumor growth in 

different ways and its absence might distort results (Richmond & Su 2008). On 

the other hand, application of cancer cells allows investigation of malignant cells 

of progressed state but early stages of cancer development are barely 

examinable. Thus, monitoring of endogenous tumor formation by secreted 

luciferases would be a highly convenient method to investigate the role of 

individual factors in tumor development. For example, luciferases could be 

applied in (genetically engineered) mouse models which use somatic gene 

delivery by viral infection or hydrodynamic injection of naked DNA for tumor 

induction (e.g. intratracheal infection for lung cancer models, intraductal 

infection of pancreas, prostate and mammary fat pad or hydrodynamic gene 

delivery for hepatocellular carcinoma) (Russell et al. 2003; Wang et al. 2006; 

Leow et al. 2005; José et al. 2013; Rodriguez et al. 2014). Viruses used for 

tumor induction have to be equipped with luciferase sequences to label the 

developing tumor cells, thus facilitating a simple but precise monitoring of tumor 

development or therapeutic responses by blood sampling.  
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4.1.8 Immune tolerance of GLuc and CLuc pave the way for 
monitoring of endogenous tumors 

Self-evidently, a substantial prerequisite of such experimental setups is the 

immune tolerance towards the applied luciferases GLuc and CLuc. Syngenic 

transplantations of luciferase-labelled B16-F10 melanoma cells into 

immunocompetent mice illustrate immune tolerance for both luciferases. The 

composition of GLuc-, CLuc- or GFP-labelled B16-F10 cells was found to be 

similar among groups of transplanted immunocompromised, immunocompetent 

C57BL/6J and GLuc- or CLuc-vaccinated mice. Nevertheless, the applied viral 

constructs have to be considered carefully: Overall, tumors in 

immunocompetent mice developed worse than in immunodeficient mice. Such a 

general tumor cell rejection is unlikely to be caused by common tissue rejection 

as B16-F10 cells display comparable tumorigenicity in C57BL/6J mice and 

various immunocompromised strains (Seo et al. 2011; Ohira et al. 1994). In 

contrast, the lentiviral vector backbone or the viral integration itself might 

provoke an immune response against transduced cells leading to a reduced 

overall tumor burden (Brown et al., 2007; Sushrusha Nayak M S Roland W 

Herzog, 2011). This is also supported by the finding, that transplants expressing 

lentiviral-delivered GFP rather provoke an immune response than transplants 

from GFP-transgenic mice do (Yang et al. 2014). Thus, tissue rejection is rather 

caused by lentiviral constructs than by the fluorescent protein itself. Hence, the 

luciferases GLuc and CLuc are suitable markers for future experiments to 

monitor tumor development in immunocompetent mice but gene delivery has to 

be chosen carefully. 
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4.2 The Np73-knockin model: developmental disorders, 
reproductive failure and tumor progression 

p73 is clearly implicated in cancer, but the TP73 encodes for a whole range of 

N- and C-terminal isoforms which makes it difficult to fully understand the role of 

p73 in tumor development (Ueda et al. 1999; Yang & McKeon 2000). A coarse 

division of this protein family based on the presence or absence of the 

transactivation domain distinguishes tumor suppressive and oncogenic 

isoforms. Mouse models of isoform-specific Trp73 knockouts confirm tumor 

suppressive characteristics of TAp73 as these mice exhibit reduced survival 

due to enhanced spontaneous tumor formation (Tomasini et al. 2008). 

Consistent with Np73´s reputation as a tumor-promoting factor, the loss of 

Np73 does not increase tumor formation (Wilhelm et al. 2010) whereas liver-

specific overexpression of Np73 leads to high penetrance of hepatocellular 

carcinoma (Tannapfel et al. 2008). However, the role of Np73 in tumor 

formation in other tissues remains uncertain thus demanding for a mouse model 

with ubiquitous overexpression of Np73. 

4.2.1 Impaired transgene expression in organs of Np73-knockin 
mice 

Previous attempts to generate an ubiquitously Np73-overexpressing mouse 

model have failed as transgenic embryos already died in utero, most likely due 

to embryonic lethal defects caused by Np73 (Erster et al. 2006; Hüttinger-

Kirchhof et al. 2006). To circumvent this problem, a Cre-inducible mouse model 

was established for investigation of spontaneous tumor formation caused by 

elevated levels of Np73. Although tamoxifen treatment induced recombination 

very efficiently, protein was hardly abundant. Apart from the testis, Np73 

protein was barely detectable in any organ-neither with p73-specific antibodies 

nor with antibodies recognizing the HA- or Flag-tags (data not shown). 

4.2.2 ... based on epigenetic silencing? 

A reason for this observation might be epigenetic silencing of the transgene. 

Methylation of CpG islands within a promoter region causes a very compact 

chromatin structure which obstructs the access of transcription factors to this 

gene locus. Hence, the genes located in this region are transcriptionally 

repressed. Such epigenetic modifications are preserved during mitotic cell 
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divisions. Interestingly, these DNA methylations are largely removed during 

zygote formation and become re-established in blastocyst stage (Wu & Zhang 

2012). In detail, male primordial germ cells erase their somatic methylation 

imprints for complete reorganization and paternal-specific imprinting during 

spermatogenesis (del Mazo et al. 1994; Rousseaux et al. 2005). During this 

process, hypomethylated and hyperacetylated histone modifications allow 

expression of genes which are usually silenced in the somatic cells of the 

organism. Thus, gene repression can be reversed during germ cell 

development which goes in line with the strong Np73 expression which was 

restricted to spermatogonia, spermatocytes and spermatids. In addition, 

spermatozoa, which are of advanced developmental stage, again failed to 

express Np73, further supporting the idea of epigenetic silencing as 

spermatozoa display a very condensed chromatin structure.  

One explanation for epigenetic silencing of Np73 is the insertion site of the 

transgene within the murine genome. The location of the transgene in the here 

characterized mouse model is unknown. Thus, it is possible that the transgene 

has been inserted into a CpG-rich genomic region which causes 

hypermethylation of the EF1 promoter and, as a consequence, repression of 

the Np73 transgene. The creation of a novel mouse strain by targeted 

insertion of the transgene into a genomic region which is not targeted by 

epigenetic modifications, e.g. the ROSA26 locus, could help to circumvent this 

problem in future studies.  

 

Figure 42: CpG-rich HA-Flag-Np73 transgene 
Localization of CpGs (lower graph, analyzed at http://bitgene.com/gene-analysis) in the 
HA-Flag-DNp73 transgenic construct (upper graph). 
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Independent from the location, the CpG content of a transgene itself is able to 

cause hypermethylation of CpG islands within the upstream promoter and, as a 

consequence, can lead to transcriptional silencing due a compact chromatin 

structure (Chevalier-Mariette et al. 2003). Although the here used EF1 

promoter is the promoter of a widely-expressed gene, it also contains a CpG 

island. Usually, this CpG island is protected from methylation, but 

hypermethylation of a downstream CpG-rich transgene is able to affect the 

methylation status of the promoter. Like naturally occuring CpG methylation, 

transgene repression is temporarily reversed during germ cell development. In 

fact, the Np73 transgene has been found to be a CpG-rich sequence which 

would explain the largely poor expression profile in this mouse model and, 

moreover, the strong protein abundance in germ cells (Figure 42). 

4.2.3 Np73 aggravates tumorigenic phenotype of p53+/- mice 

Survival studies of the Np73-strain failed to detect enhanced spontaneous 

tumor formation. Certainly, the low levels of Np73 protein in most tissues might 

account for the lack of a phenotype to exert an oncogenic function as pan-

inhibitor of the tumor suppressive p53 family members. Nevertheless, it is also 

conceivable that a single genetic insult given by Np73 overexpression is 

insufficient to induce spontaneous tumor formation in the absence of other 

genetic alterations. Supporting this notion, overexpression of Np73 

significantly reduces the life span of p53-haploinsufficient mice due to 

accelerated tumor formation. Moreover, Np73 alters the tumor spectrum 

observed in heterozygous p53 mice leading to increased lymphoma, lung 

adenoma and carcinoma occurrence.  

Interestingly, TP73 has been found to be frequently silenced in samples from 

lymphoma patients (Corn et al. 1999; Kawano et al. 1999). Moreover, p73 loss 

in a myc-driven lymphoma mouse model revealed enhanced dissemination of 

malignant B-cells, although it had no influence on tumor onset (Nemajerova et 

al. 2010). Likewise, studies on irradiation-induced tumorigenesis of p53+/- and 

p53+/-/p73+/- mice failed to detect accelerated lymphomagenesis upon p73 

reduction (Perez-Losada et al. 2005). This suggests that TAp73´s tumor 

suppressive function is probably less critical for lymphomagenesis but rather for 

impeding progression of the disease by nodular spread. In fact, 
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histopathological examination discovered disseminated lymphoma in 5 out of 16 

lungs derived from recNp73/p53+/- mice opposing 1 lymphoma in 7 

investigated LSL-Np73/p53+/- lungs (data not shown). Finally, the metastatic 

signature of Np73-overexpressing MEFs identified by whole transcriptome 

analyses also support the idea of Np73 being a driver for dissemination. 

Apart from lymphoma, clinical data also provide evidence for p73 being involved 

in lung cancer. In NSCLC (non-small cell lung cancer) p73 haploinsufficiency 

correlates with p53 mutation (Nicholson et al. 2001). Moreover, expression 

analyses of patient-derived tumors on TAp73 and Np73 confirmed an 

increased Np73:TAp73 ratio (Lo Iacono et al. 2011). Accordingly, the TAp73-/- 

mouse model demonstrated that loss of TAp73 in lung tissue coincides with 

genomic instability and a high incidence of lung adenocarcinoma (Tomasini et 

al. 2008). Therefore, it is likely that the neoplastic growth in lungs of 

Np73/p53+/- mice stems from the dominant negative function of Np73 over 

TAp73, which enforces genomic instability. In contrast, the inhibitory effect of 

Np73 on p53 remains unclear as LOH studies revealed a loss of the remaining 

p53 allele in lung tumors. If Np73 sufficiently inhibited p53, the loss of the 

second allele would not further promote tumor progression, like it has been 

observed in the mouse model with liver-specific Np73 expression (Tannapfel 

et al. 2008). Here, hepatocellular carcinoma retained wildtype p53 being 

indicative for a dominant negative effect of Np73 over p53. Yet, if Np73 had 

no other function beyond p53-inhibition, this would not explain the accelerated 

tumor incidence in Np73/p53+/- mice compared to p53+/- mice. Thus, the 

oncogenic function of Np73 in lung tumor and lymphoma induction in this 

mouse model is rather attributed to the dominant negative effect over TAp73 

than p53.  

4.2.4 Dysregulation of p73 causes male infertility  

The observed Np73 expression in the testes of transgenic mice raised the 

question, whether elevated levels of Np73 affect the fertility in males. Indeed, 

mating experiments revealed a complete infertility in these mice. Interestingly, 

Trp73-/- and TAp73-/- males also fail to produce litter (A. Yang et al. 2000; 

Tomasini et al. 2008) whereas Np73 is dispensable as Np73-/- mice exhibit 

only limited reproductive failure (Tissir et al. 2009; Wilhelm et al. 2010). 
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However, the common feature of reproductive failure in different mouse models 

of the p73 family is -at least partially, of different origin. Trp73-/- males lose their 

sexual interest in mature females due to impaired pheromonal perception in the 

vomeronasal organ. In contrast, TAp73-/- specific knockouts as well as Np73-

overexpressing males show completely normal mating behaviour which 

indicates that the reproductive failure is not solely attributable to the absence of 

TAp73 in the vomeronasal organ. Apart from disturbed mating behaviour, 6 

weeks old Trp73-/- and also TAp73-/- males suffer on a complete loss of 

spermatids and spermatozoa in the seminiferous tubules (Inoue et al. 

2014)(Holembowski, Kramer, Riedel, Sordella, Nemajerova, Dobbelstein & Ute 

M Moll 2014). In part, this phenotype is caused by structural abnormalities of 

Sertoli cells which disrupt the blood-testis-barrier and the attachment of 

developing germ cells in the nursing pockets. Moreover, in wildtype mice TAp73 

is highly expressed in spermatogonia and spermatids where it strictly controls 

the expression of peptidases, protease inhibitors, receptors and integrins (Inoue 

et al. 2014; Holembowski, Kramer, Riedel, Sordella, Nemajerova, Dobbelstein & 

Ute M. Moll 2014). As a consequence of TAp73 loss, adhesion- and migration-

related molecules are upregulated which subsequently leads to a premature 

detachment of germ cells from the germ epithelium and finally to apoptosis. A 

very similar expression profile was observed in Np73 MEFs indicating that 

male infertility in Np73 -overexpressing males is based on the dominant 

negative effect of Np73 over TAp73. Yet, in contrast to the loss of TAp73 or 

total p73, the overexpression of Np73 for up to three months did not induce 

any morphological changes in the testes. Thus, it needs further investigation to 

clarify which additional functions, beyond inhibition of TAp73, are carried out by 

Np73 that shatter reproductive processes. Here, it should be considered that 

Np73-overexpressing males are completely infertile - meaning that the 

dysfunction is not restricted to the haploid germ cells that carry the Np73 

allele, but also either affects the haploid germ cells which carry the wildtype 

allele or the germ cells before separation of the homologous chromosomes in 

meiosis. This suggests a hormonal deregulation affecting all germ cells going in 

line with the finding that TAp73-/- males have decreased progesterone levels 

(Inoue et al. 2014).  
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4.2.5 p73 is essential for embryonic development 

In contrast to the complete infertility of Np73 males, the fertility of Np73-

overexpressing females is only partially restricted as they deliver at a normal 

rate but with reduced litter size. Genotyping of pups revealed that embryos 

emerging from Np73-transgenic oocytes die in utero, confirming previous data 

from approaches which failed to obtain transgenic mice constitutively 

overexpressing Np73 (Hüttinger-Kirchhof et al. 2006; Erster et al. 2006). 

Embryos developing from zygotes being microinjected with a Np73 construct 

failed to develop beyond gastrulation stage (Erster et al. 2006). In fact, if 

Np73-induced embryonic lethality is mediated by inhibition of TAp73, the 

defect is likely to occur even at an earlier developmental stage: loss of TAp73 

impairs ovulation and causes spindle abnormalities in in vitro fertilized oocytes 

which abrogates the embryonic preimplantation development (Tomasini et al. 

2008). Thus, genomic integrity in oocytes might be undermined by Np73 by 

interference with TAp73. During these fertility studies, two females were born 

carrying a recombined Np73 allele. These animals delivered, like their 

mothers, at a normal rate albeit giving birth to pups also carrying the Np73 

transgene at a completely normal mendelian ratio. Apparently Np73-induced 

embryonic lethality was circumvented in these animals, probably by silencing of 

the transgene. 

Considering the results from Trp73-/-, TAp73-/-, Np73-/- and Np73 

overexpressing mouse models, TAp73 is absolutely essential for both, male 

fertility and embryonic development, whereas the loss of Np73 exhibits only 

minimally perturbed fertility. Conversely, high abundance of Np73 is 

considered to interfere with developmental programs orchestrated by TAp73 

thus leading to similar reproductive defects as observed in TAp73-/- mice. As 

p53-/- mice show only minor defects in developmental programs, it is rather 

unlikely that Np73´s inhibitory function on p53 is involved in reproductive and 

developmental defects of Np73 mice. 

4.2.6 Np73-overexpressing MEFs exhibit a metastatic signature 

Whole transcriptome analysis of Np73-transgenic MEFs found many factors 

relevant for epithelial-to-mesenchymal-transition (EMT) to be upregulated. EMT 

is crucial for numerous developmental processes, yet is has also been 
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described as an essential part of metastasis (Thiery 2002). During EMT, 

epithelial cells undergo morphological changes leading to loss of cell polarity 

and cell-cell-adhesions. The dissociation from tissue represents the first step in 

metastasis. After detachment from the tumor, cells may enter the lymph or the 

blood stream which conveys them to the capillaries of more or less distant sites 

of the organism (Fidler 2003; Chambers et al. 2002). Depending on trafficking 

molecules, the metastatic cancer cells leave the blood stream or lymph and 

enter a new niche where they establish metastases.  

4.2.7 Np73 induces factors involved in migration and EMT 

Several factors involved in migration and metastasis were upregulated in 

Np73 MEFs. Among them, integrin 4 (ITGB4) inherited the highest 

expression with a 12-fold induction compared to single transgenic control MEFs. 

The 4 subunit of the integrin receptor forms heterodimers with 6 subunits and 

adheres to laminins. The attachment of epithelial cells to the extracellular mass 

(ECM) can either be stable or transient. In the former case, 64 integrins are 

localized in hemidesmosomes to anchor epithelial cells to the basement 

membrane, whereas in the latter case the integrins are concentrated in cell 

protrusions, thereby promoting migration (Rabinovitz et al. 1999). A recent 

publication showed that Np73 fosters metastasis in melanoma cells by 

downregulation of EPLIN, a negative regulator of the IGFR1-Akt/STAT3 

pathway (Steder et al. 2013). In the absence of EPLIN, IGFR1 becomes 

phosphorylated leading to activation of PI3K and JAK/STAT pathway. 

Particularly the phosphorylation of Akt entails changes of Slug and E-Cadherin 

levels eliciting an EMT-like phenotype (Grille et al. 2003; Fenouille et al. 2012). 

In addition, ITGB4 promotes anchorage-independent growth by association with 

IGFR1 and activation of the PI3K pathway (Fujita et al. 2012; Bon et al. 2006). 

These data suggest that Np73 triggers IGFR1-mediated metastasis not only 

by downregulation of EPLIN but also by induction of ITGB4 (Figure 43).  

Apart from ITGB4, Microarray data also revealed an upregulation of the plakin 

family members desmoplakin (Dsp) and plakophilin 1 (Pkp1). Plakins are 

cytoskeletal crosslinkers which connect cytoskeletal structures like actin-

filaments to junctional complexes at the membrane (Belkin & Stepp 2000). 

These migration-related factors have been associated with invasive carcinoma 
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and poor prognosis in patients of various cancer types, e.g. osteosarcoma, 

basal like breast cancer, oral squamous cell carcinoma, pancreatic ductal 

carcinoma and lung cancer (Wan et al. 2010; Lu et al. 2008; Nagata et al. 2013; 

Damhofer et al. 2013; Zheng et al. 2013; Hsu et al. 2013). 

 

Figure 43: Np73 regulates PI3K pathway inducing EMT 

Np73 fosters metastasis by downregulation of EPLIN, a negative regulator of the 
IGFR1/Akt/STAT3 pathway (Steder et al. 2013). Under anchorage-independent 

conditions, Integrin 64 associates with IGFR1 and IGF1 and promotes survival 

(Fujita et al. 2012). This signalling pathway might also be regulated by Np73, as the 

Integrin 64-subunit ITGB4 is induced by Np73. 

The Notch ligands JAG 1 and 2 were also upregulated by Np73. This 

signalling cascade is involved in many developmental processes, especially 

neurogenesis (Mark 1995; de la Pompa et al. 1997). Like many factors 

regulating developmental programs, JAG1 and 2 are also involved in cancer 

progression. Both factors promote EMT as a driver for metastasis in breast 

(JAG1) and lung cancer (JAG2) (Sethi et al. 2011; Shao et al. 2015; Yang et al. 

2011). Moreover, JAG1 expression has been correlated with poor survival in 
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breast cancer and head and neck cancer patients (Reedijk et al. 2005; Lin et al. 

2010). 

In addition, several Serine Protease Inhibitors (Serpins) were recently 

connected with brain metastasis in lung and breast cancer (Valiente et al. 

2014). 

Thus, many factors being upregulated in Np73 MEFs exhibit metastasis-

promoting function. Although it has not been investigated whether Np73 

directly activates these genes, some of them have been found to be regulated 

by p53 family members. ITGB4 , for example, is repressed by p53 and activated 

by TAp63 and TAp73 (Bon et al. 2009). Hence, the upregulation of ITGB4 might 

be a consequence of the dominant negative effect of Np73 on p53. In contrast, 

JAG1 and 2 are known to be induced by all tumor suppressive p53 family 

members, predominantly by p63 and p73 (Sasaki et al. 2002). Thus, the 

upregulation of Notch-ligands by Np73 seems to be inconsistent and requires 

further investigation. 

The metastasis-promoting effect of Np73 on single gene level is further 

supported by GSEA analyses as 6 gene sets annotated with migration and 

metastasis were found to be upregulated. As an completely unexpected result, 

a great number of gene sets annotated with cell cycle progression were 

downregulated in samples with high Np73 expression. As Np73 exerts tumor-

promoting functions, it was supposed to rather induce than to suppress cell 

division. However, this effect might be dependent on the cellular context. For 

these analyses, primary murine embryonic fibroblasts were used. In contrast to 

established cancer cell lines, these cells do not carry additional tumorigenic 

mutations which might support oncogenic Np73 in enhanced proliferation. A 

single genetic alteration as the overexpression of Np73- is most likely not 

sufficient to overcome the safety mechanisms protecting the cells from aberrant 

growth. On the contrary, Np73 might trigger oncogene-induced senscence in 

these cells, although -Gal staining did not support this idea (data not shown). 

Finally, fibroblasts are of mesenchymal and not of epithelial origin and the 

impact of Np73 might very well be cell context dependent. The upregulation of 

Np73 in human cancers and its correlation with poor prognosis is prevalently 

based on carcinomas, a cancer type of epithelial origin.  
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Taken together, the microarray analyses of transgenic MEFs uncovered a 

metastatic signature induced by Np73 which is phenotypically supported by 

enhanced dissemination of lymphoma in Np73;p53+/- mice. Migration and 

invasion assays of transgenic MEFs might validate these findings. Moreover, 

the role of validated targets like ITGB4, JAG1 and JAG2 in EMT and migration 

can also be investigated in such assays by targeted inhibition of these factors. 

Microarray analyses of the testis of TAp73-/- mice revealed an expression 

profile of migratory genes which is quite similar to the profile obtained from 

Np73 MEFs (Holembowski, Kramer, Riedel, Sordella, Nemajerova, 

Dobbelstein & Ute M. Moll 2014). Although the analyses were made in two 

completely different cell types, the strong conformity indicates that the 

dysregulated migratory signature in Np73 MEFs is mostly based on its 

dominant negative effect over TAp73. Even more, it can be assumed that it is 

exactly this signature that interferes with embryonic development and 

spermatogenesis but supports metastasis. 
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4OHT 4-hydroxytamoxifen 

AP1 Activator protein 1 

ATM Ataxia Telangiectasia mutated 

ATP Adenosine triphosphate 

ATR ATM-Rad3-related 

Bax Bcl-2 associated X protein 

BLI Bioluminescent imaging 

bp Base pairs 

BubR1 Bub1-related protein kinase 

c-Abl Abelson murine leukemia viral oncogene homolog 1 

CCNB1/2 Cyclin B1/2 

Cdkn1a Cyclin-dependent kinase inhibitor 1a 

cDNA Complementary DNA 

CENPA Centromere protein A 

ChIP Chromatin immune precipitation 

CIS Carcinoma in situ 

CLuc Cypridina luciferase 

CpG Cytosine phosphatidyl Guanine 

Cre Cre recombinase 

cRNA Complementary DNA 

CT Computed tomography 

CTD C-terminal domain 

CTP Cytidine triphosphate 

DAB Diaminobenzidine 

DBD DNA-binding domain 

DMEM Dulbecco’s modified eagle’s medium 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DNA-PK DNA-dpendent protein kinase 

Dsp Desmoplakin 

E Embryonic stage 

E.coli Escherichia coli 

E-Cadherin Epithelial Cadherin 

ECM Extracellular mass 

EDTA Ethylendiamtetraacetic acid 

EF1 Elongation factor 1 

ELISA Enzyme linked immunosorbent assay 

EMT Epithelial to mesenchymal transition 

EPLIN Epithelial protein lost in neoplasm 

ERT Tamoxifen-inducible Estrogen receptor 

FAM Carboxyfluorescein 

FBXO45 F-box only protein 45 

FLI Fluorescent imaging 

FOXO1 Forkhead Box Protein 1 

GADD45 Growth arrest and DNA-damage inducible gene 45 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

gDNA Genomic DNA 

GFP Green fluorescent protein 

GLuc Gaussia luciferase 

H&E Hematoxylin and eosin 
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HA hemagglutinin 

Hp73 Human p73 

HRP Horseradish peroxidase 

hrs Hours 

IE International unit 

IGFR1 Insulin like growth factor receptor 1 

IgG Immunoglobulin G 

IHC Immunohistochemistry 

IL2 Interleukin 2 

IRES Internal ribosomal entry site 

ITCH Itchy E3 ubiquitin protein ligase 

IVF In vitro fertilization 

JOE Carboxy dichloro Dimethoxyfluorescein 

KO Knock out 

LB Luria broth medium 

LIF1 Ligase interacting factor 1 

LOH Loss of heterozygosity 

LSL Lox-Stop-lox 

LTR Long terminal repeats 

MDM2 Mouse double minute 2 

MDM4 Mouse double minute 4 

MEFs Murine embryonic fibroblasts 

mID4 Murine inhibitor of DNA binding 4 

miRNA Micro RNA 

mITGB4 Murine integrin beta 4 

mJAG1/2 Murine jagged1/2 

mKDR Murine kinase insert domain receptor 

mRNA Messenger RNA 

MRT Magnetic resonance tomography 

MRT Magnetic resonance tomography 

mSerpin Murine Serpin Family Member 

myc Myelocytomatosis Viral Oncongene 

n Number 

N-Cadherin Neuronal Cadherin 

nsh Non-silencing shRNA 

nsi Non-silencing siRNA 

OD Oligomerization domain 

OS Overall survival 

PBS Pospho-buffered saline 

PCAF P300/CBP associated factor 

pCLucIPZ/GLucIPZ CLuc-IRES-Puro/ GLuc-IRES-Puro 

PCR Polymerase chain reaction 

PEG Polyethylene glycol 

PET Positron emission tomography 

PI3K Phosphatidylinositol Bisphosphate 3-Kinase 

Pkp1 Plakophilin 1 

PR Proline-rich region 

Puma P53 upregulated mediator of apoptosis 

Puro Puromycin 

Puro puromycin 

qPCR Quantitative real-time PCR 

r Pearsons correlation coefficient r 

Rag2 Recombination activating gene 2 
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RB Retinoblastoma protein 

RE Response element 

RFP Red fluorescent protein 

RITA Reactivation of p53 and induction of tumor cell apoptosis 

RLU Relative light units 

RNA Ribonucleic acid 

RNAi RNA interference 

ROI Region of interest 

ROS Reactive oxygen species 

Rpm Rounds per minute 

RPMI Roswell park memorial institute medium 

rtTA Reverse tetracycline transactivator 

s Second 

s.d. Standard deviation 

SAC Spindle assembly checkpoint 

SAM Sterile alpha motif 

SCLC Small cell lung cancer 

SDS Sodium dodecyl sulfate 

SEAP Secreted embryonic alkaline phosphatase 

shRNA Short hairpin RNA 

siRNA Small interfering RNA 

SPF Specific pathogen free 

sqRT Semiquantitative PCR 

STAT3 Signal transducer and activator of transcription 3 

T2A Self-cleaving 2a peptide 

TAD Transactivation domain 

TAE Trisacetate EDTA 

TAp63 Transactivating p63 

TAp73 Transactivating p73 

TBS Tris-buffered saline 

tet Tetracycline 

Tfrc Transferrin receptor gene 

TFS Tumor free survival 

TGFB3 Transforming growth factor Beta 1 

TRE Tetracycline responsive element 

UTR Untranslated region 

UV-radiation Ultra violet light radiation 

VEGF Vascular endothelial growth factor 

VLuc Vargula luciferin (alternative name for Cypridina luciferin) 

Wnt Wingless type 

wt Wildtype 

Np73 DeltaNp73 
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