Inhaltsverzeichnis

1.	1. Kapitel. Ausgangspunkte			
	1.1 1.2 1.3 1.4	Der Stoff- und Energiefluß durch eine höhere Pflanze Primitive Urorganismen als Modelle Zusammenfassender Vergleich Literatur	1 3 6 7	
2.	Kapite	l. Potentiale und Transport	8	
	2.1	Das chemische Potential	8	
	2.1.1	Die Diffusion	8	
	2.1.2	Die Diffusion durch Membranen als Sonderfall	10	
	2.1.3	Die Messung des Permeabilitätskoeffizienten	11	
	2.1.4	Permeabilität, Reflexionskoeffizient und Osmose	11	
	2.2	Das elektrische und das elektrochemische Potential	14	
	2.2.1	Die Diffusion von Elektrolyten	14	
	2.2.2	Die Ionendiffusion durch Membranen	17	
		Die Nernstsche Gleichung	17	
		Membranpotentiale	18	
	2.2.2.3	Die Gleichung konstanten Feldes oder die Goldman-Glei-		
		chung	21	
		Die Messung einiger wichtiger Größen	24	
		Die Ussing-Teorell-Beziehung	29	
	2.3	Kriteria für den aktiven Transport	30	
	2.3.1	Der Transport gegen Gradienten als Kriterium für den		
		aktiven Transport	30	
	2.3.2	Passiver Transport gegen chemische und elektrochemische		
		Gradienten	31	
		Kongruenter und inkongruenter Transport	31	
		Negative Osmose	33	
		Transport durch Träger oder Carrier	35	
	2.3.3	Die Abhängigkeit vom Stoffwechsel als Kriterium für den	20	
		aktiven Transport	38	
	2.3.4	Definitionen des aktiven Transportes	42	

	2.4	Anhang
	2.4.1	Einige der am meisten benutzten Konstanten und Symbole
		in alphabetischer Reihenfolge
	2.4.2	Praktische Formen wichtiger Gleichungen
	2.5	Literatur
2	Vanita	l. Zellwand und Zellmembran: Eine erste Komplizierung des
Э.		Is
	Model	15
	3.1	Die Zellwandphase
	3.1.1	Strukturelle Voraussetzungen für den Zellwandtransport
	3.1.2	Zellwandräume als Transportphasen: Das Konzept des
		Free Space
	3.2	Die Membranphase
	3.2.1	Die historische Entwicklung der Membranforschung
	3.2.1.1	Das Danielli-Davsonsche Membranmodell und das Kon-
		zept der "unit membrane" (Elementarmembran)
	3.2.1.2	Membrantransport-Theorien und das Danielli-Davson-
		Modell
	3.2.1.3	Membranporen
	3.2.2	Die moderne Membranforschung
		Moderne Membranmodelle
	3.2.2.2	Membrantransportmechanismen und die modernen Mem-
		branmodelle
	3.3	Literatur
4	Kanita	l. Die vereinfachenden Modelle der Transportphysiologen
7	. Карпс	
	4.1	Das Modell mit den beiden Kompartimenten Außen und
		Innen
	4.1.1	Die äußere Diffusionsbarriere von Pflanzenzellen
	4.1.2	Die doppelte Michaelis-Menten-Kinetik der Ionenauf-
		nahme
	4.1.2.1	Die kinetische und qualitative Charakterisierung von
		System 1 und System 2 der Ionenaufnahme
	4.1.2.2	Der Mechanismus von System 1 und System 2 der Ionen-
		aufnahme
	4.1.2.3	Die Frage nach der cytologischen Lokalisation von System
		1 und System 2 der Ionenaufnahme
	4.2	Das Modell mit den drei Kompartimenten Außen -
		Cytoplasma – Vacuole
	4.2.1	Die Torii-Laties-Hypothese

	4.2.1.1	Die Ionenaufnahme durch vacuolisiertes und nicht-vacuolisiertes Wurzelgewebe	95
	4212	Warum können wir zwei Mechanismen beobachten, wenn	,,
		wir die Ionenaufnahme in Abhängigkeit von der Außen-	
		konzentration untersuchen?	97
	4213	Die Synthese und Kompartimentierung organischer Säu-)
	7.2.1.3	ren im Zusammenhang mit der Ionenaufnahme	100
	1211	Einige weitere Belege für die Torii-Laties-Hypothese	103
	4.2.1.4	Weiterführende Vorstellungen	103
	4.2.2	Test der Modelle durch Computer-Simulation	104
		Multiphasische Aufnahmesysteme	104
			103
		Übersicht	108
		Kompartimentsanalyse	108
	4.2.3.1	Direkte Kompartimentsanalyse: Coenoblastische Algen-	
		zellen	108
	4.2.3.2	Indirekte Kompartimentsanalyse: Die Isotopenaustausch-	
		kinetik	109
	4.2.3.3	Aktive Ionenfluxe am Plasmalemma und am Tonoplasten	
		von Algenzellen und Zellen höherer Pflanzen	118
	4.3	Modelle mit zwei cytoplasmatischen Kompartimenten	120
	4.3.1	Unerwartete Kinetik der Ionenaufnahme und des Ionen-	
		austausches bei Zellen höherer Pflanzen	120
	4.3.2	Elektrophysiologische Messungen an den coenoblasti-	
		schen Zellen von Valonia	122
	4.3.3	Kinetische Untersuchungen an Nitella	122
	4.4	Zusammenfassung und Ausblick	125
	4.5	Literatur	128
_	V anita	Zusammenhänge zwischen der Feinstruktur des Cyto-	
Э.		as und Transportfunktionen: Die weitere Komplizierung des	
		ls	130
	Model		150
	5.1	Beobachtungen über Stofftransport in membranumgebe-	
		nen Vesikeln	130
	5.1.1	Exocytose	130
	5.1.2	Endocytose	134
	5.1.3	Transport in Bläschen innerhalb der Zelle	134
	5.2	Die stoffliche Eigenständigkeit von Organellen	136
	5.2.1	Allgemeine Diskussion	
	5.2.2	Die Ionenaufnahme in Chloroplasten	137
	5.3	Besonderheiten des Cytoplasmas von Drüsenzellen	140
	5.3.1	Drüsenfunktionen	140
	J.J. 1	L'AGOMMINION,	

		Die Feinstruktur des Drüsencytoplasmas	141
	5.3.2.1	Transfer Cells	142
	5.3.2.2	MINOCHORATION	146
	5.4	Literatur	148
Ś.	Kapite	L Metabolische Regulation von Transportprozessen	150
	6.1	Die Respiration als Energielieferant für aktiven Transport	151
	6.1.1	Die direkte Koppelung des aktiven Anionentransportes	
		mit der Elektronenübertragung entlang der Atmungskette	
		Die Salzatmung und die Lundegårdh-Hypothese	151
		Modell einer Redoxpumpe nach Robertson und Conway.	153
	6.1.1.3	Mögliche Koppelungsmechanismen zwischen respiratori-	
		schem Elektronenfluß und Membrantransportprozessen	156
	6.1.2	ATP als Energielieferant für aktiven Transport	157
		ATP als "allgemeine Energiewährung" der Zelle	157
		Hemmstoffversuche	158
	6.1.2.3	Die Salzatmung und ATP-getriebener Ionentransport	159
	6.1.3	Antrieb verschiedener aktiver Ionenflüsse in komplexen	
		Systemen durch verschiedene Energiequellen	161
	6.2	Die Ausnutzung von Lichtenergie durch den Transport	164
	6.2.1	Beeinflussung von Membrantransportprozessen durch	
		direkte Lichtwirkung auf die Membran	164
		Photoelektrische Effekte	164
		Lichteinwirkung auf hormonale Regulationssysteme	165
	6.2.2	Die Photosynthese als Energiequelle für aktiven Trans-	.
		port	175
	6.2.2.1	Die ersten Beweise für die Abhängigkeit von Transport-	
		prozessen von der Photosyntheseenergie	175
	6.2.2.2	Vereinfachtes Schema der photosynthetischen Energie-	
		übertragungsreaktionen	176
	6.2.2.3	Experimentelle Beeinflussung der Energieübertragungs-	
		reaktionen der Photosynthese und Korrelation mit	170
		Energie-abhängigen Transportprozessen	178
	6.2.3	Spezielle Photosynthese-abhängige Transportmechanis-	103
	(22)	men	183
	6.2.3.1	Das Hexoseaufnahmesystem von Chlorella-Zellen	183
	6.2.3.4	l Ionenaufnahmemechanismen bei Algenzellen	185
	6.2.3.3	3 Ionenaufnahmemechanismen bei Wasserpflanzenblättern 3 Ionenaufnahmemechanismen bei grünen Zellen von Luft-	188
	0.2.3.4	blättern höherer Pflanzen	100
	621	Die Koppelung zwischen Energie-übertragenden Reak-	189
	0.2.4	Die Koppeiung zwischen Energie-ubertragenden Keak-	

		tionen im Inneren der Chloroplasten und aktiven Trans-	
		portmechanismen an entfernt liegenden Membranen	191
		Die Koppelung durch chemische Mechanismen	192
		Die Koppelung durch physikalische Mechanismen	200
	6.3	Literatur	209
,	Kanita	Vurzetreakantranenant Mittaletreakantranenant Lang	
•	strecke	l. Kurzstreckentransport - Mittelstreckentransport - Langentransport	213
	7.1	Die Bedeutung einzelner Transportwege für den Mittel-	
		strecken- und den Langstreckentransport	214
	7.1.1	Apoplasmatische Transportwege	
	7.1.1.1	Der Zellwandtransport	214
	7.1.1.2	Der Transpirationsstrom	215
	7.1.2	Der symplasmatische Transport	219
	7.1.2.1	Plasmodesmata als strukturelle Voraussetzung für den	
		symplasmatischen Transport	220
		Arisz' Versuche zum symplasmatischen Transport	
		Der Mechanismus des symplasmatischen Transportes	225
	7.1.2.4	Der symplasmatische Transport von Metaboliten bei der	
		Photosynthese und der Photorespiration von C ₄ -Pflanzen	
	7.1.3	Transport in Siebröhren	233
	7.1.3.1	Der Assimilatferntransport als Sonderfall des symplasma-	
		tischen Transportes	233
		Das Problem des Mechanismus des Siebröhrentransportes	
		Zusammenfassende Bemerkung	243
	7.2	Die Koppelung von Kurzstrecken-, Mittelstrecken- und	
		Langstreckentransport und der Übergang zwischen ver-	
		schiedenen Transportwegen	243
	7.2.1	Das Modell der Wurzel: Verschiedene Hypothesen zum	
		Mechanismus des Ionentransportes aus der Außenlösung	245
	7244	durch die Wurzel in die Xylem-Fernleitungsbahnen	245
	7.2.1.1	Die Hypothese der Gefäßelementdifferenzierung	246
		Die Hypothese der Endodermispumpe	247
		Die Hypothese der Gefäßparenchympumpe	247
	7.2.1.4	Die Hypothese des symplasmatischen Transportes durch	240
		die Wurzel	249
		210 hay positions der zwei i dan pro-	254
		Das Modell des Blattes	255
	7.2.2.1	Das System Blattmesophyll-Stielzelle-Blasenzelle bei Atri-	251
	7 0 0 -	plex und Chenopodium	230
	7.2.2.2	Die Salzdrüsen von Limonium	256

	7.2.2.3	Die Verdauungsdrüsen der Nepenthes-Kannen	257
	7.2.2.4	Die Nektarsekretion	259
	7.2.2.5	Ionentransport im Dienste der Stomataregulation	262
	7.2.3	Grenzen der verfügbaren Methoden	264
	7.3	Die Transportregulation in der Pflanze als Ganzem	265
	7.4	Literatur	267
Sa	chverz	eichnis	273
Ve	erzeichi	nis der lateinischen Gattungs- und Artnamen	279