Contents

1	Geology of Clays	
	B. Velde	1
1.1	Why Clays Form	1
1.2	Where Clays Form	3
1.3	Clay Formation: The Chemical Necessity	5
2	Composition and Mineralogy of Clay Minerals	
	B. VELDE	8
2.1	Introduction	8
2.2	Physical Properties of Clays	9
2.2.1	Particles and Shapes	9
2.2.1.1	Something About Clay Particles	9
2.2.2	Clays and Water	11
2.2.3	Clays in Water	13
2.2.3.1	Mixtures of Water and Clays	13
2.2.3.2	Clays in Water and Transport	14
2.2.3.3	Exchange of Ionic Species (CEC)	15
2.2.4	Summary	17
2.3	Crystallographic Structure of Clay Minerals	17
2.3.1	Tetrahedra	18
2.3.2	Octahedra	19
2.3.3	Layer Structures Through Linkage	19
2.3.3.1	Repeat Distances	20
2.3.4	Crystalline Water	22
2.3.5	Chemical Substitutions in the Structures	23
2.3.5.1	Charge on the Unit Cell	
	for Different Layer Types	23
2.3.5.2	Charge on Ions in a Given Coordination Site	23
2.3.5.3	Substitutional Types	24
2.3.6	Substitutions and Mineral Species	27
2.4	Mineral Families	28
2.4.1	7 Å Minerals	
	(One Octahedral + One Tetrahedral Sheet)	29

2.4.2	10Å Minerals	
	(Two Tetrahedral and One Octahedral Layer)	29
2.4.2.1	Neutral Layer (Charge Almost Zero)	30
2.4.2.2	High Charge Minerals: Mica-Like	
	(Charge near 1, all Dioctahedral)	30
2.4.3	Low Charge (Expanding) Minerals: Smectites	31
2.4.3.1	Dioctahedral Expanding Minerals	31
2.4.3.2	Trioctahedral Expanding Minerals	32
2.4.4	14 Å Chlorites (Two Octahedral +	
2	Two Tetrahedral Unit Layers, 2:1 + 1)	33
2441	Trioctahedral Chlorite Minerals	33
2442	Composition and Substitutions	34
245	Mixed Lavered Minerals	35
2451	Mixed Layering Mineral Types	36
2.4.5.1	Sepiolite-Palvoorskite	37
2.4.0	Iron Oxides	38
2.4.7	Zeolites	39
2.4.0	Summary	41
2.4.7	Suggested Reading	41
	Suggested Reading	
3	Origin of Clays by Rock Weathering	
	and Soil Formation	
	D. RIGHI and A. MEUNIER	43
3.1	Introduction	13
32	Weathered Rocks and Soils: The Major Factors	чJ
5.2	in Their Davelonment	11
221	General Organization:	44
5.2.1	Soil and Weathered Book Domains	4.4
277	Bosis Eastern in Westharing	44
3.2.2	and Soil Formation	10
2771	Climate and Water Desime	40
3.2.2.1	Within the Soil Months	47
2222	Deek Composition	47

3.2.2.2	Rock Composition	52
3.2.2.3	Biological Factor:	
	Vegetation and Soil Organic Matter	52
3.2.2.4	Age and Soil History	55
3.2.2.5	Topographic Effects: Translocations	
	and Accumulations	57
3.2.3	Distribution of Major Soil Types at the Surface	
	of the World	60
3.2.4	Structure of Weathered Rocks and Soils	62
3.2.4.1	Weathered Rocks:	~~
	Inheritance of the Rock Structure	62

3.2.4.2	Soil Structures: Importance of Aggregation	62
3.2.5	Soil Structure-Porosity Relationship	66
3.2.6	Changes in Rock Density	
	and Mechanical Properties	67
3.2.7	Water in Soils:	
	Content and Chemical Potential	69
3.2.7.1	Soil-Moisture Retention Curve	70
3.2.7.2	Flow of Water in Soils and Weathered Rocks	70
3.2.8	Dissolution and Recrystallization Processes	73
3.2.8.1	General Statements	73
3.2.8.2	The Proton-Cation Exchange	76
3.2.9	Basic Factors for Phase Relation Analysis	
	in Rock Weathering	78
3.2.9.1	From Microsites to Microsystems	78
3.2.9.2	Construction of Phase Diagrams	81
3.2.10	Summary and Conclusions	84
3.3	From Rock to Soil: The Granite Example	87
3.3.1	Clay Formation in Weathered Granite	
	Under Atlantic Climatic Conditions	88
3.3.1.1	Weathered Profiles on Granitic Rocks:	
	The First Stages of Weathering	88
3.3.1.2	Construction of Phase Diagrams	93
3.3.1.3	Summary	101
3.3.2	Soil Clays Developed on Granite Saprolite	
	in the Temperate Zone	102
3.3.2.1	Methodology	102
3.3.2.2	Observations	104
3.3.2.3	Clay Genesis in Temperate Acid Soils	107
3.3.2.4	Composition and Properties	
	of the Subfractions	107
3.3.2.5	Conclusion	114
3.3.3	Summary of Weathering Effects	114
3.4	Clays Formed During Rock Weathering	115
3.4.1	Weathering of Basic and Ultrabasic Rocks	115
3.4.1.1	Weathering Profiles	115
3.4.1.2	Weathered Macrocrystalline Basic Rocks	116
3.4.1.3	Weathered Macrocrystalline Ultrabasic Rocks	117
3.4.1.4	Phase Diagrams	119
3.4.1.5	Weathered Serpentinite	124
3.4.2	Weathering of Basaltic Rocks	126
3.4.3	Weathering of Clay-Bearing Rocks	129
3.4.3.1	Weathering of Glauconitic Sandstones	129
3.4.3.2	Weathering of Marls	131
3.4.4	Summary and Conclusions	133
3.5	Clays Found in Soil Environments	134

351	Clavs in Soils from Cold and Temperate	
5.5.1	Climates	134
3511	Nature and Rate of Clay Mineral Formation	135
3512	Podzolization and Clay Mineral Evolution in the	
5.5.1.2	Temperate Zone: Influence of Organic Matter	138
3513	Clay Illuviation in Soils Developed from Glacial	
5.5.1.5	Loss Deposits: Movement by Transport of	
	Solide	140
3514	Clays in Soils from Heavy Clay Rocks: Selective	
5.5.1.7	Transport of Clays	144
3515	Summary	144
3.5.2	Claves in soils on Volcanic Rocks:	
5.5.2	The Short-Range-Ordered Minerals	
	Allophane and Imogolite	145
353	Claves in Soils Formed Under Tropical Climate	
5.5.5	Conditions	147
3531	Fouatorial Wet Zone: Kaolinite and Al	1.1
5.5.5.1	Fe-Ovyhydrovides in Ferralsols	148
2522	Tropical Dry Zone: Smectites in Vertisols	152
354	Arid and Semi-arid Zones: Palvgorskite	102
5.5.4	in Saline Soils and Calcareous Crust	154
36	General Conclusions	155
5.0	References	157
	References	157
4	Frosion, Sedimentation and Sedimentary Origin	
•	of Clave	
	S HULLER	162
	0. And Didk	102
4.1	Introduction	162
4.2	Origins, Sources and Yields, and Global Fluxes	102
	of Clay Minerals	163
4.2.1	Origins of Clay Minerals in Sediments	163
4.2.2	Sources and Yields	165
4.2.3	Global Fluxes	169
4.3	Erosion, Transport and Deposition	100
	of Clay Minerals	160
4.3.1	Transport by Rivers	160
4.3.2	Transport in the Sea and Ocean	109
4.3.3	Deposition of Clay Minerals by Settling	1/1
4.3.3.1	Salt Flocculation	170
4.3.3.2	Differential Flocculation and Settling	100
4.3.3.3	Bio- and Organic Flocculation	100
4.3.3.4	Properties of Aggregates and Floce	101
4.3.4	Erosion. Transport and Deposition by Ward	181
4.3.5	Erosion, Transport and Deposition by Inc	182
	Deposition by ice	185

4.3.6	Modifications and Transformations	
	During Transport and Deposition	187
4.3.6.1	Ion Exchange and Fixation	187
4.3.6.2	Pollutant Transport and Regulation	189
4.4	Authigenic (in situ) Formation of Clay Minerals	
	in Sediments	190
4.4.1	Continental Authigenic Smectite	191
4.4.2	Marine Authigenic Smectites	193
4.4.3	Marine Glauconite and Glauconite/Smectite	195
4.4.4	Celadonite and Celadonite/Smectite	198
4.4.5	Non-Marine Glauconite and Ferric Illite	198
4.4.6	Minerals Related to Chlorites	170
	and the Verdine Facies	199
447	Sepiolite and Palygorskite	201
45	Mineralogical Patterns in the World Ocean	203
4.6	Environmental Interpretation of Clav Minerals	207
461	Sedimentary Environments and Provenance	207
4.6.7	Palaeoclimatic Interpretation of Clay Minerals	207
4.0.2	References	210
	References	217
5	Compaction and Diagenesis	
-	B. VELDE	220
		220
5.1	The Geologic Structure of Diagenesis	221
5.1.1	Compaction and Porosity	222
5.1.2	Temperature	226
5.1.3	Sedimentation Rate	226
5.1.4	The Kinetics of Clay Transformations	226
5.1.5	Chemically Driven Reaction in Clays	231
5.1.5.1	Solution Transport	231
5.1.5.2	Chemical Equilibrium Among Clay Particle	232
5.2	Major Progressive Clay Mineral Reactions	
	During Burial Diagenesis	234
5.2.1	Mixed Laver Mineral Series	234
5.2.2	Silica Polymorph Change During Diagenesis	235
5.2.3	Zeolite Mineralogy During Diagenesis	236
5.2.4	Changes in Organic Matte	237
5.3	Sequential Mineralogical Changes	201
010	During Burial Diagenesis	239
531	The First Kilometer	239
5.3.2	The Stability of Detrital Minerals	240
5.3.3	Clay Mineral Assemblages	2.0
	in the Second Kilometer of Burial	241
5.3.4	The Last Kilometers	242
5.4	Conclusions	244
	Suggested Reading	245

6	Hydrothermal Alteration by Veins	247
	A. MEUNIER	
6.1	Introduction	247
6.2	Structure of the Hydrothermal–Wall Rock	
	System	248
6.2.1	Central Deposit and Altered Wall Rocks	248
6.2.2	Fluid Injection Vein Type	249
6.2.3	Fluid Infiltration Vein Type	251
6.2.4	Fluid Drainage Vein Type	251
6.3	Alteration Mechanisms	255
6.3.1	Zone Formation	255
6.3.2	Zone Development	255
6.3.3	Kinetics of Zonation	230
6.3.4	Quantities of Fluids and Flow Regime	240
	in Fractures	200
6.3.5	Successive Fluid Circulation	202
6.4	Alteration of Pre-existing Clay Minerals	203
6.4.1	Layer-Charge Control of Clay Hydrothermal	2(2
	Reactions	203
6.4.2	Polyphase Clay Mineral Assemblages	205
6.5		205
	References	200
7	Formation of Clay Minerals	
	in Hydrothermal Environments	
	A. INOUE	268
7.1	Initial Statement	268
7.2	Definition of Hydrothermal Alteration	269
7.3	Geologic Settings of Hydrothermal Systems	270
7.4	Physico-chemical Nature	
	of Hydrothermal Systems	271
7.4.1	Temperature and Pressure	271
7.4.2	Fluid Compositions	273
7.5	Formation of Alteration Minerals	
	and Their Zoning	277
7.6	Classification of Hydrothermal Alteration	284
7.7	Distribution and Morphology	
_	of Alteration Zones	288
7.8	Case Studies of Hydrothermal Alteration	291
7.8.1	Acid-Type Alteration	291
7.8.2	Intermediate to Alkaline Types of Alteration	294
7.8.3	Deep Sea Hydrothermal Alteration	299
7.9	A Brief Summary on the Effect of Rock Type	303

7.10	Detailed Mineralogy	
	of Selected Clay Mineral Types	304
7.10.1	Interstratified Illite/Smectite	304
7.10.1.1	Structural Variation	305
7.10.1.2	Chemical Variation	307
7.10.1.3	Morphology Variation	309
7.10.1.4	Stability	311
7.10.2	Rectorite	313
7.10.3	Dioctahedral Smectite	313
7.10.4	Sericite	314
7.10.5	Interstratified Trioctahedral	
	Chlorite/Smectite (C/S)	315
7.10.5.1	Structural Variation	315
7.10.5.2	Chemical Variation317	
7.10.5.3	Stability	318
7.10.6	Trioctahedral Chlorite	
	in Hydrothermal Deposits	318
7.10.7	Aluminous Chlorite and Chlorite/Smectite	320
7.11	Concluding Remarks	320
	References	321
Subject	Index	331