Claus Czeslik, Heiko Seemann, Roland Winter

Basiswissen Physikalische Chemie

2., überarbeitete Auflage

Inhaltsverzeichnis

V	orwo	wort		
Liste der wichtigsten Symbole			XI	
1	Agg	regat	zustände	1
	1.1	Ideale	Gase.	1
		1.1.1	Das ideale Gasgesetz	1
		1.1.2	Gasmischungen	4
		1.1.3	Geschwindigkeiten von Gasteilchen	6
		1.1.4	Effusion	. 11
		1.1.5	Stöße zwischen Gasteilchen	12
		1.1.6	Flüsse: Diffusion, Viskosität und Wärmeleitung .	. 14
	1.2	Reale	Gase	22
		1.2.1	Zwischenmolekulare Kräfte	
		1.2.2	Virial- und VAN DER WAALS-Gleichung	. 25
	1.3	Flüssi	gkeiten.	
		1.3.1	8	
		1.3.2	Flüssigkristalle.	
		1.3.3	Lösungen von Makromolekülen	
	1.4	Krista	ılline Festkörper	37
2	The		ynamik	41
	2.1	Erste	r Hauptsatz der Thermodynamik	
		2.1.1	Begriffe und Definitionen	
		2.1.2	Formulierung des ersten Hauptsatzes	
		2.1.3	Innere Energie und Enthalpie	
		2.1.4	Wärmekapazitäten	
		2.1.5	Adiabatische Prozesse.	
		2.1.6	Thermochemie	
	2.2		er Hauptsatz der Thermodynamik	
		2.2.1	Einführung der Größe Entropie.	
		2.2.2	Eigenschaften der Entropie	60
		2.2.3	GIBBS-Energie und HELMHOLTZ-Energie.	
	2.3		nungen	
		2.3.1	Partielle molare Größen.	
		2.3.2	Das chemische Potential.	
		2.3.3	Mischungsgrößen	
		2.3.4	Exzessgrößen.	
				78
		2.3.6	Das HENRYsche Gesetz	
	2.4	2.3.7	Kolligative Eigenschaften	
	2.4		ische Gleichgewichte.	87
		2.4.1	Gleichgewichtskonstanten	88
		2.4.2	Temperatur- und Druckabhängigkeit von Gleichgewichtskon-	02
			stanten	. 92

VIII Inhaltsverzeichnis

		2.4.3 Ermittlung von Gleichgewichtskonstanten	94	
	2.5	Phasendiagramme	97	
		2.5.1 GlBBSsche Phasenregel		
		2.5.2 Einkomponentensysteme.		
		2.5.3 Zweikomponentensysteme		
		2.5.4 Klassifikation von Phasenumwandlungen		
		-		
3			113	
	3.1	Grenzen der klassischen Physik		
	3.2	Einführung in die Quantenmechanik		
	3.3	Mikroskopische Teilchen in Bewegung		
		3.3.1 Translation		
		3.3.2 Rotation		
		3.3.3 Schwingung		
	3.4	Atome		
		3.4.1 Das Wasserstoffatom		
		3.4.2 Der Elektronenspin		
		3.4.3 Aufbau des Periodensystems der Elemente		
		3.4.4 Termsymbole für Atome.		
	3.5	Moleküle		
		3.5.1 Die BORN-OPPENHEIMER-Näherung.		
		3.5.2 Der LCAO-Ansatz		
		3.5.3 Die chemische Bindung		
		3.5.4 Ab-initio-Molekülorbital-Rechnungen		
		3.5.5 Die HÜCKEL-MO-Methode	160	
	3.6	Photoelektronenspektroskopie	162	
4	Sta	tistische Thermodynamik	165	
	4.1	Isolierte Systeme.	165	
	4.2	Geschlossene Systeme.		
		4.2.1 Thermodynamische Größen geschlossener Systeme		
	4.3	Offene Systeme.		
	т.Э	4.3.1 Thermodynamische Größen offener Systeme.		
	4.4	Anwendung: Ideale Gase.		
	7.7	4.4.1 Thermodynamische Größen idealer Gase.		
	4.5	Das Äquipartitionstheorem.		
	4.6	Anwendung: Wärmekapazitäten kristalliner Festkörper		
		• •	.107	
5		erflächenerscheinungen	191	
	5.1	Einleitung	.191	
	5.2	1 0		
	5.3			
	5.4	6		
	5.5	Thermodynamische Oberflächengrößen	198	
	5.6	Oberflächenerscheinungen von Mischungen	201	
		5.6.1 Oberflächenkonzentrationen	201	
		5.6.2 Der Spreitungsdruck von Oberflächenfilmen.	204	

Inhaltsverzeichnis	IX

	5.7	Gasad	sorption an Festkörperoberflächen	206
		5.7.1	Theorien der Gasadsorption	207
		5.7.2	Isostere Adsorptionsenthalpie	209
_				011
6		ktroch		211
	6.1		ransport in Elektrolytlösungen	211
		6.1.1	Mikroskopische Beschreibung der Ionenwanderung im elektrischen Feld	215
		6.1.2	Diffusion in Elektrolytlösungen	
		6.1.3	FARADAY-Gesetze (Coulombmeter)	
		6.1.4	Überführungszahlen	.221
		6.1.5	Leitfähigkeit schwacher Elektrolyte	225
	6.2	Therm	nodynamische Eigenschaften von Ionen in Lösung	226
	6.3	Aktivi	tätskoeffizienten von Elektrolytlösungen	
		6.3.1	DEBYE-HÜCKEL-Theorie	.231
	6.4	Elektro	ochemische Thermodynamik •	
		6.4.1	Die elektromotorische Kraft	236
		6.4.2	Bestimmung von Standard-Potentialen, Aktivitätskoeffizienten	
			und pH-Werten	
		6.4.3	Diffusionspotentiale.	
	<i>-</i> -	6.4.4	Konzentrationsketten	
	6.5		isch wichtige Zellen (Galvanische Elemente).	
	6.6	Elektro	olyse und Potentiale von Zellen unter Belastung	256
7	Rea	ktions	kinetik	261
	7.1	Grund	begriffe und Messmethoden	261
	7.2		he Geschwindigkeitsgesetze (Formalkinetik)	
	7.3		nmung der Geschwindigkeitsgleichung.	
	7.4	Temp	eraturabhängigkeit der Geschwindigkeitskonstanten	272
	7.5	Komp	lexe Reaktionen.	
		7.5.1	Reversible Reaktionen	
		7.5.2	\mathcal{E}	
		7.5.3	Folgereaktionen	
		7.5.4	Kettenreaktionen.	281
		7.5.5	Explosionen	
	5 -	7.5.6	Enzymreaktionen	
	7.6		ien der Elementarreaktionen	
		7.6.1	Stoßtheorie bimolekularer Reaktionen.	
		7.6.2	Theorie des Übergangszustandes.	
	77	7.6.3	Katalysatoren	
	7.7	7.7.1	onen in Lösung. Reaktionen zwischen Ionen.	
	7.8		ationsverfahren.	
	1.0	INCIAX	MOIS VETAILEL	.ムフブ

8	Mo	lekülspektroskopie	301
	8.1	Elektrische Eigenschaften der Materie	301
		8.1.1 Messung von elektrischen Dipolmomenten.	303
	8.2	Prinzipien der Spektroskopie	.306
	8.3	Reine Rotationsspektren	
		8.3.1' Der unstarre lineare Rotator.	
	8.4	Schwingungsspektroskopie.	
		8.4.1 Rotations-Schwingungsspektren.	.314
		8.4.2 Schwingungen mehratomiger Moleküle.	.318
	8.5	RAMAN-Spektroskopie.	
		8.5.1 Rotations-RAMAN-Spektren	
		8.5.2 Schwingungs-RAMAN-Spektren	
	8.6	Elektronenschwingungsspektren von Molekülen.	
		8.6.1 Elektronenschwingungsspektren in der Gasphase.	.326
		8.6.2 Desaktivierung elektronisch angeregter Zustände	
	8.7	NMR-Spektroskopie.	
		8.7.1 Grundlagen	
		8.7.2 Die chemische Verschiebung.	
		8.7.3 Spin-Spin-Wechselwirkung	
		8.7.4 Chemischer Austausch	
	8.8	Elektronen-Spin-Resonanz (ESR)	.346
A	Lite	eraturauswahl	351
В	SI-l	Einheiten und abgeleitete Größen	355
C	Nat	urkonstanten	357