Chapter 1 Soil Acidification and Alkalinization N. van Breemen

1	Introduction	1
	Definitions	
3	Effects of Addition of Dissolved Strong Acid or Base	3
	Internal Acid Production in Soils	
5	Assimilation of Minerals by Biota	4
7	Order of Magnitude of \triangle ANC by Various Groups of Processes	6
	References	7

Chapter 2 Proton Sinks in Soil Controlling Soil Acidification M.G.M. Bruggenwert, T. Hiemstra, and G.H. Bolt

1	Introduction	8
2	Survey of Proton Sinks in Soil	9
3	Adsorption of Protons by Soil Constituents	12
4	Proton Consuming Dissolution Reactions	16
5	Secondary Reactions	21
5.1	Influence of Clay Minerals on Al-Speciation and Protonation	
	of AlOH-Groups	21
5.2	Al-Saturation and pH Buffer Capacity of Clay Minerals	25
	References	26

Chapter 3 An Ecosystem Approach to Soil Acidification

B. Ulrich

1	Implications of the Material Balance of the Ecosystem	
	for Soil Acidification	28
2	Ecosystem Environment and Ecosystem Compartments	29
3	Can Ecosystem Theory be Based on Thermodynamic Laws?	31
4	A Mathematical Model of Terrestrial Ecosystems	32
5	Definitions of Acids and Bases in Soil	33
6	Inputs of Acids and Bases into Ecosystems	35

6.1	Deposition of Air Pollutants	35
6.2	The Role of Silicate Weathering	38
7	Input/Output Relations	38
8	Calculation of Proton Balances	46
9	State Variables of the Acid/Base Status of the Ecosystem	50
9.1	Buffer Ranges in Soil	50
9.2	Carbonate and Silicate Buffer Range	52
9.3	Cation Exchange Buffer Range	53
9.4	Aluminum and Iron Buffer Range	55
10	Assessment of Changes in Soil Acidity	56
11	The Temporal and Spatial Pattern of Soil Acidity	59
12	Interrelationship Between Ecosystem Functioning,	
	Changes in Acid/Base Status of Soil, and Soil Development	62
12.1	Stable Ecosystems Close to Steady State	63
12.2	The Aggradation Phase	70
12.3	The Phase of Humus Disintegration	72
12.4	The Phase of Buildup of a Decomposer Refuge	73
12.5	The Phase of Podzolization	73
12.6	Krypto-Podzolization	74
12.7	Deacidification	74
	References	75

Chapter 4 Influence of the Acid/Base Status on the Formation and Interactions of Acids and Bases in Soils M. H. B. Hayes

1	Introduction
2	Small Organic Acids in Soils
3	Macromolecular Acids in Soils
3.1	Humic Substances
4	Organic Bases in Soils
5	Influences of Organic Acids and Bases in Soils
6	Summary and Conclusions
	References

Chapter 5 The Chemistry of Aluminium, Iron and Manganese Oxides in Acid Soils

E. Paterson, B.A. Goodman, and V.C. Farmer

1	Introduction	97
2	Aluminium Oxides	98
2.1	Soil Species and Their Solubility	98
2.2	Reactivity of Allophane and Hydroxyaluminium Interlayers	104
3	Iron Oxides	105
3.1	Forms and Occurrence	105

х

3.2	Solution Chemistry of Iron in Soils	107
	Surface Chemistry of Metal Oxides	
	Manganese Oxides	
	Mineralogy	
	Solubility	
	Sorption	
	References	

Chapter 6 Assessing the Solubilities and Reaction Kinetics of Aluminous Minerals in Soils H.M. May and D.K. Nordstrom

1	Introduction	125
2	Experimental Determination of the Stabilities	
	of Aluminous Minerals	126
2.1	The Al ₂ O ₃ -H ₂ O System: Aluminium Hydroxides	
	and Oxyhydroxides	127
2.2	The Al ₂ O ₃ -H ₂ O System: Aluminum Sulfate Minerals	
	in Acid Systems	131
2.3	-	
	The Aluminosilicate Clay Minerals	132
3	Kinetics of Aluminous Mineral Precipitation/Dissolution	
	Reactions	135
3.1	Kinetics of Hydroxy-Aluminium Solids Formation	
	and Dissolution	136
3.2	Kinetics of Aluminosilicate Mineral Formation and Dissolution	140
4	Interaction of Aluminous Mineral Stabilities	
-	and Reaction Kinetics in Soils and Other Terrestrial Systems	141
4.1	Acidification Response in Natural Waters and Soils	141
		143
4.2	Watershed-Scale Weathering Phenomena, Rates and Models	
	References	145

Chapter 7 Nutrient Status and Toxicity Problems in Acid Soils M.E. Sumner, M.V. Fey, and A.D. Noble

1	Introduction
2	Soil Acidity and Nutrient Status
2.1	Nitrogen
2.2	Phosphorus
2.3	Potassium
2.4	Calcium
2.5	Magnesium
2.6	Sulphur
2.7	Copper
2.8	Zinc

2.9	Manganese	161
2.10	Iron	164
2.11	Boron	1 64
2.12	Molybdenum	165
2.13	Silicon	165
3	Toxicity Problems in Acid Soils	167
3.1	Manganese Toxicity	167
3.2	Al Toxicity in Relation to Ca Level and pH	1 67
3.3	Al Toxicity and Soil Organic Matter	168
3.4	Al Toxicity, Soil Solution Ionic Strength, and the Effect	
	of Soil Drying Cycles	169
4	Ion Activities in the Soil Solution: An Alternative Perspective	
	to Soil Acidity Problems	169
4.1	Relationship of Nutrient Uptake to Chemical Potentials	171
4.2	Chemical Potentials and Root Response to Ca and Al	173
5	Concluding Remarks	175
	References	178

Chapter 8 Effects of Soil Acidity on Plant Associations M. Runge and M.W. Rode

1	Introduction	1
2	Effects of Single Factors	1
2.1	Concentration of Ca-Ions	1
2.2	Concentration of H-Ions	1
2.3	Concentration of Al-Ions	1
2.4	NH_4/NO_3 Ratio	1
3	Interactions	1
3.1	Interaction of Ca with H and Al	1
3.2	Interaction of the N-Form with H and Al	1
4	Conclusions	1
	References	1

Chapter 9 The Transfer of Acidity from Soils to Surface Waters J.O. Reuss

1	Introduction	203
2	Acid Neutralizing Capacity in Water	203
3	Acid Neutralizing Capacity in Soil Solutions	
4	Quantification of the Processes	208
5	Other Processes	215
6	Conclusions	216
	References	217
Subject Index		219