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Abstract: Transportation is an important part of social and economic development and is also
a typical high-energy and high-emissions industry. Achieving low-carbon development in the
transportation industry is a much-needed requirement and the only way to achieve high-quality
development. Therefore, based on the relevant data of 30 provinces in China from 2010 to 2018, this
research uses the static panel model, panel threshold model and spatial Durbin model to conduct
an empirical study on the impact and mechanism of digital innovation on carbon emissions in
the transportation industry, and draws the following conclusions. (1) Carbon emissions in the
transportation industry have dynamic and continuous adjustment characteristics. (2) There is a
significant inverted U-shape non-linear relationship between the level of digital innovation and
carbon emissions in the industry. In regions with a low level of digital innovation, the application of
digital technology increases carbon emissions in this industry, but as the level of digital innovation
continues to increase its application suppresses carbon emissions, showing an effect of carbon
emission reduction. (3) The impact of digital innovation on carbon emissions in the transportation
industry has a spatial spillover effect, and its level in one province significantly impacts carbon
emissions in other provinces’ transportation industry through the spatial spillover effect. Therefore,
it is recommended to further strengthen the exchange and cooperation of digital innovation in the
transportation industry between regions, improve the scale of digitalization in this industry, and
accelerate its green transformation through digital innovation, thus promoting the green, low-carbon,
and sustainable development of China’s economy.

Keywords: digital technology; digital innovation; transportation industry; carbon emissions

1. Introduction

Carbon peaking and carbon neutrality are the most important national strategies in
China at present. To cope with the deteriorating ecological environment, the government
proposed the “double carbon” target at the 75th session of the United Nations General
Assembly and included “a steady decrease in carbon emissions after reaching the peak”
in China’s 2035 vision. The 14th Five-Year Plan further clarified that an action plan to
reach the carbon peak by 2030 should be formulated. At the 9th meeting of the Central
Finance and Economics Commission and the 29th collective study of the Central Polit-
ical Bureau, General Secretary Xi Jinping further put forward higher requirements for
green and low-carbon development in the current and future periods, emphasizing the
need to follow the path of green, low-carbon, and high-quality development. A long-
term perspective can help comprehensively reduce the carbon emissions of each industry,
which forms the solemn commitment of China’s economic development and its economy’s
sustainable advancement.

The transportation industry typically emits high energy and high emissions and is
one sector that may restrict the achievement of the “double carbon” target [1]. With the
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accelerating urbanization process and the increasing inter-regional movement of materials
and people, the total carbon emissions of the transportation sector and its growth rate are
both showing a rapid expansion trend [2]. 2020′s “China’s Carbon Peak by 2030 Study
Report” pointed out that China’s transportation sector carbon emissions are currently
860 million tons, accounting for 9% of energy carbon emissions, with an average annual
growth rate of 5%. It is expected by 2030 that its carbon emissions from the transportation
sector will continue to grow by more than 50%, and the carbon peak of the transportation
sector will be achieved later than that of the industrial and construction sectors and only
after the overall carbon peak of the country [3,4]. Therefore, to achieve the “double carbon”
target as soon as possible, the green and low-carbon development of the transportation
sector is essential.

In the “digital” era, all industries are facing new opportunities for low-carbon devel-
opment. Cloud computing, big data, artificial intelligence, the Internet of Things, and other
digital technologies enable the formation of a low-carbon transformation industrial model
that can promote the digitalization of key industries and fields along with green integration
development [5]. China has emphasized the leading role of technological innovation in
the transportation industry, proposing to accelerate the construction of a modern trans-
portation system and to improve the construction of green and low-carbon transportation
infrastructure based on convenience, high speed, light weight, and high technology [6,7].
The European Commission has also proposed to increase innovation in the use of new
technologies to promote carbon emission reduction in the transport sector.

Digital innovation helping reduce carbon emissions in the transportation industry has
become the current trend. The Chinese government will continue to promote the integra-
tion of digital technology and transportation systems in the future and further strengthen
the exchange and cooperation of digital innovation in the transportation industry between
regions [8,9]. In the existing literature, the impact of digital innovation on the carbon emis-
sions of the transportation industry is still uncertain, so this paper is committed to research
on the impact of carbon emissions of the transportation industry, to analyze what kind of
impact digital innovation level has on the carbon emissions of the transportation industry,
and how the specific mechanism is. As an important energy consumption and carbon
dioxide emission department, it is of great significance for China to clarify the impact mech-
anism of digital technology innovation on carbon emissions of the transportation industry
to achieve the national carbon peak goal by 2030. In addition, some of the literature has
proposed the spatial characteristics of carbon emissions, but ignored the spatial correlation
of the impact of information and communication technology and the Internet on carbon
emissions in the transportation industry, lacking the research on spatial spillover effects.
Therefore, this paper further studies the spatio-temporal evolution characteristics of digital
innovation level on carbon emissions in the transportation industry in combination with
the spatial autocorrelation and spatial spillover effects of China’s carbon emissions. In
summary, the research herein analyzes the impact mechanism of digital innovation on
carbon emissions in the transportation industry and further explores the spatial effects
of carbon emissions in the industry, so that national government departments can better
set policy goals, fully exploit the emission reduction potential of this industry, enjoy the
dividends of digital economy development, and contribute to the construction of a strong
ecological civilization and comprehensive sustainable development for China.

The remainder of this study is organized as follows. Section 2 describes the research
hypothesis. In Section 3, we explain the model specification and variable selection. The
empirical results and discussion are represented in Section 4. Section 5 concludes the
conclusions and shows us the policy implications.
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2. Research Hypothesis
2.1. The Impact of Digital Technology Innovation on Carbon Emissions in the Transportation
Industry and Its Non-Linear Characteristic

As a major carbon-emitting country, China has proposed to reach the carbon peak
by 2030 and achieve carbon neutrality as early as possible. With the rapid development
of the digital economy, many scholars have started to incorporate research and develop-
ment (R&D) investment and technological innovation into the study of carbon emissions,
confirming that technological progress and innovation are the key links to achieve their
reduction [10,11]. The theory of endogenous technological progress states there is a bias
in technological progress [12]. Some scholars classify technologies into different types,
such as clean and polluting technologies [13], environmental technologies, energy use
technologies, capital embodied technologies, and broad technologies [14]. Hao et al. (2021)
concluded through empirical analysis that environmental technology advancement and
capital-embodied technology advancement can reduce carbon emissions, while broad
technology advancement and energy use technology advancement further increase car-
bon emissions. Yin et al. (2022) noted that anthropogenic production technology effects
can reduce carbon emissions in the industrial sector, while structural production technol-
ogy promotes carbon emissions in medium- and low-emission industries [15]. Therefore,
digital technology innovation is inextricably linked to carbon emission reduction in the
transportation sector, which has high energy consumption characteristics.

Regarding the relationship between digital technology innovation and carbon emis-
sions, Liang et al. (2017) argued that technological progress brought by R&D investment is
the key to achieving carbon emission reduction, and this relationship is non-linear and has
different characteristics in the central and eastern regions of China [16]. Digital innovation
can improve the development of the whole transportation industry by promoting economic
development, thus increasing the use of various modes of turnover such as freight, passen-
ger, and shipping in a province and its neighboring provinces. Thus, carbon emissions from
transportation increased significantly in the pre-development period, and then with the
development of the digital economy, digital innovation optimized the energy by reducing
the consumption of traditional fossil energy in the transportation industry [17,18]. With
the development of the digital economy, digital innovation is optimizing the energy use
structure by reducing the consumption of traditional fossil energy in the transportation
industry and gradually replacing the use of traditional energy from new energy sources,
which in turn lower total carbon emissions in the transportation industry. Based on this,
this paper proposes Hypothesis 1.

Hypothesis 1 (H1). Digital technology innovation impacts carbon emissions in the transportation
industry and has a non-linear characteristic.

2.2. Spatial Spillover Effects of Carbon Emissions from the Transportation Sector

The digital economy allows the sharing of information and development dividends
through technological innovation and enhances the linkage of economic activities between
provinces and regions. Jin et al. (2022) concluded that once China’s digital economy
linkage network took its initial shape, the agglomeration effect and spill-over effect of
provinces gradually increased, and the mobility of provincial digital resource elements rose
significantly [19]. Bi et al. (2019) studied the impact of digital technology on environmental
quality in China using a spatial model and found that technological progress reduces
the emission of pollutants and there is a spatial spillover effect [20]. Xu et al. (2022)
constructed a dynamic spatial Durbin model based on the spatial autocorrelation test to
study the spatial effect of strong carbon emissions in China, noting that technology input
produces a negative spatial spill-over on carbon emission intensity [21]. Analyzing China’s
transportation carbon emissions data from 1996–2014, Zhang et al. (2019) found a spatial
spill-over effect of transportation carbon emissions in some provinces and a strong spatial
correlation within provinces [22]. It is logical that the impact of digital technology on
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carbon emissions in the transportation industry should also have a spatial spill-over effect.
Therefore, this paper proposes the Hypothesis 2.

Hypothesis 2 (H2). Digital technology innovation has a spatial spill-over effect on carbon emis-
sions in the transportation industry.

2.3. Specific Mechanisms of the Role of Digital Technology Innovation on Carbon Emissions in the
Transportation Industry

According to the technological innovation effect of the digital economy, there are two
main paths whereby the digital economy affects carbon emissions in the transportation
industry through technological innovation. On the one hand, the digital interconnection
of various industries, the significant increase in passenger and cargo turnover, and the
emergence of various modes of transportation have promoted the development of the
transportation industry and further increased its total carbon emissions [23,24]. The de-
velopment of this industry has pushed up carbon emissions, and there is a significant
spatial positive relationship between its carbon emissions and motor vehicle ownership,
GDP, freight turnover, and passenger turnover [25]. On the other hand, digital technology
can optimize the energy use structure of the transportation industry. Zhang et al. (2022)
concluded that the digital economy improves the energy structure by reducing the use of
traditional fossil energy, and this improvement is an important mechanism for the reduction
of carbon emission intensity caused by the digital economy’s development [26].

In terms of energy consumption structure, gasoline, kerosene, diesel, and fuel oil
account for the majority of such consumption in the transportation industry, and the energy
structure closely relates to carbon emissions. As digital interconnection promotes the
connection between innovation subjects and innovation sharing, it also generates digital
technology empowerment. The in-depth application of digital technology helps change
people’s traditional concept of fossil energy consumption, generate new ways of energy
consumption, facilitate the promotion of clean energy and the use of green technologies to
areas with serious environmental pollution, and promotes the transformation of energy
consumption in the transportation industry to further spur the use of new energy sources
and digital technology applications in the field of new energy industry that can maximize
the digital energy innovation mechanism [27,28]. The application of digital technology
in the new energy industry can maximize the driving effect of digital energy innovation
mechanisms on energy restructuring [29,30]. The application of new energy to all aspects
of transportation promotes the green transformation of transportation energy and helps
achieve its carbon reduction effect. The Hypothesis 3 is now presented.

Hypothesis 3 (H3). The level of transportation development has a positive moderating effect
in digital technology innovation’s impact on carbon emissions in the transportation industry.
The structure of transportation energy consumption has a negative moderating effect in digital
technology innovation’s impact on carbon emissions in the transportation industry.

3. Model Specification, Variables, and Data Description
3.1. Model Specification
3.1.1. Modeling of the Static Panel

Since total economic growth per capita, energy consumption intensity, urbanization
level, openness to the outside world, regional consumption capacity, transportation struc-
ture, and industrial structure have an impact on carbon emissions in the transportation
industry, these factors are used as control variables to explore digital innovation’s influence
on energy carbon emissions in the transportation industry in a targeted manner. To elimi-
nate heteroskedasticity, the explanatory variables and control variables are logarithmically
treated. Therefore, the paper sets up the following static panel data model.
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ln ci,t = αi + β1digi,t + β2controlsi,t + εi,t (1)

Here, nci,t denotes the natural logarithm of total carbon emissions in the transportation
sector in year t for province i; digi,t denotes the digital innovation level in province i in year
t; controlsi,t denotes all control variables in province I in year t, including total economic
growth per capita, urbanization level, openness to the outside world, regional consumption
capacity, and industrial structure; αi denotes unobservable individual effects; and εi,t is a
random error term.

3.1.2. Modeling of the Panel Threshold

The previous hypothesis states that carbon emissions from the transportation sector
will change with an increase in the level of digital innovation. To further investigate this
non-linear relationship, the study sets up the following panel threshold model.

ln ci,t = αi + λ1digi,t × I(Adji,t ≤ θ) + λ2digi,t × I(Adj > θ)β2c× β2controlsi,t + εi,t (2)

Here, Adji,t is the threshold variable for the digital technology innovation; and I(•) is
the representative indicative function with a value of 1 when the condition in parentheses
is satisfied and otherwise 0. When the coefficients λ1 and λ2 are not equal, it means that
there is a threshold effect, and the rest of the variables are the same as in Equation (1).

3.1.3. Modeling of the Spatial Dependence

As neighboring provinces tend to have similar economic structures and life character-
istics, the carbon emissions and influencing factors in the transportation sector between
them also correlate. To further discuss the spatial spillover effect of digital innovation
level on carbon emissions in the transportation industry, this paper introduces the spatial
interaction terms of explanatory variables„ and control variables based on the benchmark
model as follows.

ln ci,t = αi + ρWhci,t + ϕ1Wdigi,t + β1digi,t + ϕ2Wdig2i,t + β2dig2i,t + ϕ3Wcontrolsi,t + β3controlsi,t + εi,t (3)

Here, ρ is the spatial autoregressive coefficient—i.e., the carbon emission effect of a
province caused by other neighboring provinces; W is the spatial weight matrix, and the
three methods of economic distance, geographic distance matrix, and adjacency matrix are
used herein for regression to improve the robustness of the empirical results; and ϕ1, ϕ2
and ϕ3 are the coefficients of the core explanatory variables as well as the spatial interaction
terms of the control variables. Equation (3) contains the spatial interaction terms of the
explanatory and explanatory variables and is known as the spatial Durbin model (SDM).

The economic distance matrix is constructed based on the GDP per capita of China
from 2010–2018. The geographical distance matrix is constructed based on the inverse
distance matrix with the Euclidean distance calculated from the latitude and longitude of
the provincial capital cities. The adjacency matrix at W is denoted as follows.

W =

{
1, If the two provinces are adjacent to each other;
0, Qthers.

(4)

3.2. Variables and Data Description
3.2.1. Explained Variables

For carbon emissions from transportation (CO2), this paper adopts the top-down
method of energy end-use consumption and estimates the carbon emissions from trans-
portation in 30 provinces and cities (except Tibet, Hong Kong, Macao, and Taiwan) during
2010–2018 based on the amount of energy end-use consumption and CO2 emission coeffi-
cients in transportation. Currently, energy consumption indicators in transportation are
often reported together with storage and postal industries. Considering the low proportion
of storage and postal industries, this paper uses the energy consumption data of transporta-
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tion, storage, and postal industries from the China Energy Statistical Yearbook for each year.
This paper divides final energy consumption into nine categories, including eight types of
fossil energy consumption and electricity consumption in the secondary energy. Various
energy sources are first converted into standard coal in the calculation of carbon emissions.

Carbon emissions are estimated according to the method provided by the 2006 IPCC-
designated Guidelines for National Greenhouse Gas Emissions Inventories with the follow-
ing formula.

CO2 =
9

∑
i=1

CO2 =
9

∑
i=1

Ei × SCCi × CEFi (5)

Here, CO2 denotes estimated carbon emissions; i denotes each energy source; Ei de-
notes energy consumption; SCCi is the discounted standard coal factor for each energy
source; and CEFi is the carbon emission factor provided by IPCC 2006. The details are
in Table 1.

Table 1. Carbon emission factors and standard coal conversion factors of nine energy sources.

Energy
Carbon Emission Factor
(Tons of Carbon/Tons of

Standard Coal) CEF

Discount Factor for Standard
Coal (kg Standard Coal/kg) SCC

Coal 0.7476 0.7143
Coke 0.1128 0.9714

Crude Oil 0.5854 1.4286
Gasoline 0.5532 1.4714
Kerosene 0.3416 1.4714

Diesel 0.5913 1.4571
Fuel Oil 0.6176 1.4286

Natural Gas 0.4479 1.3300
Power 2.2132 0.1229

Note: The converted quasi-coal coefficients are from the 2013 China Energy Statistics Yearbook, and the carbon
emission coefficients for each energy source are from the 2006 IPCC.

3.2.2. Core Explanatory Variables

In terms of digital innovation level (dig), with the support and guidance of many
national policies and the comprehensive effect of new-generation information technol-
ogy, China’s Internet industry has developed rapidly and paid more attention to R&D
investment. At the same time, R&D innovation has gradually shown its leading role in the
digital industry, with this new industry and new mode of the Internet developing rapidly,
expanding in scale and in innovation and pushing digital innovation capability as the key
to the digital economy’s advancement. This paper draws on one of the core dimensions of
the digital economy based on “digital technology innovation level” [31,32] and selects the
volume of full-time R&D personnel, R&D funding, number of R&D projects, and number
of digital economy-related patent applications (from the patent search website of the State
Intellectual Property Office) to measure the level of digital innovation. That is, the level
of digital innovation is a comprehensive indicator of all variables shown in Table 2. The
specific evaluation system appears in Table 2.

Table 2. Evaluation system of China’s digital innovation level.

Digital technology innovation level

Full-time volume of R&D staff
R&D funding

Number of R&D projects
Number of digital economy-related patent applications
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3.2.3. Control Variables

Carbon emissions from the transportation industry are bound to be influenced by
various other factors. With economic development, per capita car ownership will increase
and people’s travel demand will rise sharply, and so economic development will raise
national transportation carbon emissions [33,34]. As China’s openness increases and ur-
banization advances, economic relations around the country become increasingly close,
transportation activities become more frequent, and carbon emissions from the transporta-
tion industry appear to change spontaneously and non-spontaneously. In general, the
greater the proportion is of the added value of the transportation industry to the added
value of the total industry, the greater the effect of promoting emission reduction in the
transportation industry. To more accurately analyze the impact of digital innovation on the
total carbon emissions of the transportation industry, the following control variables are
included in this paper.

Economic development level (pgdp): In this paper, GDP per capita is selected as the
economic development level indicator, and both it and GDP are obtained from the statistical
yearbooks of each province.

Openness to the outside world (open): This paper selects the ratio of the total imports
and exports of each domestic province to the total value of the country’s economic growth,
where the total import and export is converted to RMB using the annual exchange rate.
Total imports and exports are obtained from the statistical yearbook of each province, and
the annual average exchange rate of China is obtained from the China Statistical Yearbook.

Urbanization level (urban): This denotes the share of urban population in the total
regional population in each province in each year.

Regional consumption capacity (consume): It is the proportion of total retail sales of
social consumer goods to China’s GDP. Total retail sales of social consumer goods are from
the statistical yearbook of each province.

Industry structure (transd): It is expressed by the value added of the transportation in-
dustry over the total value of economic growth. A higher value means a greater proportion
of the transportation industry in the region.

In view of the validity and reliability of the data, the paper chooses panel data of
30 provinces and cities of China (except Tibet, Hong Kong, Macao, and Taiwan) during
the nine-year period from 2010 to 2018. The descriptive statistics of each variable are in
Table 3.
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Table 3. Results of descriptive statistics for each variable.

Variable Category Variable Name Variable Symbol Variable Definition Variable Unit Total Number of
Variables Average Value Standard Deviation Minimum Value Maximum Value

Explained variables
Transportation
energy carbon

emissions
CO2

Measured by the method
provided by IPCC in 2006; the

formula is (4)
million tons 270 1518.202 447.704 83.053 5079.747

Core explanatory
variables

Digital
Innovation level dig Comprehensive evaluation

system according to Table 2 - 270 0.480 0.220 0.120 1.430

Control variables

Economic
growth level pgdp Expressed as gross economic

value added per capita 10,000 Yuan/person 270 5.070 2.470 1.310 14.02

Urbanization level urban Total urban population/resident
population - 270 0.570 0.130 0.340 0.900

Open to the public open Total imports and exports/GDP - 270 0.250 0.320 0.000 1.550
Regional

consumption power consume Total retail sales of social
consumer goods/GDP - 270 0.380 0.0700 0.230 0.600

Industry Structure transd Value added of transportation
industry/GDP - 270 0.050 0.010 0.020 0.100
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4. Results and Discussion
4.1. Panel Model Regression Analysis

The results of the baseline regression appear in Table 4. Column (1) reports the coeffi-
cient relationship between adding only the level of digital innovation and carbon emissions
in the transportation industry, and the estimated coefficient of the core explanatory vari-
able dig is significantly positive. Columns (2), (3), and (4) (i.e., exploring the relationship
between carbon emissions in the transportation industry and digital innovation) include
control variables and gradually control for time and spatial effects. For the static panel, the
paper uses the Hausman test to test whether a fixed effect or random effect is used. The
test result p-value is 0, which rejects the original hypothesis, and so the fixed effect model
should be used. The results of each regression show that digital innovation significantly
relates to total carbon emissions in the transportation sector, and the control variables also
pass the significance test. This demonstrates that carbon emissions in the transportation
sector are influenced by digital innovation.

Table 4. Panel model regression results.

Variable (1) (2) (3) (4)

dig 1.9204 ***
(0.2337)

1.8875 ***
(0.6715)

1.8553 ***
(0.5071)

2.1443 ***
(0.7324)

Constant 5.1941 ***
(0.0713)

5.4022 ***
(0.1110)

5.9019 ***
(0.4946)

5.2232 ***
(0.4990)

Controls Uncontrolled Control Control Control
Time effect No No No Yes

Spatial effects No No Yes Yes
R-squared 0.3532 0.4096 0.5237 0.5021

Obs. 270 270 270 270
Notes: Robust standard errors are within ( ). ***, **, and * denote significance levels at 1%, 5%, and 10%, respectively.

To further test hypothesis H1, in which there is more than a simple linear relationship
between digital technology innovation and carbon emissions in the transportation industry,
this paper uses a panel threshold model. Before conducting the threshold effect test, it is
necessary to determine whether the threshold effect exists and the number of thresholds
that exist. Therefore, this study conducts the threshold existence test based on Hansen’s
method, and the results show the digital technology innovation index as the threshold
variable passes the single threshold test at the 95% level. Therefore, this paper sets the
unit threshold for regression and presents the regression results in Table 5. The regression
results show that the level of digital technology innovation development has a non-linear
relationship on the impact of carbon emissions in the transportation industry, and the
single threshold value with digital technology innovation as the threshold variable is 0.582,
which is significant at the 5% level. When the level of digital technology innovation is
below the threshold value, 0.582, an increase in the level of digital technology innovation
will significantly raise the total carbon emissions of the transportation industry. With the
continuous development of digital technology, when the value exceeds the threshold value,
the coefficient of the level of digital technology innovation is −0.292, which indicates that
each unit increase in the level of digital technology innovation at this time will reduce
carbon emissions of the transportation industry by 0.292%. This is because the use of the
Internet in the digital era has made people’s lives smarter, and the application of new
technologies has optimized the transportation system and improved energy use efficiency.
This regression result further confirms hypothesis H1.
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Table 5. Threshold model regression results.

Variable dig

Threshold value 0.582

Dig × I (Th ≤ q1) 2.434 ***
(0.173)

Dig × I (Th > q1) −0.292 ***
(0.0520)

Controls Control

Constant 6.495 ***
(0.144)

Obs. 270
R-squared 0.639

Notes: Robust standard errors are within ( ). ***, **, and * denote significance levels at 1%, 5%, and 10%, respectively.

4.2. Spatial Effect Analysis

In order to specifically analyze the spatial spillover effect of carbon emissions from
China’s transportation industry, this paper conducts a spatial effect analysis. Before doing
the spatial econometric analysis, the spatial autocorrelation test between the level of digital
innovation and carbon emissions in the transportation industry is first executed. This study
uses Moran’s I index to calculate the spatial effects from 2010 to 2018 under the economic
distance matrix. The results are in Tables 6 and 7. Table 6 presents that the level of digital
innovation has a strong spatial dependence in all years. Table 7 shows a significant spatial
correlation between the carbon emissions of the transportation industry in China for all
years except 2010, which indicates the existence of spatial clustering between the two.
Therefore, it is necessary to consider spatial correlation using spatial econometric models.

Table 6. Characteristics of the spread of digital innovation level emissions for 2010–2018.

Year Moran’s I Z-Value

2010 0.258 *** 2.905
2011 0.283 *** 3.142
2012 0.271 *** 3.029
2013 0.258 *** 2.902
2014 0.276 *** 3.075
2015 0.269 *** 2.996
2016 0.301 *** 3.333
2017 0.145 ** 1.781
2018 0.115 * 1.483

Notes: ***, **, and * denote significance levels at 1%, 5%, and 10%, respectively.

Table 7. Carbon emissions spread of characteristics in the transportation sector for 2010–2018.

Year Moran’s I Z-Value

2010 0.178 2.191
2011 0.359 *** 4.716
2012 0.349 *** 4.565
2013 0.344 *** 4.501
2014 0.359 *** 4.686
2015 0.356 *** 4.655
2016 0.337 *** 4.398
2017 0.291 ** 3.333
2018 0.362 *** 4.759

Notes: ***, **, and * denote significance levels at 1%, 5%, and 10%, respectively.

This paper applies the LM test, SDM fixed effects model, and Hausman test to deter-
mine which spatial econometric model to use, indicating that the two-way fixed effects
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SDM model is the optimal choice. Table 8 gives the estimation results of the SDM fixed
effects estimation model for different distance matrices.

Table 8. Regression results of the spatial model of digital innovation level affecting carbon emissions
in the transportation industry.

Model Setting SDM

Spatial Matrix Type Economic Distance Geographical Distance Adjacency Matrix

Variable (1) (2) (3)

rho −0.231 **
(0.0903)

−1.020 ***
(0.238)

−0.150 **
(0.0638)

dig 0.274 *
(0.161)

0.337 **
(0.139)

0.370 **
(0.154)

dig2 −0.0339
(0.0266)

−0.0422 *
(0.0230)

−0.0544 **
(0.0254)

W*dig 1.214 ***
(0.523)

−0.943
(0.860)

0.597 *
(0.326)

W*dig2 −0.209 ***
(0.0720)

0.163
(0.151)

−0.0966 *
(0.0551)

Controls Yes Yes Yes

Direct effect
dig 0.224 *

(0.175)
0.385 **
(0.150)

0.358 **
(0.160)

dig2 −0.0276 *
(0.0289)

−0.0502 **
(0.0249)

−0.0527 **
(0.0263)

Indirect effects
dig 1.157 **

(0.477)
0.660 *
(0.467)

0.498 *
(0.303)

dig2 −0.157 **
(0.0674)

−0.105 *
(0.0819)

−0.0819
(0.0509)

Total effect
dig 1.381 ***

(0.417)
1.045 **
(0.443)

0.855 ***
(0.310)

dig2 −0.185 ***
(0.0578)

−0.155 **
(0.0779)

−0.135 **
(0.0527)

LogL 231.0028 258.2256 217.8049
R-squared 0.164 0.094 0.071

Notes: Robust standard errors are within ( ). ***, **, and * denote significance levels at 1%, 5%, and 10%, respectively.

The specific analysis is as follows (taking the economic distance matrix as an example).
The spatial lag coefficient of the digital innovation level is 1.214 with a significance level of
1%, and the coefficient of its squared term is−0.209, which is also significant at the 1% level.
This indicates that digital innovation in a province not only affects local transportation
carbon emissions, but also affects transportation carbon emissions in other provinces
with similar levels of economic development to its own through the spatial lag effect.
The coefficient of the indirect effect in (1) shows that the transportation industry of a
province is also driven by the economic development and digital innovation of other
provinces, which in turn affect the total carbon emissions of the transportation industry.
The positive coefficient of digital innovation level and the negative coefficient of quadratic
term coefficient indicate that when the digital innovation level of a province exceeds a
certain threshold value, the carbon emissions of the transportation industry in that province
will not only fall, but so will the carbon emissions of other neighboring provinces or areas
with a similar economic development level.

4.3. Endogenous Problems

The endogeneity problem arises for two main reasons: one being that the independent
and dependent variables causally relate to each other, and the other being the omission of
important variables. Endogeneity can make the estimated coefficients biased. In order to
alleviate the endogeneity problem, this study further employs the two-stage least squares
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method with instrumental variables and the generalized moment estimation method to
solve it.

First, this paper adopts the method of Huang et al. (2019) and selects the number
of post offices in 1984 in each province and city as an instrumental variable for the level
of digital innovation [35]. The reason for choosing this instrumental variable is that the
distribution of post offices represents the popularity of ICT (Information and Communica-
tions Technology) in the region, and post offices can influence the level and development
rate of Internet technology application, which satisfies the relevance of the instrumental
variable. In addition, since the instrumental variable is selected as historical data, tradi-
tional communication tools such as landline post offices have minimal impact on a region
via the development of digital technology, which satisfies exclusivity. Since the original
data for 1984 are cross-sectional and do not satisfy the analysis of panel data, drawing on
Nunn & Qian’s method, this paper constructs the interaction term between the number of
landline telephones per 10,000 people in each province in 1984 and the number of national
Internet users in the previous year, respectively, as an instrumental variable for the level of
digital innovation in that year [36]. Columns (1) and (2) of Table 9 report the results of the
two-stage least squares regression of the instrumental variables, where the Kleibergen–Paap
rk LM statistic has a p-value of 0, the original hypothesis of “unidentifiable instrumental
variables” is rejected, and the Kleibergen–Paap rk Wald F statistic results indicate no weak
instrumental variables. Column (1) of Table 9, the first-stage regression results, shows that
the instrumental variables and the core explanatory variables pass the significance test at
the 5% level, and the second-stage results indicate that the introduction of instrumental
variables does not affect the main findings of the model.

Table 9. Regression results dealing with endogeneity.

Variable
Instrumental Variables Method 2SLS Generalized Moment Estimation Method

Phase I
dig

Phase II
lnc

DIF-GMM
lnc

Twostep SYS-DMM
lnc

dig 2.159 **
(0.149)

2.720 ***
(0.135)

2.319 ***
(0.187)

2.547 ***
(0.177)

iv 0.238 **
(0.0769) - - -

L.lnc - - 0.7488 ***
(0.132)

0.985 ***
(0.0885)

Controls Yes Yes Yes Yes

Constant 4.991 ***
(0.206)

3.838 ***
(0.277) - 0.484

(0.442)

Kleibergen–Paap rk LM 21.075
[0.000] - -

Kleibergen–Paap rk
Wald F

9.537
{8.96} - -

Hansen - - 1 0.552
AR(1) - - 0.00450 0.00047
AR(2) - - 0.216 0.220
Obs. 240 240 210 270

Note: p values are in [] and critical values in { } for the Stock–Yogo weak identification test at the 15% level.

Second, the study sets up dynamic panel models and estimates the results using
generalized difference GMM and two-step systematic GMM (see columns (3) and (4) of
Table 9). The Arellano–Bond statistic is chosen for the empirical analysis process to test the
autocorrelation of the model. As seen from the Arellano–Bond statistic AR (2) reported
in the empirical results, its p-value is greater than 0.1, which rejects the hypothesis of the
existence of autocorrelation and indicates that the GMM estimates are consistent. The
Hansen statistic is chosen for the GMM model with instrumental variables selected for the
over-identification test. Here, the p-values corresponding to the Hansen J statistic in Table 5
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are all above 0.1, indicating that the selected instrumental variables are reasonable and
there is no over-identification. From the specific regression results in Table 5, we also know
that the coefficients, sign direction, and significance of the variables in the generalized
method of moments estimation do not differ significantly from the baseline regression,
further verifying that carbon emissions from the transportation sector in the previous
period positively correlate with total carbon emissions from the transportation sector in
the current period at the 1% significance level, proving that carbon emissions from China’s
transportation sector are path-dependent, and that China should take advantage of this
characteristic of carbon emissions to adopt more efficient emission reduction programs
and measures.

4.4. Robustness Test

Firstly, to test the robustness of the panel regression of sample data, this paper first
replaces the total carbon emissions of the transportation sector (i.e., the ratio of total
carbon emissions of the transportation sector to GDP) with the total carbon emissions of
the transportation sector as the explanatory variable. Transportation energy intensity is
one of the main influencing factors of transportation carbon emissions, and a decrease
in energy consumption intensity will help total carbon emissions also decrease. With
the improvement of residents’ consumption ability, people are gradually improving their
physical and psychological needs, and the choice of transportation means of travel appears
hierarchical. Thus, the regression results prove the robustness of the regression. Second, the
measurement of digital innovation level is somewhat subjective. Hence, in order to prove
the scientific credibility of the regression results, the Internet penetration rate is used instead
of digital innovation level as the core explanatory variable. The Internet penetration rate is
measured by the ratio of the number of Internet users to the regional resident population.
Finally, because of the different resource endowments and development characteristics
of each province and region, there is heterogeneity in their transportation conditions and
digital innovation levels. Therefore, the impact of digital innovation on carbon emissions in
the transportation industry may also be heterogeneous at the provincial level. This paper
explores this angle in greater depth.

The specific regression results are shown in the following Table 10. Table 10 (1) lists
the regression results of the fixed effects model after replacing the explanatory variables,
(2) presents the regression results after replacing the explanatory variables, and (3) offers
the robustness test of grouped regressions by dividing China into east, central, and west
regions. Specifically, the correlation between digital innovation and carbon emissions in the
transportation industry is greater in the central region, because the economic development
there is fast in general, and digital technology and digital innovation in the central region is
surging. The central region should further stimulate faster and better digital development
after breaking through the threshold of digital technology innovation and enjoy the carbon
emission reduction dividend brought by digital technology innovation, laying a good
foundation for the green development of the transportation industry there. Development
in the western region is relatively backward, and development there has enhanced the local
industry to a certain extent, but digital connectivity still needs to be increased and to be
popularized and better integrated with the transportation industry. Overall, the results
show that the estimated coefficients of all variables have the same direction and correlate at
different significance levels. The full-sample benchmark regression passes the stability test.
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Table 10. Robustness tests of the level of digital innovation affecting carbon emissions in the trans-
portation sector.

Variables
(1) (2) (3)

Carbon Emission Intensity lnc East Central West

Inter - 0.862 ***
(0.286) - - -

dig 0.749 **
(0.4102) - 2.500 **

(0.247)
2.809 **
(0.330)

2.482 *
(0.277)

Controls Yes Yes Yes Yes Yes

Constant 5.699 ***
(0.0784)

3.479 ***
(0.531)

4.386 ***
(0.411)

8.046 ***
(0.825)

3.359 ***
(0.731)

Obs. 270 270 99 81 90
R-squared 0.028 0.121 0.465 0.495 0.479

Number of id 30 30 11 9 10

Notes: Robust standard errors are within ( ). ***, **, and * denote significance levels at 1%, 5%, and 10%, respectively.

Secondly, the study tests the spatial effect for robustness by using a spatial autoregres-
sive (SAR) model; i.e., only the spatial correlation of the explanatory variables is considered,
and the coefficient of the spatial lag term is 0. The results appear in Table 11 and confirm
that digital innovation in a provincial area not only has an impact on its own transportation
carbon emissions, but also promotes or inhibits the other provinces. A specific impact
change has a turning point that shows an inverted U-shape non-linear relationship, and
the spatial spillover effect also passes the robustness test.

Table 11. Robustness test of the spatial spillover effect of digital innovation level affecting carbon
emissions in the transportation sector.

Model Setting Sar

Spatial Matrix Type Economic Distance Geographical Distance Adjacency Matrix

Variable (1) (2) (3)

rho −0.191 **
(0.0870)

−0.138 **
(0.0890)

−0.112 *
(0.0607)

dig 0.427 ***
(0.153)

0.392 **
(0.154)

0.433 ***
(0.154)

dig2 −0.0600 **
(0.0252)

−0.0540 **
(0.0253)

−0.0599 **
(0.0253)

Controls Yes Yes Yes

Direct effect
dig 0.436 ***

(0.159)
0.398 **
(0.158)

0.440 ***
(0.159)

dig2 −0.0617 **
(0.0262)

−0.0554 **
(0.0261)

−0.0613 **
(0.0261)

Indirect effects
dig 0.0719 *

(0.0437)
0.0386

(0.0743)
0.0455

(0.0315)

dig2 −0.0102
(0.00667)

−0.0054
(0.0107)

−0.0064
(0.00466)

Total effect
dig 0.508 ***

(0.131)
0.437 **
(0.156)

0.486 ***
(0.141)

dig2 −0.0719 **
(0.0216)

−0.0608 **
(0.0253)

−0.0677 **
(0.0232)

LogL 211.4288 209.3413 210.7885
R-squared 0.071 0.083 0.088

Notes: Robust standard errors are within ( ). ***, **, and * denote significance levels at 1%, 5%, and 10%, respectively.

4.5. Mechanism Analysis

Based on the previous research hypotheses, this study uses the total converted trans-
port turnover by year as an indicator of the level of transport development. The share
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of fossil energy consumption in the end consumption of the transport sector within total
energy consumption of the transport sector is a proxy variable for the energy consumption
structure of the transport sector. The SDEM model helps evaluate the moderating effect of
transportation development level and transportation energy consumption structure for the
impact of digital innovation on carbon emissions in the transportation industry.

The results are shown in Table 12. Column 2 presents that the interaction term between
the squared term of digital innovation and the level of transportation development has
a significantly positive effect on carbon emissions, which indicates that as the level of
transportation development improves, the direct inhibitory effect of digital innovation
on carbon emissions in the transportation sector diminishes; i.e., the higher the level
of transportation development, the slower the process of digital innovation on carbon
emissions in the transportation sector from promotion to suppression. Furthermore, the
spatial lag coefficient of the interaction term is 0.0045 with a significance level of 10%,
meaning that the improvement in the level of transportation development of a province
not only suppresses carbon emission reduction of digital innovation on the transportation
industry, but also that of its neighboring provinces.

Table 12. Analysis of the mechanisms by which the level of digital innovation affects carbon emissions
in the transport sector.

Variables’
Moderator Traffic Development Level Transportation Energy

Consumption Structure

dig2 * moderator 0.0028 *
(1.238)

−0.0057 **
(−2.490)

dig 0.6066
(0.539)

0.7594
(1.583)

dig2 −0.0422 *
(−0.023)

−0.0640 *
(−0.031)

W * dig2 * moderator 0.0045 *
(1.381)

−0.0092 ***
(−2.751)

W*dig 3.9163 *
(1.721)

3.3268 *
(1.192)

Controls Yes Yes
Time Effect Yes Yes

Spatial effects Yes Yes
Obs. 270 270
LogL 227 228

R-squared 0.081 0.071
Note: t values are in ( ). ***, **, and * denote significance levels at 1%, 5%, and 10%, respectively.

The results in column 3 of Table 12 illustrate that the interaction term between the
squared term of digital innovation and the structure of transportation energy consumption
has a significantly negative effect on total transportation carbon emissions, and that the
change in people’s perceptions about the use of traditional fossil energy sources to new
energy sources is crucial to the carbon emissions of the transportation sector. As seen from
the results, the spatial lag coefficient of the interaction term is −0.0092 with a significance
level of 1%, denoting that the transportation energy structure not only strengthens the
negative direct effect of digital innovation on carbon emissions in the transportation sector,
but also its negative indirect effect. This further validates the research hypothesis. Moreover,
both specific transmission mechanisms, the level of transportation development, and the
structure of transportation energy consumption, hold true for influencing carbon emissions
in the transportation sector.

5. Conclusions and Policy Recommendations

The 14th Five-Year Plan is a critical period to achieve a shift in the growth rate of carbon
emissions. China’s industries need to seize the opportunity of digital development and
share the dividends of Internet development in order to achieve the double carbon target as
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scheduled. The transportation sector is a major source of global carbon emissions and thus
a key area for achieving the double carbon target of energy savings and emission reduction
in the future [37]. Considering the possible non-linear, dynamic, and spatial effects of
digital innovation on carbon emissions in the transportation sector, this study employs
dynamic panel models and spatial econometric models based on China’s provincial panel
data from 2010–2018 to explore the relationship between them. The main findings are
as follows.

First, carbon emissions in the transportation industry are a dynamic and continuous
adjustment process and are path-dependent. There is also a significantly positive relation-
ship between carbon emissions in the transportation industry in the previous period and
carbon emissions in the current period.

Second, there is a significant inverted U-shape non-linear relationship between digital
innovation and carbon emissions in the transportation industry. In regions with low
levels of digital innovation, digital technology applications increase the intensity of carbon
emissions in the transportation industry. However, as the level of digital innovation
continues to increase, digital technology applications turn to suppress carbon emissions,
showing a carbon emission reduction effect.

Third, digital innovation has a significant spatial spillover effect on transportation
carbon emissions. Digital innovation in a province not only affects its own transportation
carbon emissions, but also affects the transportation carbon emissions of its neighboring or
economically related provinces. This effect also exhibits a non-linear characteristic.

Fourth, the impact of digital innovation level on transportation carbon emissions is
inhibited by the level of transportation development. The impact is further enhanced by
the structure of transportation energy consumption. It also shows spatial characteristics.

The above findings lead to the following policy recommendations.
First, China must continue to take positive action to reduce energy consumption and

emissions in the transportation sector. Studies have shown that carbon emissions from the
transportation sector have a dynamic continuum. In order for the transportation sector as a
whole to achieve carbon emissions reduction, its energy efficiency and emission reduction
policies must be continuously updated and optimized [38]. Government departments
should strengthen investment in transportation infrastructure and continue to increase
energy funds and subsidies to alleviate the cost pressure in upstream raw materials. Instead
of blindly taking a broad-brush approach to traditional primary energy sources such as
coal and oil, China should gradually reduce the use of primary energy in transportation
and continue to increase the proportion of new energy consumption [39]. In addition, the
carbon emission assessment of the transportation sector should be strengthened, and the
concept of green travel should be promoted.

Second, relevant authorities should expand the role of digital innovation in driving
carbon emissions reduction in the transportation industry. The development of China’s
transportation industry should focus on digital technology, by increasing investment in
science and technology innovation in this industry, continuously expanding the investment
and financing channels within the digital industry, guiding the transportation industry
to strengthen the importance of its R&D sector, and giving priority protection to the
R&D sector in terms of funding. China could also establish good channels for cooperation
between industry, academia, and research in the digital industry, introduce high-tech talents
or scientific researchers from universities to join innovative activities in the transportation
industry, and give certain patent fund support to relevant technical personnel to fully
mobilize the digital talents’ R&D enthusiasm and initiative. Doing so could help China as a
whole improve the level of digital innovation.

Third, the exchange and cooperation of digital innovation in the transportation in-
dustry between regions should be enhanced to improve the scale of digitalization of the
transportation industry and promote the green, intelligent, coordinated, and sustainable
development of regional transportation. Research results show that the priority develop-
ment of digital technology and digital innovation will lay a good foundation for the green
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development of its transportation industry. The western region is relatively backward
in development and carbon emission reduction in its transportation industry and has
not been able to enjoy the digital innovation dividend. Thus, the central region should
give full play to its own resources and economic advantages to drive the backward re-
gions to cross the inflection point of digital innovation as fast as possible. Government
departments should focus on exchange and cooperation among regions to narrow the
technological differences between them. Lastly, China should pay attention to the rational
deployment of resources, promote open cooperation among regions, and build a strong
interconnection among industry, talent, technology, information, and other resources to
achieve complementary advantages.
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