Contents

Br	aids	and Knots	1
Pat	rick	D. Bangert	
1	Phy	sical Knots and Braids: A History and Overview	2
2	Bra	ids and the Braid Group	4
	2.1	The Topological Idea	4
	2.2	The Origin of Braid Theory	5
	2.3	The Topological Braid	9
	2.4	The Braid Group	12
	2.5	Other Presentations of the Braid Group	16
	2.6	The Alexander and Jones Polynomials	18
	2.7	Properties of the Braid Group	21
	2.8	Algorithmic Problems in the Braid Groups	22
3	Bra	ids and Knots	24
	3.1	Notation for Knots	24
	3.2	Braids to Knots	28
	3.3	Example: The Torus Knots	28
	3.4	Knots to Braids I: The Vogel Method	29
	3.5	Knots to Braids II: An Axis for the Universal Polyhedron	31
	3.6	Peripheral Group Systems of Closed Braids	39
4	Cla	ssification of Braids and Knots	45
	4.1	The Word Problem I: Garside's Solution	45
	4.2	The Word Problem II: Rewriting Systems	47
	4.3	The Conjugacy Problem I: Garside's Solution	52
	4.4	The Conjugacy Problem II: Rewriting Systems	54
	4.5	Markov's Theorem	59
	4.6	The Minimal Word Problem	62
5	Ope	en Problems	69
R	efere	nces	70

Toj	pological Quantities: Calculating Winding, Writhing,	
Lin	king, and Higher Order Invariants	75
Mit	chell A. Berger (CIME Lecturer)	
1	Introduction	75
2	Winding Numbers	77
	2.1 Two Braided Curves between Parallel Planes	77
	2.2 General Curves	78
	2.3 Topological Invariance	81
3	Linking Numbers	82
	3.1 Winding Number Derivation	82
	3.2 General Properties	83
4	Twist and Writhe Numbers	84
	4.1 Ribbons	84
	4.2 Twisted Tubes	86
5	Writhe from Winding Numbers	87
	5.1 The Twist as a Function of Height	88
	5.2 The Local Winding Number as a Function of Height	89
	5.3 The Local Writhe as a Function of Height	90
	5.4 The Nonlocal Winding Number as a Function of Height	91
	5.5 Example: A Trefoil Torus Knot	92
6	Writhe for Open Curves	94
7	Higher Order Winding	96
Re	eferences	97
Ta	ngles. Rational Knots and DNA	99
Loi	us H. Kauffman (CIME Lecturer) and Sofia Lambropoulou	
1	Introduction	99
2	2-Tangles and Rational Tangles	102
3	Continued Fractions and the Classification of Rational Tangles	107
4	Alternate Definitions of the Tangle Fraction	111
	4.1 $F(T)$ Through the Bracket Polynomial	111
	4.2 The Fraction through Coloring	119
	4.3 The Fraction through Conductance	121
5	The Classification of Unoriented Rational Knots	122
6	Rational Knots and Their Mirror Images	126
7	The Oriented Case	127
8	Strongly Invertible Links	131
9	Applications to the Topology of DNA	132
Re	eferences	136
Th	e Group and Hamiltonian Descriptions of Hydrodynamical	
Sys	stems	138
Bor	ris Khesin (CIME Lecturer)	
1	Introduction	139
2	Euler Equations and Geodesics	140
	2.1 The Euler Equation of an Ideal Incompressible Fluid	140

	2.2 Geodesics on Lie Groups	1
	2.3 Geodesic Description for Various Equations	2
3	Euler Equations on Groups as Hamiltonian Systems and the	
	Binormal Equation	2
	3.1 Hamiltonian Reformulation of the Euler Equations	2
	3.2 Hamiltonian Structure of the Landau-Lifschitz Equation 14	3
	3.3 Properties of the Binormal Equation	5
4	The KdV-Type Equations as Euler Equations	7
	4.1 The Virasoro Algebra and the KdV Equation	7
	4.2 Similar Equations and Conservation Laws	9
5	Hamiltonian Structure of the Euler Equations	
	for an Incompressible Fluid 150	0
	5.1 The Euler Hydrodynamics as a Hamiltonian Equation 150	0
	5.2 The Space of Knots and the Dual of the Lie Algebra of	
	Divergence-Free Vector Fields 15	3
R	eferences	4
Q:	mularities in Fluid Demonsion and their Desolution 15'	7
SIL	(Maffatt (CIME Locture))	1
n.r	Letre duction 15	-
1	Introduction	1 0
2	Cuan Singularities at a Free Surface	D N
3 4	A Simple Finite Time Singularity: the Fuler Dick	1
4 5	Finite Time Singularities at Interior Points	า ว
0 D	Finite-Time Singularities at Interior Foints	4 6
n	elerences	U
Sti	uctural Complexity and Dynamical Systems	7
Rei	nzo L. Ricca (School Director and CIME Lecturer)	
1	Introduction	7
2	Helmholtz's Work on Vortex Motion: Birth of Topological Fluid	
	Mechanics 16	8
	2.1 Multi-Valued Potentials in Multiply Connected Regions 16	8
	2.2 Green's Theorem in Multiply Connected Regions 17	2
	2.3 Conservation Laws	2
3	Measures of Structural Complexity 17	3
	3.1 Dynamical Systems and Vector Field Analysis 17	4
	3.2 Measures of Tangle Complexity 17	5
4	Topological Bounds on Energy and Helicity-Crossing Number	
	Relations for Magnetic Knots and Links 18	1
	4.1 Topology Bounds Energy in Ideal Fluid	2
	4.2 Helicity-Crossing Number Relations in Dissipative Fluid 18	4
R	eferences	5

Random Knotting: Theorems, Simulations and Applications 1	187
De Witt Sumners (CIME Lecturer)	
1 Introduction 1	187
2 The Frisch-Wasserman-Delbruck Conjecture 1	189
3 Entanglement Complexity of Random Knots	
and Random Arcs 1	194
4 Writhe, Signature and Chirality of Random Knots 1	196
5 Application of Random Knotting to Viral DNA Packing	201
5.1 Knot Type Probabilities for P4 DNA in Free Solution	204
5.2 Monte Carlo Simulation 2	205
5.3 Results and Discussion Knot Complexity of DNA Molecules	
Extracted from Phage P4 2	206
5.4 Identification of Specific Knot Types by Their Location on	
the Gel	209
5.5 Monte Carlo Simulations of Random Knot Distributions in	
Confined Volumes 2	209
References	213
Index	219