Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-28T03:18:58.184Z Has data issue: false hasContentIssue false

Vanadium Isotopes

A Proxy for Ocean Oxygen Variations

Published online by Cambridge University Press:  23 December 2020

Sune G. Nielsen
Affiliation:
Woods Hole Oceanographic Institution, Massachusetts

Summary

Vanadium isotope ratios (51V/50V) have potential to provide information about changes in past ocean oxygen contents. In particular, V isotopes may find utility in tracing variations at non-zero oxygen concentrations because the redox couple that controls V elemental and isotopic abundances in seawater (vanadate-vanadyl) appears to operate around 10M O2. This characteristic sets V isotopes apart from many other metal isotope redox proxies that require more reducing conditions to register significant changes in their isotope budgets. The oxygen abundance sensitivity range of V isotopes suggests that this paleoproxy could be particularly useful in tracing marine oxygenation changes throughout the Phanerozoic and potentially beyond.
Get access
Type
Element
Information
Online ISBN: 9781108863438
Publisher: Cambridge University Press
Print publication: 28 January 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Key Papers

First high-precision V isotope studies that documented chemical separation techniques and mass spectrometric protocols:

Papers that documented the composition of seawater and modern marine fluxes:

Theoretical study of V isotope fractionation:

Nielsen, S. G., Prytulak, J. and Halliday, A. N. (2011) Determination of precise and accurate 51 V ⁄ 50 V isotope ratios by MC-ICP-MS, part 1: Chemical separation of vanadium and mass spectrometric protocols. Geostand. Geoanal. Res., 35, 293–306.CrossRefGoogle Scholar
Prytulak, J., Nielsen, S. G. and Halliday, A. N. (2011) Determination of precise and accurate 51 V ⁄ 50 V isotope ratios by multi-collector ICP-MS, part 2: Isotopic composition of six reference materials plus the Allende chondrite and verification tests. Geostand. Geoanal. Res., 35, 307–18.CrossRefGoogle Scholar
Wu, F., Qi, Y. H., Yu, H. M., et al. (2016) Vanadium isotope measurement by MC-ICP-MS. Chem. Geol., 421, 17–25.CrossRefGoogle Scholar
Nielsen, S. G., Owens, J. D. and Horner, T. J. (2016) Analysis of high-precision vanadium isotope ratios by medium resolution MC-ICP-MS. J. Anal. At. Spectrom., 31, 531–6.Google Scholar
Wu, F., Owens, J. D., Huang, T., et al. (2019) Vanadium isotope composition of seawater. Geochim. Cosmochim. Acta 244, 403–415.CrossRefGoogle Scholar
Wu, F., Owens, J. D., Scholz, F., et al. (2020) Sedimentary vanadium isotope signatures in marine low oxygen bottom water conditions. Geochim. Cosmochim. Acta, in press.CrossRefGoogle Scholar
Wu, F., Owens, J. D., Tang, L., Dong, Y. and Huang, F. (2019) Vanadium isotopic fractionation during the formation of marine ferromanganese crusts and nodules. Geochim. Cosmochim. Acta, 265, 371–85.Google Scholar
Schuth, S., Brüske, A., Hohl, S. V., et al. (2019) Vanadium and its isotope composition of river water and seawater: Analytical improvement and implications for vanadium isotope fractionation. Chem.Geol., 528, 119261.Google Scholar
Wu, F., Qin, T., Li, X. F., et al. (2015) First-principles investigation of vanadium isotope fractionation in solution and during adsorption. Earth Planet. Sci. Lett., 426, 216–24.Google Scholar

References

Algeo, T. J., 2004. Can marine anoxic events draw down the trace element inventory of seawater? Geology, 32(12): 1057–60.Google Scholar
Anbar, A. D., Duan, Y., Lyons, T. W., et al., 2007. A whiff of oxygen before the Great Oxidation Event? Science, 317(5846): 1903–6.CrossRefGoogle ScholarPubMed
Bayon, G., German, C. R., Boella, R. M., et al., 2002 . An improved method for extracting marine sediment fractions and its application to Sr and Nd isotopic analysis. Chem. Geol., 187: 179–99.Google Scholar
Beck, M., Dellwig, O., Schnetger, B. and Brumsack, H.-J., 2008. Cycling of trace metals (Mn, Fe, Mo, U, V, Cr) in deep pore waters of intertidal flat sediments. Geochim. Cosmochim. Acta, 72(12): 2822–40.Google Scholar
Bigeleisen, J. and Mayer, M. G., 1947. Calculation of equilibrium constants for isotopic exchange reactions. J. Chem. Phys., 15(5): 261–7.Google Scholar
Brumsack, H. J. and Gieskes, J. M., 1983. Interstitial water trace-metal chemistry of laminated sediments from the Gulf of California, Mexico. Mar. Chem., 14(1): 89106.CrossRefGoogle Scholar
Calvert, S. E. and Pedersen, T. F., 1993. Geochemistry of recent oxic and anoxic marine-sediments – implications for the geological record. Mar. Geol., 113(1–2): 6788.CrossRefGoogle Scholar
Calvert, S. E., Piper, D. Z., Thunell, R. C. and Astor, Y., 2015. Elemental settling and burial fluxes in the Cariaco Basin. Mar. Chem., 177: 607–29.Google Scholar
Canfield, D. E., 1998. A new model for Proterozoic ocean chemistry. Nature, 396(6710): 450–3.Google Scholar
Canfield, D. E., Zhang, S., Wang, H., et al., 2018. A Mesoproterozoic iron formation. Proc. Natl Acad. Sci., 115(17): E3895E3904.Google Scholar
Collier, R. W., 1984. Particulate and dissolved vanadium in the North Pacific Ocean. Nature, 309(5967): 441–4.Google Scholar
Coogan, L. A. and Dosso, S., 2012. An internally consistent, probabilistic, determination of ridge-axis hydrothermal fluxes from basalt-hosted systems. Earth Planet. Sci. Lett., 323324: 92101.Google Scholar
Emerson, S. R. and Huested, S. S., 1991. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Mar. Chem., 34(3–4): 177–96.Google Scholar
Erwin, D. H., Laflamme, M., Tweedt, S. M., et al., 2011. The Cambrian conundrum: Early divergence and later ecological success in the early history of animals. Science, 334(6059): 1091–7.Google Scholar
Fitzsimmons, J. N., Boyle, E. A. and Jenkins, W. J., 2014. Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean. Proc. Natl Acad. Sci., 111(47): 16654–61.CrossRefGoogle ScholarPubMed
Fitzsimmons, J. N., John, S. G., Marsay, C. M., et al., 2017. Iron persistence in a distal hydrothermal plume supported by dissolved–particulate exchange. Nat. Geosci., 10: 195.Google Scholar
Francois, R., 1988. A study on the regulation of the concentrations of some trace metals (Rb, Sr, Zn, Pb, Cu, V, Cr, Ni, Mn and Mo) in Saanich Inlet Sediments, British Columbia, Canada. Mar. Geol., 83(1): 285308.CrossRefGoogle Scholar
Frei, R., Gaucher, C., Poulton, S. W. and Canfield, D. E., 2009. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature, 461: 250.Google Scholar
Gustafsson, J. P., 2019. Vanadium geochemistry in the biogeosphere – speciation, solid-solution interactions, and ecotoxicity. Appl. Geochem., 102: 125.Google Scholar
Hein, J. R., Koschinsky, A. and Halliday, A. N., 2003. Global occurrence of tellurium-rich ferromanganese crusts and a model for the enrichment of tellurium. Geochim. Cosmochim. Acta, 67(6): 1117–27.Google Scholar
Helly, J. J. and Levin, L. A., 2004. Global distribution of naturally occurring marine hypoxia on continental margins. Deep Sea Res. 1 Oceanogr. Res. Pap., 51(9): 1159–68.Google Scholar
Ho, P., Lee, J.-M., Heller, M. I., Lam, P. J. and Shiller, A. M., 2018. The distribution of dissolved and particulate Mo and V along the U.S. GEOTRACES East Pacific Zonal Transect (GP16): The roles of oxides and biogenic particles in their distributions in the oxygen deficient zone and the hydrothermal plume. Mar. Chem., 201: 242–55.Google Scholar
Jeandel, C., Caisso, M. and Minster, J. F., 1987. Vanadium behaviour in the global ocean and in the Mediterranean sea. Mar. Chem., 21(1): 5174.Google Scholar
Jenkyns, H. C., 2010. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst., 11: Q03004, doi: 03010.01029/02009gc002788.Google Scholar
Kendall, B., Dahl, T. W. and Anbar, A. D., 2017. Good Golly, Why Moly? The stable isotope geochemistry of molybdenum. Non-Traditional Stable Isotopes, 82: 683732.CrossRefGoogle Scholar
Kumar, N., Anderson, R. F. and Biscaye, P. E., 1996. Remineralization of particulate authigenic trace metals in the middle Atlantic Bight: Implications for proxies of export production. Geochim. Cosmochim. Acta, 60(18): 3383–97.Google Scholar
Lau, K. V., Romaniello, S. J. and Zhang, F., 2019. The Uranium Isotope Paleoredox Proxy. Elements in Geochemical Tracers in Earth System Science. Cambridge University Press, Cambridge.Google Scholar
Lewan, M. D. and Maynard, J. B., 1982. Factors controlling the enrichment of vanadium and nickel in the bitumen of organic sedimentary-rocks. Geochim. Cosmochim. Acta, 46(12): 2547–60.Google Scholar
Lu, W. Y., Ridgwell, A., Thomas, E., et al., 2018. Late inception of a resiliently oxygenated upper ocean. Science, 361(6398): 174–7.Google Scholar
Lyons, T. W., Anbar, A. D., Severmann, S., Scott, C. and Gill, B. C., 2009. Tracking euxinia in the ancient ocean: A multiproxy perspective and Proterozoic case study. Annu. Rev. Earth Planet. Sci., 37: 507–34.CrossRefGoogle Scholar
Lyons, T. W., Reinhard, C. T. and Planavsky, N. J., 2014. The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506(7488): 307–15.Google Scholar
McArthur, J. M., Algeo, T. J., van de Schootbrugge, B., Li, Q. and Howarth, R. J., 2008. Basinal restriction, black shales, Re-Os dating, and the Early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography, 23(4):PA4217, doi: 4210.1029/2008pa001607.CrossRefGoogle Scholar
Morford, J. L. and Emerson, S., 1999. The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta, 63(11–12): 1735–50.Google Scholar
Morford, J. L., Emerson, S. R., Breckel, E. J. and Kim, S. H., 2005. Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin. Geochim. Cosmochim. Acta, 69(21): 5021–32.Google Scholar
Nameroff, T. J., Balistrieri, L. S. and Murray, J. W., 2002. Suboxic trace metal geochemistry in the eastern tropical North Pacific. Geochim. Cosmochim. Acta, 66(7): 1139–58.Google Scholar
Nameroff, T. J., Calvert, S. E. and Murray, J. W., 2004. Glacial-interglacial variability in the eastern tropical North Pacific oxygen minimum zone recorded by redox-sensitive trace metals. Paleoceanography, 19(1).Google Scholar
Nance, W. B. and Taylor, S. R., 1976. Rare earth element patterns and crustal evolution – I. Australian post-Archean sedimentary rocks. Geochim. Cosmochim. Acta, 40(12): 1539–51.Google Scholar
Nielsen, S. G., Auro, M., Righter, K., et al., 2019. Nucleosynthetic vanadium isotope heterogeneity of the early solar system recorded in chondritic meteorites. Earth Planet. Sci. Lett., 505: 131–40.Google Scholar
Nielsen, S. G., Bekaert, D. V. and Auro, M., 2020. Isotopic evidence for the formation of the Moon in a giant impact. Nature, in review.Google Scholar
Nielsen, S. G., Owens, J. D. and Horner, T. J., 2016. Analysis of high-precision vanadium isotope ratios by medium resolution MC-ICP-MS. J. Anal. At. Spectrom., 31: 531–6.CrossRefGoogle Scholar
Nielsen, S. G., Prytulak, J. and Halliday, A. N., 2011. Determination of precise and accurate 51 V ⁄ 50 V isotope ratios by MC-ICP-MS, part 1: Chemical separation of vanadium and mass spectrometric protocols. Geostand. Geoanal. Res., 35(3): 293306.Google Scholar
Nielsen, S. G., Rehkämper, M. and Prytulak, J., 2017. Investigation and application of thallium isotope fractionation. Rev. Mineral. Geochem., 82(1): 759–98.Google Scholar
Ohnemus, D. C., Rauschenberg, S., Cutter, G. A., et al., 2017. Elevated trace metal content of prokaryotic communities associated with marine oxygen deficient zones. Limnol. Oceanogr., 62(1): 325.CrossRefGoogle Scholar
Ostrander, C. M., Nielsen, S. G., Owens, J. D., et al., 2019a. Fully oxygenated water columns over continental shelves before the Great Oxidation Event. Nat. Geosci., 12(3): 186–91.Google Scholar
Ostrander, C. M., Sahoo, S. K., Kendall, B., et al., 2019b. Multiple negative molybdenum isotope excursions in the Doushantuo Formation (South China) fingerprint complex redox-related processes in the Ediacaran Nanhua Basin. Geochim. Cosmochim. Acta, 261: 191209.Google Scholar
Owens, J. D., 2019. Application of Thallium Isotopes: Tracking Marine Oxygenation through Manganese Oxide Burial. Elements in Geochemical Tracers in Earth System Science. Cambridge University Press, Cambridge.Google Scholar
Owens, J. D., Lyons, T. W., Li, X., et al., 2012. Iron isotope and trace metal records of iron cycling in the proto-North Atlantic during the Cenomanian-Turonian oceanic anoxic event (OAE-2). Paleoceanography, 27(3).Google Scholar
Owens, J. D., Reinhard, C. T., Rohrssen, M., Love, G. D. and Lyons, T. W., 2016. Empirical links between trace metal cycling and marine microbial ecology during a large perturbation to Earth’s carbon cycle. Earth Planet. Sci. Lett., 449: 407–17.Google Scholar
Piper, D. Z. and Dean, W. E., 2002. Trace-element deposition in the Cariaco Basin, Venezuela Shelf, under sulfate-reducing conditions – a history of the local hydrography and global climate, 20 ka to the present. US Geological Survey: Professional paper 1670.CrossRefGoogle Scholar
Prytulak, J., Nielsen, S. G. and Halliday, A. N., 2011. Determination of precise and accurate 51 V ⁄ 50 V isotope ratios by multi-collector ICP-MS, part 2: Isotopic composition of six reference materials plus the Allende chondrite and verification tests. Geostand. Geoanal. Res., 35(3): 307–18.Google Scholar
Rehkämper, M. and Nielsen, S. G., 2004. The mass balance of dissolved thallium in the oceans. Mar. Chem., 85: 125–39.CrossRefGoogle Scholar
Riedinger, N., Kasten, S., Gröger, J., Franke, C. and Pfeifer, K., 2006. Active and buried authigenic barite fronts in sediments from the Eastern Cape Basin. Earth Planet. Sci. Lett., 241(3): 876–87.Google Scholar
Rudnick, R. L. and Gao, S., 2003. Composition of the Continental Crust. In: Holland, H. D. and Turekian, K. K. (eds), Treatise on Geochemistry. Pergamon, Oxford, pp. 164.Google Scholar
Rudnicki, M. D. and Elderfield, H., 1993. A chemical model of the buoyant and neutrally buoyant plume above the TAG vent field, 26 degrees N, Mid-Atlantic Ridge. Geochim. Cosmochim. Acta, 57(13): 2939–57.Google Scholar
Rue, E. L., Smith, G. J., Cutter, G. A. and Bruland, K. W., 1997. The response of trace element redox couples to suboxic conditions in the water column. Deep Sea Res. 1 Oceanogr. Res. Pap., 44(1): 113–34.Google Scholar
Scholz, F., Hensen, C., Noffke, A., et al., 2011. Early diagenesis of redox-sensitive trace metals in the Peru upwelling area – response to ENSO-related oxygen fluctuations in the water column. Geochim. Cosmochim. Acta, 75(22): 7257–76.Google Scholar
Schuth, S., Brüske, A., Hohl, S. V., et al., 2019. Vanadium and its isotope composition of river water and seawater: Analytical improvement and implications for vanadium isotope fractionation. Chem. Geol., 528: 119261.Google Scholar
Schuth, S., Horn, I., Bruske, A., Wolff, P. E. and Weyer, S., 2017. First vanadium isotope analyses of V-rich minerals by femtosecond laser ablation and solution-nebulization MC-ICP-MS. Ore Geol. Rev., 81: 1271–86.Google Scholar
Scott, C., Lyons, T. W., Bekker, A., et al., 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452(7186): 456–U455.Google Scholar
Shaw, T. J., Gieskes, J. M. and Jahnke, R. A., 1990. Early diagenesis in differing depositional environments: The response of transition metals in pore water. Geochim. Cosmochim. Acta, 54(5): 1233–46.Google Scholar
Shiller, A. M. and Boyle, E. A., 1987. Variability of dissolved trace metals in the Mississippi river. Geochim. Cosmochim. Acta, 51(12): 3273–7.Google Scholar
Shiller, A. M. and Mao, L., 2000. Dissolved vanadium in rivers: Effects of silicate weathering. Chem. Geol., 165(1): 1322.Google Scholar
Southam, J. R. and Hay, W. W., 1977. Time scales and dynamic models of deep-sea sedimentation. J. Geophys. Res., 82(27): 3825–42.Google Scholar
Stüeken, E. E., Buick, R. and Anbar, A. D., 2015. Selenium isotopes support free O2 in the latest Archean. Geology, 43(3): 259–62.Google Scholar
Tagliabue, A., Bopp, L., Dutay, J.-C., et al., 2010. Hydrothermal contribution to the oceanic dissolved iron inventory. Nat. Geosci., 3(4): 252–6.Google Scholar
Teagle, D. A. H., Bickle, M. J. and Alt, J. C., 2003. Recharge flux to ocean-ridge black smoker systems: A geochemical estimate from ODP Hole 504B. Earth Planet. Sci. Lett., 210: 81–9.Google Scholar
Thomson, J., Carpenter, M. S. N., Colley, S., et al., 1984. Metal accumulation rates in Northwest Atlantic pelagic sediments. Geochim. Cosmochim. Acta, 48(10): 1935–48.Google Scholar
Trefry, J. H. and Metz, S., 1989. Role of hydrothermal precipitates in the geochemical cycling of vanadium. Nature, 342(6249): 531–3.Google Scholar
Tribovillard, N., Algeo, T. J., Lyons, T. and Riboulleau, A., 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol., 232(1–2):1232.Google Scholar
Wanty, R. B. and Goldhaber, M. B., 1992. Thermodynamics and kinetics of reactions involving vanadium in natural systems: Accumulation of vanadium in sedimentary rocks. Geochim. Cosmochim. Acta, 56(4): 1471–83.Google Scholar
Wehrli, B. and Stumm, W., 1989. Vanadyl in natural-waters – adsorption and hydrolysis promote oxygenation. Geochim. Cosmochim. Acta, 53(1): 6977.Google Scholar
Wu, F., Owens, J. D., Huang, T., et al., 2019a. Vanadium isotope composition of seawater. Geochim. Cosmochim. Acta, 244: 403–15.Google Scholar
Wu, F., Owens, J. D., Nielsen, S. G., German, C. R. and Mills, R. A., 2017. V isotope composition in modern marine hydrothermal sediments, AGU Fall Meeting. AGU, New Orleans, pp. V11A0330.Google Scholar
Wu, F., Owens, J. D., Scholz, F., et al., 2020. Sedimentary vanadium isotope signatures in marine low oxygen bottom water conditions. Geochim. Cosmochim. Acta, in press.Google Scholar
Wu, F., Owens, J. D., Tang, L., Dong, Y. and Huang, F., 2019b. Vanadium isotopic fractionation during the formation of marine ferromanganese crusts and nodules. Geochim. Cosmochim. Acta, 265: 371–85.Google Scholar
Wu, F., Qi, Y. H., Yu, H. M., et al., 2016. Vanadium isotope measurement by MC-ICP-MS. Chem. Geol., 421: 1725.Google Scholar
Zheng, Y., Anderson, R. F., van Geen, A. and Kuwabara, J., 2000. Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin. Geochim. Cosmochim. Acta, 64(24): 4165–78.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Vanadium Isotopes
  • Sune G. Nielsen, Woods Hole Oceanographic Institution, Massachusetts
  • Online ISBN: 9781108863438
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Vanadium Isotopes
  • Sune G. Nielsen, Woods Hole Oceanographic Institution, Massachusetts
  • Online ISBN: 9781108863438
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Vanadium Isotopes
  • Sune G. Nielsen, Woods Hole Oceanographic Institution, Massachusetts
  • Online ISBN: 9781108863438
Available formats
×