Brought to you by:

Studies on Defect Reduction in AlGaN Heterostructures by Integrating an In-situ SiN Interlayer

, , , , , , , , , , and

Published 31 May 2013 Copyright (c) 2013 The Japan Society of Applied Physics
, , Citation Ferdinand Scholz et al 2013 Jpn. J. Appl. Phys. 52 08JJ07 DOI 10.7567/JJAP.52.08JJ07

1347-4065/52/8S/08JJ07

Abstract

We have decreased the dislocation density in AlxGa1-xN epitaxial layers grown on sapphire wafers by introducing an in-situ deposited SiN nano-mask layer. Taking together results obtained by transmission electron microscopy, photoluminescence, cathodoluminescence, and X-ray diffraction, we were able to derive a schematic model about the AlGaN growth on the SiN nanomask: On the open pores of the nano-mask, Ga-rich AlGaN hillocks develop, whereas on the SiN layer Al-rich AlGaN nucleates owing to the reduced selectivity of Al-containing material. Once the hillocks are formed, Ga-rich material is more efficiently incorporated on the inclined side-facets leading to an Al-rich coverage of the central c-plane part of the hillocks. We observed a bending of the dislocations towards the side-facets of the hillocks, which eventually leads to dislocation bundles with increased probability of dislocation annihilation, separated by fairly defect-free regions. Thus, we could achieve a significant reduction of the edge-type dislocation density in these epitaxial layers.

Export citation and abstract BibTeX RIS

Please wait… references are loading.