Skip to main content

Analysis of Rates of Geochemical Reactions

  • Chapter
Kinetics of Water-Rock Interaction

Over the last several billion years, rocks formed at equilibrium within the mantle of the Earth have been exposed at the surface and have reacted to move towards a new equilibrium with the atmosphere and hydrosphere. At the same time that minerals, liquids, and gases react abiotically and progress toward chemical equilibrium at the Earth’s surface, biological processes harvest solar energy and use it to store electrons in reservoirs which are vastly out of equilibrium with the Earth’s other surface reservoirs. In addition to these processes, over the last several thousand years, humans have produced and disseminated non-equilibrated chemical phases into the Earth’s pedosphere, hydrosphere, and atmosphere. To safeguard these mineral and fluid reservoirs so that they may continue to nurture ecosystems, we must understand the rates of chemical reactions as driven by tectonic, climatic, and anthropogenic forcings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bandstra J. Z. and Tratnyek P. G. (2005) Central limit theorem for chemical kinetics in complex systems. J. Math. Chem. 37(4), 409-422.

    Article  Google Scholar 

  • Brantley S. L. and Mellott N. (2000) Specific surface area and porosity of primary silicate minerals. Am. Mineral. 85, 1767-1783.

    Google Scholar 

  • Capellos C. and Bielski B. H. J. (1972) Kinetic Systems. Wiley-Interscience.

    Google Scholar 

  • Chen Y. and Brantley S. L. (1997) Temperature-and pH-dependence of albite dissolution rate at acid pH. Chem. Geol. 135, 275-292.

    Article  Google Scholar 

  • Chou L. and Wollast R. (1985) Steady-state kinetics and dissolution mechanisms of albite. Am. J. Sci. 285, 963-993.

    Google Scholar 

  • Conrad C. F., Icopini G. A., Yasahura H., Brantley S. L. and Heaney P. J. (2007) Modeling the Kinetics of Silica Nanocolloid Formation and Precipitation in Geo-logically Relevant Aqueous Solutions. Geochimica et Cosmochimica Acta 71(3), 531-542.

    Article  Google Scholar 

  • Drever J. I. (1997) The Geochemistry of Natural Waters: Surface and Groundwater Environments. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Driehaus W., Seith R., and Jekel M. (1995) Oxidation of arsenate(III) with manganese oxides in water treatment. Wat. Res. 29(1), 297-305.

    Article  Google Scholar 

  • Hamilton J. P., Brantley S. L., Pantano C. G., Criscenti L. J., and Kubicki J. D. (2001) Dissolution of nepheline, jadeite and albite glasses: Toward better models for aluminosilicate dissolution. Geochim. Cosmochim. Acta 65(21), 3683-3702.

    Article  Google Scholar 

  • Hem J. D., Roberson C. E., Lind C. J., and Polzer W. L. (1973) Chemical interactions of aluminum with aqueous silica at 25C, pp. 57. US Geological Survey.

    Google Scholar 

  • Hill C. G. (1977) An Introduction to Chemical Engineering Kinetics and Reactor Design. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Hossner L. R. and Doolittle J. J. (2003) Iron sulfide oxidation as influenced by calcium carbonate application. J. Environ. Qual. 32, 773-780.

    Article  Google Scholar 

  • Icopini G. A., Brantley S. L., and Heaney P. J. (2005) Kinetics of silica oligomerization and nanocolloid formation as a function of pH and ionic strength at 25 C. Geochim. Cosmochim. Acta 69(2), 293-303.

    Article  Google Scholar 

  • Kalinowski B. E. and Schweda P. (1996) Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1-4, room temperature. Geochim. Cosmochim. Acta 60, 367-385.

    Article  Google Scholar 

  • Kraemer S. M. (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquat. Sci. 66, 3-18.

    Article  Google Scholar 

  • Laidler K. J. (1987) Chemical Kinetics. Harper & Row, Publishers, Inc., New York.

    Google Scholar 

  • Laidler K. J. and Meiser J. H. (1995) Physical Chemistry. Houghton Mifflin Company, Boston, MA.

    Google Scholar 

  • Lasaga A. C. (1981) Rate laws of chemical reactions. In Kinetics of Geochemical Processes, Vol. 8 (ed. A. C. Lasaga and R. J. Kirkpatrick), pp. 1-68. Mineralogical Society of America.

    Google Scholar 

  • Nagy K. L. (1995) Dissolution and precipitation kinetics of sheet silicates. In Chemical Weathering Rates of Silicate Minerals, Vol. 31 (ed. A. F. White and S. L. Brantley), pp. 173-225. Mineralogical Society of America.

    Google Scholar 

  • Oelkers E. H., Schott J., and Devidal J.-L. (2001) On the interpretation of closed system mineral dissolution experiments: Comment on “mechanism of kaolinite dissolution at room temperature and pressure part II: Kinetic study” by Huertas et al. (1999). Geochim. Cosmochim. Acta 65(23), 4429-4432.

    Article  Google Scholar 

  • Perez J. R., Banwart S. A., and Puigdomenech I. (2005) The kinetics of O2(aq) reduction by structural ferrous iron in naturally occurring ferrous silicate minerals. App. Geochem. 20, 2003-2016.

    Article  Google Scholar 

  • Posey-Dowty J., Crerar D., Hellmann R., and Chang C. D. (1986) Kinetics of mineral-water reactions; theory, design and application of circulating hydrothermal equipment. Am. Mineralog. 71, 85-94.

    Google Scholar 

  • Prigogine I. (1967) Introduction to Thermodynamics of Irreversible Processes. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Rimstidt J. D. and Newcomb W. D. (1993) Measurement and analysis of rate data: The rate of reaction of ferric iron with pyrite. Geochim. Cosmochim. Acta 57, 1919-1934.

    Article  Google Scholar 

  • Rimstidt J. D. and Dove P. M. (1986) Mineral solution reaction rates in a mixed flow reactor: Wollastonite hydrolysis. Geochim. Cosmochim. Acta 50(11), 2509-2516.

    Article  Google Scholar 

  • Rodgers W. B. and Rodgers R. E. (1848) On the decomposition and partial solution of minerals and rocks by pure water and water charged with carbonic acid. Am. J. Sci. 5, 401-405.

    Google Scholar 

  • Shiraki R. and Brantley S. L. (1995) Kinetics of near-equilibrium calcite precipitation at 100 C: An evaluation of elementary reaction-based and affinity-based rate laws. Geochim. Cosmochim. Acta 59(8), 1457-1471.

    Article  Google Scholar 

  • Skinner G. B. (1974) Introduction to Chemical Kinetics. Academic Press.

    Google Scholar 

  • Taylor A. S., Blum J. D., and Lasaga A. C. (2000) The dependence of labradorite dissolution and Sr isotope release rates on solution saturation state. Geochim. Cosmochim. Acta 64(14), 2389-2400.

    Article  Google Scholar 

  • Van Straten H. A., Schoonen M. A. A., and De Bruyn P. L. (1985) Precipitation from supersaturated aluminate solutions III. Influence of alkali ions with special reference to Li+ . J. Colloid Interface Sci. 103, 493-507.

    Article  Google Scholar 

  • White A. F. and Brantley S. L. (2003) The effect of time on the experimental and natural weathering rates of silicate minerals. Chem. Geol. 202, 479-506.

    Article  Google Scholar 

  • Williamson M. A. and Rimstidt J. D. (1994) The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochim. Cosmochim. Acta 58(24), 5443-5454.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Brantley, S., Conrad, C. (2008). Analysis of Rates of Geochemical Reactions. In: Brantley, S., Kubicki, J., White, A. (eds) Kinetics of Water-Rock Interaction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73563-4_1

Download citation

Publish with us

Policies and ethics