Skip to main content

Kinetics of Sorption—Desorption

  • Chapter
Kinetics of Water-Rock Interaction

The fate of nutrients, pollutants and other solutes in natural waters is coupled to their distribution between solid, aqueous and gas phases. The processes of phase distribution are many, including penetration and absorption into one of the phases, or accumulation at the interface between them. The term sorption is defined here as the full range of processes whereby matter is partitioned between the gas, aqueous and solid phases. In geochemical systems, this includes adsorption of matter at the surfaces of solid particles (minerals and organic matter) or at the air—water interface, and absorption into the solids during surface precipitation or solid phase diffusion. The complexity of natural geomedia (Fig. 4.1) implies that both broad classes of “sorption” reaction may occur simultaneously. As discussed in this chapter, recent research into the kinetics and mechanisms of sorption for inorganic and organic species indicates that both processes are indeed important. The relative predominance of a given reaction and sorbate—sorbent structure is a function of time scale, system loading and geochemical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aharoni C. and Sparks D. L. (1991) Kinetics of soil chemical reactions: A theoretical treatment. In Sparks D. L. and Suarez D. L. (eds.), Rates of Soil Chemical Processes. SSSA Spec. Publ. No. 27, Soil Science Society of America, Madison, WI.

    Google Scholar 

  • Ainsworth C. C., Pilon J. L., Gassman P. L., and Van Der Sluys W. G. (1994) Cobalt, cadmium and lead sorption to hydrous iron oxide: Residence time effect. Soil Sci. Soc. Am. J. 58, 1615-1623.

    Article  Google Scholar 

  • Anderson M. A., Tejedor-Tejedor M. I., and Stanforth R. R. (1985) Influence of aggregation on the uptake kinetics of phosphate by goethite. Environ. Sci. Technol. 19,632-637.

    Article  Google Scholar 

  • Avena M. J. and Koopal L. K. (1999) Kinetics of humic acid adsorption at solidwater interfaces. Environ. Sci. Technol. 33, 2739-2744.

    Article  Google Scholar 

  • Backes C. A., McLaren R. G., Rate A. W., and Swift R. S. (1995) Kinetics of cadmium and cobalt desorption from iron and manganese oxides. Soil Sci. Soc. Am. J. 59, 778-785.

    Article  Google Scholar 

  • Bernasconi C. F. (1976) Relaxation Kinetics. Academic Press, New York.

    Google Scholar 

  • Brown, G. E., Jr. (2001) How minerals react with water. Science 294, 67-69.

    Article  Google Scholar 

  • Brown G. E., Jr. and Sturchio N. C. (2002) An overview of synchrotron radiation applications to low temperature geochemistry and environmental science. Rev. Mineral. Geochem. 49, 1-115.

    Article  Google Scholar 

  • Brusseau M.L. (1993) Using QSAR to evaluate phenomenological models for sorption of organic compounds by soil. Environ. Toxic. Chem. 12, 1835-1846.

    Article  Google Scholar 

  • Brusseau M. L. and Rao P. S. C. (1989) Sorption nonideality during organic contaminant transport in porous media. CRC Crit. Rev. Environ. Control. 19, 33-99.

    Article  Google Scholar 

  • Brusseau M. L. and Srivastava R. (1997) Nonideal transport of reactive solutes in heterogeneous porous media: 2. Quantitative analysis of the borden naturalgradient field experiment. J. Contam. Hydrol. 28, 115-155.

    Article  Google Scholar 

  • Brusseau M. L. and Srivastava R. (1999). Nonideal transport of reactive solutes in heterogeneous porous media: 4. Analysis of the Cape Cod Natural-Gradient Field Experiment. Water Resour. Res. 35, 1113-1125.

    Article  Google Scholar 

  • Brusseau M. L., Jessup R. E., and Rao P. S. C. (1989) Modeling the transport of solutes influenced by multiprocess nonequilibrium. Water Resour. Res. 25, 1971-1988.

    Article  Google Scholar 

  • Brusseau M. L., Jessup R. E., and Rao P. S. C. (1991) Nonequilibrium sorption of organic chemicals: elucidation of rate-limiting processes. Environ. Sci. Technol. 25,134-142.

    Article  Google Scholar 

  • Brusseau M. L., Popovicova J., and Silva J. A. K. (1997) Characterizing gas-water-interfacial and bulk-water partitioning for gas-phase transport of organic contaminants in unsaturated porous media. Environ. Sci. Technol. 31:1645-1649.

    Article  Google Scholar 

  • Casey W. H. (2001) A view of reactions at mineral surfaces from the aqueous phase. Mineral. Mag. 65, 323-337.

    Article  Google Scholar 

  • Chang F. - R. and Sposito G. (1996) The electrical double layer of a disk-shaped clay mineral particle: effects of electrolyte properties and surface charge density. J. Colloid Interface Sci. 178, 555-564.

    Article  Google Scholar 

  • Charlet L. and Manceau A. (1993) Structure, formation and reactivity of hydrous oxide particles: Insights from x-ray absorption spectroscopy. In Buffle J. and van Leeuwen H. P. (eds.) Environmental Particles, Vol. 2, Lewis Publishers, Boca Raton, pp. 117-164.

    Google Scholar 

  • Chiou C. T. and Shoup T. D. (1985) Soil sorption of organic vapors and effects of humidity on sorptive mechanism and capacity. Environ. Sci. Technol. 19, 1196-1200.

    Article  Google Scholar 

  • Choi S., O’Day P. A., Rivera N. A., Mueller K. T., Vairavamurthy M. A., Seraphin S., and Chorover J. (2006) Strontium speciation during reaction of kaolinite with simulated tank-waste leachate: bulk and microfocused EXAFS analysis. Environ. Sci. Technol. 40, 2608-2614.

    Article  Google Scholar 

  • Chorover J., Choi S., Amistadi M. K., Karthikeyan K. G., Crosson G., and Mueller K. T. (2003) Linking cesium and strontium uptake to kaolinite weathering in simulated tank waste leachate. Environ. Sci. Technol. 37, 2200-2208

    Article  Google Scholar 

  • Chorover J., Zhang J., Amistadi M. K., and Buffle J. (1997) Comparison of hematite coagulation by charge screening and phosphate adsorption: Differences in aggregate structure. Clays Clay Miner. 45, 690-708.

    Article  Google Scholar 

  • Criscenti L. J. and Sverjensky D. A. (2002) A single-site model for divalent transition and heavy metal adsorption over a range of metal concentrations.J. Colloid Interface Sci. 253, 329-352.

    Article  Google Scholar 

  • Fleer G. J., Cohen-Stuart M. A., Scheutjens J. M. H. M., Cosgrove T., and Vincent B. (1993) Polymers at Interfaces. Chapman & Hall, London.

    Google Scholar 

  • Goss K. - U. (1992) Effects of temperature and relative humidity on the sorption of organic vapors on quartz sand. Environ. Sci. Technol. 26, 2287-2294.

    Article  Google Scholar 

  • Goss K. - U. and Eisenreich S. J. (1996) Adsorption of VOCs from the gas phase to minerals and a mineral mixture. Environ. Sci. Technol. 30, 2135-2142.

    Article  Google Scholar 

  • Grossl P. R., Eick M., Sparks D. L., Goldberg S., and Ainsworth C. C. (1997) Arse-nate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique. Environ. Sci. Technol. 31, 321-326.

    Article  Google Scholar 

  • Hachiya K., Sasaki M., Saruta Y., Mikami N., and Yasanuga T. (1984) Static and kinetic studies of adsorption-desorption of metal ions on the γ-Al2 O3 surface. 2. Kinetic study by means of a pressure jump technique. J. Phys. Chem. 88, 23-31.

    Article  Google Scholar 

  • Hoff J. T., Mackay D., Gillham R. W., and Shlu W. Y. (1993) Partitioning of or-ganic chemicals at the air-water interface in environmental systems. Environ. Sci. Technol. 27, 2174-2180.

    Article  Google Scholar 

  • Huang W., Young T., Schlautman M. A., Hu H., and Weber W. J., Jr. (1997) A dis-tributed reactivity model for sorption by soils and sediments. 9. General isotherm non-linearity and applicability of the dual reactive domain model. Environ. Sci. Technol. 31, 1703-1710.

    Article  Google Scholar 

  • Hundal L. S., Thompson M. L., Laird D. A., and Carmo A. M. (2001) Sorption of phenanthrene by reference smectites. Environ. Sci. Technol. 35, 3456-3461.

    Article  Google Scholar 

  • Jeon B. - H., Dempsey B. A., Burgos W. D., Royer R. A., and Roden E. E. (2004) Modeling the sorption kinetics of divalent metal ions to hematite. Wat. Res. 38, 2499-2504.

    Article  Google Scholar 

  • Kaplan D. I. and Serne R. J. (1998) Pertechnetate exclusion from sediments. Radiochim. Acta 81, 117-124.

    Google Scholar 

  • Karger B. L., Castells R. C., Sewell P. A., and Hartkopf A. (1971) Study of the adsorption of insoluble and sparingly soluble vapors at the gas-liquid interface of water by gas chromatography. J. Phys. Chem. 75, 3870-3879.

    Article  Google Scholar 

  • Karickhoff S. W. (1981) Semi-empirical estimation of sorption of hydrophobic pol-lutants on natural sediments and soils. Chemosphere 10, 833-846.

    Article  Google Scholar 

  • Kubicki J. D., Itoh M. J., Schroeter L. M., Nguyen B. N., and Apitz S. E. (1999) At-tenuated total reflectance Fourier-transform infrared spectroscopy of carboxylic acids adsorbed onto mineral surfaces. Geochim. Cosmochim. Acta, 63, 2709-2725.

    Article  Google Scholar 

  • Laird D. A., Shang C (1997) Relationship between cation exchange selectivity and crystalline swelling in expanding 2:1 phyllosilicates. Clays Clay Miner. 45, 681-689.

    Article  Google Scholar 

  • Lasaga A. C. (1998) Kinetic Theory in the Earth Sciences. Princeton University Press, Princeton, NJ, 811 pp.

    Google Scholar 

  • Lorden S. W., Chen W., and Lion L. W. (1998) Experiments and modeling of the transport of trichloroethene vapor in unsaturated aquifer material. Environ. Sci. Technol. 32, 2009-2017.

    Article  Google Scholar 

  • Lu Y. and Pignatello J. J. (2002) Demonstration of the “conditioning effect” in soil organic matter in support of a pore deformation mechanism for sorption hysteresis. Environ. Sci. Technol. 36, 4553-4561.

    Article  Google Scholar 

  • Lu Y. and Pignatello J. J. (2004) History-dependent sorption in humic acids and a lignite in the context of a polymer model for natural organic matter. Environ. Sci. Technol. 36, 4553-4561.

    Article  Google Scholar 

  • Manceau A., Marcus M. A., and Tamura N. (2002) Quantitative speciation of heavy metals in soils and sediments by synchrotron x-ray techniques. In Fenter, P. A. et al. (ed.) Applications of Synchrotron Radiation in Low Temperature Geochemistry and Environmental Science, Vol. 49. Mineralogical Society of America, Washington, DC.

    Google Scholar 

  • Morel F. M. M. and Hering J. G. (1993) Principles and Applications of Aquatic Chemistry. Wiley, New York.

    Google Scholar 

  • Park C., Fenter P. A., Nagy K. L., and Sturchio N. C. (2006) Hydration and distribution of ions at the mica-water interface. Phys. Rev. Lett. 97, 016101.

    Article  Google Scholar 

  • Pignatello J. J. (2000) The measurement and interpretation of sorption and desorption rates for organic compounds in soil media. Adv. Agron. 69, 1-73.

    Article  Google Scholar 

  • Polmeier A. and Lustfeld H. (2004) Reaction rates of heavy metal ions at goethite: Relaxation experiments and modeling. J. Colloid Interface Sci. 269, 131-142.

    Article  Google Scholar 

  • Rate A. W., McLaren R. G., and Swift R. S. (1992) Evaluation of a long-normal distribution first-order kinetic model for copper(II)-humic acid complex dissociation. Environ. Sci. Technol. 26, 2477-2483.

    Article  Google Scholar 

  • Scheidegger A. M, Strawn D. G., Lamble G. M., and Sparks D. L. (1998) The kinet-ics of mixed Ni-Al hydroxide formation on clay and aluminum oxide minerals: a time-resolved XAFS study. Geochim. Cosmochim. Acta 63, 2233-2245.

    Article  Google Scholar 

  • Schlegel M. L., Charlet L., and Manceau A. (1999) Sorption of metal ions on clay minerals - II. Mechanism of Co sorption on hectorite at high and low ionic strength and impact on the sorbent stability. J. Coll. Interface Sci. 220, 392-405.

    Article  Google Scholar 

  • Schlegel M. L., Manceau A., Charlet L., and Hazemann J. L. (2001a) Adsorption mechanisms of Zn on hectorite as a function of time, pH, and ionic strength. Am. J. Sci. 301, 798-830.

    Article  Google Scholar 

  • Schlegel M. L., Manceau A., Charlet L., Chateigner D., and Hazemann J. L. (2001b) Sorption of metal ions on clay minerals. III. Nucleation and epitaxial growth of Zn phyllosilicate on the edges of hectorite. Geochim. Cosmochim. Acta 65, 4155-4170.

    Article  Google Scholar 

  • Sparks D. L. (1999) Kinetics and mechanisms of chemical reactions at the soil mineral/water interface. In Sparks D. L. (ed.) Soil Physical Chemistry, 2nd Edition. CRC Press, Boca Raton, FL, pp. 135-191.

    Google Scholar 

  • Sparks D. L. and Jardine P. M. (1984) Comparison of kinetic equations to describe K-Ca exchange in pure and in mixed systems. Soil Sci. 138, 115-122.

    Article  Google Scholar 

  • Sposito G. (1994) Chemical Equilibria and Kinetics in Soils. Oxford University Press, New York.

    Google Scholar 

  • Sposito G., Skipper N. T., Sutton R., Park S. H., Soper A. K., Greathouse J. A. (1999) Surface geochemistry of the clay minerals. Proc. Nat. Acad. Sci. USA 96, 3358-3364.

    Article  Google Scholar 

  • Sposito G. (2004) The Surface Chemistry of Natural Particles. Oxford University Press, New York.

    Google Scholar 

  • Stumm W. (1992) Chemistry of the Solid-Water Interface. Wiley Interscience, New York.

    Google Scholar 

  • Suarez D. L., Goldberg S., and Su C. (1998) Evaluation of oxyanion adsorption mechanisms on oxides using FTIR spectroscopy and electrophoretic mobility. In Sparks D. L. and Grundl T. J. (ed.) Mineral-Water Interfacial Reactions. ACS Symposium Series 715, American Chemical Society, Washington, DC, pp. 136-168.

    Google Scholar 

  • Sutton R. and Sposito G. (2005) Molecular structure in soil humic substances: the new view. Environ. Sci. Technol. 39, 9009-9015.

    Article  Google Scholar 

  • Torrent J., Schwertmann U., and Barron, V. (1992) Fast and slow phosphate sorption by goethite-rich natural materials. Clays Clay Miner. 40, 14-21.

    Article  Google Scholar 

  • Tringides M. C. (1997) Surface Diffusion: Atomistic and Collective Processes. NATO ASI Series B-Physics, Vol. 360, Plenum Press, New York.

    Google Scholar 

  • Trivedi P., Axe L. (1999) A comparison of strontium sorption to hydrous aluminum, iron, and manganese Oxides. J. Colloid Interface Sci. 218, 554-563.

    Article  Google Scholar 

  • Valsaraj K. T. (1994) Hydrophobic compounds in the environment: adsorption equilibrium at the air-water interface. Water Res. 28, 819-830.

    Article  Google Scholar 

  • Verberg K. and Baveye P. (1994) Hysteresis in the binary exchange of cations on 2/1 clay-minerals - A critical review. Clays Clay Mineral. 41, 207-220.

    Article  Google Scholar 

  • Weber W. J., Jr., McGinley P. M., and Katz L. E. (1992) A distributed reactivity model for sorption by soils and sediments. 1. Conceptual basis and equilibrium assessments. Environ. Sci. Technol. 26, 1955-1962.

    Article  Google Scholar 

  • Wehrli B., Ibric S., and Stumm W. (1990) Adsorption kinetics of vanadyl(IV) and chromium(III) to aluminum oxide: Evidence for a two-step mechanism. Colloids Surf. 51, 77-88.

    Article  Google Scholar 

  • Yasunaga T. and Ikeda T. (1986) Adsorption-desorption kinetics at the oxide-solution interface studied by relaxation methods. Chapter 12. In Davis J. A. and Hayes K. F. (ed.) Geochemical Processes at Mineral Surfaces. American Chemical Society, Washington, DC.

    Google Scholar 

  • Zachara J. M., Smith S. C., Liu C., McKinley J. P., Serne R. J., and Gassman P. L. (2002) Sorption of Cs+ to micaceous subsurface sediments from the Hanford site, USA. Geochim. Cosmochim. Acta 66, 193-211.

    Article  Google Scholar 

  • Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Pøedota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., B én ézeth P., Anovitz L., Palmer D. A., Machesky M. L., and Wesolowski D. J. (2004) Ion adsorption at the rutile-water interface: Linking molecular and macroscopic properties. Langmuir 20, 4954-4969.

    Article  Google Scholar 

  • Zhao D., Pignatello J. J., White J. C., Braida W., and Ferrandino F. (2001) Dual-mode modeling of competitive and concentration-dependent sorption and des-orption kinetics of polycyclic aromatic hydrocarbons in soils. Wat. Resour. Res. 37,2205-2212.

    Article  Google Scholar 

  • Zhou Q., Maurice P. A., and Cabaniss S. E. (2001) Size fractionation upon adsorption of fulvic acid on goethite: Equilibrium and kinetic studies. Geochim. Cosmochim. Acta 65, 803-812.

    Article  Google Scholar 

  • Zimmerman A. R., Goyne K. W., Chorover J., Komarneni S., and Brantley S. L. (2004) Mineral mesopore effects on nitrogenous organic matter adsorption. Org. Geochem. 35, 355-375.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chorover, J., Brusseau, M. (2008). Kinetics of Sorption—Desorption. In: Brantley, S., Kubicki, J., White, A. (eds) Kinetics of Water-Rock Interaction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73563-4_4

Download citation

Publish with us

Policies and ethics