Skip to main content

SOLUTE TRANSPORT PROCESSES

  • Conference paper
Book cover Applied Hydrogeophysics

Abstract

Soils and aquifers are major compartments of the subsurface environment, which together control the terrestrial hydrological cycle. This subsurface is important for water resources and also as repository for municipal, industrial, and government waste. Aquifers are typically recharged by natural rainfall entering the soil profile and leaching into deeper soil layers. Due to intensive agricultural or industrial activities the leachate leaving the soil profile and entering the aquifer may contain concentrations of toxic substances such as agrochemicals, heavy metals, and polycyclic aromatic hydrocarbons. At contaminated industrial sites light and dense non-aqueous phase liquids (LNAPLs, DNAPLs) may be transported as a separate phase to the underlying aquifer systems. Once any of these chemicals have entered the aquifer they can be transported over large horizontal distances thus contaminating large parts of the aquifer and threateningwater supplywells. Remediation of highly contaminated aquifer systems is commonly a long-term and expensive proposition. As safe and effective use of the subsurface environment is a major challenge facing our society, there is a great need to improve our understanding of the shallow subsurface and the groundwater systems. This particularly includes the understanding of transport processes, which are responsible for the fate of contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acworth, R.I., and G.R. Dasey, 2003. Mapping of the hyporheic zone around a tidal creek using a combination of borehole logging, borehole electrical tomography and cross-creek electrical imaging, New South Wales, Australia, Hydrogeol. J., 11, 368–377.

    Article  Google Scholar 

  • Alumbaugh, D.L., and G.A. Newman, 2000. Image appraisal for 2-D and 3-D electromagnetic inversion, Geophysics, 65, 1455–1467.

    Article  Google Scholar 

  • Alumbaugh, D., P.Y. Chang, L. Paprocki, J.R. Brainard, R.J. Glass, and C.A. Rautman, 2002. Estimating moisture contents in the vadose zone using cross-borehole ground penetrating radar: A study of accuracy and repeatability, Water Resour. Res., 38, 1309, 12 p., Doi: 10.1029/2001WR000754.

    Google Scholar 

  • Archie, G.E., 1942. The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. Am. Inst. Min. Metall. Eng., 146, 54–62.

    Google Scholar 

  • Bear, J., 1972. Dynamics of Fluids in Porous Media, Elsevier, New York.

    Google Scholar 

  • Beckie, J., 1998. Analysis of scale effects in large-scale solute transport models, in Scale Dependence and Scale Invariance in Hydrology, edited by G. Sposito, Cambridge University Press, Cambridge, UK, pp. 314–334.

    Google Scholar 

  • Bellin, A., and Y. Rubin, 2004. On the use of peak concentration arrival times for the inference of hydrogeological parameters, Water Resour. Res., 40, W07401, 13 p., Doi: 10.1029/ 2003WR002179.

    Google Scholar 

  • Bevc, D., and H.F. Morrison, 1991. Borehole-to-surface electrical resistivity monitoring of a salt water injection experiment, Geophysics, 56, 769–777.

    Article  Google Scholar 

  • Binley, A., S. Henry-Poulter, and B. Shaw, 1996. Examination of solute transport in an undisturbed soil column using electrical resistance tomography, Water Resour. Res., 32, 763–769.

    Article  Google Scholar 

  • Binley, A., P. Winship, R. Middleton, M. Pokar, and J. West, 2001. High resolution characterization of vadose zone dynamics using cross-borehole radar, Water Resour. Res., 37, 2639–2652.

    Article  Google Scholar 

  • Binley, A., P. Winship, L.J. West, M. Pokar, and R. Middleton, 2002a. Seasonal variation of moisture content in unsaturated sandstone inferred from borehole radar and resistivity profiles, J. Hydrol., 267, 160–172.

    Article  Google Scholar 

  • Binley, A., G. Cassiani, R. Middleton, and P. Winship, 2002b. Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging, J. Hydrol., 267, 147–159.

    Article  Google Scholar 

  • Binley, A., and A. Kemna, 2005. DC resistivity and induced polarization methods, in Hydrogeophysics, edited by Y. Rubin and S.S. Hubbard, Springer, Dordrecht, pp. 129–156.

    Chapter  Google Scholar 

  • Brovelli, A., G. Cassiani, E. Dalla, F. Bergamini, D. Pitea, and A.M. Binley, 2005. Electrical properties of partially saturated sandstones: Novel computational approach with hydrogeophysical applications, Water Resour. Res., 41, W08411, 12 p., Doi/10.1029/2004WR003628.

    Google Scholar 

  • Butler, D.K. (ed), 2005. Near-Surface Geophysics, Investigations in Geophysics, Vol. 13, Society of Exploration Geophysicists, Tulsa, OK.

    Google Scholar 

  • Chang, P.-Y., D. Alumbaugh, J. Brainard, and L. Hall, 2004. The application of ground penetrating radar attenuation tomography in a vadose zone infiltration experiment, J. Contam. Hydrol., 71, 67–87.

    Article  Google Scholar 

  • Cirpka, O.A., and P.K. Kitanidis, 2000. Characterization of mixing and dilution in heterogeneous aquifers by means of local temporal moments, Water Resour. Res., 36, 1221–1236.

    Article  Google Scholar 

  • Dagan, G., 1989. Flow and Transport in Porous Formations, Springer, Berlin.

    Google Scholar 

  • Daily, W.D., A.L. Ramirez, D.J. LaBrecque, and J. Nitao, 1992. Electrical resistivity tomography of vadose water movement, Water Resour. Res., 28, 1429–1442.

    Article  Google Scholar 

  • Daily, W., A. Ramirez, and A. Binley, 2004. Remote monitoring of leaks in storage tanks using electrical resistance tomography: Application at the Hanford site, J. Environ. Eng. Geophys., 9, 11–24.

    Google Scholar 

  • Daily, W., A. Ramirez, A. Binley, and D. LaBrecque, 2005. Electrical resistance tomography – theory and practice, in Near-Surface Geophysics, Investigations in Geophysics, Vol. 13, edited by D.K. Butler, Society of Exploration Geophysicists, Tulsa, OK, pp. 525–550.

    Google Scholar 

  • Daniels, J.J., B. Allred, A. Binley, D. LaBrecque, and D. Alumbaugh, 2005. Hydrogeophysical case studies in the vadose zone, in Hydrogeophysics, edited by Y. Rubin and S.S. Hubbard, Springer, Dordrecht, pp. 413–440.

    Chapter  Google Scholar 

  • Day-Lewis, F.D., P.A. Hsieh, and S.M. Gorelick, 2000. Identifying fracture-zone geometry using simulated annealing and hydraulic-connection data, Water Resour. Res., 36, 1707–1721.

    Article  Google Scholar 

  • Day-Lewis, F.D., J.M. Harris, and S.M. Gorelick, 2002. Time-lapse inversion of crosswell radar data, Geophysics, 67, 1740–1752.

    Article  Google Scholar 

  • Day-Lewis, F.D., J.W. Lane, Jr., J.M. Harris, and S.M. Gorelick, 2003. Time-lapse imaging of saline-tracer transport in fractured rock using difference-attenuation radar tomography, Water Resour. Res., 39, 1290, 14 p., Doi: 10.1029/2002WR001722.

    Google Scholar 

  • Day-Lewis, F.D., J.W. Lane, Jr., and S.M. Gorelick, 2004.

    Google Scholar 

  • Day-Lewis, F.D., K. Singha, and A.M. Binley, 2005. Applying petrophysical models to radar traveltime and electrical resistivity tomograms: Resolution-dependent limitations, J. Geophys. Res., B08206, 17 p., Doi: 10.1029/2004JB005369.

    Google Scholar 

  • de Marsily, G., F. Delay, J. Goncalves, P. Renard, V. Teles, and S. Violette, 2005. Dealing with spatial heterogeneity, Hydrogeol. J., 13, 161–183, Doi: 10.1007/s10040-004-0432-3.

    Article  Google Scholar 

  • Ellefsen, K.J., P.A. Hsieh, and A.M. Shapiro, 2002. Crosswell seismic investigation of hydraulically conductive, fractured bedrock near Mirror Lake, New Hampshire, J. Appl. Geophys., 50, 299–317.

    Article  Google Scholar 

  • Fetter, C.W., 2001. Applied Hydrogeology, 4th Ed., Prentice-Hall, New York.

    Google Scholar 

  • Feyen, J., D. Jacques, A. Timmerman, and J. Vanderborght, 1998. Modelling water flow and solute transport in heterogeneous soils: A review of recent approaches, J. Agric. Eng. Res., 70, 231–256.

    Article  Google Scholar 

  • French, H.K., C. Hardbattle, A. Binley, P. Winship, and L. Jakobsen, 2002. Monitoring snowmelt induced unsaturated flow and transport using electrical resistivity tomography, J. Hydrol., 267, 273–284.

    Article  Google Scholar 

  • Gelhar, L.W., C. Welty, and K.R. Rehfeldt, 1992. A critical review of data on field scale dispersion in aquifers, Water Resour. Res., 28, 1955–1974.

    Article  Google Scholar 

  • Gelhar, L.W., 1993. Stochastic Subsurface Hydrology, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Gerke, H.H., and M.T. van Genuchten, 1993. A dual-porosity model for simulating preferential movement of water and solutes in structured porous media, Water Resour. Res., 29, 305–319.

    Article  Google Scholar 

  • Goldman, M., D. Gilard, A. Ronen, and A. Melloul, 1991. Mapping of seawater intrusion into the coastal aquifer of Israel by the time-domain electromagnetic method, Geoexploration, 28, 153–174.

    Article  Google Scholar 

  • Goldstein, N.E., S.M. Benson, and D. Alumbaugh, 1990. Saline groundwater plume mapping with electromagnetics, in Geotechnical and Environmental Geophysics, Vol. II – Environmental and Groundwater, Investigations in Geophysics, Vol. 5, edited by S.H. Ward, Society of Exploration Geophysicists, Tulsa, OK, pp. 17–25.

    Google Scholar 

  • Grasmueck, M., 1996. 3-D ground-penetrating radar applied to fracture imaging in gneiss, Geophysics, 61, 1050–1064.

    Article  Google Scholar 

  • Hagemeyer, R.T., and M. Stewart, 1990. Resistivity investigation of salt-water intrusion near a major sea-level canal, in Geotechnical and Environmental Geophysics, Vol. II – Environmental and Groundwater, Investigations in Geophysics, Vol. 5, edited by S.H. Ward, Society of Exploration Geophysicists, Tulsa, OK, pp. 67–77.

    Google Scholar 

  • Hagrey, S.A. al, and J. Michaelsen, 1999. Resistivity and percolation study of preferential flow in the vadose zone at Bokhorst, Germany, Geophysics, 64, 746–753.

    Article  Google Scholar 

  • Hall, L.M., J.R. Brainard, R.S. Bowman, and J.M.H. Hendrickx, 2004. Determination of solute distributions in the vadose zone using downhole electromagnetic induction, Vadose Zone J., 3, 1207–1214.

    Google Scholar 

  • Hsieh, P.A., A.M. Shapiro, and C.R. Tiedeman, 1999. Computer simulation of fluid flow in fractured rocks at the Mirror Lake FSE well field, in U.S. Geological Survey Toxic Substances Hydrology Program – Proceedings of the Technical Meeting, Charleston, SC, March 8–12, 1999, Subsurface Contamination from Point Sources, edited by D.W. Morganwalp and H.T. Buxton, U.S. Geological Survey Water-Resources Investigations Report 99-4018C, pp. 777–781.

    Google Scholar 

  • Hubbard, S.S., J.E. Peterson Jr., E.L. Majer, P.T. Zawislanski, K.H. Williams, J. Roberts, and F. Wobber, 1997. Estimation of permeable pathways and water content using tomographic radar data, The Leading Edge, 16, 1623–1628.

    Article  Google Scholar 

  • Huisman, J.A., S.S. Hubbard, J.D. Redman, and J.P. Annan, 2003. Measuring soil water content with ground penetrating radar: A review, Vadose Zone J., 2, 476–491.

    Google Scholar 

  • Hyndman, D., and J. Tronicke, 2005. Hydrogeophysical case studies at the local scale: The saturated zone, in Hydrogeophysics, edited by Y. Rubin and S.S. Hubbard, Springer, Dordrecht, pp. 391–412.

    Chapter  Google Scholar 

  • Jackson, M.J., and D.R. Tweeton, 1994. MIGRATOM – Geophysical tomography using wavefront migration and fuzzy constraints, Bureau of Mines Report RI9497, 35p.

    Google Scholar 

  • Jury, W.A., and H. Flühler, 1992. Transport of chemicals through soil – mechanisms, models, and field applications, Adv. Agron., 47, 141–201.

    Google Scholar 

  • Kemna, A., J. Vanderborght, B. Kulessa, and H. Vereecken, 2002. Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models, J. Hydrol., 267, 125–146.

    Article  Google Scholar 

  • Kemna, A., J. Vanderborght, K. Borgers, K. Gößling, A. Verweerd, A. Englert, K. Müller, and H. Vereecken, 2004a. Monitoring tracer experiments at the Krauthausen test site using time-lapse ERT, Extended Abstract Book “Near Surface 2004” – 10th European Meeting of Environmental and Engineering Geophysics, Eur. Assoc. Geosci. Eng., P007, 4 p.

    Google Scholar 

  • Kemna, A., A. Binley, and L. Slater, 2004b. Crosshole IP imaging for engineering and environmental applications, Geophysics, 69, 97–107.

    Article  Google Scholar 

  • Kitanidis, P.K., 1999. Generalized covariance functions associated with the Laplace equation and their use in interpolation and inverse problems, Water Resour. Res., 35, 1361–1367.

    Article  Google Scholar 

  • LaBrecque, D.J., and X. Yang, 2001. Difference inversion of ERT data: A fast inversion method for 3D in situ monitoring, J. Environ. Eng. Geophys., 5, 83–90.

    Google Scholar 

  • Lane, J.W., Jr., F.P. Haeni, and W.M. Watson, 1995. Use of a square-array direct-current resistivity method to detect fractures in crystalline bedrock in New Hampshire, Ground Water, 33, 476–485.

    Article  Google Scholar 

  • Lane, J.W., Jr., F.P. Haeni, and R. Versteeg, 1998a. Use of multi-offset borehole-radar reflection method in fractured crystalline bedrock at Mirror Lake, Grafton County, New Hampshire, in Symposium on the Application of Geophysics to Engineering and Environmental Problems, March 22–26, 1998, Chicago, IL, Proceedings, Wheat Ridge, CO, Environmental and Engineering Geophysical Society, pp. 359–368.

    Google Scholar 

  • Lane, J.W., Jr., F.P. Haeni, and F.D. Day-Lewis, 1998b. Use of time-lapse attenuation-difference radar tomography methods to monitor saline tracer transport in fractured crystalline bedrock, in 7th International Conference on Ground-Penetrating Radar (GPR’98), Lawrence, KS, May 27–30, 1998, Proceedings, Lawrence, KS, University of Kansas, pp. 533–538.

    Google Scholar 

  • Lane, J.W., Jr., F.D. Day-Lewis, J.M. Harris, F.P. Haeni, and S.M. Gorelick, 2000. Attenuation-difference radar tomography: Results of a multiple-plan experiment at the U.S. Geological Survey fractured rock research site, Mirror Lake, New Hampshire, in GPR 2000 – Proceedings of the 8th International Conference on Ground Penetrating Radar, edited by D.A. Noon, G.F. Stickley, and D. Longstaff, University of Queensland, Queensland, Australia, pp. 666–675.

    Google Scholar 

  • Lesmes, D.P., and S.P. Friedman, 2005. Relationships between the electrical and hydrogeological properties of rocks and soils, in Hydrogeophysics, edited by Y. Rubin and S.S. Hubbard, Springer, Dordrecht, pp. 87–128.

    Chapter  Google Scholar 

  • Lieblich, D.A., J.W. Lane Jr., and F.P. Haeni, 1991. Results of integrated surface-geophysical studies for shallow subsurface fracture detection at three New Hampshire sites, in Expanded Abstracts with Biographies, SEG 61st Annual International Meeting, Houston, TX, November 10–14, 1991, Society of Exploration Geophysicists, pp. 553–556.

    Google Scholar 

  • Liu, S., and T.-C.J. Yeh, 2004. An integrative approach for monitoring water movement in the vadose zone, Vadose Zone J., 3, 681–692.

    Google Scholar 

  • Merrick, N.P., 1997. An experiment in geophysical monitoring of a contaminated site, in Groundwater in the Urban Environment – Problems, Processes and Management, edited by J. Chilton, Balkema, Rotterdam, The Netherlands, pp. 487–490.

    Google Scholar 

  • Morris, M., J.S. Rønning, and O.B. Lile, 1996. Geoelectric monitoring of a tracer injection experiment: Modeling and interpretation, Eur. J. Environ. Eng. Geophys., 1, 15–34.

    Google Scholar 

  • Moysey, S., K. Singha, and R. Knight, 2005. Inferring field-scale rock physics relations through numerical simulation, Geophys. Res. Lett., 32, L08304, 4 p., Doi: 10.1029/2004GL022152.

    Google Scholar 

  • Müller, I., 1983. Anisotropic properties of rocks detected with electromagnetic VLF (very low frequency), in Proceedings of the International Symposium on Field Measurements in Geomechanics, Zürich, Sept. 1983, Special Publication, pp. 273–282.

    Google Scholar 

  • Müller, K., J. Vanderborght, A. Englert, A. Kemna, and H. Vereecken, 2005. Characterization of transport processes in a heterogeneous aquifer using electrical resistivity tomography (ERT), in Bringing Groundwater Quality Research to the Watershed Scale, Proceedings of GQ2004, 4th International Groundwater Quality Conference, held at Waterloo, Canada, July 2004, IAHS Publication, Vol. 297, pp. 182–190.

    Google Scholar 

  • Neuman, S.P., 1987. Stochastic continuum representation of fractured rock permeability as an alternative to the REV and fracture network concepts, in Proceedings of the 28th US Symposium on Rock Mechanics, New York, American Institute of Minerals, Metallic and Petroleum Engineering, pp. 533–561.

    Google Scholar 

  • Neuman, S.P., 1990. Universal scaling of hydraulic conductivities and dispersivities in geologic media, Water Resour. Res., 26, 1749–1758.

    Article  Google Scholar 

  • Nimmer, R.E., and J.L. Osiensky, 2002. Direct current and self potential monitoring of an evolving plume in partially saturated fractured rock, J. Hydrol., 267, 258–272.

    Article  Google Scholar 

  • Niva, B., O. Olsson, and P. Blumlung, 1988. Grimsel test site: Radar crosshole tomography with application to migration of saline tracer through fracture zones, TR88-31, Swedish Geological Co., Uppsala, Sweden.

    Google Scholar 

  • Nix, B., 2005. Radiomagnetotellurik-Messungen zur räumlichen und zeitlichen Ausbreitung eines Grundwasser-Tracers. Diploma thesis, Institute of Geophysics and Meteorology, University of Cologne.

    Google Scholar 

  • Nix, B., B. Tezkan, K. Müller, and A. Kemna, 2005. Monitoring of a groundwater tracer using radiomagnetotellurics (RMT): Extended Abstracts “Near Surface 2005” – 11th European Meeting of Environmental and Engineering Geophysics, Eur. Assoc. Geosci. Eng., A014, 4 p.

    Google Scholar 

  • Nobes, D.C., 1996. Troubled waters: Environmental applications of electrical and electromagnetic methods, Surv. Geophys., 17, 393–454.

    Article  Google Scholar 

  • Olsson, O., P. Anderson, and E. Gustafsson, 1991. Site characterization and validation – monitoring of saline tracer transport by borehole radar measurements, Final Report, Stripa Project TR91-18, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.

    Google Scholar 

  • Olsson, O., L. Falk, O. Forslund, L. Lundmark, and E. Sandberg, 1992. Borehole radar applied to the characterization of hydraulically conductive fracture zones in crystalline rock, Geophys. Prospect., 40, 109–142.

    Article  Google Scholar 

  • Osiensky, J.L., and P.R. Donaldson, 1995. Electrical flow through an aquifer for contaminant source leak detection and delineation of plume evolution, J. Hydrol., 169, 243–263.

    Article  Google Scholar 

  • Pellerin, L., 2002. Applications of electrical and electromagnetic methods for environmental and geotechnical investigations, Surv. Geophys., 23, 101–132.

    Article  Google Scholar 

  • Peterson, J.E., Jr., 2001. Pre-inversion corrections and analysis of radar tomographic data, J. Environ. Eng. Geophys., 6, 1–18.

    Google Scholar 

  • Ptak, T., M. Piepenbrink, and E. Martac, 2004. Tracer tests for the investigation of heterogeneous porous media and stochastic modelling of flow and transport – a review of some recent developments, J. Hydrol., 294, 122–163.

    Article  Google Scholar 

  • Ramirez, A.L., and R.J. Lytle, 1986. Investigation of fracture flow paths using alterant geophysical tomography, Int. J. Rock Mech. Miner. Sci. Geomech. Abstr., 23 (2), 165–169.

    Article  Google Scholar 

  • Ramirez, A., W. Daily, A. Binley, D. LaBrecque, and D. Roelant, 1996. Detection of leaks in underground storage tanks using electrical resistance methods, J. Environ. Eng. Geophys., 1, 189–203.

    Article  Google Scholar 

  • Rubin, Y., and S. Ezzedine, 1997. The travel time of solutes at the Cape Cod tracer experiment: Data analysis, modeling, and structural parameter inference, Water Resour. Res., 33, 1537–1547.

    Article  Google Scholar 

  • Rubin, Y., 2003. Applied Stochastic Hydrogeology, Oxford University Press, New York.

    Google Scholar 

  • Rubin, Y., and S.S. Hubbard (eds), 2005. Hydrogeophysics, Springer, Dordrecht.

    Google Scholar 

  • Russo, D., 1998. Stochastic modeling of scale-dependent macrodispersion in the vadose zone, in Scale Dependence and Scale Invariance in Hydrology, edited by G. Sposito, Cambridge University Press, Cambridge, UK, pp. 266–290.

    Google Scholar 

  • Schmalholz, J., H. Stoffregen, A. Kemna, and U. Yaramanci, 2004. Imaging of water content distributions inside a lysimeter using GPR tomography, Vadose Zone J., 3, 1106–1115.

    Article  Google Scholar 

  • Sen, P.N., and P.A. Goode, 1992. Influence of temperature on electrical conductivity shaly sands, Geophysics, 57, 89–96.

    Article  Google Scholar 

  • Shen, L.C., W.C. Savre, J.M. Price, and K. Athavale, 1985. Dielectric properties of reservoir rocks at ultra-high frequencies, Geophysics, 50, 692–704.

    Article  Google Scholar 

  • Simmons, C.S., 1982. A stochastic-convective transport representation of dispersion in one-dimensional porous media systems, Water Resour. Res., 18, 1193–1214.

    Article  Google Scholar 

  • Singha, K., and S.M. Gorelick, 2005. Saline tracer visualized with three-dimensional electrical resistivity tomography: Field-scale spatial moment analysis, Water Resour. Res., 41, W05023, 17 p., Doi: 10.1029/2004WR003460.

    Google Scholar 

  • Slater, L., A. Binley, and D. Brown, 1997a. Electrical imaging of fractures using ground-water salinity change, Ground Water, 35, 436–442.

    Article  Google Scholar 

  • Slater, L., M.D. Zaidman, A.M. Binley, and L.J. West, 1997b. Electrical imaging of saline tracer migration for the investigation of unsaturated zone transport mechanisms, Hydrol. Earth Syst. Sci., 1, 291–302.

    Article  Google Scholar 

  • Slater, L., A. Binley, W.D. Daily, and R. Johnson, 2000. Cross-hole electrical imaging of a controlled saline tracer injection, J. Appl. Geophys., 44, 85–102.

    Article  Google Scholar 

  • Slater, L.D., and S.K. Sandberg, 2000. Resistivity and induced polarization monitoring of salt transport under natural hydraulic gradients, Geophysics, 65, 408–420.

    Article  Google Scholar 

  • Slater, L., A. Binley, R. Versteeg, G. Cassiani, R. Birken, and S. Sandberg, 2002. A 3D ERT study of solute transport in a large experimental tank, J. Appl. Geophys., 49, 211–229.

    Article  Google Scholar 

  • Tezkan, B., 1999. A review of environmental applications of quasi-stationary electromagnetic techniques, Surv. Geophys., 20, 279–308.

    Article  Google Scholar 

  • Tiedeman, C.R., D.J. Goode, and P.A. Hsieh, 1998. Characterizing a ground water basin in a New England mountain and valley terrain, Ground Water, 36, 611–620.

    Article  Google Scholar 

  • Todd, D.K., 1980. Groundwater Hydrology, 2nd Ed., Wiley, New York.

    Google Scholar 

  • Topp, G.C., J.L. Davis, and A.P. Annan, 1980. Soil water content: Measurements in coaxial transmission lines, Water Resour. Res., 574–582.

    Google Scholar 

  • Tsang, Y.W., C.F. Tsang, F.V. Hale, and B. Dverstorp, 1996. Tracer transport in a stochastic continuum model of fractured media, Water Resour. Res., 32, 3077–3092.

    Article  Google Scholar 

  • Vanclooster, M., M. Javaux, and J. Vanderborght, 2005. Solute transport in soil at the core and field scale, in Encyclopedia of Hydrological Sciences, edited by M.G. Anderson, Wiley, New York, pp. 1041–1055.

    Google Scholar 

  • Vanderborght, J., and H. Vereecken, 2001. Analyses of locally measured bromide breakthrough curves from a natural gradient tracer experiment at Krauthausen, J. Contam. Hydrol., 48, 23–43.

    Article  Google Scholar 

  • Vanderborght, J., and H. Vereecken, 2002. Estimation of local scale dispersion from local breakthrough curves during a tracer test in a heterogeneous aquifer: The Lagrangian approach, J. Contam. Hydrol., 54, 141–171.

    Article  Google Scholar 

  • Vanderborght, J., A. Kemna, H. Hardelauf, and H. Vereecken, 2005. Potential of electrical resistivity tomography to infer aquifer transport characteristics from tracer studies: A synthetic case study, Water Resour. Res., 41, W06013, 23 p., Doi: 10.1029/2004WR003774.

    Google Scholar 

  • Vereecken, H., U. Döring, H. Hardelauf, U. Jaekel, U. Hashagen, O. Neuendorf, H. Schwarze, and R. Seidemann, 2000. Analysis of solute transport in a heterogeneous aquifer: The Krauthausen field experiment, J. Contam. Hydrol., 45, 329–358.

    Article  Google Scholar 

  • Vereecken, H., U. Yaramanci, and A. Kemna (eds), 2002. Non-invasive Methods in Hydrology, J. Hydrol., Special Issue, 267/3-4, 175 p.

    Google Scholar 

  • Vereecken, H., A. Kemna, H.-M. Münch, A. Tillmann, and A. Verweerd, 2005. Aquifer characterization by geophysical methods, in Encyclopedia of Hydrological Sciences, edited by M.G. Anderson, Wiley, New York, pp. 2265–2283.

    Google Scholar 

  • Ward, S.H. (ed), 1990. Geotechnical and Environmental Geophysics, Vol. II – Environmental and Groundwater, Investigations in Geophysics, Vol. 5, Society of Exploration Geophysicists, Tulsa, OK.

    Google Scholar 

  • West, L.J., K. Handley, Y. Huang, and M. Pokar, 2003. Radar frequency dielectric dispersion in sand and sandstone: Implications for determination of moisture content and clay content, Water Resour. Res., 39, 1026, 12 p., Doi: 10.1029/2001WR000923.

    Google Scholar 

  • White, P.A., 1988. Measurement of ground-water parameters using salt-water injection and surface resistivity, Ground Water, 26, 179–186.

    Article  Google Scholar 

  • Wright, D.L., T.P. Grover, K.J. Ellefsen, J.W. Lane Jr., and P.G. Kase, 1996. Radar tomograms at Mirror Lake, New Hampshire – 3D visualization and a brine tracer experiment, in Symposium on the Application of Geophysics to Engineering and Environmental Problems, Keystone, CO, April 28–May 2, 1996, Proceedings, edited by R.S. Bell and M.H. Cramer, Environmental and Engineering Geophysical Society, Wheat Ridge, CO, pp. 565–575.

    Google Scholar 

  • Yeh, T.-C.J., 1998. Scale issues of heterogeneity in vadose-zone hydrology, in Scale Dependence and Scale Invariance in Hydrology, edited by G. Sposito, Cambridge University Press, Cambridge, UK, pp. 224–265.

    Google Scholar 

  • Yeh, T.-C.J., S. Liu, R.J. Glass, K. Baker, J.R. Brainard, D. Alumbaugh, and D. LaBrecque, 2002. A geostatistically based inverse model for electrical resistivity surveys and its application to vadose zone hydrology, Water Resour. Res., 38, 1278, 13 p., Doi: 10.1029/2001WR001204.

    Google Scholar 

  • Zaidman, M., R.T. Middleton, L.J. West, and A.M. Binley, 1999. Geophysical investigation of unsaturated zone transport in the Chalk in Yorkshire, Q. J. Eng. Geol., 32, 185–198.

    Google Scholar 

  • Zhang, D.X., 2002. Stochastic Methods for Flow in Porous Media, Academic, London.

    Google Scholar 

  • Zheng, C., and G.D. Bennett, 2002. Applied Contaminant Transport Modeling, 2nd Ed., Wiley, New York.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Kemna, A. et al. (2006). SOLUTE TRANSPORT PROCESSES. In: Vereecken, H., Binley, A., Cassiani, G., Revil, A., Titov, K. (eds) Applied Hydrogeophysics. NATO Science Series, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4912-5_5

Download citation

Publish with us

Policies and ethics